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METHODOLOGY

Automatic estimation of heading date 
of paddy rice using deep learning
Sai Vikas Desai1, Vineeth N. Balasubramanian1†, Tokihiro Fukatsu3,4, Seishi Ninomiya2 and Wei Guo2*† 

Abstract 

Background: Accurate estimation of heading date of paddy rice greatly helps the breeders to understand the 

adaptability of different crop varieties in a given location. The heading date also plays a vital role in determining grain 

yield for research experiments. Visual examination of the crop is laborious and time consuming. Therefore, quick and 

precise estimation of heading date of paddy rice is highly essential.

Results: In this work, we propose a simple pipeline to detect regions containing flowering panicles from ground 

level RGB images of paddy rice. Given a fixed region size for an image, the number of regions containing flowering 

panicles is directly proportional to the number of flowering panicles present. Consequently, we use the flowering 

panicle region counts to estimate the heading date of the crop. The method is based on image classification using 

Convolutional Neural Networks. We evaluated the performance of our algorithm on five time series image sequences 

of three different varieties of rice crops. When compared to the previous work on this dataset, the accuracy and gen-

eral versatility of the method has been improved and heading date has been estimated with a mean absolute error of 

less than 1 day.

Conclusion: An efficient heading date estimation method has been described for rice crops using time series RGB 

images of crop under natural field conditions. This study demonstrated that our method can reliably be used as a 

replacement of manual observation to detect the heading date of rice crops.
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Background

It is an established fact that rice is one of the most impor-

tant crops in the world. It feeds more than half of the 

world’s population. Thus, a good understanding of the 

growth stages in rice crops would enable one to use the 

right amount of water, fertilizers and pesticides to ensure 

maximum yield. This has great economical consequences 

since timely and high yield of rice can potentially address 

the food shortage problem prevailing in many parts of 

the world.

When rice paddies grow from their seeds to mature 

plants, they go through a variety of transformations. 

They develop tillers, begin to grow leaves and gradu-

ally increase in height. Then their leaf stems start bulg-

ing, which conceals the developing panicle. The panicle 

then starts to grow and fully emerges outside. Flowering 

is characterized by the exsertion of the first rice panicle 

in the crop [1]. Heading date is characterized together 

by the vegetative growth phase i.e., the time period from 

germination to panicle initiation and the reproductive 

phase, meaning the time period from panicle initiation 

to heading [2]. Heading date is primarily used to measure 

the response of the rice plant to various environmental 

and genetic conditions. This makes it an indispensable 

parameter useful to breeders and researchers. By esti-

mating the heading date and thereby observing the head-

ing stage, a farmer can make informed crop management 

decisions such as: (1) deciding the optimum amount of 
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fertilizers and pesticides for application in the field and 

(2) deciding the variety of crop to be grown in the field 

in subsequent seasons. Meanwhile, researchers can effec-

tively leverage the knowledge of heading stage in their 

experiments to understand the response of the rice plant 

to various genetic and environmental alterations so that 

they can pick the best crop variety for a particular set 

of environmental conditions. For instance, growth stage 

information has been used to determine the genetic locus 

which affects the regional adaptation in rice [3]. Genetic 

modifications have been proposed to artificially control 

the heading date in rice crops [4]. Flowering time has 

been controlled experimentally to enable production of 

crops suitable for different climates [5, 6]. The effect of 

gene interactions on traits like flowering time and panicle 

number has been studied [7].

For the past decade, computer vision and machine 

learning together have witnessed a spike in multiple 

research domains producing state-of-the-art results in 

various tasks which were previously assumed to be dif-

ficult for computers to solve. Tasks such as image classi-

fication, scene understanding and image captioning have 

been addressed using deep neural networks with excep-

tional results [8]. Deep learning is an area of machine 

learning which uses high-capacity function approxima-

tors (neural networks) to recognize patterns in high 

dimensional data such as images. Deep learning has been 

successfully applied in the area of plant phenotyping in 

extracting traits such as plant density [9] and plant stress 

[10]. It has also been applied in species classification [11] 

and detecting objects of interest such as fruits [12], flow-

ering panicles [13], rice spikes [14] and wheat spikes [15, 

16]. For a detailed treatment of the uses of deep learning 

in agriculture, we encourage the readers to refer to the 

survey by Kamilaris and Prenafeta-Boldú [17].

Related to our task, Zhu et  al. [18] have proposed a 

method to observe heading stage of wheat using a two-

step coarse to fine wheat ear detection method based on 

support vector machines (SVM). Hasan et al. [15] more 

recently used an R-CNN based object detection network 

to accurately detect and count wheat spikes from high 

definition crop images; however, this approach typically 

requires large image datasets with object level annota-

tions, which is very laborious. Xiong et al. [13] proposed 

Panicle-SEG, which uses a combination of CNN and 

entropy rate superpixel (ERS) optimization to segment 

rice panicles from crop images. Since our task requires us 

to get an estimate of the number of flowering panicles, 

pixel-wise segmentation of crop images such as in [13] 

is not necessary. In the context of sliding window meth-

ods, Bai et al. [14] used a three-stage cascade method to 

detect rice spikes in crop images and thereby observe the 

heading stage. For each patch extracted from the sliding 

window method, an SVM classifier is applied pixelwise to 

detect if the patch is a spike patch. Later, a gradient his-

togram method and a CNN are used to refine the clas-

sification. On the other hand, our method just requires a 

single pass through a CNN to detect a flowering region. 

This saves the computation time required to train an 

SVM and to apply it around each pixel in a given patch. 

Guo et al. [19] proposed a robust approach to detect rice 

flowering panicles from high definition RGB images of 

field taken under natural conditions. They use a sliding 

window method in conjunction with an SVM classifier 

trained on SIFT [20] features. When compared to the 

above studies, our approach uses a much simpler algo-

rithm to detect flowering regions in images. Instead of 

using multi-step classification methods, a sliding window 

based mechanism is used in conjunction with a CNN to 

detect flowering regions in a high definition image. The 

number of flowering regions in an image gives a statisti-

cal estimate of the number of flowering panicles exserted. 

The heading date is determined by observing the date at 

which 50% of the flowering panicles have been exserted. 

One important advantage of using a CNN is that, instead 

of using hand-crafted image features like SIFT, the fea-

tures are automatically learnt from the data. In order to 

demonstrate the reliability and trustworthiness of the 

proposed system, GradCAM [21], an existing method 

in the literature is used to provide visual explanations 

for the decisions made by the CNN model used in the 

panicle detection algorithm. For a real-world deployable 

intelligent system, we believe that the explainability and 

transparency of the system is vital.

Our aim is to estimate the heading date in a rice crop 

using a fast automatic system based on computer vision 

and deep learning. This should eliminate the need for 

manual visual inspection of crops which is both tedi-

ous and time-consuming. The contributions of our work 

are: (1) using a deep neural network to detect flowering 

regions from ground-level images of paddy rice, and (2) 

counting the detected flowering regions to estimate the 

heading date of the crop. An overview of the proposed 

method can be seen in Fig.  1. We evaluate the perfor-

mance of our method on our dataset of five time-series 

RGB image sequences of three different crop varieties of 

paddy  rice namely, Kinmaze, Kamenoo and Koshihikari. 

We compare our method with the manual approach to 

heading date measurement and observe that our auto-

matic method estimates the heading stage with an mean 

absolute error of 1 day. From the results, it can be con-

cluded that our method has the potential to be used for 

estimating the yield of the crop as well as an aid in mak-

ing informative crop management decisions. 
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Methods

An overview of the proposed method can be seen in 

Fig. 1. The input to our system is a time-series sequence 

of images (across different days and times) of a given crop 

variety taken at a particular location. For each image in 

the sequence, we use a sliding window mechanism to 

detect flowering regions. At each position of the sliding 

window, a CNN classifier predicts if the current window 

consists of a flowering panicles. In this way, we detect 

and count the number of flowering regions in each image. 

For a sequence of images taken with a single camera at a 

specific aspect ratio, it is easy to see that the number of 

flowering regions (windows) in an image is directly pro-

portional to the number of flowering panicles present 

in the image. Therefore, we use the number of detected 

flowering regions in an image as a proxy for number of 

flowering panicles present. We use these region counts to 

draw flowering graphs and observe the heading stage.

Image acquisition

The field server system was set up in our fields at the 

Institute for Sustainable Agro-ecosystem Services, Uni-

versity of Tokyo. The setup used for image acquisition 

is as follows. Canon EOS Kiss X5, a digital single-lens 

reflex (DSLR) camera was used as part of a field server 

system to acquire the experimental images. The captured 

images were then automatically uploaded to Flickr, a free 

cloud service via a 3G internet connection. The uploaded 

images were automatically obtained by an agent system 

[22] and saved into a database of National Agricultural 

and Food Research Organization. For the acquisition of 

Kinmaze and Kamenoo datasets, the cameras were set up 

at a height around 1.5  m from the ground. The field of 

view of the cameras was approximately 138 cm × 96 cm 

(focus length 24 mm) corresponding to an image resolu-

tion of 5184 × 3456 pixels. Using this setup, time-series 

images were acquired every 5  min from 08:00 to 16:00 

between and including days 84 and 91.

For the three Koshihikari datasets, the field of view 

of the cameras was approximately 180 cm × 120 cm 

(focus length 18 mm). Using this setup, the images were 

acquired between and including days 66 and 74. The cap-

tured images have a resolution of 5184 × 3456 pixels. 

Table 1 shows further details regarding image acquisition.

Training dataset

The CNN model needs to differentiate between a flow-

ering and a non-flowering patch. To gather the training 

data required to train our CNN model, we chose to anno-

tate 500 images from the Koshihikari-3 dataset. Specifi-

cally, we manually drew tight bounding boxes around the 

flowering regions in those images. From the annotated 

images, we extracted 3000 patches which correspond 

to the annotated flowering regions. These patches are 

labeled with class flower which is a positive class. Simi-

larly, we extracted background patches randomly from 

the non-annotated parts of the said 500 images to obtain 

3000 patches which are labeled with class non-flower 

which we consider a negative class. In summary, we have 

a training dataset of 3000 images of positive class and 

3000 images of negative class. Before training, we resize 

the patches to a fixed size of 224 × 224 pixels. Using 

these images, our CNN model is trained to classify a 

patch into one of the two classes. Figure 2 shows exam-

ples of the patches present in the training dataset.

Generalization is an important characteristic of a 

machine learning model. Simply put, a model trained 

on one dataset should be able to perform well on similar 

Fig. 1 Figure showing various stages of our proposed method. Given a (1) time-series sequence of crop images, our sliding window + CNN 

method is applied on each image to perform (2) flowering region detection. Then, (3) the number of detected flowering regions are counted after 

which the (4) heading stage graphs are plotted
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datasets on which it wasn’t trained. To assess the gen-

eralization capability of our model, we gathered train-

ing patches only from one dataset i.e., Koshihikari-3 and 

tested our model on all the five datasets.

Validation and test datasets

We evaluate the: (1) detection performance and (2) accu-

racy in heading date estimation of our model separately. 

To evaluate the detection performance of our method, 

we create a validation set of images as follows. We choose 

15 images from each of the five datasets mentioned in 

Table  1. We pick three different time slots for choosing 

images: 8 a.m.–9 a.m., 11 a.m.–12 p.m. and 3 p.m.–4 p.m. 

We ensure that the timestamps of the chosen 15 images 

in any given dataset are equally distributed among these 

three time slots. We do this to test the robustness of our 

model in detecting images at various lighting conditions. 

From each of the 15 images, we randomly crop out a 

1000 × 1000 portion of the image and draw tight bound-

ing boxes around the flowering panicles present in the 

image. In summary, the validation set contains 75 anno-

tated images of size 1000 × 1000 . Note that the validation 

set is not used to evaluate the heading stage estimation 

performance, which requires counting the flowering 

regions. Thus, randomly cropping out a portion of the 

full image does not affect the evaluation method because 

the validation set is solely used to evaluate the detection 

performance of the model.

To assess the heading stage estimation accuracy of our 

method, we apply our method to all the five sequences of 

images given in Table 1 and report the predicted heading 

date. In other words, we consider those five sequences as 

our test set.

Training a CNN end to end

We train a Convolutional Neural Network (CNN) to 

learn the mapping between our the image patches and 

their labels in the training dataset. A CNN is a specially 

designed Artificial Neural Network (ANN) generally 

used to learn patterns and solve computer vision tasks 

from large amounts of image data. It allows for automatic 

feature extraction and pattern classification within its 

architecture. Basically, ANNs are function approxima-

tors which are generally used to learn the relationship 

between high dimensional input and output data. ANNs 

consist of several computational points called nodes con-

nected together in the form of a directed acyclic graph. 

The nodes in the ANN are grouped into layers. Gener-

ally, the input data passes through one or more hidden 

layers sequentially before passing through the final layer 

Fig. 2 Training data. Examples of patches from the training dataset

Table 1 Details of image acquisition

Dataset Field of view Days from transplanting Planting density ( plants/m2) Number 
of images 
acquired

Kinmaze 138 cm × 96 cm 84–91 28 645

Kamenoo 138 cm × 96 cm 84–91 28 768

Koshihikari-1 180 cm × 120 cm 66–74 16 680

Koshihikari-2 180 cm × 120 cm 66–74 12 654

Koshihikari-3 180 cm × 120 cm 66–74 28 721
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to obtain the output. The choice of the number of nodes, 

type of nodes and number of layers constitute the archi-

tecture of the ANN. Stacking multiple hidden layers 

together to form a ‘deep’ network is commonly done in 

order to get better representations of data.

In the current study, we use the ResNet-50 [23] archi-

tecture which is a CNN model having state-of-the-art 

results in image classification. For a 50-layer deep net-

work, it is evident that we need massive amounts of 

data to train the network. But it is generally difficult 

and time-consuming to obtain massive annotated data-

sets especially in the agricultural domain. Therefore, we 

apply the widely used technique of transfer learning. We 

use a pretrained ResNet-50 model trained on the Ima-

geNet [24] dataset which is the source domain. Now, 

we remove the last layer in ResNet-50 i.e., the 1000-way 

softmax layer and replace it with a single node sigmoid 

layer which gives the probability of the class being posi-

tive (flower). The weights in the model are now finetuned 

with data from our target domain i.e., the training data-

set of patches. The process of feature extraction and clas-

sification is not separated in this case. The model is just 

trained end-to-end with our training data. The convo-

lutional layers are responsible for generating the feature 

descriptors for the images. The sigmoid layer at the end 

takes these features as input and outputs the probabil-

ity of the input image belonging to a positive class. The 

model is trained for 3 epochs using Stochastic Gradient 

Descent with a learning rate of 0.001 and momentum of 

0.9.

To test our model on the full images, we run a sliding 

window over each image. At every position of the slid-

ing window, the model classifies the patch of the image 

beneath the sliding window into one of the two classes. If 

the model classifies the patch as a flower, then a bound-

ing box is drawn over that sliding window as shown in 

Fig. 1.

Sliding window parameter selection

In a sliding window mechanism, there are two important 

parameters to decide: (1) the dimensions of the window 

and (2) stride (step length) of the window. We have man-

ually performed experiments on the validation dataset 

and empirically decided the sliding window dimensions 

and stride length for each dataset as shown in Table  2. 

The reason for having different parameters for different 

datasets is the fact that, despite having the camera at a 

fixed location above the ground, the plant height may 

vary for different crops. Due to the variation in plant 

height, the average size of flowering panicles as observed 

by the camera might not be consistent across different 

datasets. Therefore, we empirically choose the sliding 

window parameters separately for each dataset.

Flowering region detection

Since the images in each of the five datasets are in chron-

ological order, the first step to determine the heading 

date is to detect the flowering regions in the images and 

get an estimate of the flowering panicle count. We use a 

sliding window mechanism to detect flowering regions 

in each image. The procedure of flowering region detec-

tion is described in Fig.  1. At each position of the slid-

ing window, the patch of the image under the window 

is extracted and passed through a Convolutional Neural 

Network (CNN). We define a flowering patch to be an 

image patch containing a flowering panicle. If the patch is 

classified by the CNN as a flowering patch, then a bound-

ing box is automatically drawn on the boundaries of the 

sliding window. Once the model is trained, the model 

is evaluated on the test images. We use the previously 

mentioned five datasets as the test datasets. The proce-

dure of testing the model on a dataset is as follows. For 

each image in the dataset, a sliding window is applied on 

the image. For each position of the sliding window, the 

CNN classifier detects if there is a flowering panicle in 

that patch. Using this process, we count the number of 

patches classified as flowering regions in each image.

Heading date estimation

Once we have the flowering panicle counts for each 

image, we can estimate the day when 50% flowering is 

reached which is a highly useful metric to determine the 

heading date of the crop. The heading stages are generally 

identified by percentages. Since heading stage is charac-

terized by the exsertion of the rice panicle, the heading 

date can be marked as the date when 50% of the panicles 

have exserted [1]. For each dataset, we plot the cumula-

tive distribution of detected flowering panicles against 

the time at which each image is captured. This allows 

us to find the day where 50% of the flowering has taken 

place.

Design decisions

Feature extraction versus feature learning

The Scale Invariant Feature Transform (SIFT) algorithm, 

as used in [19], is a feature extraction algorithm. It tries 

to create a scale invariant representation of an image. As 

mentioned in the seminal paper [20] by Lowe, the SIFT 

algorithm extracts image features that can be used for 

matching different images of an object. But the features 

extracted using the SIFT algorithm are human-engi-

neered, in the sense that the algorithm looks for specific 

things like corners and edges in the image to decide its 

features.

On the other hand, a deep CNN performs a series of 

non-linear transformations on each image to extract 

denser and more abstract features. The parameters of 
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these non-linear transformations are learned by train-

ing the network with labeled data. This allows the CNN 

to learn distinctive features by looking at the data instead 

of applying some fixed mathematical transformations. 

Training a deep neural network end-to-end is more effi-

cient because the learned features adapt to the task at 

hand i.e., classification in this case. Also, the feature 

extraction and classification steps are fused together in a 

single network.

SVM versus sigmoid classification

In the SIFT based method [19], an SVM classifier is used 

to classify the patches based on the SIFT features. The 

ResNet-50 network used in this work instead uses a one 

node sigmoid layer to perform binary classification i.e., it 

gives the probability of the input image belonging to the 

positive class. This layer can be seen as a logistic regres-

sion classifier. The SVM and logistic regression classifier 

are known to show similar performance in classification. 

The characteristic that makes them different is the objec-

tive function that is optimized. SVMs use a hinge loss 

function which tries to find the maximum margin separa-

tion between two classes of data. Logistic regression gen-

erally uses a cross-entropy loss as the cost function. The 

outputs of the logistic regression classifier can be directly 

interpreted as the positive class probability.

Generating visual explanations

After training and testing the CNN model, we gener-

ate visual explanations to observe the part of the image 

that the model looks at before detecting the presence of 

a flowering panicle in an image patch. For this, we take a 

random image from the Kinmaze dataset and run our 

panicle detection algorithm which draw bounding boxes 

around flowering panicles in the image. Now, we randomly 

select a few bounding boxes and extract the patches of the 

image inside the bounding boxes. GradCAM [21] is used 

to generate visual explanations for each image patch. In the 

GradCAM algorithm, we first pass the image through the 

CNN to get class probabilities. Since the model detected 

a flowering panicle in this patch, the probability of the 

‘flower’ class would be the highest. Now, the gradient of 

the ‘flower’ class logit is taken with respect to each of the 

output feature maps of the final convolutional layer in the 

model. Then, global average pooling is used to calculate 

the weight of each feature map i.e., the importance of each 

feature map in causing the model to detect the presence of 

a flowering panicle. Finally, a heatmap is generated by tak-

ing a weighted combination of each feature map in the final 

convolutional layer and applying the ReLU activation func-

tion at the end.

Results

Flowering region detection

We evaluate the flowering region detection performance of 

our method on the validation set described in the Methods 

section. Using the proposed method, we get the predicted 

flowering regions for each of the 75 images in the dataset. 

Note that, as shown in Fig. 3, the ground truth annotations 

for the images are tight bounding boxes around the flow-

ering panicles whereas the predicted bounding boxes are 

fixed size boxes detecting the flowering regions. Therefore, 

the standard detection evaluation metric of Intersection 

over Union (IoU) cannot be used to evaluate the perfor-

mance of this model. Instead, we propose the following 

Fig. 3 Detection evaluation on validation set. Examples of flowering region detection on the validation set. The ground truth boxes are shown in 

red and the predicted flowering regions are shown in blue
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metric to evaluate the correctness of a predicted bounding 

box.

Simply put, intersection ratio (IR) is the portion of the 

predicted bounding box which overlaps the ground truth 

bounding box. A predicted bounding box is considered 

positive if its IR ≥ 0.5 , else it is considered negative. 

Using this metric, we calculate the standard binary clas-

sification metrics such as Precision, Recall and F1-Score 

for each dataset. Table  2 shows the detection results of 

our model on the validation set. It can be seen that our 

current method outperforms our previous method which 

used SIFT to extract features and an SVM to classify 

patches. From the results, it can be concluded that our 

current method generalizes well and has a good detec-

tion performance on images from all the five sequences.

Heading stage estimation

We assess the heading stage estimation performance 

of our method on the five image sequences mentioned 

in Table  1. For each image sequence, we use our detec-

tion pipeline to detect and count the number of flower-

ing regions in each image. Given a fixed window size, 

it is easy to see that the number of detected flower-

ing regions are directly proportional to the number of 

flowering panicles present in an image. In other words, 

more the number of flowering panicles, more will be the 

(1)Intersection Ratio =

Area of Overlap

Area of Predicted Box

number of flowering regions and vice versa. To evaluate 

this hypothesis, we have manually counted the number 

of flowering panicles present in each image in Kinmaze 

and Kamenoo sequences. Figure  4 shows the compari-

son between the actual flowering panicle counts and the 

number of detected flowering regions. The Pearson Cor-

relation Coefficient (PCC) between the ground truth 

panicle counts and the number of detected flowering 

regions was found to be 0.844 for Kinmaze and 0.711 

for Kamenoo. These results support our hypothesis that 

the number of detected flowering regions are indeed a 

good estimate of the number of flowering panicles pre-

sent. To further strengthen this hypothesis, we have plot-

ted in Fig. 5 the change in number of flowering regions 

detected and the change in number of flowering panicles 

present. It can be seen that, in general, if the number of 

flowering panicles decreases at a given point, the number 

of detected flowering regions also decreases. Examples 

of images in Kinmaze and Kamenoo datasets and their 

flowering region detection outputs are shown in Fig.  6. 

A similar set of images for the three Koshihikari datasets 

can be found in an additional file (see Additional file 1). 

To evaluate this method of estimating the heading stage, 

we need to manually find the heading date of the crop by 

visual inspection. Since the recording of the date of 50% 

flowering stage is subjective and strongly depends on the 

experience and intuition of the observers, we also add the 

dates of 1st panicle appearance in the corresponding crop 

as reference since normally more than 70% of the ears 

Fig. 4 Daily flowering counts. Predicted flowering regions vs actual daily flowering panicle counts in Kinmaze (left) and Kamenoo (right) datasets
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will come out within the first 3 days after the 1st panicle 

appearance has been observed [2]. Note that for paddy 

rice, flowering begins with panicle exsertion [1]. Figure 7 

shows the flowering plots of Kinmaze and Kamenoo data-

sets. An additional file shows the flowering plots for the 

Koshihikari-1, Koshihikari-2 and Koshihikari-3 datasets 

(see Additional file 2). Table 3 shows the comparison of 

50% flowering stage between field check and our pro-

posed method.

Discussion

It can be concluded from the results in Table 3 that our 

proposed method is fairly accurate in identifying the 

heading stage and estimating the heading date in paddy 

rices. With the definition of heading date [1] that we 

used, it has become quite simple to evaluate the perfor-

mance of the CNN model. We have proposed a simple 

automatic method to observe the heading stage of rice 

crops. Since the observation of heading date requires an 

estimate of the number of flowering panicles exserted, 

we are not interested in accurately localizing flowering 

panicles in the images. Accurate localization of objects 

is generally done using object detection networks such 

Fig. 5 Change in flowering counts. Change in number of predicted flowering regions versus change in number of actual daily flowering panicle 

counts in Kinmaze (left) and Kamenoo (right) datasets

Fig. 6 Flowering region detection. Examples of flowering region detection in datasets Kinmaze (left), Kamenoo (right)
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Fig. 7 Flowering stage graphs for Kinmaze and Kamenoo crops. The estimated 50% flowering day for Kinmaze is day 88. Similarly, the estimated 

50% flowering day for Kamenoo is day 86

Fig. 8 Grad CAM. Grad CAM outputs of flowering panicle patches with respect to the final convolutional layer of the ResNet-50 CNN are shown 

here. The red regions are on the part of the patch depicting the anthesis of flowering panicle, thus supporting our claim that the model has actually 

learnt specific features of the flowering panicle

Table 2 Comparison of detection performance of our model (CNN) with our previous model [19] on the validation set

Validation dataset No. of images Sliding window Precision Recall F1-score

Dimensions Stride [19] CNN [19] CNN [19] CNN

Kinmaze 15 140 × 140 140 0.81 0.96 0.73 0.68 0.77 0.80

Kamenoo 15 160 × 160 140 0.67 0.84 0.61 0.71 0.64 0.77

Koshihikari-1 15 160 × 160 150 0.72 0.80 0.65 0.70 0.68 0.70

Koshihikari-2 15 160 × 160 150 0.72 0.84 0.73 0.75 0.72 0.79

Koshihikari-3 15 160 × 160 150 0.74 0.89 0.69 0.71 0.71 0.79
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as Faster R-CNN [25] which requires bounding box 

level annotated data for training. In other words, the 

images in the training data need to be annotated by 

drawing tight bounding boxes around the objects of 

interest which are flowering panicles in our case. Get-

ting a large number of bounding box level annotated 

images is both time-consuming and expensive when 

compared to labeling an image for classification. In our 

work, we completely avoid this expense by using a slid-

ing window mechanism in conjunction with a CNN 

classifier. The boxes predicted by our method may not 

always tightly localize the flowering panicles but these 

errors can be tolerated in our application because our 

end goal is not to accurately localize flowering panicles, 

but to observe the heading stage for which an estimate 

of the flowering panicle count is sufficient.

GradCAM, a visual explanation method has been 

used to visualize what part of the image patch the CNN 

model “looks at” before detecting a flowering pani-

cle in a given patch. This visualisation would enable 

the model to reason its detections. Ideally, the detec-

tion of a flowering panicle in a patch should be based 

on the presence of flower-specific parts in the patch. 

The GradCAM outputs in Fig.  8 support our proposi-

tion that this is indeed the case with the proposed CNN 

model. The red regions in the output heatmaps repre-

sent the pixels in the patch which influenced the detec-

tion the most. It can be seen that the red regions are on 

the part of the patch depicting the anthesis of flowering 

panicle, thus supporting our claim that the model has 

actually learnt specific features of the flowering panicle.

The proposed method, however, has some limita-

tions. The current method requires high-resolution 

static and ground-level images of rice crop to be able 

to efficiently detect flowering panicles and estimate 

the heading date. A possible next step in this research 

could be to study the performance of CNNs on images 

taken from fully automatic Unmanned Air Vehicles 

(UAVs). This is because image acquisition is much sim-

pler and faster when UAVs are used. Assessing various 

phenotypic traits from UAV-based images would be 

immensely helpful to the agricultural community owing 

to the simplicity of deploying drones and the ability to 

collect and analyze data in real time.

Additional files

Additional file 1. Flowering Region Detection in Koshihikari. It is a figure 

depicting flowering region detection in crop images of Koshihikari-1, 

Koshihikari-2 and Koshihikari-3. 

Additional file 2. Flowering Stage Graphs for Koshihikari. It contains 

graphs depicting observed 50% flowering stage using crop images in 

Koshihikari-1, Koshihikari-2 and Koshihikari-3.
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Table 3 Comparison of proposed method and manual observation for estimation of heading stage

Formula for estimation error: (estimated) − ( field observed) 50% flowering date

Dataset Transplanting dates 1st panicle appearance 
(field observed)

50%flowering dates 
(field observed)

50%flowering dates 
(estimated)

Estimation 
error (days)

Kinmaze 05/31/2013 08/21/2013 08/24/2013 08/26/2013 +2

day 0 day 83 day 86 day 88

Kamenoo 05/31/2013 08/20/2013 08/23/2013, 08/24/2013, +1

day 0 day 82 day 85 day 86

Koshihikari-1 05/29/2014 08/02/2014 08/05/2014, 08/06/2014, +1

day 0 day 67 day 70 day 71

Koshihikari-2 05/29/2014 08/03/2014 08/06/2014 08/06/2014 0

day 0 day 68 day 71 day 71

Koshihikari-3 05/29/2014 08/04/2014 08/07/2014, 08/07/2014, 0

day 0 day 69 day 72 day 72

Mean absolute error (days) 0.8
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