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We analyse spatial bistable arches and present an

analytical model incorporating axial, two transverse

bending and torsion energy components. We extend

the St. Venant and Michell relationship used in

flexural-torsional buckling of planar arches and use

it in modelling spatial arches. We study deformation

pathways in spatial arches and their effect on critical

characteristics of bistability such as back and forth

switching forces, and the distance travelled by a point

of the arch. We show that not considering spatial

deformation leads to incorrect inferences concerning

the bistability of planar arches too. Thus, this model

serves as a generalized framework for the existing

analysis on planar arches since they belong to a

subset of spatial arches. Additionally, the effects of

eccentric loading on spatial deformations are explored

for arches with a range of as-fabricated shapes and

boundary conditions, and the results are validated

with finite-element analysis.

1. Introduction
Spatial deformation pathways in planar bistable arches

reduce switching and switch-back forces. A planar

bistable arch can be actuated with an in-plane force

so that it remains in its plane throughout as it

reaches its other planar stable state. In addition to

this planar deformation pathway, the same arch can

be actuated to follow a spatial deformation pathway,

as shown in figure 1a. A comparison between force–

displacement characteristics corresponding to spatial and

planar deformation pathways is given in figure 1b. Our

attempt to understand and analytically model spatial

deformation pathways in planar bistable arches led us to

2019 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. (a) Planar and spatial deformation pathways of a planar arch; dashed lines aid visualization of the curvature of the

arch during deformation. (b) Switching forces of a spatially deforming bistable arch are found to be smaller than those of an

arch deforming in the plane. (Online version in colour.)

Figure 2. A pinned–pinned spatial arch in its as-fabricated stress-free, in-between stressed and second stressed stable states.

(Online version in colour.)

a new and general class of structures, namely spatial bistable arches. As shown in figure 2,

curvature of spatial arch is not restricted to a single plane. Two varying orthogonal curvatures

of the arch can be seen in the reflections of the arch in xy and xz planes. Spatial arches only

exhibit spatial deformation pathways. Spatial arch-profiles of in-between and second stable states

of the arch are also given in figure 2. Since planar arches with spatial deformations belong to a

subclass of spatial arches, the analytical work presented in this paper captures three-dimensional

deformations in both spatial and planar bistable arches.

Although to our knowledge, spatial arches are studied for the first time, flexural-torsional

buckling, i.e. spatial deformation in planar arches, is considered before in the literature. Those

studies dealt with determining the critical load of buckling, especially in circular arches [1–5]. By

contrast, in this work, we consider planar and spatial arches of general profiles to study post-

buckling analysis to investigate their bistability.
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The literature on bistability is rich with studies on buckled beams [1,6,7], arches [8–10]

and shells [11,12]. Bistability in planar shallow arches is well studied for pinned–pinned [8],

fixed–fixed [9] and generalized boundary conditions [10]. In planar arches, irrespective of the

boundary conditions, bistability arises from the interplay between transverse bending and axial

compression strain energies. Bending and compression energies are proportional to squares of

change in curvature and arc-length of the arch, respectively. Since there is always a change in

curvature associated with a deforming arch, bending energy attains a minimum only in the

as-fabricated stress-free state of the arch. On the contrary, change in arch-length can assume

minimal values at multiple deformed states of the arch. Existence of two such minimum points

in the axial energy landscape is essential to have two minima in the total strain energy curve

and thereby is essential for bistability. Intuitively, for arches deforming in planar deformation

pathways, minimal-axial-energy points help bistability while bending strain energies at these

points hinder bistability. However, when arches deform in spatial deformation pathways, in

addition to axial and transverse bending energies, there are torsional and out-of-plane bending

energies. We show that the key to modelling these interrelated energy terms is a geometric

relation, which we obtain by modifying a St. Venant and Michell relationship discussed

in 1969 [13,14].

When an arch deforms spatially, its cross sections undergo displacement in a plane

perpendicular to its central axis. Along with the displacement, cross sections rotate about the

central axis. The displacement and rotation are related to each other. St. Venant and Michell

described this relationship for lateral-torsional buckling analysis in planar arches [13,14]; which

we use in this paper for analyzing planar arches with spatial deformation pathways. Furthermore,

for the analysis pertaining spatial arches given in figure 2, we generalize the St. Venant and

Michell relation considering the additional curvature of the arch. That is to say, when one of

curvatures of the arch in the modified relationship is taken to be zero, the relationship reduces to

its original form given in [13,14].

First, using the modified St. Venant and Michell relationship, we describe an analytical model

that captures spatial deformation in shallow spatial arches that are not stressed in their as-

fabricated shape. The model is applicable to arches with varying as-fabricated shapes with

fixed–fixed as well as pinned–pinned boundary conditions. Second, we focus on the implications

of spatial deformation pathways. We show that these pathways reduce the force required for

buckling and post-buckling deformations as compared to planar pathways. In the context of

bistability, this is sometimes desirable as it reduces the force required for switching between the

equilibrium configurations of the bistable arch. Nonetheless, this also implies that these pathways

reduce stiffness and stability of the arch. Thus, geometric and material parameters that excessively

favour spatial deformations can adversely affect bistability; we illustrate this with examples.

Furthermore, we study the effect of eccentric loading on force–displacement characteristic of

spatially deforming arches.

For arches with arbitrary as-fabricated shapes and general boundary conditions, our analytical

model improves the understanding of bistability in four ways: (i) analysing spatial bistable

arches with reduced switching force; (ii) designing planar arches with reduced switching force

owing to spatial bistability; (iii) eliminating the loss of bistability due to spatial deformation

pathway in planar bistable arches; (iv) understanding the effect of eccentric loading on switching

forces.

2. Analytical model for arches that deform spatially
We present an analytical model for spatial deformations in non-planar arches in the post-buckling

regime. Such a model also explains the out-of-plane deformations in planar arches. Let us consider

a spatial arch with breadth b, depth t, span L and mid-span height hmid as shown in figure 3. The

projections of the central axis of the as-fabricated stress-free shape of the spatial arch in xy and xz

planes are denoted as w0(x) and u0(x), respectively. The projections of the deformed central line of

the spatial arch in xy and xz planes are w(x) and u(x). The initial twist in the cross section is taken
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Figure 3. A spatial arch with breadth, b, depth, t, span, L and mid-span height in xy plane, hmid. (Online version in colour.)

to be zero and the rotational displacement of the cross section is denoted by φ(x). We express these

displacements as follows:

w0(x) = hmid

∞
∑

i=1

aiwi(x), (2.1)

u0(x) = hmid

∞
∑

i=1

biui(x), (2.2)

w(x) = hmid

∞
∑

i=1

Aiwi(x), (2.3)

u(x) = hmid

∞
∑

i=1

Biui(x) (2.4)

and φ(x) =

∞
∑

i=1

Ciφi(x), (2.5)

where wi, ui and φi comprise a basis set that satisfies the boundary conditions of w, u and φ,

respectively; in fact, they are the buckling mode shapes of a straight column with corresponding

boundary conditions. For given ais and bis, we determine the mode weights Ais, Bis and Cis of

the deformed profile by minimizing the potential energy.

(a) Extension of St. Venant and Michell’s relationship

Axial compression, transverse bending, out-of-plane bending and torsional energies are

interrelated. We capture this interrelation by extending the St. Venant and Michell’s relationship to

spatial arches. It is helpful to first understand the relation as presented by St. Venant and Michell

for lateral torsional buckling [14] in planar arches. This relation, for an arch in the xy plane with

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

475:20190164
...........................................................

curvature κpxy0 deforming out-of-plane with displacement up, and rotation of cross section φp, the

effective change in curvature in xz plane �κpxz is given as follows:

�κpxz =
d2up

dx2
− φpκpxy0. (2.6)

Note that the subscript p indicates that these equations are only valid for the planar case.

Equation (2.6) implies that the effective change in curvature of projection of the deformed arch-

profile, in xz plane, is a combined effect of rotation of cross-section and deformation of the central

axis. The first term is the curvature due to the deformation of the arch in the xz plane. Since

the coordinates of the deformed central axis of the arch is up, the final curvature of the arch is

d2up/dx2. However, the term d2up/dx2 also includes the contribution from projection of curvature

of the central axis due to rotation of the cross section. For a positive rotation, φp, this projection has

a positive and upward curvature with a magnitude of φpκpxy0, the second term in equation (2.6).

Thus, the effective change in curvature is the difference between these two terms. Intuitively, this

is equivalent to change in curvature of an arch with an initial curvature φpκpxy0 with a deformed

profile up.

By denoting the curvatures of w0(x), and u0(x) as κxy0, and κxz0, respectively, the extended St.

Venant and Michell’s relationship is given by

�κxz =
d2u

dx2
− (κxz0 + φκxy0) (2.7)

and

�κxy =
d2w

dx2
− (κxy0 − φκxz0). (2.8)

Equation (2.7) is the equivalent of equation (2.6) for spatial arches. The extra term κxz0 is due to the

out-of-plane curvature of the spatial arch. Similarly, equation (2.8) is the change of curvature in the

xy plane. However, here the sign of the term φκxz0 is negative. This is because a positive rotation

of cross-section results in a projection of downward curvature in xy plane. Note that φ is assumed

to be small (i.e. sin(φ) ≈ φ) in equations (2.7) and (2.8). Furthermore, by taking κxz0 = d2u0/dx2,

κxy0 = d2w0/dx2, and ignoring higher-order terms, equations (2.7) and (2.8) are simplified as:

�κxz =
d2u

dx2
−

(

κxz0 + φκxy0
)

=
d2u

dx2
−

d2u0

dx2
− φ

d2w0

dx2
(2.9)

�κxy =
d2w

dx2
−

(

κxy0 − φκxz0
)

=
d2w

dx2
−

d2w0

dx2
+ φ

d2u0

dx2
. (2.10)

(b) Total potential energy

For an arch with Young’s modulus E, and second moment of area for rectangular cross section

about z-axis and y-axis, Iz and Iy, the strain energy due to bending is given by

SEb =
EIz

2

∫L

0
(�κxy)2 dx +

EIy

2

∫L

0
(�κxz)2 dx. (2.11)

By substituting equations (2.9) and (2.10) into equation (2.11), the bending strain energy becomes

SEb =
EIz

2

∫L

0

(

d2w

dx2
−

d2w0

dx2
+ φ

d2u0

dx2

)2

dx +
EIy

2

∫L

0

(

d2u

dx2
−

d2u0

dx2
− φ

d2w0

dx2

)2

dx. (2.12)

We note in equation (2.12) that the u, w and φ contribute to bending strain energy. As the shallow

arch deforms, the axial force, f , leads to compression energy, SEc, which is given by

SEc =
1
2 f (sinitial − s), (2.13)

where s is the length of the arch as it deforms and sinitial, the as-fabricated arc-length of the arch.

Here, we assume that the axial displacement of the arch is uniform along the length of the arch.
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This assumption gives accurate results in planar arches [10] and in spatial arches as we show in

subsequent sections. Thus, for a linear elastic material, we write

f = Ebt

(

sinitial − s

L

)

. (2.14)

By assuming the arch to be shallow, i.e. (dw0/dx)2
≪ 1 and (du0/dx)2

≪ 1, arc-lengths can be

approximated as

s =

∫L

0

√

1 +

(

dw

dx

)2

+

(

du

dx

)2

dx ≈

∫L

0

[

1 +
1

2

(

dw

dx

)2

+
1

2

(

du

dx

)2
]

dx (2.15)

and

sinitial ≈

∫L

0

[

1 +
1

2

(

dw0

dx

)2

+
1

2

(

duo

dx

)2
]

dx. (2.16)

The rotation of the cross sections, φ, results in torsional strain energy given by

SEt =
GJ

2

∫L

0

(

dφ

dx

)2

dx, (2.17)

where G is the shear modulus and J is the polar moment of inertia. A point force, F, is applied at

the centre of the arch at a point eccentric to the xy plane by e. The displacements of the mid-point

along y-axis and z-axis, and the work potential due to these displacements are given by

δy = w0

(

L

2

)

− w

(

L

2

)

+ eφ

(

L

2

)

(2.18)

and

WP = −Fδy. (2.19)

The potential energy, PE, includes bending, compression, and torsional energies, and the work

potential. Thus the total potential energy can be expressed as

PE = SEb + SEc + SEt + WP. (2.20)

The equilibrium equations are obtained by minimizing the potential energy with respect to the

unknown mode weights, Ais, Bis and Cis as follows:

dPE

dAi
= 0, (2.21)

dPE

dBi
= 0 (2.22)

and
dPE

dCi
= 0. (2.23)

Analytical solutions for equations (2.21)–(2.23) are obtained, as discussed later, for five unknown

mode weights. In the subsequent sections, we consider these analytical solutions for varying

boundary and loading conditions as well as as-fabricated profiles.

3. Spatial arches
In this section, we analyse spatial arches with pinned–pinned and fixed–fixed boundary

conditions and understand the deformation pathways. An example problem is presented for

discussing the post-buckling analysis for each of the boundary conditions.
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(a) Hinged and fixed support

Consider an arch with pinned–pinned and fixed–fixed boundary conditions in the xy and xz

planes, respectively. As mentioned before, the buckling mode shapes of a column with similar

boundary conditions are taken as the basis functions to represent the arch-profile as follows:

wi(x) = sin
(

iπ
x

L

)

i = 1, 2, 3, . . . (3.1)

uj(x) =

⎧

⎪

⎨

⎪

⎩

1 − cos
(

Mj
x

L

)

j = 1, 3, 5 . . .

1 − 2
x

L
− cos

(

Mj
x

L

)

+ 2
sin(Mj(x/L))

Mj
j = 2, 4, 6 . . .

(3.2)

Mj =

{

(j + 1)π j = 1, 3, 5 . . .

2.86π , 4.92π , 6.94π . . . j = 2, 4, 6 . . .
(3.3)

φk(x) =

⎧

⎪

⎨

⎪

⎩

1 − cos
(

Mk
x

L

)

k = 1, 3, 5 . . .

1 − 2
x

L
− cos

(

Mk
x

L

)

+ 2
sin(Mk(x/L))

Mk
k = 2, 4, 6 . . .

(3.4)

and Mk =

{

(k + 1)π k = 1, 3, 5 . . .

2.86π , 4.92π , 6.94π . . . k = 2, 4, 6 . . .
(3.5)

Note that Mj and Mk for j = k = 2, 4, 6, . . . satisfy tan(Mj/2) = Mj/2 [1].

We consider a class of spatial arches with as-fabricated shapes given by

w0(x) = hmid(a1w1(x) + a2w2(x) + a3w3(x)) (3.6)

and

u0(x) = hmidb1u1(x). (3.7)

The mode shapes used for describing the as-fabricated shapes would also be present in the basis

set of the deformed profile [15]. Thus, for initial profiles given by equations (3.6) and (3.7), the

first three mode shapes are used to approximate the deformations in the xy plane and one mode

shape to approximate the deformed profile in the xz plane as follows:

w(x) = hmid (A1w1(x) + A2w2(x) + A3w3(x)) , (3.8)

u(x) = hmidB1u1(x) (3.9)

and φ(x) = C1φ1(x). (3.10)

Note that with this choice of basis functions, we have six unknowns, for which analytical

solutions are obtained. The applied load is resisted by the stiffness of the arch, which results

in the arch having an undulating curvature in the loading plane. Hence, we assume a larger

number of mode shapes to express the deformed arch-profile in the loading plane compared to

the plane perpendicular to it, where, undulations are absent. Therefore, in this case, we use three

mode shapes to capture the in-plane deformation and one mode shape each for both out-of-plane

deformation as well as rotation.

To obtain the F-δy characteristics we solve for six unknowns namely, A1, A2, A3, B1, C1

and F using five equilibrium equations obtained by minimizing the total potential energy with

respect to each of the unknown mode weights (i.e. equations (2.21)–(2.23)) and equation (2.18).
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By substituting, equations (3.6)–(3.10) in equation (2.20), the equilibrium equations can be

expressed as:

dPE

dA1
= Fhmid −

Ebh2
midt3π3(64C1/b15 + πa1 − πA1)

24L3

+
A1Ebh4

midtπ4(A1
2

+ 4A2
2

+ 9A3
2

+ 4B1
2

− a1
2

− 4a2
2

− 9a3
2

− 4b1
2)

8L3
= 0, (3.11)

dPE

dA2
=

2Ebh2
midt3π4(A2 − a2)

3L3

+
A2Ebh4

midtπ4(A1
2

+ 4A2
2

+ 9A3
2

+ 4B1
2

− a1
2

− 4a2
2

− 9a3
2

− 4b1
2)

2L3
= 0, (3.12)

dPE

dA3
=

Ebh2
midt3π3(3264C1b1/35 − 81πa3 + 81πA3)

24L3
− Fhmid

+
9A3Ebh4

midtπ4(A1
2

+ 4A2
2

+ 9A3
2

+ 4B1
2

− a1
2

− 4a2
2

− 9a3
2

− 4b1
2)

8L3
= 0, (3.13)

dPE

dB1
=

Eb3h2
midtπ3(64C1a1/5 − 3264C1a3/35 − 16πb1 + 16πB1)

24L3

+
B1Ebh4

midtπ4(A1
2

+ 4A2
2

+ 9A3
2

+ 4B1
2

− a1
2

− 4a2
2

− 9a3
2

− 4b1
2)

2L3
= 0 (3.14)

and
dPE

dC1
=

2C1GJπ2

L
+ 2Fe +

Ebb1h2
midt3π3(816A3 − 112A1 + 112a1 − 816a3 + 245πC1b1)

210L3

×
Eb3h2

midtπ3

24L3

(

64B1a1

5
−

3264B1a3

35
−

64a1b1

5
+

3264a3b1

35
+

5πC1a1
2

2
+ 20πC1a2

2

)

+
Eb3h2

midtπ3

24L3

(

243πC1a3
2

2
−

45πC1a1a3

2

)

= 0. (3.15)

The expressions for respective energy terms leading to equations (3.11)–(3.15) are given in

appendix A. To understand the nature of deformations, let us take the as-fabricated shape to

constitute only the fundamental buckling mode shape, i.e. only the first mode shape, in both

the planes of the arch. So, we substitute a1 = 1, b1 = 0.5, hmid = 5 mm, b = 2 mm, t = 0.5 mm,

L = 100 mm, and the remaining ais and e are taken to be zero in equations (2.18) and (3.11)–

(3.15). E and ν of the material are taken as 2.1 GPa and 0.3, respectively. We solve for F using

equations (3.11)–(3.15), for δy ranging from 0 mm to twice the height of the arch, i.e. 10 mm.

The force–displacement characteristics obtained after ignoring complex solutions are shown in

figure 4a.

In the figure 4a, points O and T refer to the first and second stable states of the arch,

respectively. Corresponding to each combination of paths between O and T, there are multiple

deformation pathways that the arch can take to switch between these stable states. Note that

on pathways OABCFHIT, OABDEFHIT and OABDGHIT arch switches symmetrically, i.e. with

A2 = 0. And it switches asymmetrically along OACEGIT.

It is not straightforward to predict the preferred deformation pathway from F-δy curves

in figure 4a. We infer this by visualizing the potential energy landscape of the arch given in

figure 4c. Each curve in the landscape corresponds to the potential energy curve along δy for a

constant force. The extremum of the curve is the equilibrium position of the arch for the assumed

force value. Hence, when there are multiple pathways having the same force value for a given

displacement, there will be as many extrema for that displacement. Thus, by generating potential

energy curves for the force values in the F-δy curve, each deformation pathway can be compared

by observing the locations of extrema across these curves. The solid curves (cyan) passing through

point O in figure 4c correspond to force–displacement curve OABDGH. And the solid curves
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Figure 4. (a) Force–displacement characteristics, (b) asymmetric deformation pathway, (c) potential energy landscape for

OACEGIT pathway, (d) deformation pathway from ABAQUS and (e) time-lapse using high-speed photography (a hook that

pushed the arch can be seen in the figures) for a spatial bistable archwith pinned–pinned boundary conditions. (Online version

in colour.)

(red) passing through displacement at point T follows the force pathway TIHFCB. The dashed

curves (magenta) are for the force values along ACEGI and short green curve passing through E

corresponds to BDEFH pathway.

The points of extrema on the curves in figure 4c are annotated with a circular marker. It is

helpful to visualize the marker to be a ball on the hill or valley formed by the potential energy

curve. When the arch is in the stable equilibrium state at O, the force is zero; so, the ball is resting

on the black solid curve (labelled as the strain energy) at O. The ball rolls along the minima on

cyan curves from point O to point A. Since there are two pathways for the force value at point

A, the ball has the option to either continue rolling on extrema of solid curves or to jump to

the maxima on the dashed curve. In figure 4c, we observe that dashed potential energy curve

at A (enlarged view is shown in the inset) is positioned below the solid curve. Thus, the ball

rolls from the minimum on the solid curve to maxima on the dashed curve. It continues on the

dashed curve until I, where the asymmetric solution cease to exist. Note that the solution pathway

does not change at the points C, E and G since the potential energy of the respective intersecting
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Figure 5. (a) Force–displacement characteristics, (b) potential energy landscape, (c) time-lapses of switching and (d) switch-

back for symmetric deformation pathways of a pinned–pinned spatial bistable arch. (Online version in colour.)

pathways are larger than the asymmetric deformation pathway ACEGI at these points. Hence,

the pathway that arch takes is OACEGIT. That is to say that the arch deforms symmetrically (OA

and IT) near its stable states and asymmetrically (ACEGI) in between, as shown in figure 4b. The

predicted deformation pathway from the model is reproduced using finite-element analysis (FEA)

software ABAQUS [16], in figure 4d. See appendix B for a quantitative validation using FEA.

Furthermore, a 3D-printed prototype switching in asymmetrically along OACEGIT is depicted in

figure 4e using high-speed photography. The prototype is made using Verowhite, a material used

in an Objet260 Connex 3D-printer. The deformed configurations were captured using a high-

speed camera, Photron SA5, at the speed of 2000 frames per second.

Now, if we consider the switch-back deformation of the arch, similar arguments are valid as the

arch retraces the path while switching back and follows TIGECAO. However, this is not always

the case; bistable arches can switch and switch-back along two different pathways. Let us consider

a case where the asymmetric mode of switching is constrained, i.e. the arch cannot deform along

the pathway ACEGI anymore. Hence, the arch can only take the deformation pathways shown in

figure 5a. Let us observe the implications of this restriction in the potential energy landscape given

in figure 5b. The ball starts from point O on the solid cyan curve and continues to deform along

the curve OABDGH since the extrema on BCFHIT pathway is at a higher potential energy at B.

The pathway does not change at point D too since the potential energy corresponding to BDEFH

is at a larger value. At point H, it switches to the pathway BCFHIT and achieves the second

stable state along the curve HIT. While switching back, the arch retraces the switching curve till

point H since there is no other pathway the arch can assume until this point. At point H, since

the pathway HGDBAO is at a higher potential energy, the ball continues to roll along TIHFCB.

At point B, it returns to BAO and reaches the initial stress-free at point O. Again, note that the

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

475:20190164
...........................................................

pathway does not change due to HFEDB at point F. Thus, the pathway for switching and switch-

back are OABDGHIT and TIHFCBAO, respectively. Time lapses of arch switching and switching-

back from the model and ABAQUS are given in figure 4c,d, respectively. The FEA simulation in

ABAQUS is carried out with a symmetric constraint with respect to a plane parallel to the yz

plane passing through the mid-span of the arch. A physical intuition for the lack of smoothness in

the force–displacement characteristics at point H while switching and at point B while switching

back is evident in these time lapses. At these points, the curvature of the arch snaps symmetrically

and flips its curvature—a sudden movement—resulting in sharp points on the F-δy curve. In the

next subsection, we consider spatial bistable arches with fixed–fixed boundary conditions. For the

sake of brevity, we restrict our discussion to the force–displacement characteristics and resulting

deformation pathways without examining their potential energy landscape.

(b) fixed–fixed support

For a spatial arch with fixed supports, deformations in both xy and xz planes have fixed–fixed

boundary conditions. Hence, similar to the case of pinned–pinned arch, uj and φk are taken as

equations (3.2) and (3.4), respectively, and wi as:

wi(x) =

⎧

⎪

⎨

⎪

⎩

1 − cos
(

Mi
x

L

)

i = 1, 3, 5 . . .

1 − 2
x

L
− cos

(

Mi
x

L

)

+ 2
sin(Mi(x/L))

Mi
i = 2, 4, 6 . . .

(3.16)

and

Mi =

{

(i + 1)π i = 1, 3, 5 . . .

2.86π , 4.92π , 6.94π . . . i = 2, 4, 6 . . .
(3.17)

We consider fixed arches with first harmonics in their as-fabricated shapes given by:

w0(x) = hmid (a1w1(x) + a2w2(x) + a3w3(x)) , (3.18)

u0(x) = hmidb1u1(x), (3.19)

w(x) = hmid (A1w1(x) + A2w2(x) + A3w3(x)) , (3.20)

u(x) = hmidB1u1(x) (3.21)

and φ(x) = C1φ1(x) (3.22)

The equilibrium equations obtained by minimizing the potential energy equation (2.20) and

simplifying using equations (3.18)–(3.22) can be written as follows:

dPE

dA1
= 2Fhmid −

2Ebh2
midt3π4(a1 − A1 + C1b1)

3L3
+

2A1Ebh4
midtπ2

L2

(B1
2

− b1
2)π2

L

+
A1Ebh4

midtπ2

L2

(

2π2A1
2

− 4A2
2

+ 8π2A3
2

L
−

A2
2M2

2(cos(M2) + 3)

2L(cos(M2) − 1)

)

−
A1Ebh4

midtπ2

L2

(

2π2a1
2

− 4a2
2

+ 8π2a3
2

L
−

M2
2a2

2(cos(M2) + 3)

2L(cos(M2) − 1)

)

= 0, (3.23)

dPE

dA2
=

EM2
4bh2

midt3(A2 − a2)

24L3
−

A2Ebh4
midt(8 cos(M2) + 3M2

2
+ M2

2 cos(M2) − 8)

4L2(cos(M2) − 1)

(

2π2a1
2

− 4a2
2

+ 8π2a3
2

L

)
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+
A2Ebh4

midt(8 cos(M2) + 3M2
2

+ M2
2 cos(M2) − 8)

4L2(cos(M2) − 1)

(

M2
2a2

2(cos(M2) + 3)

2L(cos(M2) − 1)

)

−
A2Ebh4

midt(8 cos(M2) + 3M2
2

+ M2
2 cos(M2) − 8)

4L2(cos(M2) − 1)

(

2π2A1
2

− 4A2
2

+ 8π2A3
2

L

)

+
A2Ebh4

midt(8 cos(M2) + 3M2
2

+ M2
2 cos(M2) − 8)

4L2(cos(M2) − 1)

(

A2
2M2

2(cos(M2) + 3)

2L(cos(M2) − 1)

)

−
A2Ebh4

midt(8 cos(M2) + 3M2
2

+ M2
2 cos(M2) − 8)

4L2(cos(M2) − 1)

(

2B1
2π2

L
−

2b1
2π2

L

)

= 0, (3.24)

dPE

dA3
=

4Ebh2
midt3π4(8A3 − 8a3 + C1b1)

3L3

+
4A3Ebh4

midtπ2

L2

(

2π2A1
2

− 4A2
2

+ 8π2A3
2

L
−

A2
2M2

2(cos(M2) + 3)

2L(cos(M2) − 1)

)

−
4A3Ebh4

midtπ2

L2

(

2π2a1
2

− 4a2
2

+ 8π2a3
2

L
−

M2
2a2

2(cos(M2) + 3)

2L(cos(M2) − 1)

)

+
4A3Ebh4

midtπ2

L2

(

2B1
2π2

L
−

2b1
2π2

L

)

= 0, (3.25)

dPE

dB1
=

2Eb3h2
midtπ4(B1 − b1 + C1a1 − 2C1a3)

3L3
+

B1Ebh4
midtπ2

L2

(

2B1
2π2

L
−

2b1
2π2

L

)

×
B1Ebh4

midtπ2

L2

(

2π2A1
2

− 4A2
2

+ 8π2A3
2

L
−

A2
2M2

2(cos(M2) + 3)

2L(cos(M2) − 1)

)

−
B1Ebh4

midtπ2

L2

(

2π2a1
2

− 4a2
2

+ 8π2a3
2

L
−

M2
2a2

2(cos(M2) + 3)

2L(cos(M2) − 1)

)

= 0 (3.26)

and

dPE

dC1
= 2Fe +

2C1GJπ2

L
+

Ebb1h2
midt3π4 (8A3 − 4A1 + 4a1 − 8a3 + 7C1b1)

6L3

+
Eb3h2

midt

96L3sin(M2/2)2(M2
4

− 5π2M2
2

+ 4π4)
(6C1M2

8a2
2

− 30C1M2
6a2

2π2)

+ α(256B1a1π
8

− 512B1a3π
8
− 256a1b1π

8
+ 512a3b1π

8
+ 448C1a1

2π8
+ 6144C1a3

2π8)

− α(560C1M2
2a1

2π6
+ 112C1M2

4a1
2π4

+ 24C1M2
4a2

2π4
− 7680C1M2

2a3
2π6)x

− α(1536C1M2
4a3

2π4
− 2048C1a1a3π

8
− 320B1M2

2a1π
6

+ 64B1M2
4a1π

4)

+ α(640B1M2
2a3π

6
− 128B1M2

4a3π
4
+ 320M2

2a1b1π
6

− 64M2
4a1b1π

4)

− α(640M2
2a3b1π

6
+ 128M2

4a3b1π
4
+ 2560C1M2

2a1a3π
6
− 512C1M2

4a1a3π
4), (3.27)

where

α =
Eb3h2

midt

96L3sin(M2/2)2(M2
4

− 5π2M2
2

+ 4π4)
sin(M2/2)2.

The force–displacement curve for the numerical values of E = 2.1 GPa, ν = 0.3, a1 = 0.5, b1 =

0.5, hmid = 5 mm, b = 2 mm, t = 0.2 mm and L = 100 mm is shown in figure 6a. The arch, when

unconstrained, takes the deformation pathway OAT. This pathway corresponds to an asymmetric

solution given in figure 6b. However, it can be observed in figure 6a that OAT cuts the axis F = 0

only twice, indicating snap through but bistability. Incidentally, this case is similar to a planar

fixed–fixed arch, where the asymmetric mode needs to be restricted for the arch to be bistable [9].
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Figure 6. (a) Force–displacement characteristics and (b and c) deformations pathways of a fixed–fixed spatial arch with

parameters: a1 = 0.5, b1 = 0.5, hmid = 5 mm, b= 2 mm, t = 0.2 mm and L= 100 mm. (d) The two stable states of the arch

in a 3D-printed prototype. (Online version in colour.)

Thus, by constraining the asymmetric mode of deformation in the arch, we facilitate the arch to

take the path OABCT. In this deformation pathway, the arch switches symmetrically as shown

in figure 6c and retraces the same curve during switching back. The constraining of asymmetric

mode is physically achieved by connecting two arches at the mid-span as shown in the 3D-printed

prototype in figure 6d.

4. Extensions using the spatial arch model
In this section, we illustrate that the spatial arch model described in the preceding section can be

easily extended to: (i) spatial arches with as-fabricated shapes other than the fundamental profile,

(ii) lateral-torsional buckling in planar arches and (iii) arches with eccentric loading.

(a) As-fabricated profiles other than the fundamental shapes

The equilibrium equations derived for spatial arches in §3a consider the first three modes in the

as-fabricated shape. Let us consider a spatial arch with a1 = 0.5, a3 = 0.2, b1 = 0.5, hmid = 5 mm,

b = 2 mm, t = 0.5 mm and L = 100 mm. Here, an additional third mode (a3) is added to the

starting shape of the hinged spatial arch considered previously. The force–displacement curve

of the arch is shown in figure 7a. In comparison to figure 4a, we see that this arch can only

switch symmetrically. The straight line shown in figure 7a corresponds to asymmetric mode

of switching. However, the arch cannot deform in this mode of switching as the line cuts the

curve corresponding to symmetric deformation only once. Thus, reaching any of the stable states

becomes impossible once the arch starts deforming along this pathway. Furthermore, unlike the
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Figure 7. Force–displacement characteristics and deformation times-lapses of spatial arch with as-fabricated starting shapes

with (a and b) a3 = 0.2 (a,b) and (c and d) a7 = 0.1 (c,d). (Online version in colour.)

previous examples, in this case, the asymmetric pathway is not reducing the force required for

deforming. The arch-profiles in various stages of deformation between the stable states in the

symmetric switching are depicted in figure 7b.

Arch-profiles with mode shapes other than the first three mode shapes can also be analysed

using the model. However, we need to ensure that the all the mode shapes used for constructing

the as-fabricated shape should be used in approximating the deformed profile as well. We

noted in the three examples presented earlier that the arch can either switch symmetrically

or asymmetrically. To capture these two pathways of switching, A1 and A2 are essential

in approximating the deformed profile. We have to use the mode weights B1 and C1 for

approximating u(x) and φ(x). Since we can solve for five unknown mode weights, an additional

mode weight can be added to w(x), e.g. Ai. This enables us to use an additional ai in the

as-fabricated shape along with a1 and a2, and represent it as w0(x) = hmid(a1w1(x) + a2w2(x) +

aiwi(x)). For example, the F-δy relations of a spatial arch with a1 = 0.5, a7 = 0.1, b1 = 0.5, hmid =

5 mm, b = 2 mm, t = 0.5 mm and L = 100 mm is given in figure 7c. The deformation pathway taken

by the arch is OABT and the arch deforms as given in figure 7d.

(b) Lateral torsional buckling in planar arches

A planar arch is a special case of spatial arch with its curvature limited to a single plane. For

instance, by taking all the bis to be zero, the as-fabricated shape reduces to the xy plane. When

the out-of-plane bending stiffness of the planar arch is comparable to the in-plane bending

stiffness of the arch, the arch may deform out-of-plane and undergo lateral-torsional buckling.

The compression energy formed in a planar arch when it deforms out of the plane is smaller than

its in-plane deformation. This causes a reduction of the minimum force required to switch the

bistable arch. We consider such an example next.
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Figure 8. (a) Force–displacement characteristics and time-lapse of deformation of a planar arch with a1 = 1, b1 = 0, hmid =

5 mm, b= 0.9 mm, t = 0.5 mm and L= 100 mm, which shows bistability in the presence of a spatial deformation pathway.

(d) Force–displacement characteristics and time-lapse of deformation of a planar arch with a1 = 1, b1 = 0, hmid = 5 mm,

b= 0.6 mm, t = 0.5 mmand L= 100 mm,which is not bistable due to the presence of a spatial deformation pathway. (Online

version in colour.)

The force–displacement characteristics for a planar arch with a1 = 1, hmid = 5 mm, b = 0.9 mm,

t = 0.5 mm, L = 100 mm, and with fixed–fixed boundary conditions are given in figure 8a. The

path OAT represents the in-plane asymmetric switching that needs to be restricted so that the

arch can attain the other stable state. When an arch is constrained to not take the asymmetric

deformation pathway, it is expected to follow in-plane switching shown in figure 8a and indicated

by the pathway OCDT. However, due to the presence of the lateral-torsional deformation, i.e.

spatial deformation pathway (figure 8c), the arch prefers the force–displacement profile given by

OBET. Thus, the arch switches with reduced switching force as indicated in figure 8a. The in-

plane deformation corresponding to OBET is shown in figure 8b. Note that ignoring the spatial

deformation in this problem leads to about 30% error in the prediction of actual critical force.

A contrasting case arises when the switching force reduces in such a way that it affects

bistability of the arch. Figure 8d shows a force–displacement curve where the out-of-plane

deformation path, AE, makes the arch not bistable. Note that if this arch with a1 = 0.5, b1 = 0,

hmid = 5 mm, b = 0.6 mm, t = 0.5 mm and L = 100 mm were to be analysed as a planar arch, it

would have shown bistability with force–displacement pathway OCDT. These observations are

applicable to planar arches with pinned–pinned boundary conditions as well.

(c) Eccentrically loaded

When the arch is loaded eccentric to the xy plane at a distance e, it experiences a force as well

as a moment. The moment causes the cross sections to rotate more compared to the case of the

arch with only a point load. In the case of planar arch, the moment favours the lateral-torsional
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Figure 9. Comparison of force–displacement characteristics with (dashed curve) and without (solid curve) eccentric loading

for spatial and planar pinned arches. (a) The planar arch parameters arehmid = 5 mm, b= 0.4 mm, t = 0.5 mm, L= 100 mm,

E = 2.1 GPa, ν = 0.3, and e= 10 mm. (b) The spatial arch parameters are a1 = 1, b1 = 0.5, hmid = 5 mm, b= 2 mm, t =

0.5 mm, L= 100 mm, E = 2.1 GPa, ν = 0.3, and e= 10 mm. (Online version in colour.)
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Figure 10. (a) Spatial and planar arches with same volume and pinned–pinned boundary conditions and (b) comparison of

their force–displacement characteristics. (Online version in colour.)

mode of deformation. Figure 9a shows a comparison of planar pinned sine-curved arch with

and without eccentric loading. The dashed curve corresponds to the case with eccentric loading

with e = 10 mm for an arch with hmid = 5 mm, b = 0.4 mm, t = 0.5 mm, L = 100 mm, E = 2.1 GPa,

and ν = 0.3. We observe that eccentric loading reduces the switching and switch-back forces. The

F-δy characteristic plot shown in figure 9b is of a spatial arch with a1 = 1, b1 = 0.5, hmid = 5 mm,

b = 2 mm, t = 0.5 mm, L = 100 mm, E = 2.1 GPa, ν = 0.3 and e = 10 mm. Here, the switching force

increases due to the additional torsional energy in the cross sections due to the moment arising

from eccentricity. This effect is not seen in figure 9a because of the smaller width considered there.

It can be observed that the third point, where the force is zero, is not the same for both the loading

cases in figure 9b. This is because of the rotation of cross sections of the arch. Due to the rotation,

points attached eccentric to the arch move vertically. In this case, the spatial arch in its second

stable has a positive rotation causing the point of application of load to go up. Hence, the dashed

force–displacement curve shows a smaller travel of the mid-point of the arch between the two

stable states.
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5. A note
The result from the optimization problem that lead us to study spatial deformation pathways

suggested that, for a given volume, a spatial distribution of material reduces the switching forces

than the optimal in-plane solutions. Figure 10 shows a comparison between the pinned spatial

arch considered in §3c to a planar pinned–pinned arch of the same volume. The reduction in

forces can be accounted to reduced axial compression in the spatial arch and the reduced travel

is due to the residue torsional energy in the spatial arch. The result from the model validate that

the spatial deformation pathways reduce the switching forces in a bistable arch. This is relevant

in two scenarios: while designing arches of reduced switching forces and while designing planar

arches that should not deform out of plane.

6. Summary
In this paper, we discussed the analysis of doubly curved spatial arches that are bistable. The

highlights of the paper are as follows:

— An analytical model that captures the coupling between in-plane and out-of-plane

bending, and the torsion with an extension of St. Venant and Michell relationship that

was given for arches with spatial deformation pathways.
— Analysis on spatial arches with varying as-fabricated shapes and boundary conditions

for mid-point and eccentric loading.
— Analysis on spatial deformation pathways in planar arches, which is a special case of

initial profile of spatial arches.
— Illustrative examples observing that the spatial deformation pathways reduce the

switching forces bistable arches. In particular, it was shown that this reduction in

switching forces in planar arches can also sometimes cause the arch to lose its bistability.

The desirable features of bistable structures such as two force-free stable states, negative

structural stiffness, change in shape in the two stable states, snap-through action, and nonlinear

force–displacement characteristic, find a wide range of applications. A few examples include

switch-based applications such as micro-switches [17] and micro-relays [18], biomedical devices

like easy-chairs for elderly [19] and deployable meta-implants [20], energy harvesters [21]

and morphing structures [22,23]. Furthermore, spatial bistable arches will enrich the list of

applications wherein the force needed to switch between the stable states ought to be minimal.

Authors’ contributions. G.K.A. and S.P. designed the research, and S.P. developed the analytical model. Both the

authors contributed to the writing of the manuscript and gave final approval for publication.

Competing interests. We declare we have no competing interests.

Funding. Financial support for this work was received from the Department of Science and Technology (DST),

India under the Technology Initiative for the Disabled and the Elderly (TIDE) programme.

Acknowledgements. We thank DST, India for the financial support. We also thank Mr Suyog Mahulkar and Prof.

Arakeri for their help with high-speed photography.

Appendix A
The bending strain energy, axial compression energy, torsional energy and work potential

are obtained by substituting equations (3.6)–(3.10) in equations (2.11), (2.13), (2.17) and (2.19),

respectively.

SEb =
EIz

2

∫L

0

(

d2w0

dx2
−

d2w

dx2
+ φ

d2u0

dx2

)2

dx +
EIy

2

∫L

0

(

d2u0

dx2
−

d2u

dx2
− φ

d2w0

dx2

)2

dx

=
Ebh2

midt3

24L3
π3

(

πA1
2

2
−

64A1C1b1

5
− 1πA1a1 + 8πA2

2
− 16πA2a2 +

81πA3
2

2

)

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

475:20190164
...........................................................

+
Ebh2

midt3

24L3

(

3264A3C1b1

35
− 81πA3a3 + 14πC1

2b1
2

+
64C1a1b1

5
−

3264C1a3b1

35

)

+
Ebh2

midt3

24L3

(

πa1
2

2
+ 8πa2

2
+

81πa3
2

2

)

−
Eb3h2

midtπ3

24L3

(

45πC1
2a1a3

4
+ 10πC1

2a2
2

)

×
Eb3h2

midtπ3

24L3

(

8πB1
2

+
64B1C1a1

5
−

3264B1C1a3

35
− 16πB1b1 +

5πC1
2a1

2

4

)

+
Eb3h2

midtπ3

24L3

(

243πC1
2a3

2

4
−

64C1a1b1

5
+

3264C1a3b1

35
+ 8πb1

2

)

(A 1)

s =

∫L

0

[

1 +
1

2

(

dw

dx

)2

+
1

2

(

du

dx

)2
]

dx

= L +
B1

2h2
midπ2

L
+

h2
midπ2(A1

2
+ 4A2

2
+ 9A3

2)

4L
(A 2)

sinitial =

∫L

0

[

1 +
1

2

(

dw0

dx

)2

+
1

2

(

duo

dx

)2
]

dx

= L +
b1

2h2
midπ2

L
+

h2
midπ2(a1

2
+ 4a2

2
+ 9a3

2)

4L
(A 3)

SEc =
1

2
p(sinitial − s)

=
Ebh4

midtπ4(A1
2

+ 4A2
2

+ 9A3
2

+ 4B1
2

− a1
2

− 4a2
2

− 9a3
2

− 4b1
2)

2

32L3
(A 4)

SEt =
GJ

2

∫L

0

(

dφ

dx

)2

dx

=
C1

2GJπ2

L
(A 5)

δy = w0

(

1

2

)

− w

(

1

2

)

− eφ

(

L

2

)

= −2C1e − hmid(A1 − A3) + hmid(a1 − a3) (A 6)

WP = −Fδy

= −F(−2C1e − hmid(A1 − A3) + hmid(a1 − a3)) (A 7)

Appendix B
The force–displacement characteristics obtained from the analytical modelling show good

agreement with FEA. A comparison of illustrative examples discussed in this work with FEA is

given in figure 11. The solid curves represent results from analytical model and dashed curves

are obtained from FEA done in ABAQUS. In ABAQUS, continuum tetrahedral elements are

used with quasi-static dynamic-implicit analysis for all four cases. In figure 11a, asymmetric and

symmetric deformation pathways of a spatial arch with hinged and fixed support discussed in

§3a (figure 4) are compared. In obtaining the analytical solution, five mode shapes are used. The

asymmetric and asymmetric deformations, wherein the magnitude of force ranges from 0.04 N to

−0.03 N, have mean errors of 0.0012 N and 0.0015 N, respectively. The analytical approach solves

this problem withing a CPU time of 187 s compared to 14 151 s of FEA and thus, it is 70 times

faster than FEA. However, this speed varies from problem to problem. Nonetheless, analytical

method always solve the problem much faster than FEA.
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Figure 11. Comparison of force–displacement characteristics obtained from analytical modelling with FEA in ABAQUS for (a)

pinned–pinned spatial, (b) fixed–fixed spatial arch, (c) fixed–fixedplanar archwith spatial deformation and (d) pinned–pinned

arch with an eccentric load. (Online version in colour.)
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Figure 12. Comparison of force–displacement characteristics obtained from analytical modelling with FEA in Abaqus for

varying number of mode shapes. (Online version in colour.)

Note that the error from the numerical solution is larger at the points where the arch switches

from one deformation pathway to the other. By using a larger number of mode shapes for

approximating the deformed profiles, this error can be minimized as shown in figure 12. With

five mode shapes, the force–curve shows closer agreement compared to the one with four mode

shapes.

The cases of fixed–fixed spatial arch (figure 6), fixed–fixed planar arch with spatial

deformations (figure 8), and pinned–pinned spatial arch with eccentric loading (figure 9a) are

shown in figure 11b–d, respectively. The geometric and material parameters considered are the

same as the ones in their respective examples considered in §§3 and 4.
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