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Multiscale methods built purely on the kinetic theory of gases provide information about the molecular

velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters

for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information

rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the

errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical

demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models

and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both

low-speed and high-speed flows at different Knudsen numbers.

DOI: 10.1103/PhysRevE.89.063305 PACS number(s): 47.11.−j, 47.45.−n, 47.61.−k

I. INTRODUCTION

In microelectromechanical systems (MEMS) that depend
on gas flows, there may be coexisting continuum-fluid and
highly rarefied regions [1]. To qualitatively identify the rar-
efaction level of the local flowfield, the Knudsen number (Kn)
is often used, which is the ratio of the mean free path of gas
molecules to a characteristic length scale of the flow process.
It is commonly accepted that the conventional hydrodynamic
description is only valid for Kn < 0.001. When Kn is larger
than 0.001, rarefaction effects have to be taken into account.
Rarefied flows can be further classified into the slip (0.001 �

Kn � 0.1), transitional (0.1 � Kn � 10), and free molecular
(Kn � 10) flow regimes.

Multiscale methods are needed when gas flows have a broad
range of rarefaction levels (see, for example, Refs. [2–15], and
references therein). The conventional Navier-Stokes-Fourier
(NSF) equations are computationally efficient but are only
valid in the hydrodynamic regime. Although their capabilities
may be extended into the slip flow regime by applying
appropriate velocity-slip and temperature-jump boundary con-
ditions, their applicability range is strictly limited. By contrast,
accurate kinetic gas solvers, including the direct simulation
Monte Carlo (DSMC) method [16] and direct solution of the
Boltzmann equation [17], can be computationally very ex-
pensive. Therefore, to strike a balance between computational
costs and simulation accuracy, multiscale schemes are being
developed that take advantage of both kinetic and continuum-
fluid solvers, i.e., deploying a kinetic solver only in the rarefied
flow regions and a continuum solver in the hydrodynamic
regions. The two types of method are coupled together by
exchanging information at interfaces where they overlap.
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However, it has not proven easy to exchange information

between two methods with different theoretical frameworks.

It is problematic for the continuum solver to recover the

accurate information required by the kinetic method [12].

Although the kinetic model can provide the information

necessary for the continuum model, it can be computationally

expensive [4]. The statistical noise associated with particle

methods may also affect the accuracy and stability of the hybrid

solver [12].

Recently, several new multiscale schemes have been con-

structed purely on the basis of gas kinetic theory [18–21];

we call these kinetic multiscale schemes (KMS) here. A

distinctive feature of KMS is that the same evolutional quantity

(i.e., the molecular velocity distribution function) is used to

describe flowfields with different rarefaction levels, leading to

relatively easy information exchange at the model coupling

interfaces [19,20]. To capture different levels of rarefaction,

usually different discrete velocity sets are necessary. In

general, more discrete velocities are needed for higher levels

of rarefaction, and fewer discrete velocities are required for

lower levels of rarefaction. In particular, there have been efforts

to design schemes specialized in continuum-level modeling,

e.g., the gas-kinetic Bhatnagar-Gross-Krook (BGK) Burnett

solutions [22]. This provides a good opportunity to improve

the efficiency of multiscale solvers. It is important practically

to use fewer discrete velocities, or specialized continuum-level

solvers, as widely as possible in the flow field wherever they

are valid.

For example, only a small number of lattice velocities

are required for the lattice Boltzmann model to achieve

NSF-order accuracy, e.g., nine for two-dimensional isothermal

simulations. However, 16 or more lattice velocities are needed

in order to achieve Burnett-order accuracy. For even higher

accuracy, more velocities are required. Hence, a typical

multiscale lattice Boltzmann scheme [19] may employ 16

lattice velocities in the regions where the NSF equations are

valid and even more lattice velocities for other more rarefied

regions; e.g., see Fig. 10 in Ref. [19]. However, since the

same governing equation is used over the whole flowfield,

1539-3755/2014/89(6)/063305(9) 063305-1 ©2014 American Physical Society
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FIG. 1. (Color online) Cross-channel profiles of (left) the entropy generation rate [28] and (right) parameter B [26] for low-Mach-number

planar Couette flows. The flows are solved with the linearized-BGK equation by using Gauss-Hermite quadrature. The Mach number is defined

as Ma = Uw/
√

RT0 and the Knudsen number is Kn =
√

π/2[μ0

√
RT0/(P0L)] (see Sec. III). The planar channel walls are at [−0.5, 0.5].

information exchange between the region can be accomplished

by using simple interpolation and extrapolation operations.

An appropriate equilibrium breakdown parameter plays a

key role in the success of any multiscale scheme, such as KMS.

In order to couple kinetic methods and continuum-fluid solvers

together, a breakdown parameter is required to determine

where and when to switch between the two types of model.

As a continuum model is not valid for highly rarefied flows, it

is necessary to assess the modeling error introduced whenever

it is applied. For simulation efficiency, the continuum solver

should be deployed in the flowfield as widely as possible as

long as it satisfies the requirement for solution accuracy. For

KMS, a continuum-fluid model breakdown parameter is still

of key importance. If a computational region is known to be

solvable by the NSF equations, optimized kinetic solvers can

be used to achieve better efficiency as discussed above, e.g.,

the nine lattice velocity model.

Various breakdown parameters have been proposed in

the literature. The global Knudsen number has often been

used [2]. Other parameters are also suggested, such as Tsien’s

parameter [23], Bird’s parameter P [24], the local Knudsen

number [13,14], Tiwari’s criterion [25], the parameter B [26],

the criterion proposed by Lockerby et al. [2], and some

others [27,28]. Although these breakdown parameters have

had some success, in particular, for high-speed flows, it is fair

to say that there is no general parameter available. It remains an

open research question to identify a general continuum model

breakdown parameter for quantifying modeling accuracy. In

particular, most of the available parameters are based on

macroscopic quantities, which does not take advantage of the

kinetic level information available in KMS.

Our aim here is to devise new breakdown param-

eters for KMS. The central idea is to make best

use of the kinetic level information in KMS provided

by the molecular velocity distribution function (from which

the relevant macroscopic quantities can also be obtained). The

resulting parameters should not solely depend on macroscopic

flow properties, unlike other available parameters.

II. CONTINUUM MODEL BREAKDOWN

The development of previous continuum model breakdown

parameters has been based on the Boltzmann equation and its

asymptotic solution [29]. The Boltzmann equation describes

the dynamical behavior of dilute gases, under the assumptions

of binary collisions between gas molecules and of molecular

chaos. A single molecular velocity distribution function

describes the gas motion.

Various series solution methods have been used to tackle

the Boltzmann equation. Among them, the Chapman-Enskog

FIG. 2. (Color online) Cross-channel profiles of Eeq
s (left) and ENSF

c (right) for linear Couette flows at Kn = 0.01. The planar channel walls

are at [−0.5,0.5].
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FIG. 3. (Color online) Cross-channel profiles of Eeq
s (left) and ENSF

c (right) for linear Couette flows at Kn = 0.1. The planar channel walls

are at [−0.5,0.5].

expansion [29] is widely used to approximate the distribution

function as

f = f (0) + f (1) + f (2) + · · · + f (α) + · · · , (1)

where the distribution functions f (α) in increasing orders in Kn

can be obtained from the Boltzmann equation. The Maxwell-

Boltzmann equilibrium distribution,

f eq =
ρ

(2πRT )3/2
exp

[

−
ς2

2RT

]

, (2)

is the zeroth-order solution f (0) and leads to the Euler

hydrodynamic equations. Here, ρ denotes the gas density; T

the temperature; R the gas constant; ς the peculiar velocity of

molecules (which is ξ − u, where ξ represents the molecular

velocity); and u is the macroscopic fluid velocity.

In Eq. (1), f (1) provides a nonequilibrium correction of the

order of the small parameter Kn. The NSF-level estimation for

f (1) is

f (1) ≈ f NSF ≈ f eq

[(

σijς<iςj>

2pRT

)

+
2qiςi

5pRT

(

ς2

2RT
−

5

2

)]

,

(3)

where p is the gas pressure, and the shear stress σij and the

heat flux qi are related to the following first-order gradients of

velocity and temperature:

σij = −2μ
∂u<i

∂xj>

, qi = −κ
∂T

∂xi

, (4)

where μ and κ denote the viscosity and thermal conductivity.

Here we only keep the first-order Sonine expansion term,

which is exact for Mawellian gases (see, e.g., Refs. [29,30]

for detail); however, this is expected to be sufficient for our

purpose. In fact, at the core of KMS is often an appropriate

kinetic model equation (e.g., the BGK model) rather than the

Boltzmann equation, which provides information of NSF-level

accuracy at the first order of the Sonine expansion.

Following the same principle, we can obtain α-order (with

respect to small Kn) corrections to the equilibrium distribution

function. So higher-order hydrodynamic equations can be

derived, e.g., the Burnett and super Burnett equations. As an

alternative to the Chapman-Enskog expansion, the moment

method provides a different way of solving the Boltzmann

equation and leads to a number of extended hydrodynamic

models, e.g., Grad-13 [31], R13 [32], R26 [33]. Therefore,

regarding a continuum-fluid model breakdown parameter, we

need to keep in mind which set of hydrodynamic equations or

what order kinetic model are used [34].

As the NSF equations or NSF-level kinetic models are used

by most multiscale methods we will focus on this continuum

model. Also, since the applicability of the continuum fluid

model has been effectively extended well beyond the NSF

FIG. 4. (Color online) Cross-channel profiles of Eeq
s (left) and ENSF

c (right) for linear Couette flows at Kn = 1. The planar channel walls

are at [−0.5,0.5].

063305-3



MENG, DONGARI, REESE, AND ZHANG PHYSICAL REVIEW E 89, 063305 (2014)

FIG. 5. (Color online) Cross-channel comparison of Eeq
s (left) and ENSF

c (right) for linear Couette flows at Kn = 0.01 and Kn = 1 for small

Mach numbers. The planar channel walls are at [−0.5,0.5].

equations [30], hereafter, “continuum breakdown” refers to

the failure of the NSF equations, or the NSF-order kinetic

model.

To establish a continuum breakdown parameter, and taking

our lead from the Chapman-Enskog expansion, we separate

the distribution function into three parts, i.e., f eq, f NSF, and

f H as

f = f eq + f NSF + f H , (5)

where f H represents all higher-order nonequilibrium correc-

tions. From the Chapman-Enskog expansion, we can use f NSF

from Eq. (3) to recover the NSF model. The higher-order

corrections f H produce the Burnett equations and beyond.

Therefore, we may directly use the information provided by

f eq, f NSF, and f H to assess the validity of the NSF equations

and an NSF-order kinetic model. For assessing other high-

order models, such as the Burnett equations and the R13 model,

f H needs to be split further.

The Chapman-Enskog expansion indicates that there are

various levels of nonequilibrium corrections to the equilibrium

distribution function. As “nonequilibrium” is a very broadly

used term, in this paper we equate the level of nonequilibrium

to how far the molecular velocity distribution function deviates

from the local Maxwellian equilibrium distribution. So the

Euler equations are the continuum model for describing locally

equilibrium flows, and the NSF equations provide a first-

order nonequilibrium correction. A comparison of f − f eq

to f eq indicates the deviation from equilibrium, and hence

indirectly assesses whether the Euler equations are a valid

model or not. When we examine the validity of the NSF

equations and an NSF-order kinetic model, we may indirectly

evaluate f NSF and f H , then for the NSF equations to be

sufficiently accurate, f NSF should be significantly larger than

f H so that the high-order corrections can be neglected. Many

previous breakdown parameters were based on comparing

nonequilibrium corrections with the equilibrium component,

which is more appropriate for examining the validity of the

Euler equations than the NSF equations.

Let us consider simple linear cases, where the leading order

of f eq is O(1), while that of f NSF can be represented by

the shear stress term ∼μ∂u<i/∂xj>, which is O(MaKn), cf.

Eq. (3). Therefore, as a breakdown parameter, using either

f NSF itself or a ratio ∼f NSF/f eq will lead to be the order

O(MaKn). Here Ma is the Mach number, which is defined

as the ratio of characteristic speed to the sound speed (see,

e.g., Sec. III for the definition for Couette flows). However,

for a linear flow condition the Mach number is not relevant

to the validity of the NSF equations. This can be confirmed

through numerical simulations of simple Couette flow, as

shown in Fig. 1, where two parameters are evaluated, namely,

the entropy generation rate from Ref. [28] and the parameter B

from Ref. [26]. For kinetic model equations, the entropy

generation rate can be calculated as 1
τ

∫

(f eq − f ) log f dξ ,

where τ is the relaxation time. The parameter B depends

on macroscopic quantities, i.e., B = max(|σij |,|qi |). As can

be seen in Fig. 1 both parameters fail to perform well as

FIG. 6. (Color online) Half-channel profiles of Eeq
s and ENSF

c for nonlinear Couette flows at Kn = 0.01.
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FIG. 7. (Color online) Half-channel profiles of Eeq
s and ENSF

c for nonlinear Couette flows at Kn = 0.1.

breakdown parameters for the NSF equations: both the entropy

generation rate and parameter B are significantly smaller for

larger Knudsen number (Kn = 1.0), where the NSF equations

are not valid, than for smaller Knudsen number (Kn = 0.01),

where the NSF equations may be applicable with velocity-slip

and temperature-jump boundary conditions.

It is also interesting to estimate the order of the ratio of

f NSF to f H . For this purpose, f H may be approximated by the

Burnett level solution when the Chapman-Enksog expansion

is valid (one may refer to Ref. [35] for a relatively simpler

form of the Burnett equations). With this approximation, we

find that the leading order of f H is O(MaKn2) under the linear

flow condition. It immediately follows that the ratio of f NSF to

f H is of the order of Kn, which is a reasonable indication of the

validity of the NSF equations under the linear flow condition.

For a strong nonlinear flow condition with Ma > 1, we find

that the leading order of f H would be O(Ma2Kn2) due to the

occurrence of squared gradient terms. Then the ratio of f NSF to

f H may lead to a quantity ∼MaKn. This provides a reasonable

indication of the validity of the NSF equations under nonlinear

conditions as there have been successes in applying such

parameters’ proportional to MaKn (e.g., Tsien’s and Bird’s

parameters) for strong nonlinear cases. These observations

indicate the feasibility of using f NSF and f H to evaluate the

validity of the NSF equations or of NSF-order kinetic models.

Equation (5) can also be understood outside the Chapman-

Enskog expansion. We can simply split the distribution

function f into three parts, i.e., f eq, f NSF, and f H , which

are not subject to the small Knudsen number assumption of

the Chapman-Enskog expansion. For an NSF solution to be

valid, any additional non-equilibrium corrections should be

small in comparison to f NSF. If f H is comparable to f NSF or

even larger, the NSF equations or an NSF-order kinetic model

are not sufficient. A similar approach has been used in Ref. [2]

to obtain breakdown parameters based on macroscopic flow

properties. We call this approach here the “NSF breakdown

indicator,” and it could provide a better way of assessing the

NSF equations indirectly.

Based on the above discussion, our proposed NSF break-

down indicator ENSF
c is

ENSF
c =

√

∫

(f (H ))2dξ
∫

(f NSF)2dξ
=

√

∫

(f − f eq − f NSF)2dξ
∫

(f NSF)2dξ
. (6)

In the following sections we numerically examine whether

ENSF
c is an appropriate breakdown indicator for an NSF

solution. We also give numerical evidence to show that the

measurement of deviation from equilibrium may not work,

although many other breakdown parameters use similar ideas

(e.g., the B parameter and the entropy generation rate shown

in Fig. 1). At the kinetic level, this latter deviation (we call it

the “nonequilibrium indicator”) is measured by

Eeq
s =

√

∫

(f − f eq)2dξ
∫

(f eq)2dξ

=
√

8π3/4(RT )3/4

ρ

√

∫

(f − f eq)2dξ . (7)

FIG. 8. (Color online) Half-channel profiles of Eeq
s and ENSF

c for nonlinear Couette flows at Kn = 1.
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FIG. 9. (Color online) Dependence of Eeq
s on Kn and Ma in the bulk (left) and at the wall (right).

We use the L2 norm to assess ENSF
c and E

eq
s . In our

framework, E
eq
s assesses the nonequilibrium level and ENSF

c

estimates the appropriateness of an NSF solution. As both

these parameters are based purely on the molecular distribution

function, we term them “kinetic breakdown parameters.”

In fact, both Eq. (6) and Eq. (7) are standard formulations

for measurement of relative errors. Therefore, ENSF
c and E

eq
s

are estimating the solution error relative to the correction f NSF

and the equilibrium function f eq, respectively. It can be easily

seen that a larger ENSF
c means larger errors in the solution. Due

to this direct connection, a “cutoff” value of ENSF
c , i.e., where

a model switch should be conducted, may be determined from

practical considerations. For example, a 10% error may be cho-

sen as this value, as in the Couette flow cases discussed below.

III. NUMERICAL INVESTIGATION

To examine E
eq
s and ENSF

c we first use shear-driven

planar Couette flow as a benchmark. Here, the two bounding

surfaces are moving with speeds Uw in opposite directions,

and their temperatures are set to T0. The Mach number

is Ma = Uw/
√

RT0, and the Knudsen number is Kn =√
π/2[μ0

√
RT0/(P0L)], where L is the flow channel width

and P0 is the reference pressure. The NSF equations should be

applicable for small Knudsen numbers, but will fail to predict

the nonlinear Knudsen layers at the walls. Many proposed

breakdown parameters are not appropriate for this type of flow,

as already indicated from Fig. 1. This therefore serves as a good

benchmark case to evaluate different breakdown parameters.

We first investigate linear (low-speed) Couette flows. The

simulations are accomplished by solving the linearized BGK

equation with the discrete velocity method [36]. It is worth

noting that all the quanities in this work are nondimension-

alized using the system reported in Ref. [36] (see page 385).

In Figs. 2, 3, and 4 it is clearly seen that E
eq
s is negligibly

small for low-speed Couette flows, even at relatively large

Knudsen numbers (e.g., Kn = 1). This indicates that the

flows can be close to equilibrium at large Knudsen number,

although the NSF equations will still fail. Therefore, alongside

many other parameters, including the entropy generation rate

and the parameter B, E
eq
s is not an appropriate breakdown

parameter for the NSF equations or an NSF-order kinetic

model. In Fig. 5, E
eq
s and ENSF

c are explicitly plotted for

two different Knudsen numbers: E
eq
s is smaller in the case

of larger Knudsen number (Kn = 1), while ENSF
c increases for

increasing Knudsen numbers.

For nonlinear Couette flows (i.e., when Ma � 0.2), we

perform molecular dynamics (MD) simulations using the

OpenFOAM code that includes the MD routines implemented

by Reese and coworkers [37–39]. Monatomic Lennard-Jones

argon molecules are simulated [40], and initially the molecules

are spatially distributed in the Couette flow domain with a

random Gaussian velocity distribution corresponding to an

initially prescribed gas temperature. They are then allowed

to relax through collisions until reaching a steady state

before we take measurements. This MD solver has been

previously validated for both liquids and gases confined in

arbitrary geometries. To achieve measurement of a smooth

velocity distribution function at steady state, molecular

velocity samples are taken in every time step (0.001τ ,

where τ =
√

md2/ǫ, with m being the molecular mass, d

the diameter of gas molecules, and ǫ being related to the

interaction strength of the molecules) for a total time of at

least 30 000τ (in the extreme rarefied and high speed flow

case below, up to 100 000τ ). We have 83 500 molecules in

each simulation, and apply diffuse wall interactions.

The measurement sampling is performed in the micro-

canonical ensemble consisting of a constant number of atoms,

constant volume, and constant energy. Each case is solved in

parallel on 16 cores of the 1100 core high performance com-

pute facility at the University of Strathclyde. The equations

of molecular motion are integrated using a leapfrog scheme

with the simulation time step of 5 fs. The actual run time for

each case ranges from 50 to 200 h, depending on the level of

rarefaction, for which we were able to simulate 1000 ns of

problem time after reaching the steady state. The simulation

domain is divided into 80 bins in the wall-normal direction to

measure macroscopic field properties, such as temperature. In

each bin, there are approximately 1000 molecules in order to

measure local macroscopic properties, and averaging occurs

over 30–100 million time samples in the steady-state regime

so as to minimize numerical errors.

The resulting profiles of E
eq
s and ENSF

c for various nonlinear

Couette flow cases are presented in Figs. 6, 7, and 8. In these

flows nonequilibrium and rarefaction effects are coupled: E
eq
s

shows the level of nonequilibrium in the local flowfield, while

ENSF
c indicates the inapplicability of the NSF equations (or an

NSF-order kinetic model) with increasing Mach number and

063305-6
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FIG. 10. (Color online) Dependence of ENSF
c on Kn and Ma in the bulk (left) and at the wall (right).

FIG. 11. (Color online) Cross-channel profiles of ENSF
c predicted by a 16-velocity lattice model for linear Couette flows at Kn = 0.1 and

1. The planar channel walls are at [−0.5,0.5].

FIG. 12. (Color online) Lid-driven cavity flow; profiles of errors of the velocity field along the horizontal line Y = 0.627.

FIG. 13. (Color online) Lid-driven cavity flow; profiles of ENSF
c predicted from the 400-velocity model and the parameter LRS along the

horizontal line Y = 0.627.

063305-7
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FIG. 14. (Color online) Lid-driven cavity flow; profiles of Eeq
s predicted from the 400-velocity lattice model along the horizontal line

Y = 0.627.

Knudsen number. In contrast to the linear (low-Mach number)

Couette flow case, E
eq
s seems to be able to indicate the error

induced by the NSF model. This may be the reason why some

parameters that measure deviation from equilibrium, such as

Tsien’s parameter, the parameter B, and the entropy generation

rate, have some success for high-speed flows. But only ENSF
c

works consistently, for both linear and nonlinear Couette flows,

as a breakdown indicator for the NSF model or an NSF-order

kinetic model.

To understand how the Knudsen and Mach numbers affect

E
eq
s and ENSF

c , we present their dependencies on Kn and Ma

in Figs. 9 and 10. These clearly indicate the complicated

coupled effects of rarefaction and nonequilibrium varying with

the Knudsen number and the Mach number. When the Mach

number is small, the flow is close to equilibrium regardless of

the Knudsen number. For a small ENSF
c , the Knudsen number

must be small; but ENSF
c can also be significant when the

Knudsen number is still small (see Fig. 10). This indicates

that an NSF solution may be invalid even with relatively small

Knudsen numbers.

In the above cases, the parameters were evaluated using nu-

merical solutions at molecular resolution. While ENSF
c appears

to be able to give reasonable indications, we wish to investigate

now whether this parameter can use results from a less accurate

model in order to assess whether it needs to switch to a

more accurate model. In Ref. [19], we demonstrated how to

couple two lattice Boltzmann models (e.g., with 16 and 36

lattice velocities for 2D simulations) at prescribed interfaces

where the lower-order model is employed on 70% of the com-

putational region in the center of the channel. In Fig. 11, the re-

sults of the 16-velocity model are presented for linear Couette

flows at Kn = 0.1 and Kn = 1. We see that ENSF
c calculated

from this low-order model can reasonably indicate where the

lower-order model needs to be switched to a higher-order

model. For the case of Kn = 0.1, ENSF
c predicts errors of about

10% at y = ±0.35, which indicates that it is better to switch

models at these points. For the case of Kn = 1, ENSF
c suggests

that the higher-order model should be used exclusively, as the

error is always larger than 60%. In both cases the predictions

of ENSF
c are consistent with the practice in Ref. [19].

To further test ENSF
c , we simulate a lid-driven cavity flow. In

this flow, the gas is contained in a two-dimensional rectangular

geometry with four walls. Both the length in the x direction

and the height in the y direction are set to be L, which is

therefore considered as the reference length to define the

Knudsen number. The top wall is moving from left to right

while the other three walls are stationary. The lid speed is set

to be 0.01 and 0.0001 for various cases and is used to define the

characteristic Mach number, i.e., the ratio of the lid speed and√
RT0 where T0 is the wall temperature. The simulations are

performed using lattice Boltzmann models for Kn = 0.1 and

Kn = 1: NSF-level solutions are provided by the 9-velocity

lattice Boltzmann model, while a 400-velocity model serves

to provide the benchmark results. In these simulations, we

compare with the error in the predicted velocity field, which is

calculated as
√

(uC − uE)2 + (vC − vE)2/
√

u2
C + v2

C , where

FIG. 15. (Color online) Lid-driven cavity flow; profiles of the entropy generation rate along the horizontal line Y = 0.627.
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the subscript C represents the “correct” solution provided

by the 400-velocity lattice Boltzmann model, and subscript

E represents the results from the 9-velocity lattice model; u

and v denote the horizontal and vertical velocity components,

respectively.

As shown in Figs. 12–15, ENSF
c calculated from the

400-velocity lattice model gives consistent predictions that

qualitatively match the distribution of error in the velocity

field in Fig. 12. In Fig. 13 the parameter proposed by Lockerby

et al. [2] (LRS for short) is also plotted for comparison. While

both ENSF
c and the LRS parameter are based on the same

fundamental idea, the better prediction of ENSF
c for this flow

may be attributed to the fact that the distribution functions

contain more information than the macroscopic flow quantities

used in LRS.

IV. CONCLUDING REMARKS

On the fundamental basis of the molecular velocity dis-

tribution function, we have discussed how to evaluate the

appropriateness of a locally applied continuum level kinetic

solver for a gas flow. A breakdown parameter ENSF
c has

been proposed for NSF-order kinetic solvers so that we can

apply the most efficient kinetic solver in flow regions where

the NSF-level description is sufficient. For instance, in these

regions a smaller number of discrete velocities may be used

to reduce the computational burden if the kinetic multiscale

scheme uses the discrete velocity method, the multiscale lattice

Boltzmann model [19], or the unified gas kinetic scheme [18].

The application of the criterion can be fairly straightforward:

both f eq and f NSF can be calculated using Eq. (2) and Eq. (3),

respectively. As most kinetic solvers use the distribution

function f and require the evaluation of f eq, the calculation

of ENSF
c in kinetic multiscale schemes introduces only a small

additional computational cost.

By using Couette flows and lid-driven cavity flows as

test cases, we have demonstrated the encouraging capability

of ENSF
c as a breakdown parameter. However, investigations

of further flow problems are necessary in order to assess

issues such as the cutoff value where a model switch should

be conducted. Although ENSF
c itself is mathematically a L2

norm form of error estimation, and so provides intuitive

guidance, the determination of the cutoff value may be

problem-dependent and needs to be calibrated by studying

more flows.
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