We suggest a supersymmetric (SUSY) explanation of neutrino masses and mixing, where nonrenormalizable interactions in the hidden sector generate lepton number violating Majorana mass terms for both right-chiral sneutrinos and neutrinos. It is found necessary to start with a superpotential including an array of gauge singlet chiral superfields. This leads to nondiagonal ΔL=2 mass terms and almost diagonal SUSY breaking A-terms. As a result, the observed pattern of bilarge mixing can be naturally explained by the simultaneous existence of the seesaw mechanism and radiatively induced masses. Allowed ranges of parameters in the gauge singlet sector are delineated, corresponding to each of the cases of normal hierarchy, inverted hierarchy, and degenerate neutrinos. © 2006 The American Physical Society.