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a b s t r a c t

When the target of a saccadic eye movement is displaced while the eyes move this displacement is often

not noticed (saccadic suppression of displacement, SSD). We present a neurobiologically motivated, com-

putational model of SSD and compare its simulation results to experimental data. The model offers a sim-

ple explanation of the effects of pre- and post-saccadic stimulus blanking on SSD in terms of peri-saccadic

network dynamics. Under normal peri-saccadic conditions pre-and post-saccadic stimulus traces are

recurrently integrated with reference to present and future eye position, whereas blanking diminishes

the pre-saccadic stimulus trace and thus leads to an uninfluenced integration of the post-saccadic stim-

ulus trace. We show that part of the intersubject variability in SSD can be explained by differences in

decision thresholds of this integration process.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With each shift of our gaze, the image on the retina abruptly

changes. However, we do not perceive these jumps during eye

movements. Rather, the world appears stable to us. This phe-

nomenon has been termed ‘visual stability across eye movements’.

While multiple experiments explored different aspects of visual

stability, we here focus on the experimental paradigm known as

saccadic suppression of displacement (SSD, e.g., Bridgeman,

Hendry, & Stark, 1975). It revealed that subjects are unable to per-

ceive small peri-saccadic displacements of stimuli which they can

well detect when they occur during fixation. In other words, sub-

jects perceive the world as visually more stable than it actually is.

Meanwhile, several studies addressed different aspects of SSD.

Deubel, Bridgeman, and Schneider (1996) found that the

detectability of stimulus displacements can be considerably

improved when the stimulus at the saccade target is not displaced

during the saccade but first removed and then shown after a blank-

ing period of about 250 ms at its displaced position, known as the

blanking or (post-)gap effect. Less attention has been given to the

observation by Deubel et al. (1996) that an improvement of the

detection performance also occurs when the target stimulus is

not blanked after but before the saccade (pre-gap effect).

Zimmermann, Morrone, and Burr (2013) found that a prolonged

viewing time prior to saccade onset also improves the detection of

stimulus displacements. Zimmermann et al. (2013) and

Zimmermann, Born, Fink, and Cavanagh (2014) further revealed

that a displacement detection reduction does not require a sac-

cade: similar decrements in performance occur during fixation if,

instead of the execution of a saccade, a mask is presented.

An early theory proposed to explain the SSD effect – the object

reference or visual search theory (Bridgeman, 2007; Deubel et al.,

1996) states that the visual system uses visual objects, usually

the stimulus at the saccade target, to recalibrate spatial perception

after the saccade. According to this theory, small displacements of

the saccade target are not noticed because the visual system

assumes that the saccade target stays stable during the saccade

and ascribes any deviances of the target which should be in the

center of the fovea after the saccade to an imprecise eye move-

ment. Only if the target displacements are too large the visual sys-

tem uses other information such as proprioception to recalibrate

spatial perception, which leads to the detection of the stimulus dis-

placements. In this framework the blanking effect is explained by a

spatiotemporal ‘constancy’ window: Only if the saccade target

stimulus is found within this spatiotemporal window the world

is perceived as stable. If the object reappears after this window
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has closed, the stability assumption is dropped and target displace-

ments are detected (Bridgeman, 2007).

Based on a similar assumption but spelled out in a computa-

tional framework, Niemeier, Crawford, and Tweed (2003) proposed

a Bayesian transsaccadic integration model. They attempted to

predict the perceived displacement of a stimulus by combining

the stimulus position, an internal estimate of the eye positions

(e.g. efference copy) and an expectation about the probability of

peri-saccadic target displacements (the prior). The model rests on

the assumption that the brain computes this prior for each exper-

imental condition, while the underlying mechanisms however, are

not part of the model. They fitted the model to their own recorded

data by using a sharply tuned prior in the non-blanking condition

and a broadly tuned one in the blanking condition.

Atsma, Maij, Koppen, Irwin, and Medendorp (2016) criticised

this model as it necessarily relies on the integration of a displace-

ment vector (the combined visual and motor signals) and a prior

around zero displacement. Thus, independent of the size of the true

displacement it always predicts a reduction of the perceived dis-

placement. They proposed a different model which in parallel

applies not only an integration but also a separation of the pre-

and post-saccadic stimuli and weighting both using the factors dis-

placement size and viewing time to compute the final percept.

They found that the degree of integration and separation depends

on displacement size, where small displacements show a stronger

weight for integration. However, Atsma et al. (2016) do not address

the blanking condition with their model. Further, viewing time is

not explicitly modeled but only implicitly in the probability den-

sity function coding the precision of the stimulus.

Understanding SSDby computing aunitarypercept frompre-and

post-saccadic stimulus contributions as suggested by Atsma et al.

(2016) is not novel and has been already proposed in a neuro-

computational model of SSD (Ziesche & Hamker, 2014), which has

the further advantage that time is explicitly part of the model

description. This model explains the blanking effect as an uninflu-

enced integration of the post-saccadic stimulus as the neural trace

of the pre-saccadic stimulus has declined during the blanking per-

iod. Further, the eye dependent parameters have been fully updated

at the time of post-saccadic stimulus presentation. In the non-

blanking condition, both the pre- and post-saccadic stimulus, are

integrated into a single percept. However, as the model has to link

the pre-saccadic with the post-saccadic view it uses an egocentric

reference frame based on internal eye position signals. In the non-

blanking condition, the eye position signals have not been fully

updated as the displacement occurs during saccade. Ziesche and

Hamker (2014) further explained how predictive remapping, first

reportedbyDuhamel, Colby, andGoldberg (1992), and corollary dis-

charge are linked to saccadic suppressionof displacement.However,

the model does not require a saccade to show a reduction of dis-

placement detection. Bergelt and Hamker (2016) applied the model

to a masking experiment without a saccade and could well account

for the observation of Zimmermann et al. (2014).

To further investigate the properties of the neuro-

computational model, in particular with respect to variations of

the stimulus timings, we applied it to the most relevant experi-

mental variations of Deubel et al. (1996).

2. Material and methods

The neuro-computational model has been originally introduced

to explain the peri-saccadic mislocalization of briefly flashed stim-

uli in complete darkness (Ziesche & Hamker, 2011). It has then

been slightly adapted to the paradigm of saccadic suppression of

displacement (Bergelt & Hamker, 2016; Ziesche & Hamker, 2014).

As the model has been described in detail before, we will here

describe its properties on a coarse level.

2.1. Anatomy

Our proposed model rests on the assumption that parietal areas,

such as the lateral intraparietal area (LIP), receive two different

kinds of eye position information (Fig. 1). First, a proprioceptive

information about eye position (Andersen, Bracewell, Barash,

Gnadt, & Fogassi, 1990; Bremmer, Distler, & Hoffmann, 1997), pre-

sumably from the somatosensory cortex (Wang, Zhang, Cohen, &

Goldberg, 2007; Xu, Wang, Peck, & Goldberg, 2011; Xu, Karachi,

& Goldberg, 2012), and second, a preparatory corollary discharge

about the intended saccade displacement (Colby, Duhamel, &

Goldberg, 1996; Melcher & Colby, 2008; Wurtz, 2008) which pre-

sumably originates in the superior colliculus (SC) and is routed

via the mediodorsal nucleus (MD) and the frontal eye field (FEF,

Sommer & Wurtz, 2004, 2008). However, the exact origins of these

eye position signals are not critical assumptions but rather provide

a source of inspiration for the model design. Importantly, both eye

position signals are used to transform a visual stimulus position

signal, which is encoded in a retinocentric reference frame coming

from early extrastriate areas, into an intermediate reference frame.

The representation of stimulus position in the intermediate refer-

ence frames is then used to compute the stimulus position in a

head-centered reference frame (Galletti, Battaglini, & Fattori,

1995; Mullette-Gillman, Cohen, & Groh, 2005). The computation

of an explicit head-centered reference frame is not a critical

requirement of the model but slightly improves the simulation

results (Ziesche & Hamker, 2011, 2014).

2.2. Model

We use the concept of basis function networks (Pouget, Denève,

& Duhamel, 2002) to combine a retinotopic retinal signal (modeled

in a one-dimensional neuron layer Xr) with proprioceptive (mod-

eled in a 1D layer XePC) and corollary discharge (modeled in a 1D

layer XeCD) signals. The basis functions are realized in two two-

dimensional layers XbPC and XbCD in which the retinal signal is

modulated by proprioception and corollary discharge respectively.

From these basis function representations we read out a head-

centered stimulus representation in an output layer Xh (Fig. 2).

Fig. 1. Putative anatomical relationship of the model to the human brain. After the

initial processing of stimulus properties in early visual areas, spatial information is

represented in the parietal cortex in various reference frames. The core of the model

may be localized in the human homologue of the lateral intraparietal area (LIP). It

receives stimulus position information in retinotopic coordinates from early

extrastriate areas, proprioceptive eye position information from primary

somatosensory cortex (S1), and a phasic corollary discharge signal encoding

planned saccade displacement originating from the superior colliculus (SC) and

routed via mediodorsal nucleus (MD) and frontal eye field (FEF) to LIP. All this

spatial information is integrated in LIP and then decoded to yield a spatial percept

of the stimulus position.
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Since we use a fully dynamic neural network based on rate-coded

neurons (Hamker, 2005; Zirnsak, Beuth, & Hamker, 2011) we

model the time courses of the input signals realistically to obtain

explanations of phenomena of peri-saccadic spatial perception

which occur on fine time scales (see below). For details on the

implementation of the network layers and connection patterns

we refer the reader to our previous publications (Bergelt &

Hamker, 2016; Ziesche & Hamker, 2011, 2014). For a simplified

version of the equations describing the interactions of the model

layers, see the grey boxes in Fig. 2.

The continuous firing rates of the neurons at the output layer

Xh are fed into a decision process based on competing, accumulat-

ing decision neurons (Hamker, 2007; Usher & McClelland, 2001) to

reach a decision about the stimulus displacement (justified by

Kiani, Hanks, & Shadlen, 2008; Stanford, Shankar, Massoglia,

Costello, & Salinas, 2010). Since we aim at replicating the findings

from Deubel et al. (1996) we use a decision process with two deci-

sion neurons, one voting for a forward target displacement, the

other voting for a backward target displacement. The procedure

is similar to our previous application of the model (Ziesche &

Hamker, 2011), however there we used a decision process which

came up with spatial location percept. The details of the modified

two-choice decision process are presented below.

The principle functionality of the model on the SSD task has

been described previously (Bergelt & Hamker, 2016; Ziesche &

Hamker, 2014), which we briefly summarize here. Our model pos-

tulates that the pre-saccadic stimulus trace is integrated with the

post-saccadic stimulus trace to compute the location of a stimulus.

As our model also contains feedback connections (Fig. 2) any pre-

sent evidence affects the processing of new evidence. Thus, the

pre-saccadic stimulus trace affects the post-saccadic processing

and stabilises the percept in favour of the pre-saccadic evidence.

This explains that small displacements during saccade become

unnoticed. Thus, in its core SSD has similarities to visual masking.

In order to align pre- and post-saccadic views egocentric reference

frames in form of the two eye position signals are used. One eye

position signal, the proprioceptive signal, computes the stimulus

in reference of the pre-saccadic position and the other, the corol-

lary discharge, in reference of the future eye position. The interac-

tion of the stimulus encoded in the pre-saccadic reference frame

with the corollary discharge leads to predictive remapping, i.e.

the response of a neuron to a stimulus presented in its future

receptive field (Ziesche & Hamker, 2014). When we selectively dis-

rupted either predictive remapping or corollary discharge the

model predicts a bias in reporting displacements opposite to the

saccade direction, as the predictive component is in part or fully

suppressed.

2.2.1. Timing of the physiological signals

In our previous presentation of the model (Ziesche & Hamker,

2011) where it had been applied to explain the mislocalization of

brief flashes around saccades in total darkness, we presented var-

ious parameter variations of the timing of the physiological signals.

Here, we choose specific values for these timings to achieve a good

data fit. However, we were careful to choose parameter values

which are in the range of suitable values derived from the param-

eter variations in Ziesche and Hamker (2011). Specifically, the

parameters we use here produce comparable outcomes as in the

previous study. We used the following timing parameters for the

physiological eye position signals:

The proprioceptive (PC) eye position signal encodes the eye

position during fixation but does not move with the eye during

the saccade. Rather, it represents the pre-saccadic eye position

during the saccade until it starts updating to the new eye position

some time after saccade offset as suggested by experimental data

(Wang et al., 2007; Xu et al., 2011, 2012). In our simulations, the

neural activity representing the post-saccadic eye position is

turned on tPC; on ¼ 32 ms relative to saccade offset. At the same time

ðtPC; off ¼ 32 msÞ, the activity representing the pre-saccadic eye

position starts to decay. In the present study, we use a faster decay

factor rPC; off ¼ 15 (as compared to rPC; off ¼ 35 in Ziesche &

Hamker, 2011). As the eye-position is mathematically computed

by a differential equation, the change needs some time to become

effective, which takes additional 30–40 ms to become fully estab-

lished. Thus, the model is well consistent with the observation that

proprioceptive eye position lags behind the true eye position (Xu

et al., 2011; Wang et al., 2007), but the model LIP gain fields update

50–100 ms earlier than those recently reported for monkeys (Xu

et al., 2012). As macaque monkeys did not show any difference

between blank and step trials, different than in humans (Joiner,

Cavanaugh, FitzGibbon, & Wurtz, 2013), a full replication of mon-

key data may not be a requirement to explain data of SSD experi-

ments run with humans and we kept the parameters of the original

model (Ziesche & Hamker, 2011).

The corollary discharge (CD) signal is a transient representation

of the planned saccade displacement in retinotopic coordinates

whose temporal dynamics are well motivated from single cell

recordings in the superior colliculus, the frontal eye field and the

Fig. 2. Our model of peri-saccadic stimulus localization is composed of three cell

types, XbPC and XbCD (in LIP), which receive retinal input from early extrastriate

areas as well as eye position information presumably from S1 and FEF, and Xh

which encodes stimulus positions in a head-centered reference frame. The input

layer Xr represents stimulus position retinotopically in a single dimension, modeled

by Gaussian receptive fields. The stimulus signal is gain-modulated in XbPC by the

proprioceptive eye position signal ðXePCÞ and in XbCD by the corollary discharge

(XeCD). Both maps, XbPC and XbCD feed into the head-centered layer Xh. In order to

allow interactions of these two forward connections, the maps XbPC and XbCD both

encode space in the same coordinate system. Thus, the corollary discharge

implicitly encodes eye position information, as motivated by an observation of

Cassanello and Ferrera (2007). For simplicity, we use the same eye position signal

ðXePCÞ to modulate corollary discharge from MD (and SC) with eye position. The

grey boxes in each layer show a simplified version of the neurons equations. In layer

Xr, Stim is the input from earlier areas and in Xr as well as in Xh, S is the synaptic

depression. In all layers, Gain is the gain modulation factor. PC is the proprioceptive

eye position signal and CD is the corollary discharge signal.
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mediodorsal nucleus (MD) of the thalamus (Sommer & Wurtz,

2004, 2008). In the present study, we use a faster decay factor

bCD ¼ 65 (as compared to bCD ¼ 150 in Ziesche & Hamker, 2011).

A faster decay factor in the CD signal leads to a more pronounced

mislocalization opposite to the saccade direction when stimuli are

flashed in total darkness after saccade onset, which has been

observed in experimental data as well (Ziesche & Hamker, 2011).

Thus, the present choice of parameters is still consistent with

observations in previous studies. Further, it is also likely that decay

and rise times of the CD and PC signals vary in individual subjects.

2.2.2. Details of the decision process

The computation of the input to the decision process consists of

several steps (see Fig. 3):

1. The input IDP to the decision process consists of the firing rates

of Xh, i.e. IDPi ¼ rXhi when they are above a threshold of 0.04. The

start time of the accumulation process is set to 28 ms after sac-

cade offset for conditions where the displaced stimulus reap-

pears during the saccade and 60 ms after stimulus onset

when the displaced stimulus reappears after saccade offset.

We chose not to couple the accumulation onset to stimulus

onset for peri-saccadic stimuli since peri-saccadic detectability

of stimuli is suppressed (Volkmann, Riggs, White, & Moore,

1978). The timing of 28 ms after saccade offset is set to a similar

timing as the updating of the proprioceptive eye position signal

(see above), assuming that this signal might be used to trigger

the accumulation process. The interval between stimulus onset

and accumulation onset for stimuli appearing after saccade off-

set is roughly set to the time where the stimulus activity

reaches Xh.

2. The position information encoded in the input IDP is decoded

using template matching with precalculated templates of much

higher spatial resolution than the number of entries in IDP. Each

entry codes 4 degrees. Hence the templates represent stimulus

position with a step size of 0.5 degrees. Template matching is

done using correlation. The match mc of the template tci repre-

senting a stimulus at position c with neurons i is

mc ¼
X

j

rXhj tcj : ð1Þ

The spatial resolution of the decision neurons equals the one of

the templates.

3. We introduce noise by first transforming the rate coded input to

a spiking neuron model using a Poisson spike train and then

transforming it back to rate coded input by averaging. To be

more specific, one time step of the input mc (the template

match from the previous step) is equivalent to n time steps of

the spiking neuron ~mc (n ¼ 20 is the bin size). Spiking is simu-

lated in the simplest way: In each of the n time steps the neuron

spikes if and only if mc > Rsmax where R is a random number

between 0 and 1. The spiking activity of the neuron is smax ¼ 1

while the non-spiking activity is 0. Thus the activity at the spik-

ing time step t is

~mt
c ¼

smax; if mc > Rsmax

0; else

�

: ð2Þ

Then, the activity of the spiking neuron is averaged to obtain a

rate.

mc ¼
1

n

X

n�1

t¼0

~mt
c ð3Þ

4. In the previous step we introduced rate-coded neurons

encoding evidence for the presence of a stimulus at each

spatial position with a resolution of 0.5 degrees. In this step,

we collect all these evidences into two evidences mf and mb,

one for forward jumps and one for backward jumps. For this

we use the pre-saccadic stimulus position cpre as a decision

border:

mf ¼
X

cPcpre
mc ð4Þ

mb ¼
X

c6cpre
mc ð5Þ

5. We implement a competition between the decision neurons

by subtracting each input from the other:

mf :¼mf �mb ð6Þ

mb :¼mb �mf ð7Þ

6. Accumulating decision neurons are implemented as in

Hamker (2007). The ODE of each of the two decision neurons

df and db is:

sDN
t

dt
df=bðtÞ ¼ mf=b ð8Þ

with time step h
DN

¼ 1, time constant sDN ¼ 50. Each decision

neuron dc is initialized with a baseline firing rate of 0.1 before

the decision process begins. A decision is made when one of

the neurons reaches the threshold dthresh ¼ 0:3 to 0:9 (the

threshold is systematically varied). If none of the neurons

reaches this threshold after tDNmax ¼ 70 ms, the neuron with the

highest activity at that time wins (see Kiani et al., 2008).

7. This whole process is repeated cDNtrials ¼ 100 times and then aver-

aged to compute the average number of ‘forward jump’

responses over all trials.

2.2.3. Simulation of experimental paradigms

We simulate the experimental paradigm from Deubel et al.

(1996) for four different experiments (Fig. 4). For easy reference,

we use the same numbering of experiments as in Deubel et al.

Fig. 3. The decision process used in the model. It decodes the stimulus position from the activity in the head-centered map Xh. First we apply a template matching for each

time step. This has the advantage of increasing the spatial resolution by using appropriate pre-calculated templates. After noise is added the noisy template matches are split

into those encoding spatial positions representing a forward stimulus jump and a backward stimulus jump. The evidences for forward and backward jumps are summed up

for both directions and subtracted from each other, thereby implementing a competition between both. These two values serve as input to accumulating decision neurons

which compete until a threshold is reached. We repeat the entire process 100 times to yield an average percept mimicking 100 experimental trials.
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(1996). In all experiments, we simulate saccadic eye movements

from 0� towards a stimulus at the saccade target which is pre-

sented at 8� (saccades are simulated by the saccade generator from

VanWetter & Van Opstal (2008)). In experiments I and II the target

stimulus jumps once the saccade is detected by the experimental

equipment. In experiment I, the stimulus jumps either þ1� (i.e.

in saccade direction) or �1� (opposite to saccade direction). Before

it reappears at its displaced position, it is blanked for a variable

time from 0 ms to 270 ms. In experiment II, this time is set fixed

to either 0 ms or 250 ms and the target jump is varied between

�2� and þ2�. In experiment III, the stimulus is displaced immedi-

ately when the saccade is detected by þ1� or �1� and is blanked

for 250 ms after a variable time of 0 ms to 150 ms. In experiment

IV, the stimulus also jumps immediately when the saccade is

detected by þ1� or �1�. However, here the jump is preceded by a

variable blanking of the stimulus from 20 ms to 200 ms. In other

words, the stimulus disappears before saccade onset (for most

conditions).

3. Results

3.1. The SSD effect

To demonstrate that our model replicates the experimental data

from Deubel et al. (1996), in particular the pre-gap and post-gap

effects, we replot the experimental data along with our model sim-

ulations in Fig. 5. Fig. 5A shows that the detection performance

increases with gap duration. The main SSD effect is shown in

Fig. 5B. The psychometric curves for displacement detection with-

out target blanking (0 ms gap) are shallow which indicates that

small displacements are often unnoticed. The experimental data

shows a large in between-subject variability. In comparison, panel

C shows the performance in the blanking (post-gap) condition

(250 ms gap). Here, the psychometric curves are steep which indi-

cates good detection performance. In the 0 ms gap condition small

displacements are not detected well and the model replicates a

response bias towards positive displacements. In the model, this

effect is due to various causes which can be seen in detail in the

activity traces of the input and output layers of the model in

Fig. 6. Long time (for example 200 ms) before saccade onset the

stimulus which is presented at the saccade target evokes activity

in the retinal input layer Xr at a retinotopic position representing

the saccade target (indicated by the horizontal green line). At the

same time, proprioceptive eye position in XePC encodes the pre-

saccadic eye position which is 0� (indicated by the horizontal black

line). The model combines these activities into a head-centered

stimulus position which correctly encodes the saccade target in

the output layer Xh. Closer to saccade onset (50 ms before) the

corollary discharge signal in XeCD rises which leads to a distortion

in positive spatial direction of the activity in Xh. Shortly after sac-

cade onset (10–20 ms) suppression in XbPC (Ziesche & Hamker,

2011) leads to reduced activity in Xh which retains for the whole

saccade time. Later (around 50 ms after saccade onset) the retinal

input signal in Xr starts to reflect the stimulus movement on the

retina in the opposite direction of the saccade (towards the nega-

tive saccade amplitude). This leads to further distortions of the

head-centered output signal in Xh. Finally, shortly before the eye

reaches its post-saccadic position, the decision process starts accu-

mulating evidence from Xh (indicated by the vertical blue lines in

Fig. 6). Around the same time the proprioceptive eye position sig-

nal in XePC starts updating to the new eye position. This leads to

Fig. 4. The experimental paradigms for saccadic suppression of displacement which we simulate. Paradigms are adopted from Deubel et al. (1996), but simplified for

simulation in the model. For easy reference, we kept the original numbering of the experiments. In all experiments, we simulate saccadic eye movements from fixation at 0�

towards a saccade target stimulus which is presented at a position of 8�. Spatial positions are shown on the vertical axes, time is shown on the horizontal axes. Thick lines are

stimuli, thin lines are eye trajectories. In all experiments we change the scene 30 ms after saccade onset. A, In experiments I and II the stimulus is hidden 30 ms after saccade

onset. After a gap of variable length it reappears at a slightly different position. In experiment I the stimulus gap is varied (0 ms, 50 ms, 100 ms, 180 ms, or 270 ms) and

stimulus jumps are eitherþ1� or �1� . In experiment II the stimulus gap is either 0 ms or 250 ms and stimulus jump is varied (�2�;�1�; 0�;þ1� , or þ2�). B, In experiment III the

stimulus jumps immediately by either þ1� or �1� when the saccade is detected, but it is blanked again after a variable time (0 ms, 25 ms, 50 ms, 75 ms, 100 ms, 125 ms, or

150 ms) for 250 ms. We also refer to the jumped stimulus before the gap as a pre-gap stimulus pulse. C, Experiment IV is similar to experiment I with the difference that the

stimulus jumps when the saccade is detected (by either þ1� or �1�) but there is a stimulus gap of variable length (200 ms, 180 ms, 160 ms, 140 ms, 120 ms, 100 ms, 80 ms,

60 ms, 40 ms, or 20 ms) right before the stimulus jump. Thus, for most gap durations the stimulus disappears before saccade onset (‘‘pre-gap” condition).
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increased activity and further distortions in Xh and also affects the

still ongoing accumulation process in the decision neurons. In the

end (about 200 ms after saccade onset) the peri-saccadic distor-

tions end and a correct representation of stimulus position in Xh

is restored.

In sum, distortions of the stimulus representation around the

decision time are due to changes in all of the input signals, the

corollary discharge, the stimulus movement on the retina, and

the proprioceptive eye position signal. The feedback connections

from Xh to XbCD stabilize the activity pattern in Xh such that the

disturbances of the input signals do not affect the activity pattern

in Xh immediately but only slowly. Thus, also peri-saccadic stimu-

lus displacements do not influence Xh immediately but only later

in the accumulation process where they have a weaker effect.

Together, the peri-saccadic distortions of Xh due to updates in

the input signals and the stabilization of Xh due to feedback loops

explain the SSD effect.

3.2. The blanking effect

One main finding of Deubel et al. (1996) is the so called blank-

ing effect, i.e. that detection performances for stimulus displace-

ments are completely restored when the displacement does not

occur immediately during the saccade, but after a blanking period

of the stimulus. Fig. 7 shows the activity traces for a blanking per-

iod of 250 ms. Although the peri-saccadic distortions in Xh are the

same as in the no-gap condition (Fig. 6), they have ceased at the

time where the activity of the post-gap stimulus enters the system

(indicated by the vertical blue line). Hence, stimulus position is

immediately represented correctly in Xh.

3.3. The pre-gap effect

The second main finding of Deubel et al. (1996) is the so called

pre-gap effect. Here they show that the detection performance is

not only restored for post-saccadic stimulus blanking but also for

pre-saccadic stimulus blanking. Our model is able to replicate this

effect (Fig. 5E). It offers an explanation in terms of its feedback

loops. With a long pre-saccadic gap there is no previous activity

in the head-centred output layer Xh when the displaced stimulus

enters the system. Thus, any response of Xh to the new stimulus

– although potentially distorted – immediately reflects the dis-

placed stimulus position. In other words, when the pre-gap is a

long enough, the detection performance might still be biased but

displacements are detected well (i.e. the psychometric curve is

steep).

3.4. The effect of the decision threshold

The behavioral data from Deubel et al. (1996) shows intersub-

ject variability in most experiments. Remarkably, the variability

in the model for different decision thresholds is very similar to

the one of the subjects (Fig. 8). We will now describe how the deci-

sion threshold influences the SSD effect using the no-gap condition

(Fig. 8B). Fig. 9 shows the activities of the decision neurons for

three different thresholds in the 0 ms gap, 0� target displacement

Fig. 5. Comparison of subject performance and model performance. Gray lines are subjects (replotted from Deubel et al., 1996), solid lines are model performances for a

decision threshold of 0.7. A, Experiment I, the main finding of the blanking effect. B, Experiment II with no gap. C, Experiment II with a 250 ms gap. D, Experiment III. E,

Experiment IV, the main finding of the pre-gap effect.
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condition. As the main effect of the decision threshold the decision

times increase (indicated by the circles at the end of the lines). Fur-

thermore, for longer decision times the accumulated evidence

changes. While the evidence for a forward displacement is stronger

in the first period of about 10–20 ms, later (20–40 ms) the evi-

dence for a backward displacement is stronger. Thus, longer deci-

sion times are predicted to lead to tendency to decide for

backward displacements.

Since the model performance varies in the same range as the

subjects’ performance (Fig. 8), we were interested whether it is

Fig. 6. Activity traces of model layers for SSD simulations with 0 ms gap and 0� displacement. Time relative to saccade onset is plotted on the horizontal axes, spatial position

on the vertical axes. The horizontal black and green lines indicate the spatial positions of pre-saccadic fixation and planned saccade target, respectively. The vertical blue lines

indicate the time where the decision process starts to accumulate evidence from Xh neurons. A, Time course of events. The top graph shows the simulated eye trajectory, the

middle graph shows the stimulus which is switched off 30 ms after saccade onset and turned on at its displaced position the same time. B, Activities of Xh neurons. They

represent stimulus position in head-centered coordinates and are read out by the decision process. C, Activities of Xr neurons. They represent stimulus position in retinotopic

coordinates and serve as visual input to the model. D, Activities of XePC neurons. They represent proprioceptive eye position in the orbit (i.e. in head-centered coordinates). E,

Activities of XeCD neurons. They represent the planned saccade displacement (i.e. the planned saccade target in retinotopic coordinates). (For interpretation of the references

to colour in this figure caption, the reader is referred to the web version of this article.)
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possible to assign each subject a model threshold which explains

the subjects’ data well across all experiments. To this end, we com-

pared each subject’s performance with each threshold’s perfor-

mance separately for all experiments using the mean square

error (Fig. 10). Indeed we found that subjects could be assigned

with at least a range of likely thresholds. For example, subject OS

shows a performance similar to the model with a threshold of

0.6–0.7. Subject AM is close to thresholds of 0.7–0.8 except for

experiment II with 250 ms gap. However, in that experiment all

subjects’ and all thresholds’ performances are almost identical any-

way. Subjects TM and CE are both close to smaller thresholds and

subject CK is similar to a threshold of 0.8. In sum, at least part of

the variability among the subjects can be well explained by a dif-

ferent integration threshold.

Fig. 7. Activity traces of model layers for SSD simulations with 250 ms gap and 0� displacement. The format is the same as in Fig. 6. A, The time courses of the saccade and

stimulus presentation. B, C, The activity traces of the head-centered output neurons in Xh and the retinal input neurons in Xr decay during the stimulus gap. When the

stimulus reappears, around the time of accumulation onset (vertical blue line), all peri-saccadic perturbations in the activities are gone. D, E, Activities of XePC and XeCD
neurons are identical to those in the 0 ms gap condition (Fig. 6). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of

this article.)
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However, a parameter that directly counteracts with the deci-

sion threshold is the speed of the accumulation process. Thus, a

variation of the strength of the CD signal (cCD in Eq. 14 of

Ziesche & Hamker, 2011) leads to a similar effect. Lowering a

threshold is similar to speeding up the accumulation process by

a stronger CD signal. Thus, behavioral data can not dissociate a

variation of the decision threshold from a variation of the speed

of the accumulation process.

4. Discussion

Saccadic suppression of displacement (SSD) has been explained

at different levels of abstraction. The object reference theory

(Bridgeman, 2007; Deubel et al., 1996) assumes a built in assump-

tion of visual stability. It proposes a post-saccadic spatiotemporal

window around the saccade target in which displacements of the

target are tolerated without noticing any instability. This theory

Fig. 8. Comparison of subject performance and model performance. Dotted lines are subjects (replotted from Deubel et al., 1996), solid lines are model performances for

different thresholds in the decision process. A, Experiment I. B, Experiment II with no gap. The data points marked by circles indicate the decisions which are detailed in Fig. 9.

C, Experiment II with a 250 ms gap. D, Experiment III. E, Experiment IV.

Fig. 9. Activity traces of the decision neurons for SSD simulations with 0 ms gap and 0� jump and different decision thresholds (0.3, 0.6, and 0.9 in panels A, B, and C

respectively). The colored circles at the top indicate to which data point in Fig. 8B the decisions lead. Each panel shows activity traces of all 100 trials. Blue lines are the

activities of the neuron representing a forward jump decision, red lines are neurons representing a ‘backward jump’ decision. The horizontal grey line is the decision

threshold. Once either neuron’s activity exceeds the threshold, it wins the trial, indicated by a circle in the color of the winning neuron. After that, the trial ends. (For

interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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explains the target blanking effect as follows: because the target

could not be found after the saccade, the assumption of stability

is broken, and displacements become visible. How such proposed

mechanisms may be implemented in the brain has not been dis-

cussed further.

Optimal trans-saccadic integration (Niemeier et al., 2003) for-

malized some of the above ideas in a Bayesian framework and sug-

gested that peri-saccadic perception represents the optimal

solution to the integration of noisy visual and extraretinal signals.

One drawback, however, is the need for explaining the post-

saccadic blanking effect by a change in the prior probability den-

sity distribution, which is a free parameter. Atsma et al. (2016) pro-

posed a slightly different Bayesian model which not only integrates

but also separates the pre-and post-saccadic stimulus representa-

tions. This model has not been directly tested on the blanking

effect, but generally tuned to combine the pre-and post-saccadic

representations of stimuli. However, the model has no internal

spatio-temporal representation of the stimuli as this is beyond

the mathematical formalism used.

Our model is the first that explains the SSD effect on a neural

basis by simple dynamic properties of the visual system: the

displacement is not perceived since the network activity of the dis-

placed stimulus interacts with the network dynamics of peri-

saccadic updating which stem from the pre-saccadic stimulus,

the corollary discharge, and proprioceptive eye position informa-

tion. The head-centered representation of pre-saccadic stimulus

feeds back to the incoming displaced stimulus response and stabi-

lizes the representation in the presence of small displacements.

The model can also explain the target blanking effect in which dis-

placements become apparent when the target is blanked after the

saccade: In this case, no stabilization occurs because the peri-

saccadic network dynamics have been ceased. In addition, the pro-

pioceptive signal and thus the gain fields have fully updated to the

present fixation position. In the case of target blanking before the

saccade the activity of the target stimulus only slowly decreases

in the network due to feedback connections. Thus, depending on

the length of the blanking, it influences the peri-saccadic network

activity to a varying amount. Our model is fully self-consistent and

it does not require to make particular distinctions between the

blanking and non-blanking cases. Moreover, it provides a simple

explanation of the pre-gap effect in terms of network perturbations

which need about 100 ms to decay. Its explanation of SSD is dis-

tinct from the object reference theory since it rather relies on

transsaccadic integration than on an explicit object reference. In

contrast to the theory of optimal trans-saccadic integration our

model does not need to make any assumptions about a priori prob-

ability distributions. Rather the observed effects in SSD emerge

naturally from the time courses of the involved signals, which

are grounded on physiological data.

Our comparison of model simulation results to the experimen-

tal results lead to an experimentally testable prediction. As the

subjects’ performance co-varies with the decision thresholds, fas-

ter decisions (i.e. induced by lower thresholds) should lead to a for-

ward bias in the psychometric curves. Other parameters in

isolation do not account for such a variation. However, we cannot

rule out that the combined effects of multiple parameters may lead

Fig. 10. Comparison of subjects with model thresholds for each panel of Fig. 8. Each panel shows a matrix in which each entry indicates the mean squared error (MSE)

between the subject’s psychometric and the particular model’s psychometric curve. Black indicates a low MSE. The typical range of best-fitting thresholds for each subject is

the same across all experiments. Panels correspond to the same experiments as in Fig. 8. White rows indicate experiments in which the subject did not participate.
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to a similar variation. Further, instead of a lowered decision thresh-

old a faster accumulation process may take place. Due to the sim-

plicity of the prediction it may be tested by looking at the reactions

times in speeded responses or rather by estimating the underlying

decision time (Stanford et al., 2010).

In this study we aimed to particularly address SSD with respect

to variations of the stimulus timings of data from Deubel et al.

(1996) which has so far not been modeled in such detail. However,

the model also appears consistent with other more recent observa-

tions such as that a prolonged viewing time prior to saccade onset

improves displacement detection (Zimmermann et al., 2013). This

can be explained by the assumption that the decision process in

the model terminates if the integration has reached the internal

threshold such that the displaced object is not being integrated

with the pre-saccadic view. From this perspective SSD is not partic-

ularly about saccades but about the integration of stimuli, which if

it occurs across saccades, spatial updating signals induce a partic-

ular distortion in the integration process. Similarly, we applied the

model to a masking experiment without a saccade and observed

comparable errors to saccade trials (Bergelt & Hamker, 2016) con-

sistent with recent data (Zimmermann et al., 2014).

Although we have focused on modelling SSD in this study, the

models’ broader implication on peri-saccadic dynamics should be

briefly discussed. Behavioral studies that flashed stimuli briefly

around saccade onset revealed two different observations. Under

illuminated conditions and the presence of references a mislocal-

ization towards the saccade target has been observed (Kaiser &

Lappe, 2004; Ross, Morrone, & Burr, 1997), whereas in total dark-

ness the mislocalization is typically in direction of the saccade vec-

tor (Honda, 1989; Van Wetter & Van Opstal, 2008). As our model of

SSD accounts also well for the data in total darkness (Ziesche &

Hamker, 2011), it suggests that SSD and the mislocalization in total

darkness are mediated by the same underlying mechanisms. How-

ever, the mislocalization towards the saccade target appears to rely

on a different mechanism (Hamker, Zirnsak, Calow, & Lappe, 2008;

Hamker, Zirnsak, Ziesche, & Lappe, 2011).
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