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a b s t r a c t

A geometrically nonlinear analysis of symmetric variable angle tow (VAT) composite plates under

in-plane shear is investigated. The nonlinear von Karman governing differential equations are derived for

postbuckling analysis of symmetric VAT plate structures which are subsequently solved using the differ-

ential quadrature method. The effect of in-plane extension-shear coupling on the buckling and postbuck-

ling performance of VAT composite plates is investigated. The buckling and postbuckling behaviour of

VAT plates under positive and negative shear is studied for different VAT fibre orientations, aspect ratios,

combined axial compression and their performance is compared with that of straight fibre composites. It

is shown that there can be enhanced shear buckling and postbuckling performance for both displace-

ment-control and load-control and that the underpinning driving mechanics are different for each.

� 2015 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Stability analysis of variable angle tow (VAT) composites under

compression load has been studied extensively and response has

been shown to have superior structural performance over conven-

tional straight fibre composites (Hyer and Lee, 1991; Gurdal and

Olmedo, 1993; Gurdal et al., 2008). In this work, the buckling

and postbuckling behaviour of VAT plates under in-plane shear is

investigated. The concept of tow steering provides more freedom

to design light-weight composite structures with improved struc-

tural performance when compared to traditional straight fibre

designs. Little work has been reported on the stability analysis of

VAT plates under shear load. Biggers and Fageau (1994) studied

the concept of stiffness tailoring for improving the shear buckling

performance of composite plates by redistributing the layups with

certain fibre orientations across the planform of the plate. Their

study showed a 50% improvement of shear buckling load over

straight fibre composites by redistributing ±45 plies along the

diagonal directions. Waldhart (1996) used the Rayleigh–Ritz

method to study the buckling performance of tow steered VAT

plates under uniform end-shortening and in-plane shear load.

The effects of extensional-shear coupling ðA16;A26Þ were not con-

sidered in their shear buckling study. Nemeth (1997) performed

a parametric study on the buckling behaviour of long symmetrical

composite plates under shear and reported the effects of mem-

brane anisotropy are more important for shear loaded plates than

compression or in-plane bending. Weaver (2004) studied the elas-

tic tailoring of long composite laminates using both flexural and

membrane anisotropy and quantified their effects on positive/neg-

ative shear buckling behaviour. Wu et al. (2012) studied the buck-

ling performance of VAT plates under compression, shear and

combined loading using energy methods. Their study investigated

the effect of extensional-shear coupling ðA16;A26Þ and bend-twist

coupling ðD16;D26Þ on the buckling behaviour of VAT plates.

Lopes et al. (2010) and Gomes et al. (2013) studied the buckling

and postbuckling failure response of variable stiffness composites

with cut-outs under compression and shear loading, respectively.

They used finite element analysis to model the failure of VAT plates

which requires significant computational effort. Rahman et al.

(2011) studied the postbuckling response of VAT plates using a

perturbation approach, coupled with finite element modelling, to

generate a reduced-order model for computation of postbuckling

coefficients to predict the postbuckling stiffness of VAT plates.

Wu et al. (2013) studied the postbuckling performance of VAT

plates under axial compression with linear fibre angle variation

for different in-plane boundary conditions and proposed different

measures to quantify the postbuckling performance of VAT plates.

Numerous studies on VAT plates rely on finite element (FE)

modelling for analysis and design of these structures. As a conse-

quence of variable stiffness coefficients, prebuckling stress distri-

butions can be highly nonlinear (spatially) in-plane, even for
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uniform loading, and not immediately intuitive (Gurdal and

Olmedo, 1993V). Furthermore, it is not obvious whether an FE

mesh which is converged for prebuckling analysis will also be con-

verged for buckling or for subsequent postbuckling analyses. A fur-

ther limitation of FE analysis is that rather than modelling

continuous fibre paths, the fibre angle distribution is treated as

piecewise constant within each element, leading to spurious stress

and strain residuals (i.e. noise) in coarse meshes. Therefore, a

strong need for developing semi-analytical models that comple-

ments finite element analysis for modelling of VAT panel is

required. In the present work, numerical methodology based on

the differential quadrature method (DQM) is developed for buck-

ling and postbuckling analysis of VAT panels under in-plane shear

load. In prior works, the authors have successfully applied DQM for

evaluation of buckling and postbuckling behaviour of VAT plates

under compression for different plate boundary conditions (Raju

et al., 2012, 2013). DQM, as a numerical tool, has been shown to

be accurate and require less degrees of freedom than FE for solving

the buckling and postbuckling problem of VAT panels. Once simple

geometries in FE analysis have been validated by DQM models,

then the designer can proceed with increased confidence to more

complicated geometries and loads. More importantly still, is the

physical insight gained in stress redistribution tailoring, and the

ability to massage buckling phenomena to be more benign.

In the present work, the underlying mechanics behind the

improvement of shear buckling and postbuckling behaviour of

VAT plates with linear fibre angle variation is studied. The effect

of in-plane extension-shear coupling on the buckling and post-

buckling performance of VAT composite plates is investigated for

different in-plane boundary conditions. Furthermore, the effect of

direction of the applied shear on the postbuckling behaviour of

VAT plates under compression is also discussed.

2. Differential quadrature method

In the differential quadrature method, the derivative of a func-

tion, with respect to a space variable at a given discrete grid point,

is approximated as a weighted linear sum of the function values at

all of the grid points in the entire domain of that variable (Bellman

and Casti, 1971). The nth order partial derivative of a function f ðxÞ

at the ith discrete point is approximated by

@nf ðxiÞ

@xn
¼ A

ðnÞ

ij f ðxjÞ i ¼ 1;2; . . . ;Nx; ð1Þ

where xi = set of discrete points in the x direction; and A
ðnÞ

ij are the

weighting coefficients of the nth derivative and repeated index j

indicates summation from 1 to Nx. The partial derivatives of a func-

tion f ðx; yÞ in matrix form are given by,

@f

@x
¼ Pxf ;

@f

@y
¼ fP

T
y ;
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¼ PxfP

T
y ;

@2f

@x2
¼ Q xf ;

@2f

@y2
¼ fQ

T
y ;

@4f

@x2@y2
¼ Q xfQ

T
y ;

@3f

@x3
¼ Rxf ;

@3f

@y3
¼ fR

T
y ;

@4f

@x4
¼ Sxf ;

@4f

@y4
¼ fS

T
y ;

ð2Þ

where P; Q ; R; S with subscripts x; y are the DQM weighting coef-

ficient matrices for the first, second, third, and fourth order partial

derivatives with respect to x and y directions, respectively. The

unknown function f is expressed in matrix form along the two-

dimensional grid, as shown in Fig. 1 and superscript T represents

the transpose of the matrix. The domain grid points refer to the

points where the governing partial differential equations are

expressed in DQM form and the boundary grid points refer to the

points where multiple boundary conditions are applied (Fig. 1).

The information regarding the grid distribution for computation

of weighting coefficient matrices and modelling multiple boundary

conditions are explained, in detail, in the textbook by Shu (2000).

3. Postbuckling analysis of VAT panels

In symmetric VAT panels, stiffness (A;D matrices) varies with

x—y coordinates and the constitutive equation in partial inverse

form is given by,

�0

M

( )

¼
A�ðx; yÞ 0

0 Dðx; yÞ

� �

N

j

( )

; ð3Þ

where N; M are the stress and moment resultants, A� ¼ A�1 is the

compliance matrix and D is the bending stiffness matrix. The non-

linear midplane strains �0 and curvatures j are defined as

�0x ¼ u;x þ
1

2
w2

;x þw;xw0;x; �0y ¼ v ;y þ
1

2
w2

;y þw;yw0;y;

�0xy ¼ u;y þ v ;x þw;xw;y þw;xw0;y þw;yw0;x;

jx ¼ �w;xx; jy ¼ �w;yy; jxy ¼ �2w;xy

ð4Þ

where u; v ; w are the displacements and w0 is the initial imperfec-

tion function. A stress function X is introduced such that the stress

resultants are defined by,

Nx ¼ X;yy; Ny ¼ X;xx; Nxy ¼ �X;xy: ð5Þ

The compatibility condition in terms of mid-plane strains in a plane

stress condition is given by (Whitney, 1987)

�0x;yy þ �0y;xx � �0xy;xy ¼ w2
;xy �w;xxw;yy þ 2w;xyw0;xy �w;xxw0;xx

�w;yyw0;xx: ð6Þ

After substitution of Eqs. (3)–(5) into Eq. (6), the final form is given

by

A�
11ðx; yÞX;yyyy � 2A�

16ðx; yÞX;xyyy þ ð2A�
12ðx; yÞ þ A�

66ðx; yÞÞX;xxyy

� 2A�
26ðx; yÞX;xxxy þ A�

22ðx; yÞX;xxxx þ ð2A�
11;yðx; yÞ

� A�
16;xðx; yÞÞX;yyy þ ð2A�

12;xðx; yÞ � 3A�
16;yðx; yÞ

þ A�
66;xðx; yÞÞX;xyy þ ð2A�

12;yðx; yÞ � 3A�
26;xðx; yÞ

þ A�
66;yðx; yÞÞX;xxy þ ð2A�

22;xðx; yÞ � A�
26;yðx; yÞÞX;xxx

þ ðA�
11;yyðx; yÞ þ A�

12;xxðx; yÞ � A�
16;xyðx; yÞÞX;yy þ ð�A�

26;xxðx; yÞ

� A�
16;yyðx; yÞ þ A�

66;xyðx; yÞÞX;xy þ ðA�
12;yyðx; yÞ þ A�

22;xxðx; yÞ

� A�
26;xyðx; yÞÞX;xx

¼ w2
;xy �w;xxw;yy þ 2w;xyw0;xy �w;xxw0;xx �w;yyw0;xx: ð7Þ
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Fig. 1. DQM grid distribution in two-dimension.
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The differential equation of transverse motion that governs the

postbuckling analysis of a symmetrical VAT plate is given by,

@2Mx

@x2
þ 2

@2Mxy

@x@y
þ
@2My

@y2
þ Nx

@2w

@x2
þ
@2w0

@x2

 !

þ 2Nxy

@2w

@x@y
þ
@2w0

@x@y

 !

þ Ny

@2w

@y2
þ
@2w0

@y2

 !

þ q ¼ 0; ð8Þ

where Mx; My; Mxy are the moment distributions and q is the

load applied in z direction (Whitney, 1987). Eqs. (3)–(5) are then

substituted into Eq. (8) and the resulting differential equation is

given by

D11ðx; yÞw;xxxx þ 4D16ðx; yÞw;xxxy þ 2ðD12ðx; yÞ þ 2D66ðx; yÞÞw;xxyy

þ 4D26ðx; yÞw;yyyx þ D22ðx; yÞw;yyyy þ 2ðD11;xðx; yÞ

þ D16;yðx; yÞÞw;xxx þ ð6D16;xðx; yÞ þ 2D12;yðx; yÞ þ 4D66;yðx; yÞÞw;xxy

þ ð2D12;xðx; yÞ þ 4D66;xðx; yÞ þ 6D26;yðx; yÞÞw;xyy þ 2ðD26;xðx; yÞ

þ D22;yðx; yÞÞw;yyy þ ðD11;xxðx; yÞ þ 2D16;xyðx; yÞ þ D12;yyðx; yÞÞw;xx

þ ð2D16;xxðx; yÞ þ 4D66;xyðx; yÞ þ 2D26;yyðx; yÞÞw;xy þ ðD12;xxðx; yÞ

þ 2D26;xyðx; yÞ þ D22;yyðx; yÞÞw;yy �Xyyðw;xx þw0;xxÞ

þ 2Xxyðw;xy þw0;xyÞ �Xxxðw;yy þw0;yyÞ þ q ¼ 0: ð9Þ

Thus, Eqs. (7) and (9) represent coupled fourth order nonlinear

elliptic partial differential equation in terms of stress function X

and transverse deflection w with variable coefficients for postbuck-

ling analysis of VAT composite plates. The stress function boundary

conditions are given by

X;yyjx¼0;a ¼ 0; X;xxjy¼0;b ¼ 0; X;xyjx¼0;a;y¼0;b ¼ Pxy;

Xjx¼0;y¼0 ¼ X;xjx¼0;y¼0 ¼ X;yjx¼0;y¼0 ¼ 0: ð10Þ

where Pxy is the applied shear load. The boundary conditions

expressed in terms of X represent uniform shear applied all along

the edges of the plate. The simply supported plate boundary condi-

tions are given by,

x ¼ 0; a; w ¼ 0;

Mx ¼ �D11ðx; yÞw;xx � D12ðx; yÞw;yy � 2D16ðx; yÞw;xy ¼ 0

y ¼ 0; b; w ¼ 0;

My ¼ �D12ðx; yÞw;xx � D22ðx; yÞw;yy � 2D26ðx; yÞw;xy ¼ 0: ð11Þ

Chen et al. (2000) used DQM to solve the geometrically nonlinear

bending problem of isotropic and orthotropic rectangular plates.

Taheri and Moradi (2000) applied DQM to perform postbuckling

analysis of straight fibre composites and used an arclength

approach to solve the nonlinear algebraic equations. In their works,

the nonlinear GDEs were written in terms of displacements (u;v;w)

and DQM was subsequently applied to solve them. Whilst studying

the nonlinear bending of orthotropic plates, the Hadamard product

(�), Kronecker product (�) and SJT product (}) of matrices were

used by Chen et al. (Chen et al., 2000) to simplify the DQM form

of governing differential equations. Consider matrices A; B of size

m� n, the Hadamard product A � B is a matrix of the same dimen-

sions with elements given by

ðA � BÞij ¼ Aij � Bij ð12Þ

Similarly, given am� nmatrix A and a p� qmatrix B, the Kronecker

product A� B is a matrix of size mp� nq given by

A� B ¼

a11B � � � a1nB

.

.

.
.
.

.
.
.
.

am1B � � � amnB

2

6

6

4

3

7

7

5

ð13Þ

The SJT product (}) between a matrix A of size m� n and a vector ~v

of sizem� 1 results in a matrix of same size as A and is expressed as

A}~v ¼ A � ðI �~vÞ ð14Þ

where I is the identity matrix. Chu (2009) applied a similar direct

matrix product, equivalent to Chen’s approach, to solve nonlinear

integro-differential equations. In the present work, the Kronecker,

Hadamard and SJT matrix products are applied to the coupled non-

linear postbuckling equations (Eqs. (7) and (9)) and the DQM form

of these expressions are given by,

~A�
11 �

~J
� �

� ðIy � SyÞ~X� 2~A�
16 �

~J
� �

� ðPx � RyÞ~X

þ 2~A�
12 þ

~A�
66

� �

�~J
� �

� ðQ x � Q yÞ
~X� 2~A�

26 �
~J

� �

� ðRx � PyÞ~X

þ ð~A�
22 �

~JÞ � ðSx � IxÞ~Xþ 2~A�
11;y �

~A�
16;x

� �

�~J
� �

� ðIy � RyÞ~X

þ 2~A�
12;x � 3~A�

16;y þ
~A�

66;x

� �

�~J
� �

� ðPx � Q yÞ
~X

þ 2~A�
12;y � 3~A�

26;x þ
~A�

66;y

� �

�~J
� �

� ðQ x � PyÞ~X

þ 2~A�
22;x �

~A�
26;y

� �

�~J
� �

� ðRx � IxÞ~X

þ ~A�
11;yy þ

~A�
12;xx �

~A�
16;xy

� �

�~J
� �

� ðIy � Q yÞ
~X

þ �~A�
26;xx �

~A�
16;yy þ

~A�
66;xy

� �

�~J
� �

� ðPx � PyÞ~X

þ ~A�
12;yy þ

~A�
22;xx �

~A�
26;xy

� �

�~J
� �

� ðQ x � IxÞ~X

¼ ððPx � PyÞ~wÞ � ððPx � PyÞ~wÞ � ððQ x � IxÞ~wÞ � ððIy � Q yÞ~wÞ

þ 2ððPx � PyÞ~wÞ � ððPx � PyÞ ~w0Þ � ððQ x � IxÞ~wÞ � ððIy � Q yÞ ~w0Þ

� ððIy � QyÞ~wÞ � ððQ x � IxÞ ~w0Þ; ð15Þ

ð~D11 �~JÞ � ðSx � IxÞ~wþ ð4~D16 �~JÞ � ðRx � PyÞ~w

þ ð2ð~D12 þ 2~D66Þ � JÞ � ðQ x � Q yÞ~wþ ð4~D26 �~JÞ � ðRx � PyÞ~w

þ ð~D22 �~JÞ � ðIy � SyÞ~wþ ð2ð~D11;x þ ~D16;yÞ �~JÞ � ðRx � IxÞ~w

þ ðð6~D16;x þ 2~D12;y þ 4~D66;yÞ �~JÞ � ðQ x � PyÞ~w

þ ðð2~D12;x þ 4~D66;x þ 6~D26;yÞ �~JÞ � ðPx � QyÞ~w

þ ð2ð~D26;x þ ~D22;yÞ �~JÞ � ðIy � RyÞ~w

þ ðð~D11;xx þ 2~D16;xy þ ~D12;yyÞ �~JÞ � ðQ x � IxÞ~w

þ ðð2~D16;xx þ 4~D66;xy þ 2~D26;yyÞ �~JÞ � ðPx � Q yÞ~w

þ ðð~D12;xx þ 2~D26;xy þ ~D22;yyÞ �~JÞ � ðIy � Q yÞ~w

� ðIy � ByÞ~XðQ x � IxÞð~wþ ~w0Þ þ 2ðPx � PyÞ~XðPx � PyÞð~wþ ~w0Þ

� ðQ x � IxÞ~XðIy � Q yÞð~wþ ~w0Þ þ~q ¼ 0; ð16Þ

where ~X; ~w; ~w0; ~q; ~A
�
ij;

~Dij ði; j ¼ 1;2;6Þ are vectors generated by

stacking the columns of the corresponding matrices X;w;w0; q;

A�
ij;Dij; ~J ¼ ½1;1; . . . ;1�1�N is a row vector, N ¼ Nx þ Ny represents

the total number of grid points in the two-dimensional domain

and Nx; Ny represent the number of grid points along the x and y

directions. The size of the identity matrices Ix; Iy depends on Nx

and Ny, respectively. Eqs. (15) and (16) are further simplified into

matrix forms given by

L1~X ¼ ðL2~wÞ � ðL2~wÞ � ðL3~wÞ � ðL4~wÞ þ 2ðL2~wÞ � ðL2 ~w0Þ

� ðL3~wÞ � ðL4 ~w0Þ � ðL4~wÞ � ðL3 ~w0Þ;

L5~w� ðL6~XÞ � ðL3ð~wþ ~w0ÞÞ þ 2ðL7~XÞ � ðL2ð~wþ ~w0ÞÞ

� ðL8~XÞ � ðL4ð~wþ ~w0ÞÞ þ~q ¼ 0: ð17Þ
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The matrix operators in Eq. (17) are given by,

L1 ¼ ð~A�
11 �

~JÞ � ðIy � SyÞ � ð2~A�
16 �

~JÞ � ðPx � RyÞ

þ ðð2~A�
12 þ

~A�
66Þ �

~JÞ � ðQ x � Q yÞ � ð2~A�
26 �

~JÞ � ðRx � PyÞ

þ ð~A�
22 �

~JÞ � ðSx � IxÞ þ ðð2~A�
11;y �

~A�
16;xÞ �

~JÞ � ðIy � RyÞ

þ ðð2~A�
12;x � 3~A�

16;y þ
~A�

66;xÞ �
~JÞ � ðPx � QyÞ

þ ðð2~A�
12;y � 3~A�

26;x þ
~A�

66;yÞ �
~JÞ � ðQ x � PyÞ

þ ðð2~A�
22;x �

~A�
26;yÞ �

~JÞ � ðRx � IxÞ

þ ðð~A�
11;yy þ

~A�
12;xx �

~A�
16;xyÞ �

~JÞ � ðIy � Q yÞ

þ ðð�~A�
26;xx �

~A�
16;yy þ

~A�
66;xyÞ �

~JÞ � ðPx � PyÞ

þ ðð~A�
12;yy þ

~A�
22;xx �

~A�
26;xyÞ �

~JÞ � ðQ x � IxÞ;

L2 ¼ Px � Py; L3 ¼ Q x � Ix; L4 ¼ Iy � Q y;

L5 ¼ ð~D11 �~JÞ � ðSx � IxÞ þ ð4~D16 �~JÞ � ðRx � PyÞ

þ ð2ð~D12 þ 2~D66Þ � JÞ � ðQ x � Q yÞ þ ð4~D26 �~JÞ � ðRx � PyÞ

þ ð~D22 �~JÞ � ðIy � SyÞ þ ð2ð~D11;x þ ~D16;yÞ �~JÞ � ðRx � IxÞ

þ ðð6~D16;x þ 2~D12;y þ 4~D66;yÞ �~JÞ � ðQ x � PyÞ

þ ðð2~D12;x þ 4~D66;x þ 6~D26;yÞ �~JÞ � ðPx � Q yÞ

þ ð2ð~D26;x þ ~D22;yÞ �~JÞ � ðIy � RyÞ

þ ðð~D11;xx þ 2~D16;xy þ ~D12;yyÞ �~JÞ � ðQ x � IxÞ

þ ðð2~D16;xx þ 4~D66;xy þ 2~D26;yyÞ �~JÞ � ðPx � PyÞ

þ ðð~D12;xx þ 2~D26;xy þ ~D22;yyÞ �~JÞ � ðIy � Q yÞ;

L6 ¼ Iy � Q y; L7 ¼ Px � Py; L8 ¼ Q x � Ix; ð18Þ

where � is the Kronecker matrix product and � is the Hadamard

matrix product and all the matrix operators are of size N � N. Various

methods have been reported previously for implementation of multi-

ple boundary conditions along the plate edges using DQM (Shu,

2000). In the current work, the direct substitution method proposed

by Shu and Du (1997, 1999) has been used to implement the different

combination of plate boundary conditions. Using this approach, the

boundary conditions for stress function and transverse displacement

were applied to the boundary grid points in the DQM domain. The

values at the boundary grid points were expressed in terms of

unknown domain grid point values. The modified matrices are

reduced to size Nd � Nd where Nd represent the total number of

domain points and the modified DQM equations are given by,

~Xdð~wdÞ ¼ L�1
1 ððL2~wdÞ � ðL2~wdÞ � ðL3~wdÞ � ðL4~wdÞ þ 2ðL2~wdÞ � ðL2~w0dÞ

� ðL3~wdÞ � ðL4~w0dÞ � ðL4~wdÞ � ðL3 ~w0dÞÞ;

Uð~wdÞ ¼ L5~wd � ðL6~XdÞ � ðL3ð~wd þ ~w0dÞÞ þ 2ðL7~XdÞ � ðL2ð~wd þ ~w0dÞÞ

� ðL8~XdÞ � ðL4ð~wd þ ~w0dÞÞ þ~qd ¼ 0; ð19Þ

which represent the nonlinear algebraic DQM equations as a func-

tion of transverse displacement (~wd) and were solved using a New-

ton–Raphson algorithm. The Jacobian of these equations with

respect to ~wd is obtained using the SJT matrix product as,

@ ~Xdð~wdÞ

@~wd

¼ L�1
1 ð2L2}ðL2~wdÞ � ðL3}L3~wd þ L4}L3~wdÞ

þ 2ðL2}L2~w0dÞ � ðL3}L4~w0dÞ

� ðL4}L3~w0dÞÞ;
@Uð~wdÞ

@~wd

¼ L5 � L6
@~Xd

@~wd

}L3ð~wd þ ~w0dÞ þ L3}L6~Xd

 !

þ 2 L7
@~Xd

@~wd

}L2ð~wd þ ~w0dÞ þ L2}L7~Xd

 !

� L8
@~Xd

@~wd

}L4ð~wd þ ~w0dÞ þ L4}L8~Xd

 !

: ð20Þ

The SJT product allows computation of the Jacobian for discretized

nonlinear partial differential equations similar to calculation of

derivative of a single variable scalar function. The SJT approach

facilitates fast and accurate evaluation of the Jacobian matrix and

the Newton–Raphson iteration approach is used to determine the

nonlinear displacement field

~w
ðiþ1Þ

d ¼ ~w
ðiÞ

d �
@Uð~w

ðiÞ

d Þ

@~wd

 !�1

Uð~w
ðiÞ

d Þ; ð21Þ

The Newton–Raphson algorithm ensures quadratic convergence

and requires few iterations to converge for each load step applied

in the nonlinear postbuckling regime.

4. Problem definition

The VAT plates considered are symmetrically laminated and the

material properties for each lamina are given by E1 = 181 GPa,

E2 = 10.27 GPa, G12 = 7.17 GPa, m12 = 0.28 with lamina thickness

t = 1.272 mm and number of laminae, n = 8. The VAT plate with lin-

ear angle variation along the x direction is given by

hðxÞ ¼ /þ
2ðT1 � T0Þ

a
jxj þ T0; ð22Þ

where / is the angle of rotation, T0 is the fibre orientation angle at

the panel center x ¼ 0, and T1 is the fiber orientation angle at the

panel ends x ¼ 	a=2 (see Fig. 2). The non-uniform grid distribution

given by the Chebyshev–Gauss–Labotto points are used for the

computation of weighting matrices and is given by

Xi ¼
1

2
1� cos

i� 1

N � 1
p

� �� �

; i ¼ 1;2; . . .N; ð23Þ

where N is the number of grid points. In order to validate the DQM

results, finite element modelling of the VAT panels was carried out

using ABAQUS. The S4 shell element was chosen for discretization

of the VAT plate structure. To achieve good accuracy, mesh sizes

of 40� 40; 90� 30 were selected for plates with aspect ratio 1

and 3, respectively. Using the linear fibre angle definition, fibre ori-

entation was evaluated at the centroid of each element. The mate-

rial properties for elements were then defined using the fibre

orientation information. Prior to the buckling analysis, in-plane

analysis of the VAT laminates under shear was carried out to com-

pute the stress resultant distributions. The in-plane analysis results

Fig. 2. Square VAT plate subjected to positive in-plane shear load.
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were then used in the buckling analysis for evaluating the critical

shear buckling load efficient. The postbuckling of VAT plates was

then performed using buckling analysis results. The imperfection

function required for nonlinear FE analysis was chosen to be the

first buckling mode shape. The imperfection magnitude was taken

to be one percent of the plate thickness and the arc length param-

eters required for Riks analysis were adapted to the particular VAT

configuration that was studied. All plates considered in this study

were considered to be simply supported.

Buckling results are normalised with respect to that of a homo-

geneous quasi-isotropic (QI) laminate. The laminates

½45=� 45=0=90�s; ½90=0=45=� 45�s are commonly termed QI, yet

they contain different amounts of flexural anisotropy (Diaconu

and Weaver, 2006). To nullify the effects of flexural anisotropy

we have chosen a layup of 48 layers comprising 0; 90; 	45 fibre

orientations. Alternatively, the homogeneous QI laminate with

equivalent Young’s modulus Eiso, Poisson’s ratio miso and bending

stiffness Diso are given by (Pandey and Sherbourne, 1993; Weaver

and Nemeth, 2007),

Diso ¼
Eisoh

3

12ð1� m2isoÞ
; miso ¼

U4

U1

; Eiso ¼ U1ð1� m2isoÞ; ð24Þ

where U1; U2; U4 are material invariants (Jones, 1998). The critical

buckling load Nxycr is normalised with respect to the critical buck-

ling state Niso
xycr of a homogeneous QI laminate. In the numerical

study, the effects of in-plane extension-shear coupling A16; A26 on

the shear buckling and postbuckling performance of VAT composite

plates are investigated.

5. Results and discussion

5.1. Buckling analysis under in-plane shear load

The buckling problem of VAT plates was solved by neglecting

the nonlinear terms in Eq. (9) and DQM was then applied to solve

the resulting governing differential equations. Initially, the effect of

direction of shear load on the buckling behaviour of unidirectional

composite plates with different fibre angle orientations and aspect

ratios was studied. The DQM simulation was carried out using

Nx ¼ Ny ¼ 19 grid points for square plate (a = b=0.254 m, thick-

ness = 1 mm) and Nx ¼ Ny ¼ 21 grid points for a rectangular plate

with aspect ratio = 3 (a = 0.762 m, b = 0.254 m, thickness = 1 mm).

The normalised buckling load obtained using DQM is shown in

Fig. 3. The buckling loads obtained under negative shear are higher

than positive shear and this behaviour can be attributed to the

alignment of compressive force in the fibre direction by the applied

negative shear load. For square and rectangular plates, the 45� and

60� layup respectively, show higher shear buckling performance

compared to all other fibre orientations.

Next, the buckling performance of VAT plates under shear load

was studied for different linearly varying fibre angle distributions.

The DQM grid size was chosen to be Nx ¼ Ny ¼ 19 for a square

plate (a = b=0.254 m, thickness = 1 mm) and Nx ¼ Ny ¼ 21 for a

plate with aspect ratio = 3 (a = 0.762 m, b = 0.254 m, thick-

ness = 1 mm) based on convergence studies. The normalised shear

buckling load evaluated using DQM is shown in Fig. 4 for VAT

plates with / ¼ 0 and various values of T0; T1. In the case of square

plates, the straight fibre layup ½45;�45�2s shows higher buckling

load for both positive and negative shear when compared to all

other VAT layups. For composite plates with aspect ratio = 3, the

straight fibre layup ½60;�60�2s exhibits high buckling load for both

positive and negative shear. Fig. 5 shows the buckling load results

for VAT plates with / ¼ 45 and different values of T0; T1. For

square plates under negative shear, the straight fibre layup ½45�8
shows higher buckling coefficient of 1.91 compared to all VAT

plates. This is mainly because the laminate ½45�8 is unbalanced

and the finite extensional-shear coupling stiffness coefficients

A16; A26 introduce Nx; Ny distributions which enhances the nega-

tive shear buckling performance. However, for rectangular plates,

the VAT layups (45	 h45j0i2s;45	 h50j0i2s) shows high buckling

load compared to all other layups. The improvement in buckling

performance of VAT plates under constant shear load is not as sig-

nificant as observed under axial compression (Raju et al., 2012).

Furthermore, we studied the effect of A16; A26 coefficients on

the shear buckling performance by choosing symmetric unbal-

anced laminates containing both straight fibre and VAT layups.

For the numerical study, the square plate with layup configuration

½452;45	 hT0jT1i�s was considered and the normalised buckling

load results are shown in Fig. 6. The buckling results for negative

shear clearly shows that many layups attain higher values than

straight fibre designs, whereas the results under positive shear

are not as high compared to negative shear. The reason is due to

the compressive component of the applied negative shear load act-

ing along the 45� straight fibre direction. In addition, the added 45

layers to the VAT layups make the laminate unbalanced and intro-

duces non-zero extensional-shear coupling stiffness coefficient

A16; A26 distributions. These A16; A26 distributions result in sec-

ondary stress resultant states in the plate which aids the buckling

resistance in the negative shear direction. If the straight fibre and

VAT layups are rotated by 90�, the buckling performance under

positive shear will be higher than straight fibre layups, but result
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Fig. 3. Unidirectional composite plate subjected to in-plane shear load: (a) Square plate (b) Rectangular plate (Aspect ratio = 3).
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in the reduction of buckling performance under negative shear. The

composite layup ½452;45	 h90j0i�s exhibits a high normalised

buckling coefficient equal to 3.23 compared to all other layups,

under negative shear. The in-plane stress resultant distributions

and buckling mode shape computed using DQM and FE modelling

for the ½452;45	 h90j0i�s layup are shown in Fig. 7. The DQM

results correlate well with FE and requires fewer grid points

(19 � 19) than FE mesh density (40 � 40). The stress resultant dis-

tributions Nx; Ny for the layup ½452;45	 h90j0i�s show nonuniform

tensile stress in the middle of the plate due to the chosen fibre path

and these secondary tensile forces offer additional resistance to

buckling under negative shear. The Nxy distribution for the layup

½452;45	 h90j0i�s shows little redistribution of the shear load from

the centre of the plate to the edges. However, if the unbalanced

layup effects due to addition of 45� layups is eliminated by making

the A16; A26 distributions equal to zero, the computed normalised

shear buckling coefficient is 2.61 and reduction of 19.2% in the

buckling coefficient is observed. Thus, the 45� straight fibre layups

in the ½452;45	 h90j0i�s laminate resists the primary compressive

load and when combined with the VAT layups are responsible for

the induced secondary tensile stress state in the laminate. Both

straight and VAT fibre layups complement each other for the

improvement of shear buckling performance. Thus, under shear

load boundary conditions the improvement in buckling perfor-

mance is not entirely due to tow steering and this is mainly due

to the effect of A16; A26 distributions as a result of making the lam-

inate unbalanced. The laminate can also be made unbalanced by

choosing VAT layups instead of the 45� which can considerably

improve the shear buckling performance compared with

½452;45	 hT0jT1i�s laminates.

The shear buckling performance of rectangular composite lay-

ups ½602;60	 hT0jT1i�s (aspect ratio = 3) are shown in Fig. 8. The

layup ½602;60	 h90j10i�s under negative shear has higher buckling

load compared to other composite layups. The buckling mode

shape of the layup ½602;60	 h90j10i�s was evaluated using DQM

and FE modelling and the results are shown in Fig. 9. Furthermore,

the A16; A26 stiffness coefficient distributions of the VAT plates play

a critical part in the improvement of shear buckling performance.

The computation of shear buckling load will be erroneous, if the

effects of in-plane extension-shear coupling coefficients A16; A26

are ignored and results in a lower buckling load. Thus, we conclude

from this numerical study, the improvement in buckling perfor-

mance under shear load can be achieved by tailoring the A16; A26

distributions by designing symmetric unbalanced hybridised

straight fibre-VAT laminates.

5.2. Buckling analysis under in-plane shear displacement

In this section, the buckling behaviour of VAT plates under

shear displacement is investigated. The edges of the plate are kept

straight during the application of shear displacement and the sche-

matics of the VAT plate shown in Fig. 10 explains the applied dis-

placement boundary conditions. The in-plane displacement

boundary conditions are given by

x ¼ 	
a

2
; u ¼ 
Dx; v ¼ 	Dy;

y ¼ 	
b

2
; u ¼ �2

Dx

a
x; v ¼ 2

Dy

a
x;

ð25Þ
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Fig. 4. Square VAT plate 0	 hT0jT1i2s subjected to in-plane shear load (a) positive shear, aspect ratio = 1 (b) negative shear, aspect ratio = 1 (c) positive shear, aspect ratio = 3

(d) negative shear, aspect ratio = 3.

6 G. Raju et al. / International Journal of Solids and Structures xxx (2015) xxx–xxx

Please cite this article in press as: Raju, G., et al. Buckling and postbuckling of variable angle tow composite plates under in-plane shear loading. Int. J.

Solids Struct. (2015), http://dx.doi.org/10.1016/j.ijsolstr.2015.01.011



where a ¼ sin
�1 2Dx

a

� 	

; Dy ¼
a
2
1� cosað Þ and Dx is the applied dis-

placement magnitude. As the boundary conditions are specified

solely in terms of displacements, DQM was applied to solve the

in-plane coupled partial differential equations expressed in terms

of displacements instead of the stress function based differential

equation. Details of the GDEs expressed in terms of displacement

u; v; w for solving the prebuckling, buckling and postbuckling

problem of symmetric VAT plates are given in the Appendix. This

approach was taken due to the difficulty in applying the displace-

ment based conditions in terms of stress function, as they are

expressed using integral expressions which are nonlocal boundary

conditions and pose additional problems to satisfy them accurately

at the boundary grid points. The DQM procedure discussed in the

work of Groh and Weaver (2014) was used here to solve the pre-

buckling problem expressed in terms of in-plane displacements.

The resulting DQM algebraic equations were solved for shear dis-

placement boundary conditions and results in non-uniform stress

resultant distributions for VAT plates. To determine the average

shear buckling load applied to the VAT panel, it is essential to exam-

ine the contribution of each stress resultant in satisfying the speci-

fied displacement boundary conditions. For the edges to be straight,

the stress resultants Nx; Ny are nonzero along the edges and have
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Fig. 5. Square VAT plate 45	 hT0jT1i2s subjected to in-plane shear load (a) positive shear, aspect ratio = 1 (b) negative shear, aspect ratio = 1 (c) positive shear, aspect ratio = 3

(d) negative shear, aspect ratio = 3.

0 20 40 60 80 100 120
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fibre angle T1

T0=0

T0=10

T0=20

T0=30

T0=40

T0=45

T0=50

T0=60

T0=70

T0=80

T0=90

Straight
fibre

Positive shear, Aspect ratio=1

[45
2
,45±<T0|T1>]

s

0 20 40 60 80 100 120
0.5

1

1.5

2

2.5

3

3.5

Fibre angle T1

T0=0

T0=10

T0=20

T0=30

T0=40

T0=45

T0=50

T0=60

T0=70

T0=80

T0=90

Straight
fibre

Negative shear, Aspect ratio=1

[45
2
,45±<T0|T1>]

s

(a) (b)

Fig. 6. Square VAT plate ½452;45	 hT0jT1i�s subjected to in-plane shear load (a) positive shear, aspect ratio = 1 (b) negative shear, aspect ratio = 1.
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considerable magnitude which cannot be ignored when com-

pared to Nxy (Fig. 11). The non-zero stress resultants along the

edges of the VAT plate result in moment distributions which

have to be considered in evaluating the applied shear load.

Detailed procedures for the computation of the moment due to

stress resultants are explained in the work of Waldhart (1996).

The moments due to Nx; Nxy along edge x ¼ a=2 and moments

due to Ny; Nxy along edge y ¼ b=2 were used to compute the

average applied shear resultant Nave
xy . The moments due to

Nx; Ny; Nxy are defined as,

Fig. 7. Square VAT plate ½452;45	 h90j0i�s subjected to in-plane negative shear load: stress resultant distribution Nx (a) DQM (b) FEM, stress resultant distribution Ny (c)

DQM (d) FEM, stress resultant distribution Nxy (e) DQM (f) FEM, buckling mode shape (g) DQM (h) FEM.
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Mi
z ¼

Z b=2

�b=2

yNxða=2; yÞdy;

Mii
z ¼ �

Z a=2

�a=2

xNyðx; b=2Þdx;

Miii
z ¼ �b=2

Z a=2

�a=2

Nxyðx; b=2Þdx;

Miv
z ¼ a=2

Z b=2

�b=2

Nxyða=2; yÞdy

ð26Þ

where Mi
z is the moment about the z axis by the Nx acting along the

edge x ¼ a=2; Mii
z is the moment about the z axis by the Ny acting

along the edge y ¼ b=2, and Miii
z ; Miv

z are the moments about the z

axis created by Nxy acting along the edges x ¼ a=2; y ¼ b=2, respec-

tively. In this work, the moment in the anticlockwise direction is

taken to be positive. Under positive shear deformation, Miii
z is nega-

tive and Miv
z is positive, but the sign of Mi

z; Mii
z depends on the fibre

path distribution and cannot be predetermined. Therefore, the posi-

tive and negative moments are given by,

Mþ ¼ Miv
z þ

Mi
z; Mi

z P 0

0; Mi
z < 0

 !

þ
Mii

z ; Mii
z P 0

0; Mii
z < 0

 !

;

M� ¼ Miii
z þ

0; Mi
z P 0

Mi
z; Mi

z < 0

 !

þ
0; Mii

z P 0

Mii
z ; Mii

z < 0

 !

:

ð27Þ
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Fig. 8. Rectangular VAT plate ½602;60	 hT0jT1i�s subjected to in-plane shear load (a) positive shear, aspect ratio = 1 (b) negative shear, aspect ratio = 3.

Fig. 9. Rectangular VAT plate ½602;60	 h90j10i�s subjected to in-plane negative shear load: Buckling mode shape (a) DQM (b) FEM.

Fig. 10. Square VAT plate subjected to positive in-plane shear displacement.

Fig. 11. VAT plate subjected to positive in-plane shear displacement: variation of

Nx and Ny along the top and right edges of the plate.
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The average of the moments Mþ; M� was used to compute the

average shear load given by,

Nave
xy ¼

1

ab
jMþj þ jM�j
� 	

: ð28Þ

The stress resultants obtained from the in-plane analysis of VAT

plates were then used for computing the critical shear buckling load

given by Nxycr ¼ kcrN
ave
xy where kcr is the minimum eigenvalue. The

buckling performance of VAT plates under shear displacement

was studied for different aspect ratios. The DQM grid size was cho-

sen to be Nx ¼ Ny ¼ 21 for the square plate and Nx ¼ Ny ¼ 25 for

plate with aspect ratio = 3 based on convergence studies. For VAT

plates with / ¼ 0 and various values of T0; T1, the normalised posi-

tive and negative shear buckling loads evaluated using DQM are

shown in Fig. 12. For square VAT plates, the layup 0	 h0j45i2s
shows high positive and negative shear buckling load when com-

pared to all other layups. For rectangular VAT plates, the layup

0	 h90j45i2s shows better buckling performance than other layups.

The VAT laminates considered until now are balanced and there is

no effect of A16; A26 stiffness coefficients on the shear buckling

performance.

Next, we investigate the effects of A16; A26 stiffness coefficients

on the shear buckling performance of VAT laminates

	45hT0jT1i2s; 45	 hT0jT1i2s for different aspect ratios. Both the

VAT layups 	45hT0jT1i2s; 45	 hT0jT1i2s have different fibre angle

definitions based on the location of the ±sign with respect to the

rotation angle / (Waldhart, 1996). In the VAT layup 	45hT0jT1i2s,

a ±sign in front of the /means the reference fibre paths are rotated

in equal and opposite amounts. For VAT layups 	45hT0jT1i2s, the

fibre angle definition results in a balanced laminate in certain

regions and unbalanced laminate elsewhere. This introduces finite

A16; A26 distributions in the VAT laminates. The normalised buck-

ling load for VAT layups 	45hT0jT1i2s was computed using DQM

and is shown in Fig. 13 and the values are high compared to the

straight fibre and VAT layups 0	 hT0jT1i2s. This is primarily due

to the redistribution of applied shear loads from the centre of the

panel towards the edge and also the nonzero A16; A26 stiffness dis-

tributions play a small role in improvement in buckling perfor-

mance in either positive or negative shear direction.

For VAT layups 45	 hT0jT1i2s, the fibre angle definition results

in symmetric and unbalanced laminate configurations. These VAT

laminates exhibit higher magnitude of A16; A26 stiffness distribu-

tions because of their unbalanced layup sequence at each point.

The shear buckling results of the VAT layups 45	 hT0jT1i2s are

shown in Fig. 14 and exhibit some interesting behaviour. The term

asymptotic buckling limit has been introduced to explain the buck-

ling results shown in Fig. 14. An asymptotic buckling limit repre-

sents the VAT layup configuration 45	 hT0jT1i2s beyond which

the VAT layups have effectively infinite shear buckling resistance

(i.e. they do not buckle) in the negative or positive direction. In

the case of VAT layup 45	 h20jT1i2s, an asymptotic buckling load

limit of 6.65 is attained at T1 ¼ 60� and exhibits effectively infinite

shear buckling resistance for T0 ¼ 20� and T1 > 60� in the positive

shear direction. Similarly, VAT layup 45	 h30jT1i2s has an asymp-

totic buckling load limit of 16.15 at T1 ¼ 80� and infinite negative

shear buckling resistance for T0 ¼ 30� and T1 > 80�. Another inter-

esting observation is the large difference in the normalised buck-

ling coefficient value, for example, between layups of similar

configuration 45	 h45j45i2s and 45	 h40j45i2s. This is due to the

effect of A16; A26 distributions in the VAT laminates. The

45	 h45j45i2s layup is equivalent to a cross-ply layup with stiff-

ness coefficients A16; A26. For VAT layup 45	 h40j45i2s, the
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Fig. 12. Square VAT plate 0	 hT0jT1i2s subjected to in-plane shear displacement (a) positive shear, aspect ratio = 1 (b) negative shear, aspect ratio = 1 (c) positive shear, aspect

ratio = 3 (d) negative shear, aspect ratio = 3.
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laminates are unbalanced resulting in finite A16;A26 distributions

and they introduce Nx; Ny; Nxy distributions in the VAT laminate

to keep the edges of the plate straight. These non-uniform pre-

buckling stress resultants are responsible for the improvement in

shear buckling load coefficient and for the difference in buckling

results for similar VAT layup configurations.

The VAT layup 45	 h30j80i2s has normalised buckling load

coefficient of 16.15 under negative shear and the stress resultant

distributions corresponding to this layup are shown in Fig. 15 such

that the interior of the plate is effectively stress-free. The DQM

results validate the FE modelling solutions and the stress resultant

field shows the load redistribution towards the edges of the plate.

The maximum and minimum principal stress resultants for the

VAT layup 45	 h30j80i2s are shown in Fig. 16 and show the com-

pressive component of the applied shear being redistributed from

the centre towards the plate edges. Under positive shear, the VAT

layup 45	 h20j60i2s has normalised buckling load coefficient of

6.65 and the stress resultant distribution corresponding to this

layup is shown in Fig. 17 such that a stress-free state is observed

at the centre of the plate. The stress resultant distributions shown

in Figs. 15 and 17 indicate the load redistribution responsible for

the improvement in shear buckling performance under negative

and positive shear, respectively. For rectangular VAT plates, the

layup 45	 h30j90i2s has a high normalised buckling coefficient

value of 5.56 and the corresponding mode shape computed using

DQM is shown in Fig. 18. Furthermore, the A16; A26 stiffness distri-

butions have considerable effect on the pre-buckling stress redis-

tribution of symmetric unbalanced VAT layups and are

responsible for better buckling performance in either positive or

negative shear direction. We conclude, from this study, that for

shear buckling under displacement boundary conditions, the redis-

tribution of applied load plays a primary role in improvement of

shear buckling performance.

5.3. Postbuckling analysis under in-plane shear load

The DQM methodology was extended to perform postbuckling

analysis of composite plates under uniform shear load. Initially,

buckling analysis of VAT plates was performed to obtain the mode

shape of the critical buckling load which is subsequently used as an

imperfection function for the postbuckling analysis. For square

VAT plates, the number of grid points for DQM modelling was cho-

sen to be Nx ¼ Ny ¼ 19 based on a convergence study for accurate

evaluation of the critical buckling load and mode shape (Raju et al.,

2012). The imperfection function magnitude (1E�5) for DQM was

chosen to be the same as for FE modelling of the composite plate.

For FE simulation, the mesh density of 40 � 40 was selected to ana-

lyse the above problem after a mesh convergence study. Subse-

quently, the postbuckling behaviour of different configurations of

straight fibre and VAT laminates under uniform shear was studied.

The normalised shear load versus normalised maximum transverse

displacement for different composite plates is shown in Fig. 19 and

the DQM results match FE solutions relatively well. The variation of

maximum transverse deflection of the VAT plate with respect to

the applied shear load shows the improved postbuckling perfor-

mance under negative shear rather than positive shear load. The

postbuckling performance of all VAT layups under positive shear

were not as good as the QI layup. The VAT layups

45	 h45j30i2s; 45	 h0j30i2s exhibit higher buckling load, but

lower postbuckling performance than the QI layup under negative

shear. The combined straight fibre and VAT layups

½452;45	 h90j0i�s; ½452;45	 h45j0i�s show higher buckling load
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Fig. 13. Square VAT plate 	45hT0jT1i2s subjected to in-plane shear displacement (a) positive shear, aspect ratio = 1 (b) negative shear, aspect ratio = 1 (c) positive shear,

aspect ratio = 3 (d) negative shear, aspect ratio = 3.
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and improved postbuckling performance under negative shear

when compared to the QI layup.

DQM was then applied to study the postbuckling behaviour of

rectangular plates (aspect ratio = 3) under negative shear. The

number of grid points for DQM modelling was chosen to be

Nx ¼ Ny ¼ 25 based on a convergence study. For FE modelling of

rectangular VAT plates, a mesh density of 90 � 30 was selected.

The DQM and FE results for different VAT plates are shown in

Fig. 20. The straight fibre layup ½60�8 and VAT layup 45	 h45j0i2s
show better postbuckling performance compared to QI under

negative shear. The postbuckling performance for combined

straight fibre and VAT layups is investigated and the results are

compared with VAT layups /	 hT0jT1i2s shown in Fig. 20.

The layup ½602;60	 h90j10i�s exhibits better buckling and

postbuckling performance and this improvement is significant

as observed under axial compression for VAT laminates. Similar

to the previously shown buckling behaviour, by tailoring the

A16; A26 distributions using symmetric unbalanced layups

(½452;45	 h90j0i�s; ½452;45	 h45j0i�s; ½602;60	 h90j10i�s) has

significant effect on their postbuckling performance.

5.4. Postbuckling analysis under in-plane shear displacement

In this section, the postbuckling behaviour of VAT plates subject

to shear displacement boundary conditions is investigated. The

GDEs for postbuckling analysis of VAT plates were expressed in

terms of displacements u; v ; w and the DQM procedure was

applied to solve them. Similar to the DQM approach applied in

solving Eqs. (7) and (9), the same numerical procedures were

applied to convert the GDEs given in the Appendix into DQM form.

The number of grid points for DQM modelling was chosen to be

Nx ¼ Ny ¼ 21 for square plates based on a convergence study.

The postbuckling results computed using DQM for both positive

and negative shear displacement are shown in Fig. 21. The VAT lay-

ups exhibit better shear postbuckling performance compared to

homogeneous QI and straight fibre layups. Under positive shear,

the layup 45	 h40j45i2s shows high postbuckling performance,

but exhibits poor postbuckling performance under negative shear.

Similarly, the layup 45	 h30j70i2s shows good postbuckling per-

formance in negative shear and poor performance in positive

shear. The layup 	45h0j70i2s shows reasonably good postbuckling

performance under positive and negative shear. Fig. 22 shows the

results of VAT plates which have high buckling and postbuckling

performance under positive or negative shear compared to all

other layups. The DQM postbuckling results for rectangular

VAT plates (aspect ratio = 3) under positive and negative

shear displacement are shown in Fig. 23. The VAT layups

45	 h40j45i2s; 45	 h30j90i2s show good buckling and postbuck-

ling performance under positive and negative shear displacement

respectively, but poor performance in the opposite loading direc-

tion. Many VAT layups exhibit good postbuckling performance

under both positive and negative shear and the results of VAT

plates 0	 h90j45i2s; 45	 h45j90i2s show this behaviour. As

observed under buckling, the tailoring of A16; A26 distributions

has a significant effect on the postbuckling performance under

either positive or negative shear directions. The postbuckling

results computed using DQM correlate well with FE results for

square and rectangular VAT plates. The improved postbuckling

results observed indicate that the benefits of tow steering is even

more pronounced for shear displacement than shear load bound-

ary conditions. The reason is attributed primarily to the phenome-

non of load redistribution due to tow steering observed under
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Fig. 14. Square VAT plate 45	 hT0jT1i2s subjected to in-plane shear displacement (a) positive shear, aspect ratio = 1 (b) negative shear, aspect ratio = 1 (c) positive shear,

aspect ratio = 3 (d) negative shear, aspect ratio = 3.
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prebuckling analysis. The prebuckling stress resultant distributions

redistribute the local compressive stress from the centre towards

the edge of the plate and during postbuckling analysis the

stress distribution does not change much with the applied shear

load.

5.5. Postbuckling analysis under combined axial compression and

shear

The postbuckling behaviour of VAT plates under combined axial

compression and shear was studied using DQM (Fig. 24). A square

Fig. 15. Square VAT plate ½45	 h30j80i�2s subjected to in-plane negative shear displacement: stress resultant distribution Nx (a) DQM (b) FEM, stress resultant distribution Ny

(c) DQM (d) FEM, stress resultant distribution Nxy (e) DQM (f) FEM, buckling mode shape (g) DQM (h) FEM.

G. Raju et al. / International Journal of Solids and Structures xxx (2015) xxx–xxx 13

Please cite this article in press as: Raju, G., et al. Buckling and postbuckling of variable angle tow composite plates under in-plane shear loading. Int. J.

Solids Struct. (2015), http://dx.doi.org/10.1016/j.ijsolstr.2015.01.011



VAT plate (0	 h45j30i2s) with a load ratio of Nxy=Nx ¼ 0:5 was con-

sidered for the numerical study. The variation of maximum trans-

verse centre deflection with increasing axial compression and

shear is shown in Fig. 25. The direction of applied shear load has

considerable influence on the postbuckling behaviour. The results

show that negative shear improves slightly and positive shear

Fig. 16. Square VAT plate ½45	 h30j80i�2s subjected to in-plane negative shear displacement (a) maximum principal stress resultant (b) minimum principal stress resultant.

Fig. 17. Square VAT plate ½45	 h20j60i�2s subjected to in-plane positive shear displacement: (a) stress resultant distribution Nx (b) stress resultant distribution Ny (c) stress

resultant distribution Nxy (d) buckling mode shape.

Fig. 18. Rectangular VAT plate ½45	 h30j90i�2s subjected to in-plane shear displacement: buckling mode shape (a) DQM (b) FEM.
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reduces the postbuckling performance of VAT plates. Next, a VAT

plate (90	 h0j75i2s) which exhibits better buckling performance

compared with straight fibre composites under axial compression

was considered for the numerical study. The result shows that neg-

ative shear reduces the postbuckling performance and that positive

shear has little effect (Fig. 26). This arises because the effect of

shear loads is reversed for angle of rotation / ¼ 90�. Thus, the

results show the influence of direction of shear load on the post-

buckling performance under axial compression.

5.6. Discussion

In this work, the DQM approach was successfully applied to

model the buckling and postbuckling behaviour of VAT plates

under uniform in-plane shear load and displacement boundary

conditions. For the linear shear buckling problem, DQM required

few grid points and less computational effort to achieve converged

results than the FE method. Similarly, for nonlinear postbuckling

analysis, DQMmodelling uses few grid points, but needs more iter-

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Non−dimensional Max Lateral deflection w/h

DQM

FEM

QI

45±<90|45>
2s

0±<45|30>
2s

[45,−45]
2s

45±<45|90>
2s

Positive shear

Aspect ratio=1

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Non−dimensional Max Lateral deflection w/h

45±<30|0>
2s

Negative shear

[45]
8

QI

[45,−45]
2s

45±<0|30>
2s

Aspect ratio=1

DQM

FEM

[45
2
,45±<45|0>]

s

[45
2
,45±<90|0>]

s

(a) (b)

Fig. 19. Square VAT plate subjected to in-plane shear load: normalised applied shear load (Nxy=N
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Fig. 21. Square VAT plate subjected to shear displacement: normalised applied shear load (Nxy=N
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xy ) versus non-dimensional maximum lateral deflection w=h (a) positive

shear (b) negative shear.
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ations to converge in each load step when compared to FE model-

ing. This problem arises due to the nonsymmetric nature of the

DQM stiffness matrix and also stronger reinforcement of all

the boundary conditions at the boundary grid points. Although

the DQM results were comparable to FE solutions, the method is

not as general as FE modelling as it cannot be applied to structures

with discontinuities/complicated geometry.

For shear load boundary conditions, the benefit for buckling and

postbuckling response under negative shear is only observed when

unbalanced VAT laminates are used such that a biaxial tensile

stress (Fig. 7) is induced in the interior of the plate. Balanced

VAT layups do not exhibit improved shear buckling and postbuck-

ling behaviour in both directions as there is no load redistribution

and secondary stress condition observed. Therefore, tailoring the

finite A16; A26 distributions of the hybridised unbalanced VAT lam-

inates introduce favourable tensile stress states and improve the

shear buckling and postbuckling performance in either positive

or negative directions. In the case of shear displacement, balanced

VAT layups exhibit improved buckling and postbuckling perfor-

mance in positive and negative shear directions compared with

straight fibre laminates. In addition for unbalanced VAT layups,

the A16; A26 stiffness distributions has considerable effect on the

buckling and postbuckling performance in either the positive or

negative shear direction. The phenomenon of redistribution of

the applied shear load shown in Figs. 15 and 17 is mainly respon-

sible for the improved shear buckling and postbuckling perfor-

mance of VAT plates. Thus, the phenomena of induced secondary

tensile stress state at the centre of the plate and achievement of

stress-free state at the centre by redistribution of applied load

towards the edges of the plate are responsible for the improvement

of shear buckling and postbuckling performance under shear load-

control and displacement-control boundary conditions, respec-

tively. Furthermore, the buckling and postbuckling results of VAT

laminates under shear displacement boundary conditions is more

significant than observed under load-control.
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Fig. 23. Rectangular VAT plate (aspect ratio = 3) subjected to shear displacement: normalised applied shear load (Nxy=N
iso
xy ) versus non-dimensional maximum lateral

deflection w=h (a) positive shear (b) negative shear.

Fig. 24. Square VAT plate subjected to combined axial compressive and positive in-

plane shear load.
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Fig. 25. Square VAT plate 0	 h45j30i2s subjected to combined axial compression

and shear load with load ratio Nxy=Nx ¼ 0:5.
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Fig. 26. Square VAT plate 90	 h0j75i2s subjected to combined axial compression

and shear load with load ratio Nxy=Nx ¼ 0:5.
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6. Conclusion

In this work, the buckling and postbuckling performance of

symmetric VAT composite panels with linear fibre angle variation

under in-plane shear is presented. The numerical results are com-

puted using DQM for VAT plates with different aspect ratios and

they correlate well with FE analysis. The numerical study show

the effect of extension-shear coupling on the buckling and post-

buckling performance of VAT composite plates under different

in-plane boundary conditions. The physical understanding of the

mechanics responsible for the improvement of buckling and post-

buckling performance of VAT plates under shear load and displace-

ment conditions is explained. Under constant shear load boundary

condition, the linear fibre angle variation of VAT layups does not

exhibit improved buckling and postbuckling behaviour. But, VAT

layers combined with straight fibre layers result in improved buck-

ling and postbuckling performance under negative shear, but poor

performance under positive shear. The presence of induced tensile

stresses in both x; y directions is responsible for the improved

shear buckling and postbuckling performance under constant

shear load. In the case of shear displacement, VAT layups exhibit

improved buckling and postbuckling performance compared with

straight fibre laminates. The redistribution of the applied shear

load is responsible for the improved shear buckling and postbuck-

ling performance of VAT plates. For shear displacement boundary

conditions, the linear fibre angle variation allows simultaneous

improvement of shear buckling and postbuckling performance

under negative and positive shear. Furthermore, postbuckling

behaviour of VAT plates under combined axial compression and

in-plane shear was studied using DQM. The results shows the

effect of the applied shear can be used to increase or decrease

the postbuckling performance of VAT plates under combined load-

ing conditions.
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Appendix A

The partial differential equations governing the postbuckling

behaviour of symmetric VAT plates expressed in terms of displace-

ments u; v ; w are given by

A11ðx; yÞu;xx þ 2A16ðx; yÞu;xy þ A66ðx; yÞu;yy þ ðA11;xðx; yÞ

þ A16;yðx; yÞÞu;x þ ðA16;xðx; yÞ þ A66;yðx; yÞÞu;y þ A16ðx; yÞv ;xx

þ ðA12ðx; yÞ þ A66ðx; yÞÞv ;xy þ A26ðx; yÞv ;yy þ ðA16;xðx; yÞ

þ A66;yðx; yÞÞv ;x þ ðA12;xðx; yÞ þ A26;yðx; yÞÞv ;yðA11ðx; yÞw0;x

þ A16ðx; yÞw0;yÞw;xx þ ðA26ðx; yÞw0;y þ A66ðx; yÞw0;xÞw;yy

þ ððA12ðx; yÞ þ A66ðx; yÞÞw0;y þ 2A16ðx; yÞw0;xÞw;xy þ
1

2
ðA16;yðx; yÞ

þ A11;xðx; yÞÞw
2
;x þ

1

2
ðA26;yðx; yÞ þ A12;xðx; yÞÞw

2
;y

þ ðA66ðx; yÞw;yy þ 2A16ðx; yÞw;xy þ ðA11;xðx; yÞ þ A16;yðx; yÞÞw0;x

þ A11ðx; yÞw;xx þ A66ðx; yÞw0;yy þ ðA66;yðx; yÞ þ A16;xðx; yÞÞw0;y

þ A11ðx; yÞw0;xx þ 2A16ðx; yÞw0;xyÞw;x þ ðA26ðx; yÞw;yy

þ ðA66;yðx; yÞ þ A16;xðx; yÞÞw;x þ ðA12ðx; yÞ þ A66ðx; yÞÞw;xy

þ ðA66;yðx; yÞ þ A16;xðx; yÞÞw0;x þ A26ðx; yÞw0;yy þ A16ðx; yÞw;xx

þ ðA12;xðx; yÞ þ A26;yðx; yÞÞw0;y þ A16ðx; yÞw0;xx þ ðA12ðx; yÞ

þ A66ðx; yÞÞw0;xyÞw;y ¼ 0; ð29Þ

A16ðx; yÞu;xx þ ðA12ðx; yÞ þ A66ðx; yÞÞu;xy þ A26ðx; yÞu;yy

þ ðA16;xðx; yÞ þ A12;yðx; yÞÞu;x þ ðA66;xðx; yÞ þ A26;yðx; yÞÞu;y

þ A66ðx; yÞv ;xx þ 2A26ðx; yÞv ;xy þ A22ðx; yÞv ;yy þ ðA66;xðx; yÞ

þ A26;yðx; yÞÞv ;x þ ðA26;xðx; yÞ þ A22;yðx; yÞÞv ;y þ ðA16ðx; yÞw0;x

þ A66ðx; yÞw0;yÞw;xx þ ðA26ðx; yÞw0;x þ A22ðx; yÞw0;yÞw;yy

þ ððA12ðx; yÞ þ A66ðx; yÞÞw0;x þ 2A26ðx; yÞw0;yÞw;xy

þ
1

2
ðA12;yðx; yÞ þ A16;xðx; yÞÞw

2
;x þ

1

2
ðA22;yðx; yÞ þ A26;xðx; yÞÞw

2
;y

þ ðA26ðx; yÞw0;yy þ ðA12ðx; yÞ þ A66ðx; yÞÞw;xy þ ðA16;xðx; yÞ

þ A12;yðx; yÞÞw0;x þ A26ðx; yÞw;yy þ ðA12ðx; yÞ þ A66ðx; yÞÞw0;xy

þ A16ðx; yÞw;xx þ ðA66;xðx; yÞ þ A26;yðx; yÞÞw0;y þ A16ðx; yÞw0;xxÞw;x

þ ðA22ðx; yÞw;yy þ ðA66;xðx; yÞ þ A26;yðx; yÞÞw;x þ 2A26ðx; yÞw;xy

þ A22ðx; yÞw0;yy þ ðA66;xðx; yÞ þ A26;yðx; yÞÞw0;x þ A66ðx; yÞw;xx

þ 2A26ðx; yÞw0;xy þ ðA22;yðx; yÞ þ A26;xðx; yÞÞw0;y

þ A66ðx; yÞw0;xxÞw;y ¼ 0; ð30Þ

D11ðx; yÞw;xxxx þ 4D16ðx; yÞw;xxxy þ 2ðD12ðx; yÞ þ 2D66ðx; yÞÞw;xxyy

þ 4D26ðx; yÞw;yyyx þ D22ðx; yÞw;yyyy þ 2ðD11;xðx; yÞ

þ D16;yðx; yÞÞw;xxx þ ð6D16;xðx; yÞ þ 2D12;yðx; yÞ þ 4D66;yðx; yÞÞw;xxy

þ ð2D12;xðx; yÞ þ 4D66;xðx; yÞ þ 6D26;yðx; yÞÞw;xyy þ 2ðD26;xðx; yÞ

þ D22;yðx; yÞÞw;yyy þ ðD11;xxðx; yÞ þ 2D16;xyðx; yÞ þ D12;yyðx; yÞÞw;xx

þ ð2D16;xxðx; yÞ þ 4D66;xyðx; yÞ þ 2D26;yyðx; yÞÞw;xy þ ðD12;xxðx; yÞ

þ 2D26;xyðx; yÞ þ D22;yyðx; yÞÞw;yy � �Nxðw;xx þw0;xxÞ

� 2�Nxyðw;xy þw0;xyÞ � �Nyðw;yy þw0;yyÞ þ q ¼ 0: ð31Þ
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