
Capillary effects on floating cylindrical particles
Harish N. Dixit and G. M. Homsy 
 

Citation: Physics of Fluids (1994-present) 24, 122102 (2012); doi: 10.1063/1.4769758 

View online: http://dx.doi.org/10.1063/1.4769758 

View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/24/12?ver=pdfcov 

Published by the AIP Publishing 

 

Articles you may be interested in 
Spreading of droplet with insoluble surfactant on corrugated topography 
Phys. Fluids 26, 092103 (2014); 10.1063/1.4895064 
 
Thermocapillary effects on steadily evaporating contact line: A perturbative local analysis 
Phys. Fluids 24, 072105 (2012); 10.1063/1.4732151 
 
Side wall effects in thin gravity-driven film flow – steady and draining flow 
Phys. Fluids 23, 062107 (2011); 10.1063/1.3604002 
 
Effect of overall drop deformation on flow-induced coalescence at low capillary numbers 
Phys. Fluids 18, 013602 (2006); 10.1063/1.2158427 
 
Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface 
Phys. Fluids 17, 093104 (2005); 10.1063/1.2038367 
 

 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

142.157.129.89 On: Thu, 27 Nov 2014 17:06:10



PHYSICS OF FLUIDS 24, 122102 (2012)

Capillary effects on floating cylindrical particles

Harish N. Dixita) and G. M. Homsyb)

Department of Mathematics, University of British Columbia, Vancouver, British Columbia
V6T 1Z4, Canada

(Received 11 September 2012; accepted 17 November 2012;
published online 7 December 2012)

In this study, we develop a systematic perturbation procedure in the small parameter,

B1/2, where B is the Bond number, to study capillary effects on small cylindrical

particles at interfaces. Such a framework allows us to address many problems in-

volving particles on flat and curved interfaces. In particular, we address four specific

problems: (i) capillary attraction between cylinders on flat interface, in which we

recover the classical approximate result of Nicolson [“The interaction between float-

ing particles,” Proc. Cambridge Philos. Soc. 45, 288–295 (1949)], thus putting it

on a rational basis; (ii) capillary attraction and aggregation for an infinite array of

cylinders arranged on a periodic lattice, where we show that the resulting Gibbs

elasticity obtained for an array can be significantly larger than the two cylinder case;

(iii) capillary force on a cylinder floating on an arbitrary curved interface, where we

show that in the absence of gravity, the cylinder experiences a lateral force which is

proportional to the gradient of curvature; and (iv) capillary attraction between two

cylinders floating on an arbitrary curved interface. The present perturbation procedure

does not require any restrictions on the nature of curvature of the background inter-

face and can be extended to other geometries. C© 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4769758]

I. INTRODUCTION

Capillary attraction between floating particles is a phenomenon of everyday experience that

causes the particles at fluid interfaces to aggregate.1 This is sometimes called the “Cheerios effect”2

because of the tendency for a popular breakfast cereal to aggregate on the interface. Particulate

aggregates at an interface can occur for a wide range of particle sizes, ranging from the nanometer

range3 to millimeter sized particles.4–10 At the heart of capillary attraction is the interfacial defor-

mation caused by a balance of surface tension and the net weight of the particles,11 which is usually

relevant for particles larger than a few micrometers and is also the focus of the present study.

In addition to the problems addressed in this paper, particles at interfaces are of general interest.

For sub-micrometer particles,12 microscopic forces like the long-range van der Waals forces can

lead to attraction and electrostatic forces to repulsion, and the particles themselves are subject to

Brownian motion. Since the work of Ramsden13 and Pickering14 it is well known that solid particles

on interfaces can be used effectively as a stabilizing agent in emulsions.15, 16 The contact angle

made by particles at an interface is thought to be a measure of the hydrophile-lipophile balance.

But unlike surfactants, the energy required to desorb a particle from an interface is very high, often

requiring energies many orders of magnitude larger than thermal energy kBT,16, 17 making them

excellent emulsifiers. The affinity of particles to an interface together with strong lateral attractions

between them has been exploited in recent years to create novel structures called “colloidosomes,”

solid capsules made of micrometer-size solid particles.18 In addition, solid particles have also been

used to create “colloidal armour,” a protective covering on drops and bubbles;19 2D crystals in
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an evaporating thin film;20 and non-spherical bubbles21 due to jamming of the particles. In many

of the above applications, gravitational forces are negligible due to small size of the particles. At

high concentration of particles, an interface acquires elasticity and can be described as a composite

layer.22 The Young’s modulus of such an interface has been measured recently for non-Brownian

particles.23 It has been suggested that particles at an interface can have similarities with surfactants.17

The analogy has been extended further in recent times with measurements of surface tension as a

function of particle concentration.22, 24–26 This has led to empirical modeling of the equation of state

of such composite layers,27 similar in spirit to the Gibbs equation28 for surfactant-laden interfaces

describing the variation of surface tension as a function of surfactant concentration. The key point

which makes particle-laden interfaces so important in technological applications is the presence of

cohesive interaction between the particles. In this study, we restrict ourselves to situations where

gravity alone is important and hence neglect other interaction forces.

The first detailed study of capillary interaction between spherical bubbles at a liquid-gas interface

is due to Nicolson.29 In Nicolson’s calculation, the interface deformation due to a single bubble is

first calculated. The energy of interaction is then calculated by placing a second bubble at a given

distance and assuming that the interface shape is the same as that for a single bubble. This procedure

is therefore akin to a pairwise additive assumption and is referred to as the Nicolson approximation

or the linear superposition approximation. Because of its simplicity, the Nicolson approximation is

regularly used in studies involving capillary attraction. On the other hand, Gifford and Scriven30

obtained numerical solutions to the full nonlinear problem of capillary attraction between cylinders

without approximation and found that at small Bond numbers, the force-distance relationship is well

described by an exponential function. This result was subsequently reconciled by Chan et al.31 who

extended the Nicolson approximation to solid cylindrical and spherical particles and showed that

the force of attraction between floating cylinders evaluated using the Nicolson approximation also

decreases exponentially with distance. Like many approximations, the range of applicability of the

Nicolson approximation is unknown and difficult to establish. Allain and Cloitre32 used a free energy

analysis to study the interaction between two horizontal cylinders. Because of the complexity of the

resulting equations, they resorted to numerical methods and showed that the Nicolson approximation

should be valid in an asymptotic regime at small Bond numbers. Other approximations for capillary

attraction between particles have also been developed. Kralchevsky et al.,33 using the solution of the

linearized Young-Laplace equation in bipolar coordinates, calculated the force of attraction between

two spheres resting on a solid surface wetted by a liquid. Paunov et al.34 extended this methodology

for freely floating spherical particles on an interface. A detailed survey of many key results in

particle-laden interfaces is contained in the excellent monograph of Kralchevsky and Nagayama.10

Most of the approaches highlighted in the previous paragraph fall under the general category

of “energy-based” approaches in which the free energy of interaction is first calculated and is

then used to obtain the force of attraction. There exist a few works that have used a force-based

approach in which the solution of the Young-Laplace equation is used directly to calculate the

capillary force of attraction. The most prominent of these is the aforementioned paper by Gifford and

Scriven, which was the first work to use this approach to calculate attraction between two horizontal

cylinders. Allain and Cloitre35 derived the Nicolson approximation with a force-based approach

by obtaining the interface shape by solving a linearized Young-Laplace equation due to a single

cylinder. An important contribution was made by Vassileva et al.8 who used a series solution in Bessel

functions to calculate capillary attractions between multiple particles. The Nicolson approximation

emerges as the leading term in their solution procedure. They also consider the effect of background

curvature on the capillary attraction using another series expansion. Though Vassileva et al. follow

a general approach with spherical particles on an interface, the coefficients of their series expansion

have to be calculated numerically which becomes quite cumbersome. In this work, we look for

asymptotic solutions to the Young-Laplace equation with a small Bond number, which differs from

the approach of Vassileva et al.8 A summary of the above studies shows that there is no rigorous

asymptotic derivation of the Nicolson approximation in the small Bond number regime. In addition,

none of the studies consider the case of multi-particle interactions in an analytically tractable way;

most of the available studies with multiple particles use a simple vector addition of the Nicolson

formula.
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The present work is motivated from experiments on dip-coating flow36 with surface adsorbed

particles. The experiments revealed that with the addition of particles, film thickening was observed,

resulting in positive deviations from the Landau-Levich law.37, 38 Hydrodynamic theories for surfac-

tant effects on the Landau-Levich problem have been developed which predict film thickening39–41

which have also been verified experimentally.42, 43 Similar hydrodynamic approaches can be devel-

oped for particle effects on the Landau-Levich problem. A crucial aspect for such models is the

stress boundary condition at the interface and the form it takes in the presence of particles. This will

require a detailed understanding of the interaction between particles at the interface and the forces

that result.

In the case of a single particle floating on a curved interface, there are very few works dealing

with the lateral force on the particle due to curvature effects. Kralchevsky et al.44 use the method of

images to calculate the force on a spherical particle on a curved interface near a wall. In the absence

of gravity, Würger45 considered the problem of a sphere on a curved interface, but his analysis is valid

for interfaces with zero mean curvature. He found that the lateral force on a particle is proportional to

the gradient of curvature, a result we obtain in our 2D calculation. Kralchevsky et al.46 numerically

studied interaction between particles residing on a spherical drop in bipolar coordinates. Though

this analysis is valid for an interface with mean curvature, it is limited to a spherical geometry. Even

in the absence of gravity, two particles can experience lateral attractive forces if the contact line

is undulating. Stamou et al.47 showed the existence of long range attractive forces in such cases

and these attractions can be understood as due to the interactions between capillary quadrupoles or

multipoles.48 Such interactions due to undulating contact lines are beyond the scope of this paper.

In fact, the approach of Danov and Kralchevsky48 can also be applied to understanding interactions

between particles in the presence of gravity.

In this paper, we develop an asymptotic method for computing capillary attraction in the limit

of small Bond number for particles floating on flat and curved interfaces. For simplicity, we re-

strict our calculations to floating cylinders, but the approach is generalizable to 3D. We consider

only non-Brownian particles, and therefore the relevant forces are gravity and surface tension. To

the best of our knowledge, such an asymptotic approach has not been developed before. Since

the Nicolson approximation is expected to give acceptable results at small Bond number, our first

objective is to establish this approximation using systematic perturbation techniques. Since an iso-

lated pair of particles is rarely encountered in reality as particles tend to aggregate into clusters,

obtaining the capillary attraction force for an array of particles and analyzing its stability forms

our second objective. Finally, particles at curved interfaces tend to climb up menisci. Observa-

tions on meniscus-climbing insects49 have been explained using unbalanced capillary forces due

to curved menisci. Cavallaro et al.50 used curvature gradients to move rod-like particles to create

self-assemblies. Motivated by these experiments, we apply our approach to the case of an interface

with a mean curvature. These issues are most easily pursued for the case of aligned cylinders, but the

approach and the insight gained carry over to more complicated situations, most practically to that of

spheres.

The outline of the paper is as follows. In Sec. II, we first formulate the governing force balance

equations for solid particles at an interface. In Sec. III, we calculate the force of attraction between

two parallel cylinders on an initially flat interface. The general framework of our asymptotic approach

is also outlined in this section. We then study the case of an array of cylinders on a flat interface in

Sec. IV. This result is useful to understand aggregation for large number of particles. In Sec. V, we

extend our asymptotic approach to the case of a floating cylinder on an arbitrary curved interface.

The case of capillary attraction between two cylinders on a curved interface is given in Sec. VI.

Section VII summarizes our results and discusses the implications of the results obtained in the

present paper to related problems.

II. FORMULATION

Consider a static configuration of two horizontal cylinders of infinite length and radius R, density

ρs floating on an interface between two fluids of densities ρA and ρB with ρB > ρA, and separated

by a center-to-center distance, d, as shown in Figure 1. Our formulation is similar to that given in
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FIG. 1. Parallel cylinders of equal radius R separated by a center-to-center distance d floating at an interface separating fluids

A and B.

Gifford and Scriven.30 Later in the paper, this configuration will be suitably modified to account

for background curvature effects and for the case of an array of cylinders. The contact angle, α

∈ [0, π ], measured in the lower fluid is the same on either side of each cylinder and is taken to be

fixed51 at its equilibrium value, but the position of the contact line is allowed to vary with varying

separation distance between the particles. Far from the cylinders the interface is flat and is taken to

be the plane of zero pressure. The depth to which the cylinders sink52 below this level is denoted

by H, θ1 and θ2 are the wetting angles subtended by the contact line measured from the vertical,

and φi = (α + θ i − π ), i = 1, 2 is the angle made by the interface with the horizontal. Let F

be the horizontal force of attraction between the cylinders per unit length of the cylinder, referred

to below as simply “the force.” We will show later that asymmetry in the meniscus shape around

each cylinder results in a non-zero attractive force. For simplicity, we consider identical cylinders

to demonstrate the analytical procedure. This leads to a symmetry plane midway between the two

cylinders. Therefore, it is sufficient to analyze the force balance on a single cylinder with a symmetry

condition replacing the boundary condition. Moreover, the present approach can be extended easily

to account for cylinders of different radii or contact angles. The total pressure, in dimensional form,

below the fluid interface is related to the atmospheric pressure, P0, above the interface by the relation

p = P0 + (ρB − ρA)gh + σ (∇ · n), (1)

where σ is the surface tension, n is the unit normal to the liquid pointing from fluid A to fluid B, and

g is the acceleration due to gravity which acts in the y direction. Without loss of generality, P0 can

be taken to zero. The vertical force balance can be written as

Fw = −ey ·
∫

Ŵc+Ŵb

pndl = Fb + Fσ , (2)

where Fw is the total weight of the cylinder per unit length, i.e., Fw = ρs gπ R2, Ŵc is the contour

of integration taken along the fluid interface and Ŵb is the contour of integration taken along the

surface of the particle. The buoyancy contribution is given by

Fb = ey ·
∫

Ŵb

(ρB − ρA)ghndl, (3)

and the capillary pressure (curvature) contribution becomes

Fσ = ey ·
∫

Ŵc

σ (∇ · n)ndl. (4)

In the case of an arbitrarily shaped three-dimensional floating body, Keller53 has shown that the

vertical components of the curvature force, Fσ and the buoyancy force Fb are equal to the weight

of the liquid displaced by the meniscus. For an isolated floating body, the net horizontal force then
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vanishes. But in the presence of another floating body, the buoyancy and curvature forces result in

an unbalanced horizontal force given by

F = ex ·
∫

Ŵc+Ŵb

pndl. (5)

The above integrals can be evaluated in terms of the parameters shown in Figure 1.

In order to present certain geometric expressions in an economical way, we non-dimensionalize

all length scales by the radius of the cylinder: non-dimensional variables are indicated with an

asterisk and all forces are per unit axial length of the cylinder and are scaled by the surface tension.

The relative contribution of buoyancy and curvature forces can be expressed in terms of the Bond

number

B =
g(ρB − ρA)R2

σ
=

R2

l2
c

, (6)

where lc =
√

σ/(ρB − ρA)g is the capillary length. In terms of the parameters shown in Figure 1,

vertical equilibrium for each cylinder is expressed by the following dimensionless equation:

B

{

θ1 + θ2 +
1

2
[sin(2θ1) + sin(2θ2)] + 2H∗ [sin(θ1) + sin(θ2)]

}

= 2 [sin(α + θ1) + sin(α + θ2)] + 2π B D, (7)

where D = (ρs − ρA)/(ρB − ρA) is the density parameter, and H* = H/R is the non-dimensional

height to which the cylinders are displaced vertically relative to a flat interface far from the cylinders.

In Eq. (7), the term on the left hand side and first and second terms of the right hand side repre-

sent contributions from the buoyancy force, surface tension force, and the weight of the particle,

respectively. Similarly, the horizontal force balance can be written in non-dimensional form as

F∗ =
F

σ
= [cos(α + θ2) − cos(α + θ1)]

+B

{

H∗(cos(θ1) − cos(θ2)) +
1

2

(

sin2(θ2) − sin2(θ1)
)

}

. (8)

In this equation, the first and second terms on the right hand side represent contributions from

surface tension and buoyancy force, respectively. For particles with a small radius or when the

gravitational force is weak relative to surface tension, the Bond number is small. In this limit, the

vertical and horizontal force balances are dominated by the surface tension contribution. Notice

that the horizontal force, F*, vanishes when the interface shape is symmetric on either side of the

cylinder, i.e., θ1 = θ2. Hence, an attractive force is created only in the presence of an asymmetry in

the interface shape on either side of the cylinder. This is the basis of capillary attraction.

Equations (7) and (8) establish general relationships between F*, H*, θ1, and θ2. The last three

of these are of course constrained by the conditions of interfacial equilibrium, subject to the contact

angle conditions. The shape of the interface is governed by the Young-Laplace equation. This is

obtained from Eq. (1) by equilibrating the hydrostatic pressure with the capillary pressure, and can

be written in non-dimensional form as

∇ · n = −Bh∗. (9)

The above equations are identical to those of Gifford and Scriven30 and were solved using a numerical

technique. Here, we develop an asymptotic theory in the limit of small Bond number. In this limit,

the slope of the interface is small, allowing linearization of the curvature about a flat undisturbed

interface. Equation (9) becomes

d2h∗

dx∗2
= Bh∗. (10)

The general solution of (10) is

h∗(x∗) = ae−B1/2x∗ + beB1/2x∗
, (11)
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where a, b are constants of integration to be determined by applying boundary conditions. The

locations of the contact lines (x∗
1 and x∗

2 in Figure 1) are geometrically related to the separation

distance d. Therefore, the force of attraction depends on four non-dimensional parameters - B, D,

α and d*, where d* = d/R. From Eqs. (7) and (8), for every solution given by values (D, θ1, θ2, α),

a complimentary solution (1 − D, π − θ1, π − θ2, π − α) exists which is equivalent to flipping

Figure 1 upside down.

The basic approach in this paper is to assume a configuration and first equilibrate the vertical

force on a particle. We then calculate the shape of the interface due to all particles using Eq. (11)

and the associated boundary conditions. Once H*, θ1, and θ2 are known, the horizontal force of

attraction is then calculated.

III. TWO CYLINDERS ON A FLAT INTERFACE

In this section, we obtain the force of attraction for two identical parallel cylinders on a

horizontal interface for the geometry shown in Figure 1. This configuration has a symmetry plane

midway between the two cylinders. In the present calculations, we calculate the force of attraction of

the left cylinder, S1. For convenience, the origin is chosen at the intersection of the undisturbed flat

interface and the plane of symmetry. The boundary conditions for the interface between cylinders

S1 and S2 are

dh∗

dx∗ = 0, at x∗ = 0, (12)

dh∗

dx∗ = − tan(φ1), at x∗ = −x∗
1 . (13)

The interface shape between the two cylinders is found to be

h∗(x∗) = B−1/2 tan(φ1)

[

cosh
(

B1/2x∗)

sinh
(

B1/2x∗
1

)

]

, ∀ − x∗
1 ≤ x∗ ≤ x∗

1 . (14)

Similarly, the boundary conditions on the interface to the left of cylinder S1 are

dh∗

dx∗ = 0, as x∗ → −∞, (15)

dh∗

dx∗ = tan(φ2), at x∗ = −x∗
2 , (16)

and the interface shape to the left of cylinder S1 becomes

h∗(x∗) = B−1/2 tan(φ2) exp
(

B1/2
(

x∗ + x∗
2

))

, ∀x∗ ≤ −x∗
2 . (17)

The horizontal position of the contact line, x1 and x2 are geometrically related to the wetting angles

by

x∗
1 =

d∗

2
− sin(θ1), x∗

2 =
d∗

2
+ sin(θ2). (18)

In addition, the vertical position of the contact line is geometrically related to the wetting angles

through the solution of the Young-Laplace equation. At x∗ = −x∗
i , h* = H* + cos (θ i) where i = 1,

2. This gives us two additional equations relating these geometric quantities

B1/2
[

H∗ + cos(θ1)
]

tanh(x∗
1 B1/2) = tan(φ1), (19)

B1/2
[

H∗ + cos(θ2)
]

= tan(φ2). (20)

Equations (7) and (18)–(20) are the relevant governing transcendental equations involving the five un-

knowns (H∗, x∗
1 , x∗

2 , θ1, θ2). The nature of Eqs. (19) and (20) suggests that all the unknown quantities
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may be expanded in simple powers of B1/2 as follows:

H∗ =
∞
∑

i=0

B i/2 H (i), (21)

x∗
1 =

∞
∑

i=0

B i/2x
(i)
1 , (22)

x∗
2 =

∞
∑

i=0

B i/2x
(i)
2 , (23)

θ∗
1 =

∞
∑

i=0

B i/2θ
(i)
1 , (24)

θ∗
2 =

∞
∑

i=0

Bi/2θ
(i)
2 . (25)

Since this is a simple regular perturbation, the leading order is identical to the case B = 0, which is

equivalent to absence of gravity. Therefore, the solution is a flat interface with the vertical position

of the particle determined such that the angle between the tangent to the cylinder and the interface

is equal to the contact angle.11, 54 The leading order solution is therefore given by

H (0) = cos(α), θ
(0)
1 = θ

(0)
2 = π − α,

x
(0)
1 =

d∗

2
− sin(α), x

(0)
2 =

d∗

2
+ sin(α). (26)

In the expressions that follow, it is convenient to define the following secondary quantities:

χ = π D − (π − α) −
1

2
sin(2α), (27)

S = sin(α), C = cos(α). (28)

The calculations can be pursued to a reasonably high order, but they are tedious and the details are

omitted here. The results are given in Table I and have been verified with the symbolic software

package MATHEMATICA. As discussed above, asymmetry in the interface shape is observed when

θ1 	= θ2. From Table I, we notice that the wetted angles θ1 and θ2 are equal at O(B1/2) and hence

there is no force of attraction at this order. But the cylinders rise or fall due to their finite buoyancy,

thus vertically distorting the interface. Asymmetry first appears at O(B) since θ
(2)
1 	= θ

(2)
2 , creating

the potential for capillary attraction. The expansion procedure was continued further to yield the

solution up to O(B3), which is not shown in the table due to its length. The resulting expression for

force obtained from Eq. (8) reveals that the first non-zero contribution for force appears at O(B2)

TABLE I. Terms in expansions (21)–(25) for two isolated cylinders on a flat interface through O(B2).

θ1 θ2 x∗
1 x∗

2 H*

B0 π − α π − α d∗
2

− S d∗
2

− S C

B1/2 0 0 0 0 χ

B1 0 χ 0 −χC −χ d∗
2

B3/2
(

d∗
2

− S
)

χ −
(

d∗
2

+ S
)

χ
(

d∗
2

− S
)

χC
(

d∗
2

+ S
)

χC
(

d∗2

4
− S2

)

χ

B2 − d∗
2

(

d∗
2

− S
)

χ d∗
2

(

d∗
2

+ S
)

χ − d∗
2

(

d∗
2

− S
)

χC − χ2

2
S − d∗

2

(

d∗
2

+ S
)

χC
χ2

2
C + 5χ

3
S3 − χ d∗

3

(

d∗2

4
− 3

2
S2
)
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FIG. 2. Comparison between asymptotic results (solid line), the numerical solution (symbols) and the Nicolson approximation

(dashed line) for three different contact angles. The density ratio is fixed at D = 2 and Bond number B = 0.001.

and can be written as

F∗
f =

B2χ2

2

[

1 − B1/2d∗ + B

(

d∗2

2
− sin2(α)

)]

+ O(B7/2), (29)

where the subscript f indicates that the undisturbed interface in the absence of particles is flat. To

understand why lateral forces do not arise at O(B) even with the presence of an asymmetry, we write

Eq. (8) as

F∗
f = F∗

σ + B F∗
b , (30)

where F∗
σ and F∗

b represent curvature and buoyancy contributions as discussed earlier. Clearly, the

dominant contribution to the lateral force arises from F∗
σ = (cos(α + θ2) − cos(α + θ1)). Using the

leading order solution (26), the expansion for cos (α + θ2) becomes

cos(α + θ2)=−1 +
1

2
Bθ

(1)
2

2
+ B3/2θ

(1)
2 θ

(2)
2 + B2

{

−
1

24
θ

(1)
2

4
+

1

2

(

θ
(2)
2

2
+ 2θ

(1)
2 θ

(3)
2

)

}

+ O(B5/2).

(31)

Since θ
(1)
1 = θ

(1)
2 = 0, the leading term in F∗

σ , and hence F∗
f is O(B2).

Chan et al.31 and Allain and Cloitre35 obtained the force of attraction between horizontal

cylinders using the Nicolson approximation, which in the present variables can be written as

F∗
N =

FN

σ
=

B2χ2

2
e−B1/2d∗

, (32)

where the subscript N denotes the Nicolson approximation. Expanding the exponential terms in F∗
N ,

the leading terms in F∗
f (Eq. (29)) and F∗

N agree. We can thus see that leading terms of the Nicolson

approximation appear naturally following the procedure outlined above and can be understood as an

expansion in the small parameter B1/2d*. Note that the current asymptotic method avoids the usual

superposition approximations. The only simplification made in the above analysis is the linearization

of Young-Laplace equation. This is justified on two counts: first, the solutions are sought at small B

where interface slope is small, and second, our main motivation is to derive Nicolson approximation

rigorously which itself was obtained using linearization of curvature. The asymptotic expansion

demonstrates that the deviation from the exponential form occurs at O(B3). In Figure 2, we present

a sample calculation comparing the present asymptotic solution (Eq. (29)) to numerical solutions
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FIG. 3. Parallel cylinders of equal radius R separated by center-to-center distances d1 and d2 floating at an interface separating

fluids A and B.

of Eqs. (7) and (18)–(20) and the Nicolson approximation. The Bond number, B is set at 0.001

and the contact angle is varied from 45◦ to 135◦. At small distances, the agreement between the

asymptotic result (29), the Nicolson approximation, and the numerical solution is excellent. But at

larger separation distances, deviations can be noticed between the present result and the numerical

solution. It is interesting to note that the Nicolson approximation agrees well with the numerical

solution even for these separation distances. Clearly, theO(B3) difference between Eqs. (29) and (32)

is responsible for this discrepancy. This suggests that the recovery of the Nicolson approximation

can be obtained by carrying out a double expansion in B1/2 and d/lc (or equivalently B1/2 and d/R),

which is beyond the scope of this paper. Nevertheless, the present asymptotic approach highlights

the essential physics of capillary attraction by carefully examining various contributions to the

horizontal force.

IV. CAPILLARY ATTRACTION WITH AN ARRAY OF CYLINDERS

As mentioned in the Introduction, in most applications two particles are seldom found in

isolation: rather islands of close packed particles are commonly encountered. In this section, we

calculate the force of attraction for an infinite array of identical cylinders. To the best of our

knowledge, all previous studies involving many particles use a vector superposition of forces by

considering two particles at a time8–10, 55 and the present geometry has not been studied before. The

starting point of our analysis is a configuration of an infinite array of equally spaced cylinders on an

interface, with spacing d0 between the cylinders. For identical cylinders, the vertical and horizontal

force balance equations (7) and (8) show that each cylinder is influenced by the interface shape in its

immediate neighborhood. In this configuration of a uniform lattice, the meniscus shapes on either

side of each cylinder are identical and hence each cylinder experiences an equal and opposite lateral

force from its two neighbors. But this configuration is an unstable equilibrium and any perturbation

from this state will result in a force imbalance and generate non-zero net lateral forces, leading to

aggregation. Let us consider a specific disturbance where one of the cylinders, say S0, is slightly

disturbed from this equilibrium as shown in Figure 3 such that average distance d0 = (d1 + d2)/2.

Without loss of generality, let us assume that d1 > d2. This will generate a net attractive force

between S0 and S1. Similarly, S−1 will experience a net attractive force toward S−2. The present

configuration is equivalent to a periodically extended perturbed lattice, and hence cylinders Sn and

Sn±2 are identical. It is worth emphasizing that the present geometry is not the same as considering

three cylinders in isolation, i.e., the interface shape does not become flat on either side of cylinders

S±1.

It is sufficient to calculate the net force experienced by any one cylinder in the array. Owing

to periodicity of the lattice, the same magnitude of force acts on all the cylinders. Even though

capillary forces are non-local in nature, it is sufficient to consider only three cylinders as shown in

Figure 3. Without loss of generality, we can choose the origin to lie at S0. All other variables have

the same meaning as before. As discussed before, when the cylinders form a perfect lattice, i.e., d1

= d2, the net force of attraction vanishes. Hence, the force of attraction will depend on the parameter

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

142.157.129.89 On: Thu, 27 Nov 2014 17:06:10



122102-10 H. N. Dixit and G. M. Homsy Phys. Fluids 24, 122102 (2012)

δ = (d1 − d2)/2. Introducing the non-dimensional variables d∗
i = di/R, (i = 0, 1, 2), δ* = δ/R and

solving for the interface shape (Eq. (11)) with boundary conditions at the contact lines, we get four

equations

x∗
1 = sin(θ1), x∗

2 = sin(θ2), (33)

B1/2[H∗ + cos(θ2)] sinh
(

(d∗
1 − 2x∗

2 )B1/2
)

= tan(φ2)
[

1 + cosh
(

(d∗
1 − 2x∗

2 )B1/2
)]

, (34)

B1/2[H∗ + cos(θ1)] sinh
(

(d∗
2 − 2x∗

1 )B1/2
)

= tan(φ1)
[

1 + cosh
(

(d∗
2 − 2x∗

1 )B1/2
)]

. (35)

The expansions (21)–(25) are substituted into Eqs. (7) and (33)–(35) and the resulting equations are

satisfied at every order. After some algebra, the final expression for the force of attraction between

cylinders per unit length is found to be

F∗ =
B2χ2

2

(

δ∗

d∗
0

)[

1 −
B

6

{

d∗
0

2 − δ∗2 + 6 sin2 α −
1

d∗
0

(

6χ cos α + 20 sin3 α
)

}]

+ O(B7/2).

(36)

As discussed earlier in this section, the force of attraction clearly depends on the average particle

distance d∗
0 and the variation of separation distance, δ*. If δ* = 0, the particles are arranged in a

perfect “lattice” and the net horizontal force vanishes. But for a disturbed lattice, δ* 	= 0, and the

expression for force does not lend itself to a simple interpretation. Since B ≪ 1 and d∗
0 > 0, the sign

of F is determined by δ*. Hence, when δ* > 0 (δ* < 0), F > 0 (F < 0) which makes cylinder S0 move

toward S1 (S−1). The effect of a non-zero force would be to make each cylinder move toward its

left or right neighbor depending on whether δ* > 0 or δ* < 0, respectively. This “binary” attraction

then reduces the number of “effective” particles by a factor of 2. This process would presumably

continue until all the particles clump together into a sheet of closely spaced cylinders.

A. Elasticity of an interface with particles

We can compare the results obtained in this section to the two cylinder case considered in

Sec. III. We do this by comparing the effective Gibbs elasticity or dilational modulus for a fixed

surface coverage. In both the cases, the surface coverage, φ, analogous to the volume frame in a

bulk suspension depends solely on the separation distance, d for the two cylinder case, and d0 for

the array case. But in the latter case, the degree of clustering can change with δ. For δ = 0, the

particles are uniformly spaced resulting in no net force of attraction. And when δ = 2R, we have

binary clusters, i.e., the array comprises of pairs of cylinders in contact, each pair separated from its

neighbor with an average distance d0.

The Gibbs elasticity or dilational modulus is defined as56

ε =
∂σapp

∂(ln A)
, (37)

where σ app is the apparent surface tension, and A is the surface area of the interface. As discussed

by Lucassen,56 this reduces to the following expression:

ε =
∣

∣

∣

∣

∂ F

∂d

∣

∣

∣

∣

. (38)

For the two cylinder case, the Gibbs elasticity is obtained by Eqs. (29) and (38)

εpair =
σ B5/2χ2

2R

[

1 − B1/2d∗]+ O(B7/2). (39)

Similarly, for the case of an array of cylinders, the Gibbs elasticity is obtained by differentiating

F* in Eq. (36) with d∗
0 . By choosing d∗ = d∗

0 , the ratio, εarr/εpair compares the elasticity of an

interface covered with particles interacting with each other simultaneously given by Eq. (36), to that
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FIG. 4. Comparison of Gibbs elasticity between the two cylinder case and for an array of cylinders for a fixed surface

coverage. The average separation distance in both the cases is d∗
0 = 4, and B = 0.001, D = 2 and α = 135◦.

obtained by using pair-wise interactions between pairs of cylinders. For a fixed separation distance

of d∗ = d∗
0 = 4, Figure 4 shows the variation of Gibbs elasticity of an interface with an array of

cylinders as a function of the parameter δ. As the clustering of particles increases, the effective Gibbs

elasticity increases.

The above results again shows that there are important differences between two isolated cylinders

and an array of cylinders. Dense interfacial suspensions are closer to the array model considered

in this section. Therefore, this can have important implications in modeling rheology of dense

interfacial suspensions of particles.

V. CYLINDER ON A CURVED INTERFACE

We now consider the case of particles on a curved interface, first by calculating the force on a

single particle and then calculating the capillary attraction force between two particles on a curved

interface. A floating cylinder on a flat interface experiences no lateral force because of symmetric

deformation of the interface on either side of the particle. But recent experiments have shown that

particles on curved interfaces experience a lateral force. Hu and Bush49 have shown that tiny beetle

larvae use curvature gradients to propel themselves on a fluid meniscus. Cavallaro et al.50 use

curvature gradients to migrate rod-like particles with the aim of creating complex particle rafts. The

contact angle in their experiments was 120◦ and the particles aligned perpendicular to the direction

of motion. In this section, we develop an asymptotic theory valid for small particles floating on

arbitrary curved interface and our results have direct relevance to the experiments discussed above.

Consider a curved interface as shown in Figure 5(a), where η(ξ ) is the height of the interface

from a known reference. The background curvature provides a capillary pressure contribution to

the pressure balance on the interface. The presence of particles distorts the background interface

modifying the local curvature around the particles. The gravitational force can be resolved along and

perpendicular to the background interface as shown in Figure 5(b), where γ is the angle made by

the normal to the undisturbed interface with the vertical. We assume that the radius of the cylinders

is small compared to the characteristic length scale of the background, the latter being typically

O(lc). This is equivalent to the Bond number being small, and hence the interface distortion due to

the particle will be small compared to capillary length. In this limit, we can linearize the interface

deformation about the undistorted curved interface and derive a simple expression for the perturbed

curvature of the interface as shown in the Appendix. The perturbed curvature is in turn used to derive
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FIG. 5. (a) Cylinder floating on a curved interface in the presence of gravity. (b) Gravity resolved into normal and tangential

components for a each cylinder.

a perturbed Young-Laplace equation which can be written in dimensional form as

hxx + a(ξ )hx + b(ξ )h = 0, (40)

where (x, y) is the local coordinate system defined along and perpendicular to the interface lying

along the undisturbed interface as shown in Figure 5(a), a and b are parameters characterizing the

background interface. Due to the small size of the particles, we calculate a(ξ ) and b(ξ ) at the origin

of the local coordinate system, x = 0. This allows us to obtain a simple solution to the above equation

instead of a power series solution. The general solution takes the simple form

h(x) = c1eλ−x + c2eλ+x , (41)

where the relation between the eigenvalues, λ±, and interface shape parameters like curvature and

slope are given in the Appendix. Due to the curvature of the background interface, the interface distor-

tion is not symmetric on either side of the particle, leading to a lateral force. We non-dimensionalize

the eigenvalues λ± with the capillary length, and (x, y) with the radius of the particle. The interface

shape on either side of the cylinder is given by the solution of Eq. (A8) with contact angle boundary

conditions on the surface of the cylinder

h∗(x∗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−B−1/2 tan φ1

λ∗
−

eB1/2λ∗
−(x∗−x∗

1 ) (x∗ ≥ x∗
1 ),

B−1/2 tan φ2

λ∗
+

eB1/2λ∗
+(x∗+x∗

2 ) (x∗ ≤ −x∗
2 ),

(42)

where λ∗
± = lcλ±. The horizontal and vertical positions of the contact lines are geometrically related

to the wetting angles, which yields the following relations:

x∗
1 = sin(θ1), (43)

x∗
2 = sin(θ2), (44)

B1/2(H∗ + cos(θ1)) = −
tan φ1

λ∗
−

, (45)

B1/2(H∗ + cos(θ2)) =
tan φ2

λ∗
+

. (46)

The resultant normal force balance is given by

Bω2

{

θ1 + θ2 +
1

2
[sin(2θ1) + sin(2θ2)] + 2H∗ [sin(θ1) + sin(θ2)]

}

= 2 [sin(α + θ1) + sin(α + θ2)] + 2π Bω2 D, (47)
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and the tangential force balance is given by

F∗ =
F

σ
= F∗

c + F∗
w, (48)

where ω2 = cos γ

F∗
c = cos(α + θ2) − cos(α + θ1) + Bω2

{

H∗(cos θ1 − cos θ2) +
(

sin2 θ2 − sin2 θ1

)

2

}

, (49)

F∗
w = π Bs(1 − ω4)1/2. (50)

Note that the effective gravity normal to a curved interface is g′ = gcos γ which reduces the net

buoyancy force. The effective Bond number is now Bω2. In the above equations, F∗
c is the curvature

contribution, F∗
w is the component of weight of the particle tangential to the interface, and Bs

= gρsR
2/σ is the Bond number based on the density of the solid particle. The above Eqs. (47) and (48)

are identical to the vertical and horizontal force balance equations (7) and (8), respectively, except

for the modification of the Bond number. Expanding the above equations in powers of B1/2 and

following the procedure outlined in Sec. III, the lateral curvature force due to gravity is given by

F∗
c =

B2ω4χ2(λ∗
+ + λ∗

−)

2(λ∗
+ − λ∗

−)

[

1 + 2B1/2 sin α

(

λ∗
+λ∗

− − ω2

λ∗
+ − λ∗

−

)]

+ O(B3). (51)

In terms of the interface shape, the contribution from the weight for the particle can be written as

F∗
w = −π Bs sin γ, (52)

and the lateral curvature force simplifies to the form

F∗
c =

B2χ2 cos2 γ κ∗ tan γ

2(4κ∗2 + 5κ∗2 tan2 γ + 4κ∗
ξ∗ sin γ + 4 cos γ )1/2

{

1 − B1/2
2 sin α

[

κ∗2 sec2 γ + κ∗
ξ∗ sin γ + 2 cos γ

]

(4κ∗2 + 5κ∗2 tan2 γ + 4κ∗
ξ∗ sin γ + 4 cos γ )1/2

}

+ O(B3), (53)

where κ* = κlc. The dominant contribution to the total lateral force comes from the weight of the

particle. Since the denominator in Eq. (53) is positive and B1/2 is small, it is also clear that the sign

of the curvature contribution to the force, F∗
c , depends on the product of the curvature and the slope

of the interface.

To quantify the above result, we consider a simple example. Consider a cylinder floating on a

catenoid given by the formula

η∗ = cosh(ξ ∗), (54)

where (ξ*, η*) = (ξ /lc, η/lc). The curvature is given by κ* = sech 2(ξ*). Figure 6 shows the lateral

force experienced by a floating cylinder. The gravitational curvature contribution, F∗
c is clearly small

compared to the weight of the particle, F∗
w. It is also interesting to note that the shape of the curvature

contribution, F∗
c obtained here has a striking similarity with the variation of gradient of curvature

for this interface.

VI. CAPILLARY ATTRACTION ON A CURVED INTERFACE

We now treat the case of attraction between horizontal cylinders floating on an interface with a

finite background curvature, the motivation for which was given in the Introduction. Consider two

cylinders on an interface with a known background curvature as shown schematically in Figure 7,

where the dashed curve represents the undisturbed interface in the absence of particles. We use the

same perturbed Young-Laplace equation, (40), as used in Sec. V but with the origin of the local

coordinate system (x, y) now lying on the undisturbed interface midway between the two particles.

The coefficients a(ξ ) and b(ξ ) in Eq. (40) are evaluated at the origin of the local coordinate system,

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

142.157.129.89 On: Thu, 27 Nov 2014 17:06:10



122102-14 H. N. Dixit and G. M. Homsy Phys. Fluids 24, 122102 (2012)

−3 −2 −1 0 1 2 3
−0.75

−0.5

−0.25

0

0.25

0.5

0.75

ξ*

F
o
rc

e

 

 

F*
c
/B

F*
g

F*
c
 + F*

g

FIG. 6. Lateral force on a cylinder floating on a catenoid, with α = 135◦, B = 0.1, D = 2 and Bs = 0.2. The three curves

represent curvature contribution (dotted line), gravitational contribution (solid line), and the total force (dashed-dotted line).

x = 0. We assume that the separation distance, d, between the particles is much smaller than the

capillary length, i.e., d ∼ R ≪ lc. In this limit, both the particles experience approximately the same

lateral force due to gravitational and curvature effects, and hence do not contribute toward capillary

attraction between the particles. But since the particles are located at distances ±d/2, there are key

differences between the curved interface case and a flat interface. This will be discussed later in the

section.

We now solve for interface distortion from the undisturbed interface by again invoking symmetry

conditions midway between the cylinder. For a curved background interface, this will not be strictly

true, but since the separation distance between particles is small, i.e., d ≪ lc, any asymmetry due to

curvature of the background interface should be a higher order effect. We again non-dimensionalize

the eigenvalues λ± with the capillary length, and (x, y) with the radius of the particle. Hence, the

interface shape on either side of cylinder S1 in non-dimensional form can be written as

h∗(x∗) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

B−1/2 tan φ1eB1/2λ∗
0(x∗+x∗

1 )

λ∗2
0 − ǫ∗2

[

λ0

sinh(B1/2ǫ∗x∗)

sinh(B1/2ǫ∗x∗
1 )

− ǫ
cosh(B1/2ǫ∗x∗)

sinh(B1/2ǫ∗x∗
1 )

]

(−x∗
1 ≤ x∗ ≤ x∗

1 ),

B−1/2 tan φ2

λ∗
+

eB1/2λ∗
+(x∗+x∗

2 ) (x∗ ≤ −x∗
2 ),

(55)

where λ∗
0 = (λ∗

+ + λ∗
−)/2 and ǫ∗ = (λ∗

+ − λ∗
−)/2. The x- and y- locations of the contact lines give

us four additional relations

x∗
1 =

d∗

2
− sin θ1, (56)

g
η(ξ)

n

y
x

η
1

η
2 ξ

S1

S2

FIG. 7. Capillary attraction on an arbitrary curved interface. (ξ , η) are the coordinates used to describe the background

curved interface, and (x, y) are the local coordinates at the location of the particles.
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x∗
2 =

d∗

2
+ sin θ2, (57)

B1/2(H∗ + cos θ1) tanh(B1/2ǫ∗x∗
1 ) =

− tan φ1

λ∗2
0 − ǫ∗2

[

ǫ∗ + λ∗
0 tanh(B1/2ǫ∗x∗

1 )
]

, (58)

B1/2(H∗ + cos θ1) =
tan φ2

λ∗
0 + ǫ∗ . (59)

In deriving the above equations, the background interface parameters, λ∗
0 and ǫ*, are evaluated

midway between the particles, x = 0, and not at the location of the contact lines x∗
1 and x∗

2 . As a

result an asymmetric term, (λ∗
0 + ǫ∗), enters the analysis. The normal and tangential force balance

equations for each cylinder are the same as used in Sec. V, and hence we do not repeat them here.

Expanding Eqs. (47), (48), and (56)–(59) simultaneously in powers of B1/2 and following the solution

procedure outlined in Sec. III, the resultant expression for force of attraction can be written as

F∗
l =

B2ω4χ2

2

{

1 +
2B1/2

λ∗
0 + ǫ∗

[(

d∗

2
− sin α

)

(

λ∗2
0 − ǫ∗2

)

− ω2 sin α

]}

+ O(B3), (60)

where the subscript l denotes that this expression is valid for the left cylinder, S1. In terms of curvature

and slope of the background interface, the force of attraction can be simplified to the form

F∗
l =

B2χ2 cos2 γ

2

⎧

⎪

⎨

⎪

⎩

1 − 2B1/2

{

(d∗ − 2 sin α) (κ∗2 sec2 γ + κ∗
ξ∗ sin γ ) + d∗ cos γ

}

[

κ∗ tan γ +
√

4κ∗2 + 5κ∗2 tan2 γ + 4κ∗
ξ∗ sin γ + 4 cos γ

]

⎫

⎪

⎬

⎪

⎭

+O(B3). (61)

A similar analysis can be carried out to evaluate the force of attraction on the right cylinder, S2.

For brevity, we only state the final result

F∗
r = −

B2χ2 cos2 γ

2

⎧

⎪

⎨

⎪

⎩

1 + 2B1/2

{

(d∗ − 2 sin α) (κ∗2 sec2 γ + κ∗
ξ∗ sin γ ) + d∗ cos γ

}

[

κ∗ tan γ −
√

4κ∗2 + 5κ∗2 tan2 γ + 4κ∗
ξ∗ sin γ + 4 cos γ

]

⎫

⎪

⎬

⎪

⎭

+O(B3). (62)

The two forces, F∗
l and F∗

r , give the unbalanced forces on the left and right cylinders, respec-

tively. The net force of attraction between the cylinders is given by

F∗
c =

F∗
l − F∗

r

2
. (63)

The above expressions, (61)–(63), reduce to that obtained for a flat interface in the limit κ → 0,

ηξ → 0, and γ → 0. The leading term in the expression for forces involves the angle γ , and not

the curvature. This suggests that the dominant role of a curved interface is from the variation of the

slope of the interface rather than a direct influence of curvature. The slope of the interface modifies

the effective gravity reducing the potential for capillary attraction.

As an application of these results, consider a simple case of two cylinders floating on a catenoid

given by the formula

η∗ = cosh(ξ ∗), (64)

where (η*, ξ*) = (η/lc, ξ /lc) and κ* = κlc. The effects of curvature of the background interface on

the force of attraction can be estimated by normalizing the force of attraction with the force obtained

by using the Nicolson approximation, Eq. (32), for cylinders on a flat interface. For a catenoid

interface, this ratio is evaluated for three different separation distances as shown in Figure 8. Clearly,
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FIG. 8. The net force of attraction, F∗
H , between the two cylinders floating on a catenoid interface with B = 0.001, D = 2,

α = 135◦ normalized by the force obtained by Nicolson approximation for a flat interface, and for three different separation

distances.

an increase in separation distance reduces the force of attraction for a curved interface relative to

that for a flat interface, as is evident from Eqs. (61)–(63).

VII. SUMMARY AND CONCLUSION

In this study, we have obtained asymptotic solutions for the capillary attraction force between

parallel cylinders for three configurations, (i) attraction between two cylinders on a flat interface,

(ii) attraction between two cylinders on a curved interface, and (iii) attraction forces in an array

of cylinders. Using a systematic perturbation expansion at small Bond number, the present study

places the established Nicolson approximation on a firm footing, thus lending confidence to the use

of the Nicolson approximation for other particle shapes. Moreover, no constraints were imposed

on the vertical position or angular orientations of the particles. Particles on a curved interface distort

the interface modifying the surface pressure balance. A perturbed Young-Laplace equation was

obtained governing the perturbations to the interface. Unlike the case of a flat interface, even a

single particle experiences a lateral force, due to both gravity along the interface and to the effects of

background curvature. The effect of gravity is straightforward and causes the particles to slide toward

regions of lower elevation. But the effect of curvature does not lend itself to a simple interpretation.

Since the present analysis is for a static case, we expect that in a quasi-static scenario, the

vertical and angular orientations of the cylinders will change as the particles approach each other.

The analysis reveals that for small Bond numbers, the magnitude of vertical and angular shift is

small, and may not be too relevant for the dynamics of freely floating particles.

The above analysis has been carried out for horizontal parallel cylinders. In reality, such con-

figurations are rarely encountered as cylinders seldom remain parallel to each other. Nonetheless,

the present analysis highlights the essential physics involved in the capillary attraction process. The

infinite cylinder problem showed the essential mechanism behind formation of particle clusters at

a fluid interface. When the particle concentration is large, these clusters can completely cover the

interface, thus modifying the boundary conditions for the bulk flow.

We conclude this paper by briefly discussing experiments on related geometries. There are only

a few experimental results where attempts have been made to verify Nicolson’s approximation. Velev

et al.6 verified Nicolson’s approximation by measuring the force of attraction between two vertical

cylinders whereas Dushkin et al.7 measured force of attraction between vertical rods and spheres.

In the latter experiments, it is not clear if the spheres are allowed a vertical degree of freedom.

And more importantly, as the particles move, they experience a viscous drag. Some preliminary
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experiments with glass spheres show that viscous drag force is comparable to capillary attraction

force57 and has a non-trivial dependence on the viscosity of the fluid.58
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APPENDIX: DERIVATION OF A PERTURBED YOUNG-LAPLACE EQUATION

In this appendix, we derive an equation governing perturbations on a known background in-

terface caused by the presence of particles. We call the resulting equation as the perturbed Young-

Laplace equation. In the absence of particles, the dimensional Young-Laplace equation for the

background interface can be written as

(ρB − ρA)gη(ξ ) = σκ(ξ ), (A1)

where η is the height of the interface measure from a known reference where the interface is flat,

κ(ξ ) = (∇ · n) is the curvature of the background interface, ξ is the horizontal coordinate. For a

planar interface, κ takes the form

κ =
ηξξ

(1 + η2
ξ )3/2

. (A2)

The shape of the background interface, η(ξ ) can be determined from the solution of equation (A1)

with suitable boundary conditions. To account for perturbations to the background interface caused

by the presence of particles, we define a local coordinate axis (x, y), tangential and normal to the

interface with the origin in the vicinity of the particles, and lying on the undisturbed interface. The

perturbation to the background interface in the normal direction, y scales with the radius of the

particle, whereas the interface elevation, η, scales with the capillary length. In the limit B ≪ 1, we

therefore have h ≪ η. Defining γ as the angle made by the normal to the background interface with

the vertical, defined in an anti-clockwise sense, we have

η′ = η + y cos γ. (A3)

It can be easily shown that dγ /dx = κ . It is useful to express the background curvature in terms of

the arc-length coordinate, x,

κ =
ηxx

(

1 − η2
x

)1/2
. (A4)

Substituting η′ into Eq. (A4) and considering only terms linear in h, the perturbed curvature reduces

to

κ ′ = κ +
cos γ

(1 − η2
x )1/2

hxx +
[

κηx cos γ

(1 − η2
x )

−
2κ sin γ

(1 − η2
x )1/2

]

hx

−
[

κ2 sin γ ηx

(1 − η2
x )

+
κ2 cos γ + κx sin γ

(1 − η2
x )1/2

]

h + O(h2). (A5)

From the Young-Laplace equation at the perturbed interface, we have (ρB − ρA)gη′ = σκ ′.

On simplifying and eliminating the contribution from the background interface, the perturbed

Young-Laplace equation for the perturbation becomes

hxx + ahx + bh = 0, (A6)

a = −κ tan γ, (A7)

b = −
[

κ2 sec2 γ + κξ sin γ +
cos γ

l2
c

]

. (A8)
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In the above equation, the second term represents the effect of background curvature whereas

the last term represents the gravitational contribution normal to the interface. Since the above

equation involves coefficients which depend on the independent variable, a general solution should

be obtained by a power-series method if the background interface is known a priori. When the

extent of perturbation caused by particles is small compared to the characteristic length scale of the

background interface, we can assume that the particles locally do not sense the variation of curvature

of the background interface. This is similar in spirit to the β-plane approximation commonly used

on geophysical flows where the Coriolis frequency is assumed to vary linearly from a specified value

at a given latitude. We, therefore, assume that coefficients a and b assume a constant value at the

scale of separation of two particles. Since d ≪ lc, this is a reasonable assumption. In this case, the

general solution of Eq. (A8) is

h(x) = c1 exp(λ−x) + c2 exp(λ+x), (A9)

where λ± = − 1
2

(

a ∓
√

a2 − 4b
)

.
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