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Abstract

We readdress the problems associated with bulk Higgs and the gauge fields in

a 5-dimensional Randall-Sundrum model by extending the model to six dimensions

with double warping along the two extra spatial dimensions. In this 6-dimensional

model we have a freedom of two moduli scales as against one modulus in the 5-

dimensional model. With a little hierarchy between these moduli we can obtain

the right magnitude for W and Z boson masses from the Kaluza-Klein modes of

massive bulk gauge fields where the spontaneous symmetry breaking is triggered

by bulk Higgs . We also have determined the gauge couplings of the standard

model fermions with Kaluza-Klein modes of the gauge fields. Unlike the case of

5-dimensional model with a massless bulk gauge field, here we have shown that the

gauge couplings and the masses of the Kaluza-Klein gauge fields satisfy the precision

electroweak constraints and also obey the Tevatron bounds.
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1 Introduction

The hierarchy between electroweak and Planck scales can be addressed in extra dimen-

sional models. Among these, the model proposed by Randall and Sundrum (RS) assumes

warp geometry of the space-time in 5 dimensions [1]. The fifth dimension has Planck

scale length rc and is compactified on the space S1/Z2. Two 3-branes are supported on

either side of this fifth dimension. The exponential suppression along the fifth dimension

naturally suppresses Planck scale quantities of one 3-brane into electroweak scale on the

second 3-brane, which is identified as TeV-brane and can be interpreted as our universe.

In the original RS model the standard model fields are assumed to lie on the TeV-brane

while only gravity propagates in the bulk. Later works have explored the phenomenology

of bulk standard model fields in warped geometry model [2, 3, 4, 5, 6]. It was however

shown that the models with bulk gauge and Higgs fields where the spontaneous symmetry

breaking takes place in the bulk, encounters serious problems. The two main problems are:

(i) The non-Abelian gauge fields acquire masses through the Higgs vacuum expectation

value (vev) generated through spontaneous symmetry breaking in the bulk. This vev being

a bulk parameter has a magnitude of the order of the Planck scale and therefore lends

a very large bulk mass ∼ Planck mass to the gauge boson in the bulk. As a result the

lowest lying masses in the KK tower of the gauge boson on the visible brane becomes ∼
TeV which fails to comply with the W and Z boson masses ≤ 100 GeV. If one tries to

reduce it by adjusting the bulk parameters then that would jeopardize the unique feature

of Planck scale to TeV scale warping, i.e. the resolution of gauge hierarchy problem which

was the original motivation of such a warped geometry model.

(ii) For an Abelian gauge boson with zero bulk mass, the massless Kaluza-Klein (KK)

mode on the TeV-brane corresponds to photon. However, the first excited state in the

KK tower has an unacceptably large coupling with fermions. This puts a stringent bound

on the mass of this state such that the model may survive the direct search bound at

the Fermilab Tevatron as well as precision electroweak constraints. However, the mass

of this first KK mode turns out to be much lower than the above bound. Once again it

is impossible either to reduce the coupling or to increase the mass by adjusting the bulk

parameters without disturbing the resolution of the gauge hierarchy/fine tuning problem.

We refer our readers to [3, 6, 7, 8, 9, 10] where both these problems have been discussed

in details. Recently, in a generalized 5-dimensional RS model with non-flat visible brane,
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by adjusting the brane cosmological constant the problem coming from the precision

electroweak tests have been averted and also the bulk Higgs problem has been resolved

[7]. The brane cosmological constant however was found to be negative implying that the

visible brane in such a case is an anti-de Sitter 3-brane.

In the present work we address these problems from a different viewpoint i.e. in the

backdrop of a 6-dimensional doubly warped model with flat 3-branes which is an extension

of the original RS model to more than one extra dimensions[11]. In this 6-dimensional

model two extra spatial coordinates are compactified such that the space-time manifold

is [M (1,3) × S1/Z2]× S1/Z2. Compared to the RS model, here the two extra dimensions,

denoted by angular coordinates y, z, are doubly warped. Four 4-branes are located at the

orbifolded points: y = 0, π, z = 0, π. The intersection of any two 4-branes gives a 3-brane.

The 3-brane located at (y, z) = (π, 0) is identified with our universe. Analogous to the

RS setup, the mass scale suppression can be felt along both the coordinates y, z. We can

choose the moduli of these coordinates, say Ry and rz, such that TeV scale masses can be

generated on the visible brane located at (y, z) = (π, 0). Since there is an extra freedom

through an additional modulus in this model compared to the 5-dimensional RS model,

we explore if the above problems relating to bulk Higgs can be solved in the 6-dimensional

doubly warped model by adjusting the moduli Ry, rz suitably.

We organize our paper as follows. In the following section we explain some essential

features of the 6-dimensional doubly warped model. In Sec. 3 we describe the KK

mode analysis of gauge bosons and fermions in 6-dimensional bulk and the corresponding

modes on the visible 3-brane. In Sec. 4 we present our results and argue that the precision

electroweak tests put no additional constraints on this model. We conclude in Sec. 5.

2 The 6-dimensional doubly warped model

As explained previously, the 6-dimensional doubly warped model has space-time of six

dimensions and the extra two spatial dimensions are orbifolded by Z2 symmetry [11].

The manifold under consideration is [M (1,3) × S1/Z2] × S1/Z2 with four non-compact

dimensions denoted by xµ, µ = 0, · · · , 3. Since we are interested in doubly warped model,

the metric in this model can be chosen as

ds2 = b2(z)[a2(y)ηµνdx
µdxν +R2

ydy
2] + r2zdz

2 (1)

As explained before the angular coordinates y, z represent the extra spatial dimensions

with moduli Ry, rz, respectively. The Minkowski matrix in the usual 4-dimensions has
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the form ηµν = diag(−1, 1, 1, 1). The functions a(y), b(z) give warp factors in the y and z

directions, respectively. The total bulk-brane action of this model has a form [11]

S = S6 + S5

S6 =

∫

d4xdydz
√
−g6(R6 − Λ),

S5 =

∫

d4xdydz[V1δ(y) + V2δ(y − π)] +

∫

d4xdydz[V3δ(z) + V4δ(z − π)] (2)

Here, V1,2 and V3,4 are brane tensions of the branes located at y = 0, π and z = 0, π,

respectively. Λ is the cosmological constant in 6-dimensions. The 3-branes are located at

the intersection points of the four 4-branes.

After solving Einstein’s equations the solutions to the warp functions of the metric as

given in eq. (1) have a form [11]

a(y) = exp(−c|y|), b(z) =
cosh(kz)

cosh(kπ)

c ≡ Ryk

rz cosh(kπ)
, k ≡ rz

√

−Λ

10M4
P

(3)

Here, MP is the Planck scale. The warp factors a(y) and b(z) give largest suppression

from y = 0, z = π brane to y = πz = 0 brane. For this reason we can interpret the

3-brane formed out of the intersection of 4-branes at y = π and z = 0 as our standard

model brane. The suppression factor f on the standard model brane can be written as

f =
exp(−cπ)
cosh(kπ)

(4)

The desired suppression of 10−16 on the standard model brane can be obtained for different

combinations of the parameters c and k. However, from the relation for c in eq. (3) it can

be noticed that in order not to have large hierarchy in the moduli Ry and rz, either of c

or k must be large where as other is small, e.g. c ∼ 11.4 and k ∼ 0.1. This implies that

the warping along y is large whereas that along z is small. It has been argued that this

feature may offer an explanation of the small mass hierarchy among the standard model

fermions[11].

The 6-dimensional model which has been described here is thus viable in explaining

the hierarchy between Planck scale and the electroweak scale without introducing large

hierarchy between the moduli Ry and rz. In this model KK modes of bulk scalar fields

have been studied [12]. Bulk fermion fields have also been studied in this model with a

possibility of localizing them on a 4-brane [13]. However the possibility of bulk gauge and
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Higgs field in this model has not been explored yet. In the following section we derive the

KK modes of the gauge field, fermion fields and the corresponding couplings to estimate

the viability of this model in respect to the problems discussed earlier. We reiterate that

our aim is to explore if we can put the Higgs in the bulk of such 6-dimensional multiply

warped model without invoking any contradiction with the precision electroweak test [3, 6]

as was encountered in the 5-dimensional RS model.

3 Gauge bosons and fermions in the bulk

In this section we explain the KK decomposition and eigenvalue equations of KK gauge

bosons and KK fermions which arise from the respective bulk fields after integrating over

the two extra dimensions of the model.

3.1 KK modes of the gauge bosons

For simplicity, we consider a U(1) gauge theory, but our derivation given below is ap-

plicable to non-Abelian theory as well. In a realistic model the gauge fields can acquire

non-zero masses due to spontaneous symmetry breaking. In our model, Higgs mechanism

can take place in the bulk of the 6-dimensions and the vev of the Higgs field will be of the

order of Planck scale. The vev of the Higgs field contributes to generate the bulk mass

for the gauge field. Hence, after spontaneous symmetry breaking the invariant action can

be written as

SG =

∫

d4xdydz
√
−G

(

−1

4
GMKGNLFKLFMN − 1

2
M2GMKAMAK

)

, (5)

where,M is the bulk mass ∼ MP and G = det(GAB) is the determinant of the metric GAB

which is given in eq. (1). FKL = ∂KAL−∂LAK is the gauge field strength. Exploiting the

gauge symmetry we can choose the gauge where A4 = A5 = 0. The KK decomposition of

the gauge field can be taken as

Aµ =
∑

n,p

A(n,p)
µ (x)ξn(y)χp(z)/

√

Ryrz. (6)

The KK fields in the 4-dimensions A
(n,p)
µ carry two indices n, p due to the two additional

dimensions of the model. The functions ξn(y) and χp(z) give KK wave functions in the

y and z directions, respectively. Substituting the above KK decomposition in eq. (5)
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and integrating over the y and z coordinates, we demand that the resulting action in the

4-dimensions must have a form
∑

n,p

−1

4
F (n,p)
µν F (n,p)µν − 1

2
m2

n,pA
(n,p)
µ A(n,p)µ, (7)

where mn,p is the mass of the KK field A
(n,p)
µ . This can be achieved provided the KK wave

functions satisfy the following orthonormality condition.
∫

dy ξn(y)ξn′(y) = δnn′,

∫

dz b(z)χp(z)χp′(z) = δpp′. (8)

Moreover, in addition to the above normalization conditions the following eigenvalue

equations for the ξn and χp must also be satisfied:

1

R2
y

∂y(a
2∂yξn)−m2

pa
2ξn = −m2

n,pξn,

1

r2z
∂z(b

3∂zχp)−M2b3χp = −m2
pχp. (9)

Here, mp is a mass parameter which is determined by solving the equation for χp(z), and

the value of mp determines the KK mass mn,p through the eigenvalue equation for ξn, as

given above.

The second of the eq. (9) can be solved by approximating b(z) ∼ exp[−k(π − z)] =

exp[−kz̃]. By writing χ̃p(z) = exp(−3kz̃/2)χp(z) the eigenvalue equation for χ̃p takes the

form,

z2p
d2χ̃p

dz2p
+ zp

dχ̃p

dzp
+ (z2p − ν2p)χ̃p = 0, (10)

where zp =
mp

k′
exp(kz̃) and ν2p = 9

4
+
(

M
k′

)2
. Here, k′ = k/rz. The solutions to the above

equation are Bessel functions of order νp, and we can write

χp(z) =
1

Np
exp(

3

2
kz̃)

[

Jνp(zp) + bpYνp(zp)
]

, (11)

where, NP and bp are some constants. By demanding that the function χp(z) be continuous

at the orbifold fixed points z = 0, π we get the following approximate solution which

determines the spectrum for mp.

3Jνp(xνp) + xνp(Jνp−1(xνp)− Jνp+1(xνp)) = 0, (12)

where xνp =
mp

k′
exp(kπ). After solving for mp using the above equation, we can compute

the KK mass mn,p by solving the first of eq. (9). By writing ξ̃n = exp(−c|y|)ξn, the
eigenvalue equation for ξ̃n(y) becomes,

y2n
d2ξ̃n
dy2n

+ yn
dξ̃n
dyn

+ (y2n − ν2n)ξ̃n = 0, (13)
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where yn = mn,p

k′
exp(c|y|) cosh(kπ) and ν2n = 1 +

(mp

k′

)2
cosh2(kπ). The solution for ξn(y)

can be written in terms of Bessel function of order νn multiplied by growing exponential

factor as

ξn(y) =
1

Nn
exp(c|y|) [Jνn(yn) + bnYνn(zn)] , (14)

where, Nn and bn are some constants. Again, by demanding that the function ξn(y) be

continuous at the orbifold fixed points y = 0, π the following equation determines the KK

mass mn,p.

Jνn(xνn) + xνn(Jνn−1(xνn)− Jνn+1(xνn))/2 = 0, (15)

where,

xνn =
mn,p

k′
exp(cπ) cosh(kπ). (16)

The actual KK mass of a gauge field is found by first solving the eq. (12) for mp

and then solving the eq. (15), which is described in the previous paragraph. The wave

function of these KK gauge fields is product of wave functions given in eqs. (11) and (14).

In the above analysis if we put the bulk gauge boson mass M = 0, we easily obtain the

various KK mode solutions and the corresponding masses. In this case the lowest lying

KK mode is massless which corresponds to the standard model photon.

A nice feature of the KK gauge fields in the 6-dimensional doubly warped model is

that their wave functions can be decomposed into product of functions in the two extra

dimensions, a feature which may not be evident for the bulk fermion fields which is the

subject of the next subsection.

3.2 KK modes of the fermions

The invariant action for a bulk fermion field Ψ in 6-dimensions is [3, 5, 6]

Sf =

∫

d4xdydz
√
−G

{

EA
a

[

i

2

(

Ψ̄Γa∂AΨ− ∂AΨ̄ΓaΨ
)

+
ωbcA

8
Ψ̄{Γa, σbc}Ψ

]

−MfΨ̄Ψ

}

(17)

Here, the capital letter A denotes index in the curved space and the lower case letters

a, b, c denote indices in the tangent space. ωbcA is spin connection and EA
a is inverse

vielbein. Mf is the bulk mass and σbc = i
2
[Γb,Γc]. The Dirac matrices Γa in 6-dimensions

would be 8×8, and they can be taken as [14]:

Γµ = γµ ⊗ σ0, Γ4 = iγ5 ⊗ σ1, Γ5 = iγ5 ⊗ σ2 (18)

Here, γµ are the Dirac matrices in 4-dimensions and γ5 = iγ0γ1γ2γ3. σi, i = 1, 2, 3, are

the Pauli matrices and σ0 is the 2×2 unit matrix. The chirality in 6-dimensions is defined
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by the matrix Γ̄ = Γ0Γ1Γ2Γ3Γ4Γ5 as Γ̄Ψ± = ±Ψ±. The chiral fermions in 6-dimensions

have both left- and right-handed chirality of 4-dimensions, which can be projected by the

operators PL,R = (1∓ iΓ0Γ1Γ2Γ3)/2.

As explained in Sec. 1, we are interested in estimating the gauge coupling of standard

model fermions to the KK gauge bosons. We take the bulk mass of the fermionsMf to be

zero, since the masses of standard model fermions are much below the Planck scale. The

term that is associated with the spin connection in eq. (17) would give no contribution,

since the metric in eq. (1) is diagonal. Hence, in our particular case of interest we expand

the first term of eq. (17), which has the following form:

Sf =
∫

d4xdydz
{

b4a3Ryrzi
(

Ψ̄+LΓ
µ∂µΨ+L + Ψ̄+RΓ

µ∂µΨ+R + Ψ̄−LΓ
µ∂µΨ−L + Ψ̄−RΓ

µ∂µΨ−R

)

+
[

Ψ̄+L

(

Γ4Dy + Γ5Dz

)

Ψ+R + Ψ̄+R

(

Γ4Dy + Γ5Dz

)

Ψ+L

+Ψ̄−L

(

Γ4Dy + Γ5Dz

)

Ψ−R + Ψ̄−R

(

Γ4Dy + Γ5Dz

)

Ψ−L

]}

, (19)

where the differential operators are defined as: Dy = i
2
b4rz(a

4∂y + ∂ya
4) and Dz =

i
2
a4Ry(b

5∂z + ∂zb
5). In the subscript of the fields Ψ the ± indicates the chirality in 6-

dimensions and the L,R stands for the left- and right-handed chirality of the 4-dimensions.

Terms in line 2 and 3 of the above equation give effective masses for the KK modes in

the 4-dimensions. These terms indicate that in general we cannot decompose the wave

functions into y and z parts separately, like what we have done for the KK wave functions

of the gauge bosons as described previously in eq. (6). Hence, for the bulk fermions the

KK decomposition can be taken as

Ψ+L,−R(x
µ, y, z) =

1
√

Ryrz

∑

j,k

ψ
(j,k)
+L,−R(x

µ)f
(j,k)
+L,−R(y, z)⊗

(

1

0

)

,

Ψ−L,+R(x
µ, y, z) =

1
√

Ryrz

∑

j,k

ψ
(j,k)
−L,+R(x

µ)f
(j,k)
−L,+R(y, z)⊗

(

0

1

)

. (20)

In the above equation various fields of the form ψ(j,k)(xµ) are the KK fields living in the

4-dimensions and f ’s are the KK wave functions depending on both y and z coordinates.

Substituting the above KK decomposition into eq. (19) and integrating over the y and z

we can get the action of the form

Sf =
∫

d4x
∑

j,k

ψ̄
(j,k)
+L iγµ∂ψ

(j,k)
+L + ψ̄

(j,k)
+R iγµ∂ψ

(j,k)
+R + ψ̄

(j,k)
−L iγµ∂ψ

(j,k)
−L + ψ̄

(j,k)
−R iγµ∂ψ

(j,k)
−R

−Mj,k(ψ̄
(j.k)
+L ψ

(j,k)
+R + ψ̄

(j.k)
+R ψ

(j,k)
+L + ψ̄

(j.k)
−L ψ

(j,k)
−R + ψ̄

(j.k)
−R ψ

(j,k)
−L ), (21)
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provided the following normalization and the eigenvalue equations for the KK wave func-

tions are satisfied:
∫

dydzb4(z)a3(y)
(

f
(j,k)
+R,+L,−R,−L(y, z)

)∗

f
(j′,k′)
+R,+L,−R,−L(y, z) = δj,j

′

δk,k
′

, (22)

(iDy +Dz)f
(j,k)
+R (y, z) = −Mj,kf

(j,k)
+L (y, z),

(−iDy +Dz)f
(j,k)
+L (y, z) = −Mj,kf

(j,k)
+R (y, z),

(iDy +Dz)f
(j,k)
−L (y, z) = Mj,kf

(j,k)
−R (y, z),

(−iDy +Dz)f
(j,k)
−R (y, z) = Mj,kf

(j,k)
−L (y, z), (23)

where the differential operators are: Dy =
i

2Ry
(4∂ya+ 2a∂y) and Dz =

i
2rz
a(5∂zb+ 2b∂z).

Here, Mj,k is the mass of the KK fermion ψ(j,k).

As explained previously, we are interested in standard model fermion coupling with

the KK modes of gauge field. The zero mode of the KK fermions are identified with the

standard model fermions. The wave function for these fields can be solved from eq. (23)

by putting Mj,k = 0. Here, we show the solution for the wave function f
(0,0)
+R (y, z) and

the solutions for other chiral fermions can be analogously worked out. The eigenvalue

equation we are interested in is

(iDy +Dz)f
(0,0)
+R (y, z) = 0, (24)

where the differential operators Dy and Dz are defined below eq. (23). For the zero-mode

case we can write the function f
(0,0)
+R as a product of y and z parts, say f

(0,0)
+R (y, z) =

fy(y)fz(z). This simplification happens only for the zero-mode case, since the factor a(y)

in the operators Dy,z can be taken out and the right-hand side of the above equation is

zero. Substituting this form of f
(0,0)
+R (y, z) in the above equation we get

− 1

Ry

(−4c+ 2∂y)fy
fy

+ i
1

rz

(5∂zb+ 2b∂z)fz
fz

= 0 (25)

Since the functional dependence on y and z are completely separated out, we can solve

for fy and fz by taking (−4c+2∂y)fy
fy

= c1, where c1 is a separation constant. In terms of c1

the functional dependences of fy and fz are given below

fy(y) = exp

(

1

2
(c1 + 4c)y

)

, fz(z) =
exp

(

−ic1rz
kRy

tan−1(tanh(kz/2)) cosh(kπ)
)

cosh5/2(kz)
(26)

The value of c1 can be worked out in terms of c and k by normalizing the wave function

f
(0,0)
+R (y, z) using eq. (22).
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4 Bulk phenomenology

In the previous section we have given a description of the KK modes of the gauge bosons

and fermions in the bulk of a 6-dimensional doubly warped model. Now using the mode

expansion for the bulk fields, we can calculate the gauge couplings of standard model

fermions with the KK modes of the gauge bosons.

We now address the two problems mentioned in the beginning. Recall that in 5-

dimensional RS model it is found that for non-zero bulk mass for non-Abelian gauge field

the lowest lying mode has mass much higher than 100 GeV i.e. the masses for W and

Z bosons. Also, for the massless gauge boson the gauge coupling with the first exited

KK gauge boson is larger than one and hence the standard model fermions are strongly

coupled [3, 6]. Due to this a stringent lower bound of ∼ 10 TeV on the mass of the first

exited KK boson arose because of the precision electroweak tests.

In this section we repeat this exercise in the 6-dimensional doubly warped model,

and will show that due to the presence of an additional modulus we can tune the lowest

KK mode mass for non-Abelian gauge field near 100 GeV although the spontaneous

symmetry breaking takes place in the bulk with a bulk Higgs field with vev ∼ Planck

scale. Furthermore, for a gauge boson with a zero bulk mass the coupling to mass ratio

of the first excited KK mode can survive the precision electroweak test without putting

any additional restriction on the model.

The action between the bulk fermions and gauge bosons can be written as [3, 6]

Sint =

∫

d4xdydz
√
−Gg6dΨ̄(xµ, y, z)iΓaEA

a AA(x
µ, y, z),Ψ(xµ, y, z) (27)

where g6d is the gauge coupling in the 6-dimensions as has been discussed in Sec. 3.

Substituting the KK decomposition for the gauge and fermion fields in the above equation

and also reminding that we are working in the gauge choice where A4 = A5 = 0, we get

the gauge coupling in the 4-dimensions as

g
(j,k)(n,p)
+R =

∫

dydz g0πb
4a3
(

f
(j,k)
+R (y, z)

)∗

f
(j,k)
+R (y, z)ξn(y)χp(z), (28)

where g0 = g6d/
√

πRyπrz is the effective 4-dimensional gauge coupling. In the above

equation we have given gauge coupling for the KK fermion ψ
(j,k)
+R with the KK gauge field

A
(n,p)
µ . Similarly, the gauge couplings with the other KK fermions can be easily obtained

by replacing the + with − and R with L accordingly in the above equation. The KK wave

functions: f ’s, ξ and χ, in the above equation should be the normalized wave functions

as given by eqs. (8) and (22). However, in our particular case of interest, where we
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M
k′

= 0.5 M
k′

= 1.0

m1,2 = 143.78 m1,3 = 194.15 m1,4 = 244.52 m1,2 = 148.33 m1,3 = 199.21 m1,4 = 249.58

g̃1,2 = 0.0015 g̃1,3 = 0.0028 g̃1,4 = 0.0009 g̃1,2 = 0.0006 g̃1,3 = 0.0027 g̃1,4 = 0.0011

m2,1 = 180.23 m2,2 = 237.94 m2,3 = 295.40 m2,1 = 184.53 m2,2 = 243.25 m2,3 = 300.97

g̃2,1 = 0.0127 g̃2,2 = 0.0012 g̃2,3 = 0.0023 g̃2,1 = 0.0124 g̃2,2 = 0.0005 g̃2,3 = 0.0022

m3,1 = 261.73 m3,2 = 322.73 m3,3 = 383.48 m3,1 = 266.29 m3,2 = 328.30 m3,3 = 389.56

g̃3,1 = 0.0106 g̃3,2 = 0.0010 g̃3,3 = 0.0019 g̃3,1 = 0.0104 g̃3,2 = 0.0004 g̃3,3 = 0.0019

Table 1: The gauge couplings g(0,0)(i,j) of the standard model fermions are given in the

form g̃i,j = g(0,0)(i,j)

g0
, where g0 is the effective 4-dimensional gauge coupling. The masses of

the KK gauge bosons mi,j are given in GeV units. M is the bulk gauge boson mass and

k′ = k/rz. The non-zero values for M
k′

are indicated in the table. 1
rz

= 7× 1017 GeV, k =

0.25 and c = 11.52. The lowest lying mode m1,1, which corresponds to W or Z boson, is

not included in the table.

are interested in precision electroweak tests, we compute gauge couplings of the standard

model fermions with the KK gauge fields. Hence, the wave functions for the fermions are

of the form in eq. (26) and the corresponding functions for the KK gauge fields are given

in eqs. (11) and (14).

Now, in order to compute the gauge couplings the unknown parameters that need to

be fixed are k, c, rz and the bulk mass of the gauge fields M . The non-zero value for

the bulk gauge mass M is around the Planck scale. We can determine the remaining

parameters by making the following demands: (a) the lowest non-zero mass of the KK

tower of the bulk gauge boson should be identified with either W or Z boson mass, (b)

the suppression f of eq. (4) should be ∼ 10−16 and (c) the hierarchy between the moduli

Ry and rz should not be too large. The expression for the KK gauge boson mass is

given in eq. (16). For the lowest non-zero KK gauge boson mass which is identifie as

m1,1 the root xνn would be O(1). The factor exp(cπ) cosh(kπ) in this equation, which is

the inverse of f , should be ∼ 1016. By demanding that the lowest KK mode m1,1 has

mass of ∼ 100 GeV, from eq. (16) we can naively estimate that k′ ∼ 1017 GeV. Since

we would argue that k ∼ 0.1, a consistent value for the scale rz is 1
rz

= 7 × 1017 GeV,

which is about 14 times smaller than the Planck scale. The parameters k and c can be

determined from the fact that we should not get large hierarchy between the moduli Ry

and rz and also we should get the desired suppression of f ∼ 10−16 on the standard

model brane. We have estimated that for k = 0.25 and c = 11.52, the ratio between the
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M
k′

= 0

m1,1 = 93.15 m1,2 = 142.0 m1,3 = 192.38

g̃1,1 = 0.0168 g̃1,2 = 0.0019 g̃1,3 = 0.0028

m2,1 = 178.45 m2,2 = 235.91 m2,3 = 293.12

g̃2,1 = 0.0128 g̃2,2 = 0.0015 g̃2,3 = 0.0023

m3,1 = 259.96 m3,2 = 320.71 m3,3 = 381.21

g̃3,1 = 0.0107 g̃3,2 = 0.0012 g̃3,3 = 0.0020

Table 2: The gauge couplings g(0,0)(i,j) of the standard model fermions are given in the

form g̃i,j = g(0,0)(i,j)

g0
, where g0 is the effective 4-dimensional gauge coupling. The masses of

the KK gauge bosons mi,j are given in GeV units. M is the bulk gauge boson mass, which

is taken to be zero and k′ = k/rz. The values of k, c and rz in this case are same as that

in Table 1. The lowest lying mode m0,0, which corresponds to photon, is not included in

the table.

moduli is Ry

rz
= 61, which is not unacceptably large, and also the suppression f came out

to be 1.45 × 10−16. For these particular values of k, c and 1/rz we have given the gauge

couplings and the corresponding masses of the excited KK gauge fields in Table 1. In this

table the gauge couplings g(i,j), where i, j are integers, of the standard model fermion are

given as a fraction of the 4-dimensional coupling g0. In the case of M
k′

= 0.5 or = 1.0, we

have found that the lowest non-zero mode has mass of about 95 GeV. Hence this mode

can be identified with the W or Z gauge boson. Since we have got the right amount of

W,Z boson masses for the above described values of k, c, 1
rz
, we use the same set of values

to get the gauge couplings and KK gauge boson masses in the case where the bulk mass

M is zero. In this case we have found that the lowest mode m0,0 has zero mass which

can be identified with the photon state. The non-zero KK masses of the photon field and

their corresponding gauge coupling values are given in Table 2.

As stated in Sec. 1 that the 5-dimensional RS model suffers from the precision elec-

troweak tests due to the fact that the first excited KK gague boson has coupling larger

than one with the standard model field. To parameterize the precision electroweak con-

straints in extra dimensional models the following quantity has been defined [3, 15].

V =
∑

n

(

gn
g0

mW

Mn

)2

. (29)

Here, mW is the mass of the W gauge boson and Mn is the higher KK gauge boson mass.

The summation on n in the above equation is over all the higher KK gauge masses Mn
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with corresponding gauge couplings gn. In our 6-dimensional model the index n would be

replaced by a pair of integers and we should sum over all non-zero higher order modes.

It has been shown that by fitting to the precision electroweak observables the quantity

V should satisfy the condition: V < 0.0013 at 95% confidence level [3]. It can be easily

checked that this bound can be respected by the gauge couplings and the KK masses of

the tables 1 and 2. From both these tables, we can notice that the gauge couplings are

decreasing with increasing the KK gauge masses for a particular value of M
k′
. Hence, in the

summation of eq. (29) only the first few higher KK modes are relevant. We have checked

that for M
k′

= 0.5, V has come out to be about 5 × 10−5. In the case of photon where

bulk mass is zero the value of V is found out to be about 0.000257. From these results we

can conclude that precision electroweak tests can be satisfied in the 6-dimensional doubly

warped model without introducing too much hierarchy in the moduli Ry and rz.

At the Tevatron the higher KK gauge bosons have been searched in the channel PP̄ →
X → e+e− and a limit of MT > 700 GeV on the heavy vector gauge boson (X) mass

has been put-in [16]. In our case the gauge couplings of the higher KK modes have been

reduced from the 4-dimensional coupling g0 by some factors which are given in tables 1

and 2. Hence, in our case, the Tevatron bounds for the non-zero KK mode masses should

be greater than 700×g̃i,j GeV. As an example, the KK mode of 93.15 GeV mass of the

Table 2 has the gauge coupling ratio of 0.0168. Hence, the lower bound from the Tevatron

on this KK mode mass would be about 12 GeV, which is much lower than our calculated

value of 93.15 GeV. Like wise, from each column of the tables 1 and 2 it can be easily

seen that the above mentioned Tevatron bounds can be satisfied. So the 6-dimensional

warped model is not only free from the precision electroweak constraints but also from

the Tevatron limits.

5 Conclusions

The extra dimensional phenomenological models in a warped geometry encounters prob-

lems in putting the Higgs and the gauge fields in the bulk. It was shown that it is

impossible to construct proper W and Z boson masses on the brane from the KK modes

of a non-Abelian bulk gauge field through spontaneous symmetry breaking in the bulk.

Also proper coupling and masses for the first KK excitation of a massless bulk gauge

field consistent with electroweak precision test as well as Fermilab Tevatron mass bound

is hard to obtain without changing the bulk parameter of the theory from their desired

values. In this work we have shown that it is possible to resolve both these problems in
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a multiply warped geometry model where there are more than one modulus. Considering

a 6-dimensional model we have shown that by setting one of the modulus approximately

two orders smaller than the Planck scale, we can have the the mass for the lowest lying

mode of the bulk gauge field ( with bulk mass ∼ MP , acquired through a spontaneous

symmetry breaking in the bulk) on the TeV-brane to be of the order of 100 GeV which

therefore may be identified with the W , Z boson mass. Moreover, such a choice for the

moduli which does not contradict the main spirit of the RS model lowers the coupling

of the first KK mode excitation of a massless bulk gauge field so that it can escape the

electroweak precision test. We have determined the KK mode masses as well as their

couplings for different choices of the parameter of the theory namely the ratio of the bulk

mass and the bulk cosmological constant. In the entire analysis the value of the warp

factor is maintained at 10−16 so that the resolution of the gauge hierarchy problem, the

main objective of these models can be achieved. These findings can be easily extended to

models with even larger number of warped extra dimensions [?]. One would then arrive

at similar conclusions with a lesser hierarchy among different moduli. We can therefore

conclude that a consistent description of bulk Higgs and gauge field with spontaneous

symmetry breaking in the bulk can be obtained in a warped geometry model if the RS

model in 5-dimensions is generalized to six or higher dimensions with more than one mod-

uli. The phenomenology of these models therefore becomes an interesting area of study

for the forthcoming collider experiments.
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