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Abstract: Post-fault studies of recent major power failures around the world reveal that mal-
operation and/or improper co-ordination of protection system were responsible to some extent.
When a major power disturbance occurs, protection and control action are required to stop the
power system degradation, restore the system to a normal state and minimise the impact of the dis-
turbance. However, this has indicated the need for improving protection co-ordination by
additional post-fault and corrective studies using intelligent/knowledge-based systems. A
process to obtain knowledge-base using support vector machines (SVMs) is presented for ready
post-fault diagnosis purpose. SVMs are used as Intelligence tool to identify the faulted line that
is emanating and finding the distance from the substation. Also, SVMs are compared with radial
basis function neural networks in datasets corresponding to different fault on transmission
system. Classification and regression accuracies are is reported for both strategies. The approach
is particularly important for post-fault diagnosis of any mal-operation of relays following a disturb-
ance in the neighbouring line connected to the same substation. This may help to improve the fault
monitoring/diagnosis process, thus assuring secure operation of the power systems. To validate the
proposed approach, results on IEEE 39-Bus New England system are presented for illustration
purpose.

1 Introduction

Recent studies of significant power system disturbances
reported by North American Electric Reliability Council
(NERC) indicate that protective relays are involved, one
way or another, in 75% of the major disturbances [1] and
the most troublesome ones are backup protection relays.
With their limited view of the interconnected network
based on their locally measured inputs, conventional
backup protection relays generally take actions to protect
a localised region of the network without considering the
impact on the whole network.
On 2 July, 1996, a fault occurred on a 345 kV line in

southern Idaho, which tripped correctly, followed by an
incorrect trip of a parallel line and an overload trip of a
third line. System instability resulted in four islands being
formed, and system frequency dropped to 58.75 Hz and
3000 MW of load was dropped by under frequency load
shedding [2–5]. All of these events involved, in part,
relay failures that were not detected during normal oper-
ation, calibration or maintenance [1, 6–8].
Transmission line relaying involves detection, classifi-

cation and location of transmission line faults. Fast detec-
tions of faults enable quick isolation of the faulty line
from service and hence, protecting it from the harmful
effects of fault. Classification of faults means identification
of the type of fault, and this information is required for the
fault location and assessing the extent of repair work to be
carried out. Accurate fault location is necessary to facilitate

quick repair and restoration of the line and to improve the
reliability and availability of the power supply.
When a major power system disturbance occurs, protec-

tion and control actions are required to stop the power
system degradation, restore the system to a normal state
and minimise the impact of the disturbance. The modern
energy management system is supported by supervisory
control and data acquisition (SCADA) software with
numerous power system analysis tools such as state esti-
mation, power flow, optimal power flow, security analysis,
transient stability analysis and midterm to long-term stab-
ility analysis; and with optimisation techniques such as
linear and nonlinear programming. The available time for
running these application programs is the limiting factor
in applying these tools during an emergency, and a trade-off
with accuracy is required. Further, propagation of a major
disturbance is difficult to incorporate into a suitable numeri-
cal algorithm, and heuristic procedures may be required.
The experienced and well-trained operator can recognise
the situation and react properly given sufficient time, but
often not reliably or quickly enough [9–11].
In this paper, a process to obtain knowledge-base using

support vector machines (SVMs) is presented for ready
post-fault diagnosis purpose. SVMs are used as
Intelligence tool for identifying the faulted line that is ema-
nating from a substation and finding the distance from the
substation. The approach described in this paper uses
phasor values of the line voltages and currents after the
fault has been detected. The approach is particularly import-
ant for post-fault diagnosis of any mal-operation of relays
following a disturbance in the neighbouring line connected
to the same substation. This may help to improve the fault
monitoring/diagnosis process and coordination of the pro-
tective relays, thus assuring secure operation of the power
systems. Our approach, based on SVMs, exploits the first
part of this goal. For comparison, classifier and regression
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tools based on the Radial Basis Function Neural Networks
(RBFNNs) were also investigated. The RBFNNs and
SVM networks are introduced and considered as an appro-
priate tool for pattern recognition problems. Results on
IEEE-39 bus New England system are presented to illustrate
the proposed method.

2 Proposed approach

In this paper, a method to obtain knowledge-base using
SVMs is presented for ready post-fault diagnosis purpose.
The method employs wide-area information system and
intelligent technique to minimise the impact of an event
on a network. There are two ways in which a wide-area
post-fault diagnostic security system can ensure system
stability and improve the reliability and availability of
power supply:

1. Exact identification of faulted line at substation/Energy
Control Centre (ECC) level and
2. Precise location of a fault for easy fault isolation.

When fault occurs on a system, current and voltage mag-
nitudes change at many places in the network. Suppose we
are interested in monitoring one of the substations in the
power system, then the possible diagnosis are ‘where is
the fault?, either it belongs to one of the transmission
lines connected to the same substation or in other lines
not related to the substation under diagnosis’. Of course,
following a fault on one of the transmission lines, relay
will operate to clear the fault, but this may cause tripping
of other lines where fault has not occurred. In this paper,
SVMs are used as an intelligent tool (as shown in Fig. 1)
to allocate the coordination between relays in such a way
that ‘Fault is occurred in other zonal area of the network,
not in the lines emanating from the substation premises’.
This approach is purely related to substation level, can be
helpful post fault diagnosis of relay operations and so on.
Even though the method appears to be substation level,
can be designed for a wide-area protection in large networks
using the proposed approach at an ECC as shown in Fig. 2.
Block description of the proposed method at a substation

using the SVMs is illustrated in Fig. 3. The three phase vol-
tages and currents measured at the substation during fault
are supplied as an input to the SVMs and the expected
output will be identifying the faulted line and fault location
on the transmission line. The relation between the measure-
ments and targets are build-up by SVM, which relates them

only in a condition when fault occurs in one of the trans-
mission lines emanating from the substation. The variation
of data points in the input space leads to the difficulty in
mapping such a space by the classifier. In the proposed
approach identification of faulted line among the trans-
mission lines emanated from the substation is a ‘classifi-
cation’ problem. This is solved as a classification problem
using the techniques such as support vector (SV) classifiers,
which have well-established advantages over other
methods. Once the fault is on one of its (substation’s) trans-
missions lines, identifying the location of the fault is a
‘regression’ problem (function approximation), which is
solved by n-support vector regression (n-SVR) approach
[12].

3 Brief review on SVMs and RBFNNs

3.1 SVM Classification

SVMs are a new learning-by-example paradigm spanning a
broad range of classification, regression and density esti-
mation problems. Recently, a number of practical appli-
cations of SVMs have been reported [13–17]. They were
first introduced by Vapnik [12] on the basis of structural
risk minimisation principle [12] and were described in
more detail by Schölkopf et al. [18]. The roots of this

Fig. 1 Implementation of the proposed method at substation

Fig. 2 Wide-area protection design for large networks

Fig. 3 Block description of the proposed method at substation;
the input feature vector space is of (3þ 3 * L) dimension (consists
of three phase voltages at the substation and three phase currents
in the L number of lines emanating from the substation)
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approach, the so-called SV methods construct the optimal
separating hyperplane for pattern recognition. The SV tech-
nique was generalised for nonlinear separating surfaces in
[18], and was further extended for constructing decision
rules in the non-separable case. In the case when there are
no separating hyperplane, the goal of SVM is to maximise
the margin and to minimise the number of errors. The sol-
ution is a trade-off between the largest margin and the
lowest number of errors. A brief review of support vector
classification [19, 20–23] is presented in this section.
Computing this hyperplane is equivalent to solve the fol-
lowing optimisation problem [12]

min
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where xi is the ith example and yi the class label value which
is either þ1 or 21. This problem is computationally solved
using the solution of its dual form
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3.2 Multi class classification

Basically, the two types of approaches usually followed for
the extension from the binary two-class problem to n classes
are 1. to modify the design of the SVMs to incorporate the
multi-class learning in the quadratic solving algorithm [24]
and 2. to combine several binary classifiers [25]. In
the second case, methods like ‘one-against-all’ and
‘one-against-one’ have been proposed where typically a
multi-class classifier is constructed by combining binary
classifiers. In this paper ‘one-against-one’ method is used
for multi-class classification, because of its less training
time over ‘one-against-all’.

3.3 n-Support vector regression

SVR and the e-insensitive loss function were introduced by
Vapnik [13], where SVR was formulated in a similar way to
SVM classification. Given a set of training samples f(x1,
y1), . . . , (xl, yl)g [ R

N
� R, we want to learn a regression

function f(x) ¼ w
T . xþ b, w, x [ R

N, b [ R that can
best predict unseen data x drawn from the same distribution
as the training data. The regression function f (x) can be
solved through an optimisation problem as presented in
[13]. Parameter 1 (1 � 0) in the 1-insensitive loss function
controls the accuracy of the regressor. But the parameter
1 needs to be specified in advance. Smola et al. [26] pre-
sented a comprehensive tutorial on SVR, where the kernel
trick, algorithms and variants of SVR were discussed. To
facilitate tuning, SVR with automatic accuracy control in
n-SVR was introduced by assembling 1 into the objective
function [27].

3.4 Kernel choice

The use of kernel methods [28] provides a powerful way
of obtaining nonlinear algorithms capable of handling
non-separable datasets in the original input space.
Different types of kernels used to train the SVMs are
linear kernel Qij ¼ K(xi, xj) ¼ xi

T . xj, polynomial kernel

Qij ¼ (g(xi . xj)þ r)Degree with g . 0, radial basis function
(RBF) kernel Qij ¼ exp(2gkxi2 xjk

2) where g . 0,
related with the kernel width and sigmoid kernel
Qij ¼ tanh (g(xi . xj)þ r) where g and r are kernel
parameters.
The RBF kernel nonlinearly maps samples into a higher

dimensional space, so it, unlike the linear kernel, can
handle the case when the relation between class labels
and attributes is nonlinear. Furthermore, the linear kernel
is a special case of RBF as Keerthi et al. [29] show that
the linear kernel with a penalty parameter C̃ has the
same performance as the RBF kernel with some parameters
(C, g). In addition, the sigmoid kernel behaves like RBF
for certain parameters [30]. The second reason is the
number of hyper-parameters which influences the com-
plexity of model selection. The polynomial kernel has
more hyper-parameters than the RBF kernel. Finally, the
RBF kernel has less numerical difficulties. Moreover, we
must note that the sigmoid kernel is not valid (i.e. not
the inner product of two vectors) under some parameters
[12]. In this paper, we suggest that RBF kernel is a reason-
able first choice for SVM training.

3.5 SVM model selection

In any predictive learning task, such as classification/
regression, an appropriate representation of examples as
well as the model and parameter estimation method
should be selected to obtain a high level of performance
of the learning machine. To obtain a good performance,
some parameters in SVMs have to be chosen carefully.
These parameters include:

† The regularisation parameter C, which determines the
trade-off between minimising the training error and mini-
mising model complexity;
† Kernel function K(xi, xj) and

† Parameter g (g ¼ 1/2s2) or d of the kernel function that
implicitly defines the nonlinear mapping from input space
to some high-dimensional feature space.

3.6 Radial basis function neural networks
(RBFNNs)

The RBFNN [31, 32] is a feed forward neural network with
an input layer, a nonlinear hidden layer and a linear output
layer, realises a mapping function f : x ! f(x); where x is an
N-dimensional vector and f (x) is the scalar output, obtained
to generate the decision function. The RBFNN output is
given by f (x) ¼

P

i¼1
m wifi(x, ci)þ b, where m is the

number of hidden layer neurons, wi and b are the weights
and bias vectors. The hidden nodes are the RBF units fi ¼

exp(2kx2 cik
2/2s2), f: RN

! R, where ci [ RN and s
are the RBF centres and width, respectively. The perform-
ance of RBFNNs depends on the choice of the values of
the centres. Training of RBFNNs involves selecting the
centres ci, estimating the weights wi and bias b that
connect the hidden and the output layers.

4 SVM training

Transmission lines are frequently subjected to wide-variety
of faults. Different types of faults can occur including phase
faults among two or more different conductors or ground
faults including one or more conductors to ground types.
The commonly occurred faults are 3-Ph, Line-to-Ground
(SLG), Line-to-Line (LL) and Double Line-to-Ground
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(LLG). And the fault can occur at any point on the line. In
this paper, the training patterns for the SVM are generated
by creating the above four types of faults with varying
fault locations on the system lines.
Digital computer tool such as Electro Magnetic

Transients Program (EMTP) [33,34] is universally accepted
as industry standard for evaluating electromagnetic transi-
ents. An EMTP developed by D. Thukaram at Indian
Institute of Science, Bangalore, India, which has all features
like frequency dependence, saturation of reactors, lighting
arrestors, nonlinearity of various components and so on,
has been extensively used in planning studies of Indian
Extra High Voltage system. We have used this EMTP
program to simulate different faults.
The approaches described in this paper use phasor values

of the line voltages and currents. The simplest method of
forming phasor values from sampled data values is to use
the discrete fourier transform (DFT) evaluated at power
system frequency. The result from the DFT will be in
terms of real and imaginary parts that can then be readily
converted to phasor form where necessary. The output of
DFT contains phasor values of currents and voltages of all
the three phases. When the fault is detected, the present fun-
damental values of currents and voltages are frozen in a
buffer for six cycles (or till the circuit breaker operates).
The phasor quantities of current and voltage extracted in
this way are presented to SVMs.
The input pattern consists of phase voltages (va, vb and

vc) and phase currents (ia, ib and ic) in all the lines available
at the substation during fault. Dimension of the input pattern
depends on the number of lines connected by the substation.
For example, substation ‘S’ is under diagnosis and is con-
nected by L number of lines to other parts of the power
system, then the input vector dimension is (3þ 3 * L). For
classification problem, the decision function is mapping
from R(3þ3�L) to f1, 2, . . . , L, Lþ 1g (where 1–L are
class labels for the L ‘lines connected by the substation’
and (Lþ 1) is the class label for the ‘lines not connected
by the substation (Other Zone)’ and for regression problems,
the decision function maps from R(3þ3�L) to R (% value of
fault distance from the substation for localised faults).

4.1 Design issues in SVM-C (classification)

Our primary goal is ‘exact identification of the faulted line’.
To achieve this goal, a SVM-C model as shown in Fig. 4 is
developed. It has two phases of classification. In Phase 1,
the SVM-1 identifies the type of the fault (3-Ph/SLG/
LL/LLG, whose class labels are 1, 2, 3 and 4, respectively).
In Phase 2, on the basis of the fault type obtained in Phase 1,
one of the SVMs in Phase 2 (SVM-2 to SVM-5) is selected

to identify the faulted line/area. The output from Phase 2 is
either the ‘line number’ (in case the fault is on one of the
lines connected to substation under diagnosis) or ‘Other
Zone’.

4.2 Design issues in SVM-R (regression)

Our next goal of finding the fault distance from the substa-
tion is initiated when the SVM-C (shown in Figs. 3 and 4)
declares that the fault is on one of the substation’s line. In
this regression problem of fault identification, SVM-R
uses the fault type information obtained from SVM-C and
the same local information available at the substation
during the fault. As shown in Fig. 5, the design of the
SVM-R consists of four n-SVR blocks. One of these
blocks is triggered based on the fault type identified by
the SVM-C. To train each one of these SVR blocks, patterns
are generated for each fault type at different locations on the
lines with fault resistance varied.
At this point, it is important to notify that all the SVM

blocks presented in Figs. 4 and 5 are re-established with
RBFNNs and results are presented for the comparison
purpose.

5 System studies

The proposed strategy is explained with the IEEE-39 bus
New England system. The single line diagram of the
system is shown in Fig. 6. The system has 10 generators,
12 transformers, 34 transmission lines. The total system
can be monitored for faults by monitoring multiple substa-
tions such that all the lines in the system are covered. In this
paper, the substation bus number 16 is selected for monitor-
ing. The Bus 16 is connected by five transmission lines to
other substations numbered 15, 17, 19, 21 and 24 buses.
The transmission lines 16–15, 16–17, 16–19, 16–21 and
16–24 are labelled as Class 1, 2, 3, 4 and 5, respectively.
The other lines that are not connected to the substation
16, for example, 26–28, 15–14, 9–39 and so on are collec-
tively labelled as class 6.

5.1 Training and test patterns

Training patterns are extracted from EMTP simulations (as
explained in Section 4) run for the four types of faults at
different locations on the five transmission lines (for the
five classes) and on some selected lines from other parts
of the system (represent the Class 6). The selected lines for

Fig. 4 Architecture of SVM-C model for fault line identification
Fig. 5 Block description of the n-SVR for identification of the
fault location on the line

IET Gener. Transm. Distrib., Vol. 2, No. 1, January 2008122



Class 6 are 21–22, 22–23, 23–24, 17–18, 17–27, 3–18, 2–
3, 7–8, 13–10 and 15–14. The faults are created at distances
of 5, 15, 25, . . . , 95% of their overall transmission length.
During the simulation, the fault resistance values are varied
over the values 0, 2, 5, 10, 20, 50 and100 V. Over all, the train-
ing patterns are generated for 4 types of faults on 15 trans-
mission lines over 10 locations with varying 7 impedance
values. For each type of fault, the number of training patterns
generated is 15 � 10 � 7 ¼ 1050 patterns.
Test patterns are extracted from EMTP simulations (as

explained in Section 4) by creating the four types of faults
with six fault resistance values (that are not used in generat-
ing the training patterns), on the five substation’s lines and
on 10 lines from other parts of the system. During simu-
lations by EMTP, the shorting resistance values are varied
over the six values of 3, 7, 15, 30, 40 and 60 V.The selected
lines for generating test patterns are line 3–4, 13–14, 26–
27, 21–22, 22–23, 23–24, 17–18, 17–27, 3–18 and 15–
14. In this case, the faults are created at 20, 40, 60 and
80% distances of their overall transmission line length.
The number of test patterns generated is 15 lines � 6 fault
resistances � 4 locations ¼ 360 patterns per each fault
type. The details of simulations carried out using EMTP
for generating the training and test patterns are given in
Table 1.
The input patterns (training and test patterns) are normal-

ised to [21, þ1] before inputting to the SVM module. For
the normal scaling method, if the maximum and minimum

values of the ith attributes are Mi and mi, respectively,
then, scaling to [21, þ1] means x

1
¼ 2(x2mi)/

(Mi2mi)2 1.
To obtain a feel of the pattern scattering of data points in

the input space, the variable reduction or dimensionality
reduction helps to show the input space in 3D. The dimen-
sionality reduction is carried out using the principal
component analysis (PCA) technique [35,36]. A low-
dimensional feature vector is a critical element in any
pattern recognition problem as the number of data examples
needed for training grows explosively with the dimension of
the problem. The PCA, which is a feature reduction tech-
nique, is fast, simple and characterised by minimal loss of
information.
In general, the dimensionality of the dataset is reduced to

the number of significant Eigen values of the covariance
matrix. Although these dimensions do not have any physical
meaning in the fault monitoring and location problem, that
is depict the most important aspect of the function approxi-
mation problem, that is, the way in which the data are scat-
tered in the reduced dimensional space.
For 3-Ph fault, Figs. 7a–g show the data points in 3D

space along the three major eigenvectors. Fig. 7a shows the
scattering of the data points for all the six classes. Fig. 7b
is showing the spread of data points for faults on the substa-
tion lines. Figs. 7c–g shows the scattering of data points in
3D space for faults on individual transmission lines (classes
from 1 to 5 respectively) connected by the Bus 16.

5.2 Model design

Training of SVM requires selecting the cost function (C)
and kernel function parameters, which influence the ensur-
ing model performance. In our simulations, we have con-
sidered the RBF as kernel function. RBF kernel is
advantageous in complex non-separable classification
problems due to its ability of nonlinear input mapping. So
proper selection of the parameter gfg ¼ 1/(2s2), where s:
kernel widthg is important in selecting a good RBF kernel.
In this paper, LIBSVM [37,38] is used for training the
SVMs in classification and regression modules.

5.3 Parameter selection

5.3.1 Parameter selection for RBFNNs: The various
RBFNNs required for the classification of faulted line
section and fault type have been trained with the training
data. Selection of proper values of spread is important in
designing an RBFNN. The spread determines the width of
the RBFs. The spread should be larger than the minimum
distance and smaller than the maximum distance between
the input vectors [39]. After a number of simulations, the
observed optimal values of spreads for different RBFNNs,
RBFNN-1 to RBFNN-5 are 0.5, 1.1, 0.5, 0.9 and 0.707,

Fig. 6 Single line diagram of IEEE-39 bus New-England system;
Bus No. 16 is selected for fault diagnosis

Table 1: Details of training and test patterns generation

Line Class label Fault distances from substation

Training Testing

16–15 1 at distances of 5, 15, . . . , 95% of

their total line length and the

fault resistance values are

varied over the values 0, 2, 5,

10, 20, 50 and 100 V.

at distances of 20, 40, 60 and 80

of their total line length and

the fault resistance values are

varied over the six values of 3,

7, 15, 30, 40 and 60 V.

16–17 2

16–19 3

16–21 4

16–24 5

lines not connected by Bus 16 6
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Fig. 7 Principal component analysis applied to the input training patterns of 3-Ph faults

Dimension is reduced from 18 to 3 for visualisation purpose
a 3-Ph fault input patterns for all the six classes
b Input patterns for 3-Ph faults on the five lines connected by Bus 16
c–g Input patterns for 3-Ph faults on the lines 16–15 (Class 1), 16–17 (2), 16–19 (3), 16–21 (4) and 16–24 (5), respectively
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respectively. After training is over, each of the RBFNNs is
tested with test data created by varying distances and resist-
ances. Some significant test results for various RBFNNs are
represented in Table 2. In summary, RBFNN classifiers
with highest accuracy corresponding to best configuration
and will be considered for further comparison.

5.3.2 Trail and error selection for SVMs: The various
SVM classifiers are trained with several values of C and g to
guess the combination of parameters that might be the best
for a ‘good’ model. The good model is expressed through
the evaluation of performance accuracy. The SVMs
(SVM-1 to SVM-5) are trained with different values of
penalty terms C and g. The range of C chosen for training
is [1, 1000] and g values ranges between [0.005, 20.0].
The stopping tolerance for solving the optimisation
problem is set to 0.00001. Unbalance in the input data is
taken care by selecting different penalty terms for different
classes of data.
In a first series of experiments, we run the classifier with

several values of C and g somehow trying to guess which
combination of parameters might be the best for a ‘good’
model. For each combination of C and g, the network
undergoes learning and retrieval modes. During learning
mode, the network is trained with training data and is
tested on the test data during retrieval mode. The test data
for validation are generated as explained in Section 4
using EMTP. Fig. 8 shows the results for SVM-1 of a the
variation of number of SVs and b testing accuracy as a func-
tion of kernel g both parameterised with C. In this section,
we have collected the best model parameters optimised for
‘number of SVs’ and ‘testing accuracy’. We compare, in
Table 3, the number of iterations, the number of SVs and
the testing accuracy of the learning machine with C set to
1 and 500.
Practical issues: Larger C corresponds to less number of

SVs as well as higher testing accuracy although over-fitting
cannot thus be avoided. Further explanation is required for
these results taking into account both C and g parameters.

Table 2: Hidden neurons and spreads relating to

different RBFNNs at various schemes

Block name Number of

hidden neurons

Spread of

RBFNN

% Testing

accuracy

RBFNN-1 750 1.0 99.12

650 0.5 99.46

550 1.05 99.31

RBFNN-2 300 0.9 97.57

275 1.1 98.7

325 0.707 95.15

RBFNN-3 260 0.5 98.7

275 0.95 98.54

300 1.05 94.24

RBFNN-4 225 0.707 97.57

250 0.9 98.17

275 1.1 97.1

RBFNN-5 260 1.0 95.6

250 0.707 99.46

275 1.1 93.10

Fig. 8 Model selection with trail and error using C, g for SVM-1 (fault type) classifier

a g against number of support vectors
b g against % testing accuracy

Table 3: Details of number of iterations, number of SVs and testing accuracy of different classifiers for C 5 1, 500

Classifier name C ¼ 1 C ¼ 500

No. of iterations No. of SVs % Testing accuracy No. of iterations No. of SVs % Testing accuracy

SVM-1 20 684 558 99.31 9826 108 100

SVM-2 3586 289 98.18 7687 80 100

SVM-3 4454 264 99.54 5568 64 100

SVM-4 3020 232 99.84 7448 61 100

SVM-5 1681 151 99.54 2626 57 100
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In fact, minimising (1/2) kwk2 in (1) corresponds to maxi-
mise the margin 2/kwk2 between two classes of data. For
non-separable data, the penalty term C

P

i¼1
l ji is able to

reduce the training errors in the working data set.

Therefore the margin is an indicator of the generalisation
accuracy. In the absence of a method to compute the best
trade-off between the regularisation term and the training
errors, the balance sought by the SVMs technique is hard

Fig. 9 Interactive grid search graphic contours for the SVMs after a five-cross validation

a Parameter selection using interactive grid search for classifier SVM-1; the grid search is on for C ¼ 225, 224, . . . , 215 and g ¼ 2215,
2214.5, 2214.0, . . . , 25.0

b–e: Similarly for classifiers SVM-2(SVM 3-Ph) to SVM-5(SVM LLG)

Table 4: Optimised parameters obtained grid search analysis for different SVMs with RBF kernels

Classifier name C g No. of iterations No. of SVs % Training

accuracy

% Testing

accuracy

SVM-1 4.0 0.1250 2098 559 100 99.55

SVM-2 3-Ph 1024 0.0625 12 035 63 99.33 100

SVM-3 SLG 4096 0.0156 29 518 62 99.81 100

SVM-4 LL 256 0.125 9613 64 99.81 100

SVM-5 LLG 256 0.5 5153 66 100 100
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to find. Thus, a larger C corresponds to assign a higher
penalty of training errors and clearly over-fitting occurs.
On the other hand, when the kernel parameter g becomes
higher, the greater the variety of the decision boundaries
that can be formed, originate a more complex model. The
added flexibility decreases initially the generalisation error
as the model can better fit the data.

5.3.3 Interactive grid search selection for SVMs:
Choosing the best parameters can be time consuming if a
systematic approach is not used and/or the problem knowl-
edge do not aid for proper selection. Therefore an interac-
tive grid search model selection has been accomplished
for each one of the SVMs and the generalised accuracy
evaluated on the training data. Fig. 9 portrays the generalis-
ation graphic contours for the SVMs after a five-cross vali-
dation, thus, reducing the search space. The efficient
heuristic way of searching points in that space with small

generalisation errors will lead to a good understanding of
the hyper-parameter space [29]. We can then do a refined
search of the (C, g) pairs for proper model selection.
Fig. 9a shows the parameter selection using interactive
grid search for classifier SVM-1. The grid search is on
for C ¼ 225, 224, . . . , 215 and for g ¼ 2215, 2214.5,
2214.0, . . . , 25.0. The cross validation accuracy resulted
for SVM-1 is 100% on the training data with extracted
model parameters of C ¼ 4.0 and g ¼ 0.125. Once the
SVM-1 is learned with these parameters, all parameters of
the trained SVM-1 have been frozen and then used in retrie-
val mode for testing the capabilities of the system on the
data not used in learning. The test data samples have been
extracted using the EMTP as explained in Section 4 and
Table 1. The results obtained in terms of % testing accuracy
(No. of samples correct classified�100/total number of
samples presented) are given in Table 4.
The above process of grid search using trained data is

retrieval mode of operation on test data are repeated for
SVM-2 to SVM-5. The extracted model parameters with
their training and testing accuracies are given in Table 4.
Table 4 illustrates the results obtained choosing the pair
of parameters conveys to the learning model with the smal-
lest capacity and, thus, the highest generalisation.
If we compare with the RBFNNs, we may conclude that

SVMs are more accurate and allow better generalisation
than the former. Besides, in the SVMs technique there is
no heuristic choice for model design as it is required
in the RBFNNs. Also, the different solution method com-
parison in both techniques; the Quadratic Programming

Table 5: Optimised parameters for fault locating

RBFNNs

Regression block Spread Number of HN

RBFNN-3-Ph 0.95 140

RBFNN-SLG 0.9 180

RBFNN-LL 1.05 175

RBFNN-LLG 0.707 175

Fig. 10 Error values in terms of % distances from actual fault locations are simulated for different fault types with RBFNNs

a–d Error value plots from RBFNN-3-Ph, RBFNN-SLG, RBFNN-LL and RBFNN-LLG, respectively, when optimised parameters are used
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problem in SVMs formulation is simpler to solve, convey-
ing to a technique without local minima.

5.4 Identifying location of faults

5.4.1 Using RBFNNs: Once the faulted line section with
fault type is identified, our second goal is to identify the
location of the fault from the substation. Fault location
requires more accuracy as compared to faulted line
section identification. The various RBFNNs are trained
with the training data of 350 samples. After carrying a
number of simulation studies, Table 5 shows the best par-
ameters from the results obtained. After training phase is
over, each of the RBFNNs are tested for error values. The
test data consist of 120 samples and the error values in
terms of %distances f(Distance obtained form RBFNN –
Real distance of fault) � 100/Total line lengthg from
actual fault locations simulated for different fault types
are shown in Fig. 10. Fig. 10a shows the error values
obtained from RBFNN-3-Ph with spread 0.95 and having
140 neurons in hidden layer. Similarly, Figs. 10b–d show

the error deviations from the target values for the regression
blocks RBFNN-SLG [spread ¼ 0.9, No. of hidden neurons
(HN) ¼ 180], RBFNN-LL (spread ¼ 1.05, No. of
HN ¼ 175) and RBFNN-LLG (spread ¼ 0.707, No. of
HN ¼ 175), respectively. The maximum and minimum
and values of error from the 3-Ph, SLG, LL and LLG
fault type RBFNNs locators are (8.20%, 0.0121%),
(7.36%, 0.0014%), (7.89%, 0.0135%) and (0.25%,
2.0 � 1024), respectively. There are 19 test patterns (out
of 120 test patterns) have crossed the 2.5% error values
for the 3-Ph faults. The number of test patterns that
crossed 2.5% error values for SLG, LL and LLG faults
types 18, 15 and 0, respectively.

5.4.2 Using n-SVR: Once the faulted line is identified
from the SVM classifiers, approximate identification of
the fault location on the transmission line is important.
This is achieved by training the corresponding fault type
n-SVR. To model the n–SVRs, two types of kernels, poly-
nomial and RBF, are chosen. A series of experiments were
run on the n-SVR blocks with several values of C, g and n to

Table 6: Testing accuracy in identifying the fault location in terms of MSE from n-SVR with different C, n and g values

n-SVR 3-Ph n-SVR SLG n-SVR LL n-SVR LLG

fkernel, C, n, gg MSE fkernel, C, n, gg MSE fkernel, C, n, gg MSE fkernel, C, n, gg MSE

r, 100, 0.5, 0.1 12.38 � 1024 r, 100, 0.5, 0.1 3.91 � 1024 r, 10, 0.5, 0.05 3.91 � 1024 r, 100, 0.1, 0.5 2.4 � 10207

r, 1000, 0.5, 0.05 13.32 � 1024 p(3), 10, 0.5, 0.5 3.97 � 1024 p(3), 10, 0.1, 0.5 3.92 � 1024 r, 1000, 0.01, 0.5 3.27 � 10207

r, 1000, 0.5, 0.1 24.23 � 1024 r, 1000, 0.5, 0.05 4.42 � 1024 p(3), 1000, 0.1, 0.1 4.04 � 1024 p(3), 1, 0.5, 1.0 4.11 � 10207

P(3), 1000, 0.5, 0.5 47.46 � 1024 p(3), 1.0, 0.5, 1.0 4.439 � 1024 p(3), 10, 0.5, 0.1 4.05 � 1024 p(3), 1000, 0.5, 0.1 4.2 � 10207

r, RBF kernel, p (d ), polynomial kernel with degree d

Fig. 11 Error values in terms % distances plotted for different fault types with n-SVRs using RBF kernel

a–d Error value plots from n-SVR 3-Ph, n -SVR SLG, n-SVR LL and n-SVR LLG, respectively when optimised parameters are used
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guess which combination of parameters might be the best.
For each combination, the network undergoes learning
and retrieval modes. During learning mode, the network is
trained on the training data and tested on the test data in
retrieval mode. The value of the penalty parameter range
is trailed between 1 and 1000. Aforementioned, g is an
important parameter for both the kernel functions. The
range of g is varied as [0.001, 20]. After a series of exper-
iments, the best four results obtained for the four types of
n-SVR are given in Table 6. It gives the information
related to the variation of testing accuracy in terms of
Mean Squared Error (MSE) for different combinations of
the n-SVR parameters. From the results, n-SVR with RBF
kernel are more accurate in identifying location of fault as
compared to the RBFNNs.
Fig. 11 shows the error values in terms of % distances,

simulated for different fault types using RBF kernel. The
error values have been calculated using the expression
f(Distance obtained form n-SVR – Real distance of
fault) � 100/Total line lengthg. Fig. 11a shows the error
values resulted from n-SVR for 3-Ph faults with the par-
ameter combination C ¼ 100.0, n ¼ 0.5 and g ¼ 0.1. The
maximum and minimum error value in case of 3-Ph faults
is noted to be 5.68 and 0.125%, respectively. Similarly,
Figs. 11b–d show the error values obtained from the
regression blocks n-SVR SLG (C ¼ 100.0, n ¼ 0.5 and
g ¼ 0.1), n-SVR LL (C ¼ 10.0, n ¼ 0.5 and g ¼ 0.05)
and n-SVR LLG (C ¼ 100.0, n ¼ 0.1 and g ¼ 0.50),
respectively. The maximum and minimum error value
from the SLG, LL and LLG fault type n-SVR locators are
(5.69, 0.001), (5.31, 0.01%) and (0.19, 0.0001%), respect-
ively. The maximum errors may happen for the testing
data at conditions highly different from the training data.
There are 12 test patterns (out of 120 test patterns) have
crossed the 2.5% error values for the 3-Ph faults. A
number of test patterns that crossed 2.5% error values for
SLG, LL and LLG faults types are 12, 11 and 0, respect-
ively. From the results, n-SVR with RBF kernel is accurate
enough in identifying location of fault.

6 Conclusions

In this paper, we have discussed the application of the
SVMs and n-SVRs compared to RBFNNs to post-fault diag-
nosis in power transmission system. The basic idea of the
SVMs is to determine the structure of the classifier by mini-
mising the bounds of the training error and generalisation
error.
Results indicate that, in general, the test accuracy of

RBFNNs is a little worse than that of the SVMs in cases
of the fault type and faulted line section identification. In
case of locating the faults, n-SVRs are more accurate over
RBFNNs. Within the chosen SVMs framework, we show
that over-fitting can be avoided by a interactive grid selec-
tion search on parameter’s space. Regarding the implemen-
tation issues, SVMs are considerably faster than the training
of RBFNNs, even for large-size problems, requiring less
heuristics and, thus, being preferable. In addition, SVMs
attain sparse solutions in the sense that most of the coeffi-
cients are set to zero as a result of the optimisation
problem. This property is also computationaly attractive.
Besides, the expected ratio of the number of SVs and the
number of training points bounds the generalisation error.
Our results demonstrate that the SVMs have the potential
to obtain a reliable post-fault diagnostic system to assist
operators to make correct decisions.
Briefly, the use of SVMs as a powerful tool for substation

diagnosis and fault location identification is presented.

SVMs with RBF kernel are able to learn the underlying
concept between voltages and currents with the faulted
transmission line and fault location. From the results, we
conclude that, although measurements observed during
fault in practical power systems are very limited, they
contain significant information about the substation status
and location of fault. They can be processed by an approach
as described in this paper to obtain an efficient knowledge
based fault diagnosis system.
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