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Abstract 

Nucleic acids exhibit a repertoire of conformational preference depending on the sequence and 

environment. Circular dichroism (CD) is an important and valuable tool for monitoring such 

secondary structural conformations of nucleic acids. Nonetheless, the CD spectral diversity 

associated with these structures poses a challenge in obtaining the quantitative information about 

the secondary structural content of a given CD spectrum. To this end, the competence of extreme 

gradient boosting decision-tree algorithm has been exploited here to predict the diverse secondary 

structures of nucleic acids. A curated library of 610 CD spectra corresponding to 16 different 

secondary structures of nucleic acids has been developed and used as a training dataset. For a test 

dataset of 242 CD spectra, the algorithm exhibited the prediction accuracy of 99%. For the sake of 

accessibility, the entire process is automated and implemented as a webserver, called CD-NuSS 

(CD to nucleic acids secondary structure) and is freely accessible at https://www.iith.ac.in/cdnuss/. 

The XGBoost algorithm presented here may also be extended to identify the hybrid nucleic acid 

topologies in future. 
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Introduction  

Nucleic acids can take up a repertoire of secondary structural conformations such as right-handed 

double helix (B-form and A-type), left-handed double helix (Z-form), triplexes, quadruplexes, 

intercalated cytosine tetraplexes (i-motif) etc. These structures can either be inter or intramolecular 

in nature (1). They not only play a significant role in the regulation of various biological functions 

(2-4), but also, are responsible for several diseases (5,6). Like proteins (7), nucleic acids also 

exhibit optical activity (8) and each secondary structural conformations have distinct absorption 

for circularly polarized light (9,10). Circular dichroism (CD) spectroscopy is a simple, non-

destructive optical technique that is most sensitive to the structural polymorphism of nucleic acids 

(1). Although CD cannot provide atomic-level structural insights about the nucleic acids like X-

ray crystallography and NMR-spectroscopy, it has its own advantage in terms of quickness in 

providing the secondary structural information from a low sample concentration (7,11,12). 

An accurate prediction of secondary structure and fold recognition of proteins from CD spectra is 

possible through various web servers (10,13-18). Similar to proteins, variations in the secondary 

structural architecture of nucleic acids affect their optical activity, thereby exhibiting a diverse CD 

spectra (1,3). Indeed, singular value decomposition (SVD) method has successfully been used in 

distinguishing the parallel, antiparallel and hybrid conformations of  G-quadruplex (19). In line 

with this, machine learning algorithms have been employed here to identify 16 different secondary 

structures of nucleic acids (intra- and inter- molecular DNA and RNA), namely, A-form, 

antiparallel G quadruplex, antiparallel triplex, B-form, DNA RNA duplex, DNA stemloop, G-

triplex, hybrid G quadruplex, iG pentaplex, iG quadruplex, i-motif, parallel G quadruplex, parallel 

duplex, parallel triplex, RNA stemloop and Z-form from the CD spectra. 

The primary objective of any machine learning algorithm is to spot the hidden patterns or the trends 

in the data under examination, which is usually achieved by linear regression functions. These 

functions can be incorporated into feed forward neural network to segregate the data. One such 

single hidden layered feed-forward neural network that uses back propagation algorithm has 

previously been shown to predict five different secondary structures (helix, parallel and antiparallel 

β sheet, β turn, and random coil) of protein (20). Further, an optimized Kohonen’s self-organizing 

neural network map (21,22) (inspired from the sensorial nervous system of an animal) algorithm 

has been proved to accomplish protein topological (proteinotopic) mapping of the CD data to 
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classify the proteins in a bi-dimensional map, and has been implemented as K2D web server 

(15,16,23). In fact, a similar attempt has also been made in the case of nucleic acids (21,22). As 

the nucleic acids can take up a variety of hybrid topologies such as hairpin-quadruplex (24-26), i-

motif-quadruplex (27), triplex-duplex (24) etc to perform biological functions, it is essential to test 

the suitability of machine learning algorithms in predicting nucleic acids secondary structures. 

This may eventually be used in predicting the complex nucleic acids topologies when more 

training dataset corresponding to complex nucleic acids structures become available. Thus, the 

suitability of using three different supervised machine learning techniques XGBoost, nnet and 

Kohonen algorithms in characterizing the secondary structures of nucleic acids from the CD 

spectra has been investigated. The representative CD spectral features for different forms of 

nucleic acids are required to automate the aforementioned process. Thus, 610 CD spectral datasets 

heaped from the literature have been used as the training dataset for the above mentioned 

algorithms. The successfulness of the approach has been demonstrated by testing the trained model 

using 242 published CD spectral data. The results show that XGBoost method is superior in 

predicting the secondary structures of nucleic acids compared to the other two methods. The entire 

process has been automated and migrated into CD-NuSS (circular dichroism to nucleic acids 

secondary structure) (https://www.iith.ac.in/cdnuss/) webserver, a tool that characterizes the 

secondary structures of nucleic acids using XGBoost, Kohonen and nnet machine learning 

algorithms. 

Materials and methods 

The extreme gradient boosting (XGBoost) decision tree, neural network (nnet) and Kohonen super 

self-organized matrix (SOM) neural network algorithms have been considered in CD-NuSS 

webserver to predict 16 different forms of nucleic acids (Figure 1a, Supplementary Figure S1). 

 

Benchmark dataset 

A total of 852 CD spectral datasets have been collected through the literature survey 

(Supplementary Table S1), among which, 610 and 242 datasets have been considered for training 

the model and testing the trained model respectively. The CD spectrum is ideally a plot between 

either ellipticity or molar ellipticity (Y-axis) against the wavelength (X-axis). However, instead of 

training the algorithm using the spectral image, numerical X- and Y-axes values are used here. 
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Thus, the ellipticity or molar ellipticity in the CD spectra can be represented as an 86-dimensional 

vector corresponding to the wavelengths (1nm interval) in the range between 230 and 315nm.  

The numerical data corresponding to the published CD spectral images were extracted using 

WebPlotDigitizer (28). Subsequently, a cubic spline algorithm has been employed to interpolate 

the numerical data points at a regular interval of 1nm from the CD spectral data points obtained 

from WebPlotDigitizer. Before feeding the data for training, the Y-axis data points corresponding 

to the 610 training datasets have been normalized in the range of -1.0 and +1.0nm using the formula 

given in the equation (1).                                              𝑦′′ = 2 ( 𝑦−min(𝑦)max(𝑦)−min(𝑦)) − 1                             (1)                            
wherein, 𝑦 and 𝑦′′ correspond to the ellipticity or molar ellipticity before and after normalization 

respectively and, min and max correspond to the minimum and maximum ellipticity or molar 

ellipticity respectively. This step has been performed to create a bi-dimensional map that retain the 

topology of the spectra corresponding to different forms of nucleic acids by ignoring the impact 

of the experimental conditions.  

Implementation of CD-NuSS    

Few successful attempts have been made to predict the secondary structures of proteins using the 

supervised machine learning (15,16,21-23). Here, the existing Kohonen (21,22), nnet (29) and 

XGBoost (30) modules in R-package (Kohonen and nnet) or python (XGBoost) were used as an 

template and modified accordingly to train the model and test the sample dataset. 

 

Prediction of the nucleic acids secondary structures using eXtreme Gradient Boosting 

(XGBoost) algorithm 

The XGBoost algorithm uses the gradient boosting machine (GBM) framework, wherein, the tree 

ensemble (a set of classification and regression trees (CART)) is boosted through a sequential 

learning. Figure 2a illustrates the flow of the sequential boosting process involved in the training 

of 16 different nucleic acids conformations. As the XGBoost works only with the numerical 

vectors, the A-form, antiparallel G quadruplex, antiparallel triplex, B-form, DNA RNA duplex, 

DNA stemloop, G-triplex, hybrid G quadruplex, iG pentaplex, iG quadruplex, i-motif, parallel G 
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quadruplex, parallel duplex, parallel triplex, RNA stemloop and Z-form from the CD spectra are 

labeled as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 respectively. The learning objective 

is set as multi:soft prob to perform  multi-class classification (16 nucleic acids classifiction), 

wherein, the output vector is reshaped into 86*16 (ndata*nclass) matrix. The aforementioned 

matrix contains the predicted probability of each data point (86 data points corresponding to 86 

wavelength) belonging to each class (16 secondary structures). During the training, the rate of 

learning has been set as 0.1 step size shrinkage (as it slowdowns the learning) to prevent overfitting 

and the boosting has been done on an ensemble of 500 trees to model the training dataset.  

Prediction of the nucleic acids secondary structures using the neural network algorithms     

nnet algorithm 

In the feed-forward neural network (nnet) algorithm, there are 86 input vectors (representing the 

wavelengths in the range of 230 to 315nm in 1nm interval in the CD spectra) in the input layer. 

Input layer 'fans out' and distributes the input vectors to the hidden units in such a way that each 

input vector is connected to each of the 8 units in the hidden layer (Figure 2b). The hidden neurons 

of 8 are chosen here as they are found to be optimal for the training dataset used here to give a 

better performance of the algorithm. Wij is the weight matrix that connects the input vector and the 

neurons in the hidden layer and is assigned random value initially and optimized in the subsequent 

rounds. The neurons in the hidden layer takes a fixed activation function ϕj  summing up the values 

in the hidden units and a bias constant (B1). A default value of 1 is used for B1 here and is 

optimized based on the values of input layer. Similarly, the output activation function ϕo is the 

summation of the hidden units and a bias constant (B2). A default value of 1 is used for B2 here 

and is optimized based on the values of hidden layer. The 8 units in the hidden layer “fans out” to 

16 different output units in the output layer, representing 16 different nucleic acids secondary 

structures. For a unit j in a hidden or output layer, the net input Ij to the unit j is given in equation 

(2). 

I𝑗 = 𝐵𝑗 + ∑ W𝑖𝑗  ϕ𝑗                                     𝑛
𝑖  (2) 

wherein, Bj is the bias constant, Wij is weight between input i and output j, and  ϕ𝑗 is the activation 

function 
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Given the net input Ij to unit j, then the output of the unit j (Oj) is computed by equation (3). This 

(Oj) function is also called as squashing function, because it maps a large input domain onto the 

smaller range of 0 to 1 

𝑂𝑗 =  11 + 𝑒−𝐼𝑗                            (3) 

 

Kohonen algorithm 

The input layer of the Kohonen self-organizing map (SOM) is a fully connected neural network 

with ‘n’ units (viz., the length of the training vector), wherein, ‘n’ is 86 here that corresponds to 

the wavelengths in the CD spectra (230 to 315nm at 1nm interval). Each training input unit has the 

ellipticity or molar ellipticity values corresponding to 16 different secondary structures of nucleic 

acids from multiple datasets. The input layer is fully connected to the Kohonen 2D lattice that is 

of 6x9 dimension (totally 54 neurons) through a randomly assigned weight matrix Wj (wherein, 

‘j’ stands for the number of neurons in the Kohonen lattice) (Figure 2c). It is noteworthy that 54 

Kohonen neurons are chosen as it gives better secondary structure prediction accuracy (for the test 

dataset) using the training dataset considered here. The learning rate (α) is set to 0.05 (chosen 

based on the prediction accuracy), and the training continues until the rate converges. The training 

of the model has been done in an iterative fashion for 86 cycles (as there are 86 wavelengths 

between 230-315nm at 1nm interval), during which, the weight matrix is updated by giving more 

weightage to the neuron (winning neuron) that has a shorted Euclidian distance (between input 

vector and weight vector.  

 

Automation  

The algorithms described above for predicting the secondary structures of 16 different nucleic 

acids conformations and estimating the Kd have been transformed into an automated webserver 

that runs on Ubuntu Linux (18.04 LTS). The interactive web server has been developed with 

Apache (https://httpd.apache.org) and D3.js (https://d3js.org/). The client-side user interface has 

been implemented using HTML and PHP. The webserver, namely, CDNuSS (circular dichroism 

to nucleic acids secondary structure) is freely available at (https://www.iith.ac.in/cdnuss/).  
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Results and discussion 

Topology of the CD spectra corresponding to different nucleic acids secondary structures 

A close inspection of the training set corresponding to 16 different nucleic acids conformations 

indicate that these conformations have signature peaks, thus, are amicable for machine learning 

algorithms. For instance, the negative and positive peaks around 245-250nm and 275-280nm 

respectively represent the B-form. The i-motif has a negative peak around 265nm and a positive 

peak around 285-290nm, the antiparallel triplex has a negative peak around 245nm and a positive 

peak around 280nm and the parallel triplex has a negative peak around 255nm and a positive peak 

around 290nm (Supplementary Table S2), etc. 

Functionality of the CD-NuSS web server 

Upon establishing the methodology (discussed under Methods), the entire process is automated 

and migrated into a web interface, namely CD-NuSS. The Figure 3 depicts the web interface, 

wherein, the user can upload the CD spectral information (in text format) and choose among the 

XGBoost, nnet and Kohonen algorithms to characterize the nucleic acids secondary structure. 

Automated characterization of the nuclei acids secondary structures 

Following the training of the 610 samples using XGBoost, Kohonen and nnet and algorithms, the 

efficacy of these algorithms in predicting the secondary structures of the nucleic acids has been 

tested through the server. By considering 242 test samples (Figure 1a, 1c), the efficacy of the 

XGBoost, nnet and super-SOM Kohonen algorithms in predicting the secondary structures of the 

nucleic acids has been tested in CD-NuSS web server. The server accepts the text format input file 

that has the ellipticity or molar ellipticity values against the wavelength. Before the prediction, the 

test samples are normalized using the equation 1 to a common scale in the Y-axis such a way that 

the ellipticity falls in the range of -1.0 and +1.0 while retaining the topology of the spectrum 

(Supplementary Figure S2). This improves the prediction accuracy by circumventing the effect 

of sample conditions. It is noteworthy that the reference training dataset is also normalized prior 

to the training as discussed in the Methods section. As the published CD spectra are mainly in the 

wavelength region of 230 to 315nm, the training and prediction is based only on this wavelength 

region.  
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XGBoost decision tree algorithm exhibits higher prediction accuracy compared with Kohonen 

and nnet  

The Supplementary Table S1 represents the 16*16 confusion matrix, which reflect the accuracy 

of the secondary structure prediction of nucleic acids using XGBoost algorithm. Out of the 242 test 

samples, 2 false positives have been observed. For instance, a B form conformation is falsely 

predicted as an antiparallel triplex and a parallel G quadruplex is falsely predicted as an i-motif 

conformation as their signature peaks falls broadly under the false positive categories. Overall, the 

XGBoost algorithm provides 99% prediction accuracy. As can be seen in Supplementary Table 

S3, the 16*16 confusion matrix corresponding to the nnet algorithm has 43 false positives followed 

by the Kohonen algorithm which has 86 false positives. These are comparatively higher than the 

XGBoost algorithm. Out of 242 test sets, XGBoost, nnet and Kohonen algorithms have accurately 

predicted 240, 199 and 156 secondary structures respectively (Supplementary Table S4). Thus, 

the order of prediction accuracy is: XGBoost > nnet > Kohonen with an overall accuracy of 99%, 

82% and 64% respectively. Figure 4 illustrate the success rate comparison of XGBoost, nnet and 

Kohonen algorithms in predicting the 16 different nucleic acids secondary structures.  

Conclusion 

The efficacy of XGBoost decision tree algorithm, nnet and feed forward (super self-organizing 

map) Kohonen neural network algorithms in predicting the 16 different secondary structures of 

nucleic acids have been investigated in the current study. The reference dataset has been initially 

trained by considering 610 training samples for each algorithm and 242 sample datasets have been 

used for the testing. The results indicate that XGBoost method is superior among all the other 

methods with 99% prediction accuracy and the Kohonen algorithm has the lowest prediction 

accuracy of 64%. 
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Figures 

 

 

Figure 1. Statistics of the benchmark datasets used in the current investigation. (a) The 

number of training and test datasets used under 16 nucleic acids secondary structures and the 

corresponding pie chart illustrations of the (b) training and (c) test datasets. 
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a b 

c 

Figure 2. The schematic illustration of: (a) eXtreme gradient boosting (XGBoost) algorithm used in the 

prediction process depicts the logic in which the subsequent predictors learn sequentially from the mistake 

of the previous prediction. A list of hyperparameter values used for XGBoost method are maximum depth:6, 

gamma:0, evaluation metrics: merror and learning objective: multi:softprob. (b) feed-forward neural 

network algorithm used in training the 610 CD samples corresponding to 16 different nucleic acids 

secondary structures. Green, yellow and purple circles represent the input (I1 to I86), hidden (H1 to H8) 

and output (O1 to O16) layer respectively. B1 and B2 are the bias nodes. X230 to X315 indicate the 

ellipticity values corresponding to different nucleic acids in the wavelength range between 230 and 315nm. 

Wij and Wjk being the weight of neurons from the input layer (i) to the hidden layer (j) and from the hidden 

layer (j) to the output layer (k) respectively. A list of hyperparameter values used for nnet method are nnet() 

function, 8 as hidden layer size and 17 as output layer size. (c) Kohonen self-organizing map with 86 input 

vectors indicated as x1, x2, x3,…x86 correspond to the wavelengths in the range of 230 to 315nm in 1nm 

interval in the CD spectra. Kohonen 2D lattice has 54 neurons and Wj is the weight matrix of the neurons 

w1,w2,w3,…,w54. A list of hyperparameter values used for the Kohonen method are supersom() function, 

6*9 grid dimension, rectangular grid topology etc. See text for details. 
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Figure 3. CD-NuSS web interface. The snapshots describing the nucleic acid secondary structure 

prediction. Note that the predicted secondary structure shown at the bottom. See text for details.  
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Figure 4. Histogram illustrating the secondary structural prediction accuracy of Kohonen, 

nnet and XGBoost algorithms for the test datasets (Figure 1c). Note that the prediction accuracy 

is higher for the XGBoost decision tree algorithm compared with the other two methods 
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