Active learning algorithms automatically identify the salient and exemplar instances from large amounts of unlabeled data and thus reduce human annotation effort in inducing a classification model. More recently, Batch Mode Active Learning (BMAL) techniques have been proposed, where a batch of data samples is selected simultaneously from an unlabeled set. Most active learning algorithms assume a flat label space, that is, they consider the class labels to be independent. However, in many applications, the set of class labels are organized in a hierarchical tree structure, with the leaf nodes as outputs and the internal nodes as clusters of outputs at multiple levels of granularity. In this paper, we propose a novel BMAL algorithm (BatchRank) for hierarchical classification. The sample selection is posed as an NP-hard integer quadratic programming problem and a convex relaxation (based on linear programming) is derived, whose solution is further improved by an iterative truncated power method. Finally, a deterministic bound is established on the quality of the solution. Our empirical results on several challenging, real-world datasets from multiple domains, corroborate the potential of the proposed framework for real-world hierarchical classification applications. Copyright 2015 ACM.