Header menu link for other important links
X
Boosted self-interacting dark matter and XENON1T excess
D. Borah, M. Dutta, S. Mahapatra,
Published in Elsevier B.V.
2022
Volume: 979
   
Abstract
We present a self-interacting boosted dark matter (DM) scenario as a possible explanation of the recently reported excess of electron recoil events by the XENON1T experiment. The Standard Model (SM) has been extended with two vector-like fermion singlets charged under a dark U(1)D gauge symmetry to describe the dark sector. While the presence of light vector boson mediator leads to sufficient DM self-interactions to address the small scale issues of cold dark matter, the model with sub-GeV scale DM can explain the XENON1T excess via elastic scattering of boosted DM component with electrons at the detector. Strong annihilation of DM into the light mediator leads to a suppressed thermal relic. A hybrid setup of dark freeze-out and non-thermal contribution from the late decay of a scalar can lead to correct relic abundance. We fit our model with XENON1T data and also find the final parameter space consistent with self-interaction of DM, DM-electron scattering rate, as well as astrophysical and cosmological observations. A tiny parameter space consistent with all these constraints and requirements can be further scrutinized in near-future experiments. © 2022 The Authors
About the journal
JournalData powered by TypesetNuclear Physics B
PublisherData powered by TypesetElsevier B.V.
ISSN05503213