Header menu link for other important links
X
Bounding run-times of local adiabatic algorithms
Published in Springer Verlag
2007
Volume: 4484 LNCS
   
Pages: 450 - 461
Abstract
A common trick for designing faster quantum adiabatic algorithms is to apply the adiabaticity condition locally at every instant. However it is often difficult to determine the instantaneous gap between the lowest two eigenvalues, which is an essential ingredient in the adiabaticity condition. In this paper we present a simple linear algebraic technique for obtaining a lower bound on the instantaneous gap even in such a situation. As an illustration, we investigate the adiabatic unordered search of van Dam et al. [17] and Roland and Cerf [15] when the non-zero entries of the diagonal final Hamiltonian are perturbed by a polynomial (in log N, where N is the length of the unordered list) amount. We use our technique to derive a bound on the running time of a local adiabatic schedule in terms of the minimum gap between the lowest two eigenvalues. © Springer-Verlag Berlin Heidelberg 2007.