Header menu link for other important links
X
Carbon Coated SnO2 as a negative electrode additive for high performance lead acid batteries and supercapacitors
Published in Electrochemical Society Inc.
2019
Volume: 166
   
Issue: 4
Pages: A551 - A558
Abstract
Sulfation at the negative electrode and grid corrosion at the positive electrode are the major failure modes of lead-acid batteries. To overcome the issues of sulfation, we synthesize carbon coating onto SnO2 as a negative electrode additive for lead-acid batteries. 0.25 wt% of carbon-SnO2 additive into the negative active material reduces formation cycle from 3 cycles to 1 cycle and 60% increment in capacity during the 1st cycle compare to conventional lead-acid cell. The additive cells also deliver 300 deep chargedischarge cycles at C/5 rate and >60% increase in capacity at 2C rate in relation to conventional lead-acid cells. The enhancement in capacity at all C rates and improvement in cycling is due to carbon coating which enhances the conductivity and charge storage property of negative active material. Carbon-SnO2 occupies in the pores of negative active material, restricts the growth of PbSO4 and decreases hydrogen evolution, thereby improves charge acceptance. Besides, the additive cells show 300% increase in high rate partial state of charge cycles compare to conventional lead-acid cells. The specific capacitance of carbon coated SnO2 in 4.5 M H2SO4 is 150 F g-1, at 2A g-1 with >90% capacity retention after 2000 cycles. © 2019 The Electrochemical Society.
About the journal
JournalJournal of the Electrochemical Society
PublisherElectrochemical Society Inc.
ISSN00134651