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SUMMARY

In this study, a locking-free n-sided C1 polygonal finite element is presented for nonlinear analysis of
laminated plates. The plate kinematics is based on Reddy’s third-order shear deformation theory (TSDT)
[1, 2]. The inplane displacements are approximated using barycentric form of Lagrange shape functions.

The weak-form Galerkin formulation based on the kinematics of TSDT requires the C1 approximation of

the transverse displacement over the polygonal element. This is achieved by embedding the C0 Lagrange
interpolants over a cubic Bernstein–Bezier patch defined over the n-sided polygonal element. Such an
approach ensures the continuity of the derivative field at the inter-element edges. In addition, Eringen’s
stress-gradient nonlocal [3] constitutive equations are used in the present formulation to account for
nonlocality. The effect of geometric nonlinearity is taken by considering the von Kármán’ geometric
nonlinearity. Examples are presented to show the effect of nonlocality, geometric nonlinearity, and the
lamination scheme on the bending behavior of laminated composite plates. The results are compared with
analytical solutions, conventional FEM results and with those available in the literature. Shear locking is
addressed considering reduced integration and consistent interpolation techniques. The patch test is used to
check the convergence of the element developed. Copyright c© 2019 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In last decade developing generalized finite element method based on arbitrary polygonal meshes

has gained importance amongst researchers. A n− sided polygonal finite element has arbitrary

number of edges (n > 3 ) and is able to provide greater flexibility, suitable in complex modeling.

Polygonal finite elements have been found to be of great use in finite and anisotropic elasticity

[4] and modeling of micro structured materials [5]. These elements can overcome the problems

associated with remeshing in standard adaptive finite elements or meshless methods which have

issues with imposition of boundary conditions because of lack of Kronecker delta property in the

approximation functions. The polygonal elements have many potential applications to a large variety
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of problems, including: constitutive modeling in nonlinear analysis of polycrystalline materials (see

[6], [7], and [8]), linear elasticity [9], analysis of cracked structures [10], vibration analysis [11],

crack propagation ([12], [13]), large deformation problems (see [14], [15], and [16]), topology

optimization (see [17] and [18]), hyperelastic analysis [19], contact-impact problems[20], adaptive

meshing [21], plate bending problems[22], analysis of generalized elastic solids [23], and multi-

material discretization and optimization (see [24] and [25]). There are other recent works on

extension of polygonal finite element method for topology optimization ([26], [27]), nonlinear

analysis of plates, laminates and functionally graded plates [28], and fracture problems ([29], [30]).

There have been recent works carried out by using the polygonal finite element method for

analysis of plates and laminates. An assumed strain field resulting in a locking free element is

considered for analysis of plates[31]. This has also been extended to the analysis of laminated

composite plates using C0-HSDT. It has been observed that there is a significant accuracy in

the displacement and transverse shear stresses when the polygonal finite elements are used for

the analysis[32]. In this case, shape functions were derived by following a moving least square

approximation. Polygonal finite element method has also been used for analysis of laminated

composite plates together with a layerwise theory [33]. This has resulted in obtaining better accuracy

of inner layer shear stresses. It is to be noted that the analysis of plates and laminates based on

TSDT requires C1 continuous conformal approximants corresponding to the transverse deflection.

Making proper approximations over polygonal elements with a particular degree of continuity is

a challenging task. For a generic n-sided polygonal domain, there is a need to come up with a

non-polynomial type approximation. Such an approximation must be locking free for plate bending

problems. Polygonal finite element method thus opens up different perspective and ideas towards the

study of plates and laminates, and provides a wide range of solutions to the problems that are faced

by standard finite element method. For standard polygonal finite elements that have been proposed,

a non-polynomial type approximation based on geometric properties of the domain such as area or

distance measures of the polygon are used for the construction of C0 continuous approximation

function. Wachspress [34] has given rational polynomial using projective geometry for n-sided

convex polygons. The computation of Wachspress’ shape function is enhanced algebraically in

[35]. Floater [36] proposed a mean value coordinate over both convex and concave shape of

elements. Maximum entropy coordinates[37], piece wise linear function with sharp upper bound

and lower bound [38], gradient bound for Wachspress coordinates [39], generalized barycentric

coordinate [40], metric coordinates[41], Laplace coordinates ([42],[43] and [44]), moving least

square coordinates [45] are among other methods to construct shape functions over polygonal

elements. Warren [46] developed rational basis function for arbitrary convex polytopes. It is

observed that, C0 type approximants are quite common over polygonal elements and there has

been some attempts to achieve C1 type approximants [47].

The other challenging task has been on numerical evaluation of integrals over polygonal domains.

For numerical integration over a polygonal domain, partitioning the physical or canonical element

to n sub-triangles and applying Gauss quadrature rules on each triangular subdomain [43] is

commonly being used. Although quadrature rules for polygons have been developed [48], due to

the non-polynomial nature of basis functions, higher quadrature rules are required to obtain accurate

results. Higher order quadrature in two and higher dimensions have been proposed recently [49].

In some works, moment fitting equations have been used to get quadrature schemes in polygons

and polyhedrons [50]. It involves the integration of monomial basis function and use of Lasserres

method ( see [51],[52] and [53] for details). This approach excludes the need of dividing polygons

into different sub domains. Alternate methods have been proposed, for instance, instead of dividing

the regular n-gon into sub-triangles in the second step of mapping, it is mapped to a unit disk by

conformal mapping. After mapping to the unit disk, various cubature rule may be applied. This

method retains the length and angle measures [54]. This method was extended to find the optimum

number of integration points in the disk based on Frobenius norm and infinity norm [55]. However,

such mapping procedures are computationally very expensive and require special tools to map from

rectangle in Cartesian real space to a disk in complex space and vice versa. The results obtained
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from this are also sometimes found to be erroneous. Eight-node quadrilateral spline finite element

has been used for numerical integration over polygons [56].

Three nodal integration schemes are available for numerical integration (a) nodal strain method

(b) stabilized conforming nodal integration (SCNI) scheme [57], (c) nodal averaging techniques.

These methods address the issues related to the stability of solution[58]. The inherent errors arising

in numerical integration of various schemes has been addressed in [59]. From this prospective,

alternative methods of numerical integration over polytopic meshes are discussed in [60], where

the requirement of quadrature points and weights are excluded. Herein, the numerical integration

has been made to solely depends on the integrand and its derivatives values on the vertices of the

polytope. Other methods, such as naturally stabilized nodal integration scheme (NSNI) have also

been devised as alternative approaches, that consider integration at the nodes[61]. For analysis of

thin plates, different procedures are developed to avoid integration errors, especially when FSDT

is used. Stabilization techniques with one point integration [62], discrete shear gap procedure [63],

hybrid stress approach [64], discrete Kirchhoff Mindlin quadrilateral technique (DKMQ) [65] are

methods to address some of these problems. In case of isoparametric mapping, it has been shown

that, the convergence of the solution are further improved by dividing the n-gon into quadrilaterals

instead of triangles. In this case, the background cells will have more Gauss points towards the edges

of the polygonal element. It has been shown recently that, use of polynomial projection technique

and subsequent adaptivity helps in ensuring convergence in L2 norm of the solution [66]. Ensuring a

consistency in approximation also ensures convergence of the solution [67],[68]. In some works, this

polynomial consistency is achieved indirectly, by assuming some approximations for the gradients

in displacement field [69].

Analysis of thick plates and laminates have been made over a period of time using higher order

shear deformation theories. Higher order theories like TSDT [1], HSDT [70] and [71], exponential

deformation theories (ESDT), trigonometric shear deformation theories(TrSDT) [72] have been

proposed by researchers to overcome the challenges faced by CLPT and FSDT. Most of these

theories are in a sense variants of the Reddys third order shear deformation theory (TSDT). Kim

et al.[73] used third-order theory which includes vonKármán’ nonlinearity and coupled stress

effects in bending analysis of plates. The weak formulation of TSDT has transverse displacement

and their gradient involved, hence requires C1 continuity of the primary variable (Generalized

displacements)[74].

In this work we use TSDT for the nonlinear analysis of plates and laminates. In this work C0 and

C1 Lagrange shape functions over a n− sided polygonal finite element are derived. The barycentric

form of Lagrange approximants are based on distance measures associated with the polygon. C1

approximants are achieved by embedding a Bezier patch over the polygon and using a de Boors

algorithm[75] to transform C0 approximants to C1 approximants. Another issue of concern is

the shear locking phenomenon observed in thin plate limits. In order to address this issue, many

approaches have been introduced and assessed for triangular and quadrilateral elements including

reduced integration, selective reduced integration, assumed natural strains, the discrete Kirchhoff

methods. In the present study , we explore the viability of both reduced integration and consistent

interpolation technique to alleviate shear and membrane locking. There have been recent needs for

analysis of micro or nanostructural devices which are essentially of laminated plate structures. At

these smaller length scales in every material, in homogeneity exists which causes material instability

and nonlinear behavior at macroscopic scales. Classical continuum theories do not incorporate

internal material length scales in material description. Nonlocal continuum models can be improved

by incorporating a length scale parameter. In this study, we use Eringen’s stress-gradient model (a

diffusion model) in the polygonal finite element approach.

The primary focus of the present study is to present a C1 polygonal finite element formulation

of Reddy‘s third-order theory [1, 2] to analyze laminated plates while accounting for geometric

nonlinearity and Eringen’s nonlocal model [3]. The inplane displacements are approximated

using the C0 shape functions. The weak-form Galerkin formulation of the TSDT requires C1

approximation over a polygonal element for transverse displacement. This is achieved by embedding

the C0 Lagrange interpolants over a cubic Bernstein–Bezier patch defined over the n-sided

This article is protected by copyright. All rights reserved.
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polygonal element. Using a standard de Boors algorithm[75], the continuity of the approximation is

enhanced from C0 to C1. Such an approach ensures the continuity of the derivative field at the inter

element edges. Eringen’s nonlocal [3] constitutive equations are used in the present formulation. The

effect of geometric nonlinearity is taken by considering von Kármán’ type strains. The remainder of

the paper is organized as follows. A detailed explanation of barycentric form of Lagrange shape

function, Bernstein-Bezier patch and the derivation of C1 Laplace shape function for n-sided

polygon is given in section 2 and section 3. Numerical integration procedure adopted in the present

work is described in section 4. Section 5 and section 6 presents nonlocal elasticity and TSDT theory.

Shear locking and its remedy is described in section 7. Numerical examples using the proposed

element are presented in Section 8 to showcase the novelty of the proposed element and at last,

some concluding remarks are given in section 9.
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Figure 1. Voronoi diagram of a point P (x) which has six natural neighbors. The distance measures are
ej(x) and dj(x).

2. INTERPOLATION OVER AN ARBITRARY n-GON

For an arbitrary convex n-gon, the barycentric form of C0 Lagrange interpolants based on the

distance measure associated with the Voronoi is constructed as discussed here. Let P (x) be any

point inside the polygon. The point has n natural neighbors (see Figure 1). The circumcenter of

the circle, that is formed by circumscribing the triangle obtained by any two consecutive natural

neighbors and P (x) is shown in red. if ej(x) is the Voronoi edge length associated to point P (x)
and node j and, dj(x) is the distance between point P (x) and j , then the weight related to these

two distance measures about the point P (x) is given by

αj(x) =
ej(x)

dj(x)
, x ǫ R2 (1)

This article is protected by copyright. All rights reserved.
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and the Lagrange interpolation function φLi (x) is defined as

φLi (x) =
αi(x)
n
∑

j=1

αj(x)

, x ǫ R2 (2)

0

0

0

0

Figure 2. Canonical element for (a) pentagon (b) Hexagon (c) Heptagon (d)Octagon

Shape functions are computed over a canonical element, as it facilitates numerical integration

and makes the computation of integrals easy. Canonical elements for different n-gons are shown

in Figure 2, where n-gons are inscribed in a unit circle. This is analogous to the natural coordinate

system for quadrilateral elements [76]. Let us define J = ∂x
∂ξ

as the Jacobian matrix from physical

element to canonical element, (see Figure 2). The derivatives of the shape function in the physical

space is given by the relation ∇φLi = J−1∇ξφ
L
i , where ∇ξ is the gradient in the natural coordinate

system. Double derivatives in the physical coordinates are also calculated in the same fashion,

where the transformation matrix elements are functions of previous Jacobian matrix elements [76].

Here we relate every physical polygon to their respective canonical form, which facilitates the

computation of the Lagrange shape function in barycentric form at every point on the polygon.

The second derivatives of the basis functions in the physical coordinate system (x, y) are related to

This article is protected by copyright. All rights reserved.



A
c
c
e
p

te
d

A
r
ti

c
le

6

the local coordinates (ξ, η) as follows
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where xe and ye are the coordinates in the physical space and are given by

xe =
n
∑

i=1

φeixi and ye =
n
∑

i=1

φeiyi

φei and ψei are the C0 and C1 shape functions respectively in (ξ, η) coordinate.

3. C1 INTERPOLANTS OVER AN n-SIDED POLYGONAL FINITE ELEMENT

Galerkin weak form of the laminated plate bending governing equations (see 21-25), based on

nonlocal nonlinear TSDT, contains the transverse displacement and their higher order derivatives.

So, the basis function we use for the formulation must have C1 continuity between the edges of

the elements. The C0 Lagrange basis functions obtained in the previous section would be used for

deriving C1 Laplace basis function by embedding it in Bernstein-Bezier patch, following a degree

elevation algorithm as given by de Boor algorithm[77]. An mth degree Berstein-Bezier surface over

the simplex is represented as

c(ξ) =
∑

|i|=m

Cmi (ξ)ci (3)

where, ci is the Bezier ordinate corresponding to control point i/m. The control points over an

n-sided polygons are shown in Figure 3(a) and Figure 3(b).

Cmi (ξ) are Bernstein polynomials in n-variables.

Cmi (ξ) =

(

m

i

)

(ξ1)
i1(ξ2)

i2 ...(ξn)
in (4)

where,
(

m

i

)

=
m!

i1!i2!...in!
(5)

ξ1,ξ2... ξn are the barycentric coordinates and satisfy the property
∑

i

ξi = 1 .

This article is protected by copyright. All rights reserved.
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0,0,0,1,2,0
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0,0,0,0,2,1

0,0,0,0,1,2

0,0,0,0,0,3

1,0,0,0,0,2

2,0,0,0,0,1

3,0,0,0,0,0
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1,1,0,0,1,0

0,0,1,0,0,2

0,0,1,1,0,1 0,1,0,1,1,0

0,0,2,0,0,1

1,0,2,0,0,0

1,0,1,0,0,0

2,0,1,0,0,0

(a)

3,0,0,0,0

0,3,0,0,0

0,0,3,0,00,0,0,3,0

0,0,0,0,3

2,0,0,0,1

1,0,0,0,2

2,1,0,0,0

1,2,0,0,0

0,0,0,1,2

0,0,0,2,1

0,0,1,2,0 0,0,2,1,0

0,1,2,0,0

0,2,1,0,0
1,0,0,1,1

(b)

Figure 3. Control points in a Bezier patch (a) Bezier patch ordinates defined on a regular hexagon (b) 3D
Bezier ordinates defined on a pentagon.

If φ(x, y) = (φ1(x, y), φ2(x, y)...φn(x, y)) are the C0 interpolants in 2-D, and we use φ(x, y)
in the place of ξn, (n = 1, 2, 3...n) in equation (4), it degree elevates and forms Bezier surface

accordingly. There are (n2)+
(

n
k

)

points in the surface which are called as tangent and central control

points, except the n nodal points. The central ordinates depend upon the average value of the nodal

ordinates and tangent ordinates. Such a procedure is helpful to ensure the continuity of derivatives

at the control points and along the edges of the n-gon. This results in C1 interpolants at the corner

nodes of the polygon. The Bezier ordinates are shown in Figure 3. Empty circles at each node of

the polygon are known as nodal ordinates and the filled circles in between any two node represent

tangent ordinates whereas, others represent central ordinates. For cubic Bernstein Bezier patch, we

will select m = 3. Here the C0 shape functions are raised to the power of the degree of the simplex

considered and are elevated via de Boor’s algorithm (see equation (4)). Hence for cubic simplex

with m = 3, equation (4) becomes

w3(φ) =
∑

|i|=3

C3
i (φ)ci (6)

w3(φ) gives us the C1 shape function. It is continuously differentiable as the C0 shape functions are

raised to the third degree. It satisfies the property of quadratic completeness, in turn, gives double

derivative as a constant curvature for the fourth order partial differential equations. In a particular

line connecting node ′i′ to any other (n− 1) nodes, tangent Bezier ordinates are dependent on the

nodal values and its gradients (w.r.t x and y). The vertex ordinates are same as the nodal values at

that particular node. Let the transverse displacement is w(x, y), the directional derivatives along d

at (x, y)I and along d̂ at (x, y)J can be written as follows
∂w(x,y)I

∂d
= ∇w(x, y).d = ∂w(x,y)

∂x
(xJ − xI) +

∂w(x,y)
∂y

(yJ − yI ) = θIx(xJ − xI) + θIy(yJ −

yI)

∂w(x,y)J
∂d̂

= ∇w(x, y).d̂ = −(∂w(x,y)
∂x

(xj − xi) +
∂w(x,y)
∂y

(yj − yi)) = −(θjx(xj − xi) +

θjy(yj − yi))

This article is protected by copyright. All rights reserved.
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The gradients are related to Bezier ordinates as follows,

∂w(x, y)I
∂d

= 3(ci − cj), i = 2eI + eJ , j = 3eI

∂w(x, y)J

∂d̂
= 3(ci − cj), i = 2eJ + eI , j = 3eJ

b2eIeJ =
1

3
(θIx(xJ − xI) + θIy(yJ − yI )) + w(x, y)I (7)

beI2eJ =
1

3
(θJx(xJ − xI) + θJy(yJ − yI )) + w(x, y)J (8)

From the above, tangent ordinates relate to the nodal values and gradient values. Similarly, the center

ordinates are related to the all other ordinates which in turn gives the idea of a transformation matrix

[T ] that relates the nodal values to the tangent ordinates as given below

w3(φ) = {C(φ)}T{c} = {C(φ)}T [T ]{w} = {Ψ(φ)}T {w} (9)

where {c} = [T ]{w}, {Ψ(φ)}T = {C(φ)}T [T ] and {Ψ(φ)} are the C1 interpolation functions

obtained. The construction of [T ] matrix has similar procedure for different n-sided n-gon. The

transformation matrix has 3n columns, n rows for nodal ordinates, (n2 − n) rows for tangent

ordinates and
(

n
3

)

rows for center ordinates. The plot of C0 Laplace shape functions is shown

in Figure 4. The plot of C1 shape functions and its derivatives are given in Figure 5, 6 and 7

respectively. The distribution of various other types of C0 shape functions over polygonal domain

as discussed in detail in [78] are shown in Figure 8.

Figure 4. C0 Lagrange shape function for an hexagonal element.

Figure 5. C1 Lagrange shape function for an hexagonal element.

This article is protected by copyright. All rights reserved.
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Figure 6. Derivative of C1 Lagrange shape function with respect to y.

Figure 7. Derivative of C1 shape function with respect to x.

This article is protected by copyright. All rights reserved.
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Floater interpolant

Malsch interpolant

Warren interpolant

Wachspress interpolant

Laplace interpolant

Figure 8. Comparison of the presented interpolants φ∗I : isoline plots for a canonical polygonal domain Ω0
(left column) and a physical polygonal domain Ω (right column).
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For generation of polygonal meshes, we use a simple method to generate polygonal elements

from any arbitrary domain, using information about domain geometry and centroidal Voronoi

tessellation (CVT) concept ( see [66] and [19]). Lloyd’s algorithm ensures optimal distribution of

points throughout the domain and hence gives high-quality mesh. More number of iteration can be

taken to get a regularized mesh. The method is similar to polymesher [79]. Balaji et al.[66] used

this method for different geometries and applied region wise adaptive strategy to obtain graded

polygonal meshes for plane elasticity problems. In this work we have used this method to generate

the polygonal meshes.

4. NUMERICAL INTEGRATION OVER n− SIDED POLYGONAL ELEMENT

To integrate the stiffness terms (as given in Appendix-3) over polygons, various methods has been

discussed in section 1. Among them, the method of partitioning of the canonical element into

n number of sub-triangles is used in this study where n is the number of sides of the polygon.

Canonical element for different polygons is given in Figure 2. Gauss points are obtained from the

background triangular subdomains by dividing the canonical element to n sub-triangles. 3, 6, 13, 25

number of integration points can be taken in each sub-triangle. Figure 9 illustrates this procedure.

The position of different Gauss points are shown in Figure 10. Mathematically,

∫

Ω

ψdΩ =
∑

N

∫

Ω̄

ψdΩ̄

=
∑

N

∫

Ω̄0

ψ|J |dΩ̄0

=
∑

N

∫

Ω̄⊳

ψ|J ||J⊳|dη̄dξ̄

1

1

1

1

J

0

0

J

J J

Figure 9. Partition of pentagonal element in to n sub triangles and mapping of quadrature points.

This article is protected by copyright. All rights reserved.
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(a) (b) (c) (d)

Figure 10. Illustration of Gauss point locations in an hexagonal element (a) One point Gauss rule (b) 3 point
Gauss rule (c) 6 point Gauss rule (d) 13 point Gauss rule.

where n is the number of Gauss points considered. Gauss points in the canonical element are

obtained from the background triangle by following a two step transformation as shown in Figure 9.

ξ =

j=3
∑

j=1

Njξj , η =

j=3
∑

j=1

Njηj

where ξj , ηj are the coordinates of Gauss points in the background triangle element, (see Figure 9).

In the following section we discuss on how the proposed polygonal finite element is used for a

nonlocal nonlinear formulation for analysis of thick plates and laminates using the TSDT.

5. NONLOCAL ELASTICITY

In the standard continuum theory, the material is assumed to be continuous at the macro scale and

the behavior of the material is characterized by local constitutive laws in which the stress at a point

depends on the strain at that point only. The effect of the neighborhood is neglected in the classical

continuum theory. Since the macroscopic behavior depends on the material behavior at lower length

scales, it is important to capture the underlying mechanisms that are happening at that smaller length

scales. To capture such behavior, it is required to use continuum theories that are regularized, in a

sense that, local character of the stress-strain relation is abandoned and the constitutive equations

become nonlocal. The effect of nonlocality can be introduced by spatial averages of stress or strain

in the constitutive models. The idea of nonlocality is first attributed to the works of Eringen[80] and

Kröner [81]. These models are also found to capture the size effects observed in experiments, by

capturing the interatomic and intermolecular forces.

Nonlocal stress tensor σnl at point x as per Eringen [82] is given by:

σnl(x) =

∫

χ(|x′ − x|, κ)σ(x′) dv′ (10)

where χ(|x′ − x|, κ) is the Kernel function and σ(x′) is known as macroscopic stress tensor at x′.

τ is the material parameter which is a function of internal and external characteristic lengths. Kernel

function in 2D can be written as follows,

χ(|x|, κ) = (πτl2)−1exp(−x.x/l2κ) (11)

Equation (10) can also be written in differential form as

(

1− κ2l2∇2
)

σnl = σ (12)

where a and l are the internal and external characteristic lengths, respectively (see [3]),κ =
(e0a)

2

l2
,

e0 is a material constant. µ is the nonlocal parameter having value κ2l2.
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6. THIRD ORDER SHEAR DEFORMATION THEORY

The in-plane displacements of the Reddy third-order shear deformation theory (see [1, 2]) are

expanded up to cubic in thickness ordinate, while the transverse displacement is assumed to be

independent of the thickness coordinate (i.e., transverse normals are inextensible). This leads to

the quadratic variation of the transverse shear strains and shear stresses. Thus, the theory avoids

introduction of any shear correction factors, unlike in first-order shear deformation theory (FSDT).

Displacement field

Kinematics of TSDT can be written as

u(x, y, z) = u0(x, y) + zφx −
4z3

3h2

(

φx +
∂w0

∂x

)

v(x, y, z) = v0(x, y) + zφy −
4z3

3h2

(

φy +
∂w0

∂y

)

(13)

w(x, y, z) = w0(x, y)

where (u0, v0, w0) are the displacements of the point on the mid plane in the in-plane directions. (i.e.,

z = 0). φx and φy represent the rotations of a transverse normal line at the mid-plane (φx = ∂u
∂z

and

φy =
∂v
∂z

). h is the total thickness of the plate. Strain displacement relationships for TSDT are given

in Appendix-1 and lamina constitutive relationships are given in Appendix-2.

Governing equations

Following the principle of virtual displacements, the equilibrium equations of TSDT are obtained

as follows ( the nonlocality in the nonlinear terms is neglected)

∂Nnl
xx

∂x
+
∂Nnl

xy

∂y
= 0 (14)

∂Nnl
xy

∂x
+
∂Nnl

yy

∂y
= 0 (15)

∂Q̄nlx
∂x

+
∂Q̄nly
∂y

+
∂

∂x

(

Nnl
xx

∂w0

∂x
+Nnl

yy

∂w0

∂y

)

+
∂

∂y

(

Nnl
xy

∂w0

∂x
+Nnl

yy

∂w0

∂y

)

(16)

+ c1

(

∂2P nlxx
∂x 2 + 2

∂2P nlxy
∂x ∂y

+
∂2P nlyy

∂y2

)

+ q = 0

∂M̄nl
xx

∂x
+
∂M̄nl

xy

∂y
− Q̄nlx = 0 (17)

∂M̄nl
xy

∂x
+
∂M̄nl

yy

∂y
− Q̄nly = 0 (18)

where c1 = 4
3h2 and

M̄nl
αβ =Mnl

αβ − c1P
nl
αβ, Q̄nlα = Qnlα − c2R

nl
α , c2 = 3c1

Local and nonlocal stress resultants are related as:

L(Nnl
αβ) = Nαβ , L(Mnl

αβ) =Mαβ, L(P nlαβ) = Pαβ L(Qnlα ) = Qα, L(Rnlα ) = Rα (19)
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Where,

{

Nαβ
Mαβ

Pαβ

}

=

∫ h
2

−h
2

σαβ

{

1
z
z3

}

dz,

{

Qα
Rα

}

=

∫ h
2

−h
2

σαz

{

1
z2

}

dz,L = (1− µ∇2) (20)

where x and y are replaced by α and β. q is the transverse load. Definition of stress resultants and

subsequent constitutive equations are presented in Appendix-4.

Finite element model

The weak forms of nonlocal governing equations ((104)) - ((108)) given in Appendix-4 are:

∫

Ωe

[

Nxxδu0,x +Nxyδu0,y
]

dxdy−

∮

Γe

(n̂xNxxδu0 + n̂yNxyδu0)ds = 0 (21)

∫

Ωe

[

Nxyδv0,x +Nyyδv0,y
]

dxdy−

∮

Γe

(n̂xNxyδv0 + n̂yNyyδv0)ds = 0 (22)

∫

Ωe

{

Q̄xδw0,x + Q̄yδw0,y + (Nxx
∂w0

∂x
+Nxy

∂w0

∂y
)δw0,x + (Nxy

∂w0

∂x
+Nyy

∂w0

∂y
)δw0,y

− c1(Pxxδw0,xx + Pyyδw0,yy + 2Pxyδw0,xy)− [1− µ∇2]qδw0

}

dxdy

−

∮

Γ

{

(Q̄xn̂x + Q̄yn̂y)δw0 + (Nxx
∂w0

∂x
+Nxy

∂w0

∂y
)n̂xδw0 + (Nxy

∂w0

∂x
+Nyy

∂w0

∂y
)n̂yδw0

+ c1

[

∂Pxx
∂x

n̂x +
∂Pyy
∂y

n̂y + (
∂Pxy
∂x

n̂y +
∂Pxy
∂y

n̂x)

]

δw0ds

− c1

[

Pxx
∂δw0

∂x
n̂x + Pyy

∂δw0

∂y
n̂y + (Pxy

∂δw0

∂x
n̂y + Pxy

∂δw0

∂y
n̂x)

]}

ds = 0 (23)

∫

Ωe

(

Q̄xδφx + M̄xδφx,x + M̄xyδφx,y

)

dxdy −

∮

Γe

(

Mxxn̂xδφx +Mxyn̂yδφy

)

ds = 0 (24)

∫

Ωe

(

Q̄yδφy + M̄yδφy,y + M̄xyδφy,x

)

dxdy−

∮

Γe

(

Myyn̂yδφy +Mxyn̂xδφx

)

ds = 0 (25)

Finite element approximations

Observation of the weak forms results in the following primary variables,

{

u, v, w,
∂w

∂x
,
∂w

∂y

∂2w

∂x∂y
, φx, φy

}

The weak form requires C0 approximation for, (u, v, φx and φy) and C1 approximation for w.

Herein, we use C0 and C1 Laplace shape functions for u, v, φx , φy and w respectively. The

approximations are given as

u(x, y) ≈

m
∑

j=1

Ujψ
(1)
j (x, y) (26)
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v(x, y) ≈

m
∑

j=1

Vjψ
(1)
j (x, y) (27)

w(x, y) ≈

n
∑

j=1

∆̄jϕj(x, y) (28)

φx(x, y) ≈

n
∑

j=1

Xjψ
(2)
j (x, y) (29)

φy(x, y) ≈

n
∑

j=1

Yjψ
(2)
j (x, y) (30)

( )x ,, ,y, ,

(a)

( )x y, , yx, , , ,

(b)

Figure 11. n− sided polygonal finite element (a) non-conforming element (b) conforming element.

Where ψ
(1)
j (x, y) and ψ

(2)
j (x, y) are C0 continuous Laplace interpolants. ϕj(x, y) are C1

continuous Laplace interpolants. The finite element equations are obtained by substituting the

approximations given in equations (26)–(30) into the weak forms in equations (21)–(25). The

degrees of freedoms are shown in Figure 11 for a conforming and nonconforming polygonal

element. The final form of equation can be written as follows.

K∆ = F (31)
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The values of stiffness matrix coefficients and force vector terms are defined in Appendix-3.

Newton Raphson method is invoked to solve the nonlinear equations. Algorithm for the same is

presented in the Appendix-3.
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7. SHEAR LOCKING

When an element is subjected to bending, it suppose to represent the curvature for it. The

strain profile in any element is dependent on the approximation function used for it. With linear

approximations for transverse displacement, it results in constant strain, which is undesirable if the

element is subjected to bending. As a result, the energy corresponding to bending becomes zero

and it becomes resistant to any bending. Here, the rotation is becoming inconsistent with what

is predicted by transverse displacement. In this case, member reaches equilibrium faster than it

would in reality. This phenomena happens when the member is thin. In thick members, the effect

is negligible as the transverse shear stresses is not equal to zero. In the mathematical perspective,

when both continuity and completeness in the approximation for the primary variable are satisfied,

some elements do not represent the transverse shear strains correctly. In other words, for the

chosen approximation function, strain profile is inconsistent with the bending energy expression.

This results in additional shear stress which is actually not present in the member. This is known

as shear locking. This phenomena is predominant in numerical analysis of bending problems in

plate and beams. In this context, the transverse shear energy expression for TSDT is analyzed (

see equation 32). In thin plate limits, the value of a/h becomes very large and the contribution of

shear terms to the stiffness has to be zero. This puts a constraint on the two terms (see equation

34) inside the equation (33) to be zero, which represents the transverse shear energy term for HSDT.

1

2

∫

Ωe

(Q̄44γ
2
yz + Q̄45γyzγxz)dxdy+

1

2

∫

Ωe

(Q̄55γ
2
xz + Q̄45γyzγxz)dxdy (32)

1

2

∫

Ωe

(1− c2)
2[Q̄44(

∂w

∂y
+ φy)

2 + 2Q̄45(
∂w

∂y
+ φy)(

∂w

∂x
+ φx) + Q̄55(

∂w

∂x
+ φx)

2]dxdy (33)

∂w

∂x
+ φx = 0,

∂w

∂y
+ φy = 0 (34)

But equation (34) does not satisfy in a discretized sense. In other words, when we calculate

numerically, it does not satisfy the shear terms to get vanished. Hence we say that locking occurs.

As a result, the element exhibits additional stiffness against bending. This issue has been addressed

in earlier works (see [83] and [84]). For Mindlin plates formulation, the bending and shear terms can

be separated to avoid locking [85]. This was also studied in the context of meshless methods for the

same Mindlin formulation [86]. This is extended for laminated composites [87], shear deformable

shell elements for composite structures [88] and for triangular plate elements [89]. Two methods

i.e., reduced integration and consistent interpolation technique are used in the present work to get

rid of locking in elements and explained below.

1. Reduced integration: This method treats ∂w
∂x

, ∂w
∂y

, φx and φy terms in equation (33) with same

degree of approximation. This is achieved by taking lesser number of integration points to calculate

the shear energy term. By doing this, it is ensured that the terms in shear energy expression gives

lesser contribution to the stiffness. The method is known as reduced integration. Phan et al.[74]

used reduced integration and found the result to be the same when full integration is used for TSDT,

hence ensuring that locking is not present. In this study, the proposed polygonal plate bending

element has been tested for thin plate limits with reduced integration. Results for this method has

been discussed in the numerical example (section 8).

2. Consistent interpolation: This procedure is based on taking the degree of approximation for φ,
∂w
∂x

and ∂w
∂y

to be same in the shear energy term. By doing this, it is ensured that, both shear energy

and bending energy terms gets integrated correctly for any number of Gauss points. This method is

known as consistent interpolation. Here, the approximation for φx and φy is taken as the derivative
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of C1 shape function which are quadratic in nature. Hence they are consistent with ∂w
∂x

and ∂w
∂y

,

because w is cubic. This allows the terms to get integrated as per their degree of approximation

hence the element captures kinematics of deformation. A parametric study has been conducted to

demonstrate the effect of this method and presented in numerical examples section 8.

8. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present numerical examples to demonstrate the efficiency of the proposed

polygonal finite element. First we demonstrate through a linear analysis example that the polygonal

elements give relatively more accurate solutions than the conventional elements and closer to

analytical solutions. As a second case we perform a displacement patch test to show the convergence

of the solution. The effect of numerical integration scheme on shear locking is studied in next

example. We finally compare the results obtained with various nonlocal parameters to demonstrate

the effect of nonlocality and nonlinearity on the bending behavior of laminated composite plates.

Different boundary conditions and lamination schemes are considered. The discretization of the

domain is made using the proposed n-sided polygonal element. The analysis is performed for

various values of nonlocal parameters. Each node has 5 degrees of freedom (Figure 11). Simply

supported boundary conditions of SS-1 (Figure 15) and SS-3 (Figure 14) type are considered. The

effect of lamination scheme is also considered as a parameter in this study. Plots for stresses and

maximum deflection are shown. Different value of a/h is taken to study the effect of it on the

deflection value. The dimensionless center deflection considered in the analysis is given by

w̄ =
w
(

a
2 ,

b
2 , 0
)

E2h
3

q0a4
(35)

where a, b, h are the length, breadth, and thickness of the plate respectively and q0 is the intensity

of the transverse distributed load.

8.1. Example 1

A square cross-ply symmetric (0◦/90◦/90◦/0◦) (see Figure 13(b)) laminated plate of length a=5 units

is considered for analysis. The laminate made of equal thickness layers each of 0.125 units. The a/h
ratio of the plate is taken as 10. The plate is subjected to a distributed load of maximum amplitude of

1 unit varying sinusoidally. Simply supported boundary condition of SS-3 type as shown in Figure

14 is considered. The domain is discretized using polygonal elements as shown in Figure 13(a). The

nonlocal parameter is taken as 0 and 1 and the results are compared with those obtained from FEM

[90]. Material properties considered are given below:

E1/E2 = 25, G12/E2 = 0.5, G23/E2 = 0.2, G12 = G13, ν12 = 0.25, ν12 = ν13
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log10(dof)

lo
g 1

0
(w
/
w
e
x
−
1
)

Q4 [32]

Poly FEM

T3 [91]

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

(a)

log10(dof)

lo
g 1

0
(M

x
/M

x
e
x
−
1
)

Q4 [32]

Poly FEM

T3 [91]

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

(b)

Figure 12. Convergence test (a) Convergence in the transverse displacement (w). (b) Convergence in the
central moment (M).
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(a) (b)

θ
=
9
0
°

θ=
0°

θ
=
9
0
°

θ=
0°

Midplane

(c)

Figure 13. (a) Polygonal mesh discretization of square plate with 12 elements. (b) Boundary condition of
the plate. (c) Geometry of 4 layer cross-ply (0◦/90◦/90◦/0◦) laminate.

This article is protected by copyright. All rights reserved.



A
c
c
e
p

te
d

A
r
ti

c
le

20

x

y

a

b

SS-3

y = 0 and y = b

u0 = v0 = w0 = 0

M̄xy = M̄yy = 0

x = 0 and x = a

u0 = v0 = w0 = 0

M̄xy = M̄xx = 0

Figure 14. SS-3 Boundary conditions

x

y

a

b

SS-1

y = 0 and y = b

w0 = u0 = φx = 0

N̄yy = M̄yy = 0

x = 0 and x = a

w0 = v0 = φy = 0

N̄xx = M̄xx = 0

Figure 15. SS-1 Boundary conditions
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Table I. Linear analysis for dimensionless central deflection (w̄) of the laminated (0◦/90◦/90◦/0◦) plate under
sinusoidal load.

a
h

Method w̄

10 Analytical [2] 0.6627

FEM-HSDT [1] 0.7147

FSM-HSDT [92] 0.7149

RBF-PS [93] 0.7203

Layerwise [94] 0.7309

IGA-TSDT [95] 0.7359

PRMn-PL[32] 0.7218

4 noded- REC[90] 0.7150

PolyFEM-Present work 0.6958

20 Analytical [2] 0.4912

FEM-HSDT [1] 0.5060

FSM-HSDT [92] 0.5061

RBF-PS [93] 0.5113

Layerwise [94] 0.5121

IGA-TSDT [95] 0.5170

PRMn-PL[[32]] 0.5096

4 noded- REC[90] 0.5060

PolyFEM-Present work 0.4953

Table II. Comparison of dimensionless central deflection of a laminated plate (0◦/90◦/90◦/0◦) plate for µ=0
and µ=1 under sinusoidal load. The comparison made with the standard FEM using 4-noded elements [90]

for various load factor during nonlinear analysis.

Load value
µ = 0 µ = 1

FEM[90] PolyFEM -Present FEM[90] Poly FEM- Present

0.005 0.00282 0.00237 0.00405 0.00362

0.01 0.00431 0.00389 0.00579 0.00549

0.02 0.00610 0.00583 0.00785 0.00779

0.03 0.00729 0.00716 0.00925 0.00936

0.04 0.00824 0.00820 0.01034 0.01059

0.05 0.00899 0.00907 0.01125 0.01162

0.10 0.01173 0.01216 0.01451 0.01530

0.25 0.01636 0.01738 0.02011 0.02157

0.50 0.02091 0.02247 0.02561 0.02769

0.75 0.02408 0.02600 0.02946 0.03195

1.00 0.02661 0.02880 0.03252 0.03533
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L
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Dimensionless central deflection (w̄)

FEM, µ = 0

FEM, µ = 1

FEM, µ = 3

Poly FEM, µ = 0

Poly FEM, µ = 1

Poly FEM, µ = 3
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1

Figure 16. Comparison between standard finite element method and polygonal finite element method for the
(0◦/90◦/90◦/0 ) plate for various length scales with SS3 boundary condition.

Table I compares the dimensionless central deflection obtained by linear analysis with that of

analytical solution [2] and other standard finite element solution [1]. The deflections are also

compared against the values obtained using the standard finite element [92] with the selective

integration and with other meshless methods[93]. A comparison is also made with layerwise

theories [94] and isogeometric analysis [95]. It is clearly seen from Table I that the results obtained

from the present work are closer to the analytical solution compared to the solution obtained from

other methods.

Displacement patch test

Patch test is necessary and sufficient condition for ensuring the convergence of the proposed

polygonal element. First, we check the ability of the element in reproducing linear field. For this

purpose, we carry out displacement patch test for both inplane and out of plane deformations. The

analysis is performed on sufficient discretization with 20, 40, 80 and 500 (see Figure 18) elements

in the analysis. A displacement field of ux = Xi and uy = Yi is applied on the boundary for inplane

behavior. Convergence is first studied for the inplane degrees of freedom. L2 and H1 norms in the

displacement are computed and given in Table III. The expression for L2 and H1 norm are given by

||u− uh||L2(Ω) =

√

∫

Ω

[u− uh]T [u− uh]dΩ (36)

||u− uh||H1(Ω) =

√

∫

Ω

[u− uh]T [u− uh]dΩ+

√

∫

Ω

[∇u−∇uh]T : [∇u−∇uh]dΩ (37)
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Figure 17. A square domain of unit length for displacement patch test.

(a) (b)

(c) (d)

Figure 18. Different polygonal meshes used for displacement patch test. (a) 20 elements (b) 40 elements (c)
80 elements (d) 500 elements

It is observed from Table III that a quadratic convergence in inplane displacement values is

obtained for both L2 and H1 norms of the solution. Convergence test for transverse deflection

w and bending moment M are studied by taking different number of elements (See Figure.12).

SS3 symmetric boundary condition is used and (0◦/90◦/90◦/0◦) laminate pattern is considered with

a/h equal to 10. The results are compared with studies from standard triangular and quadrilateral

elements reported in literature [91]. It is observed that the proposed polygonal element has better

convergence characteristics than triangular and quadrilateral elements.
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Table III. L2 and H1 error norms for different patches from displacement patch test.

Mesh Elements L2 Norm H1 Norm

a 10 1.7884 × 10−3 7.14× 10−2

b 20 4.4467 × 10−4 4.48× 10−4

c 40 3.0629 × 10−6 2.76 × 10−6

d 80 1.6312 × 10−8 2.92 × 10−8

d 500 2.4912 × 10−12 1.192× 10−12

Nonlinear analysis

Table II gives the values of dimensionless central deflection of the plate for nonlinear analysis.

It is observed that the results obtained from polygonal FEM are higher than those obtained from

standard finite element. This clearly is seen at higher nonlocal parameter values of µ=1, indicating

the increase in flexibility obtained from polygonal finite element method. Figure 16 depicts effect

of various nonlocal parameter on the deflection of plate. As the value of the nonlocal parameter

is increased, the deflection becomes more as compared to standard finite element results. Figure

19 shows the effect of E1/E2 on the deflection values for various values of nonlocal parameter.

It is observed that at lower E1/E2 ratio, the central deflection is higher and at larger values of

E1/E2 ratio, the deflection values are lower. Comparison between Polygonal FEM and standard

FEM is shown in Figure 16 for load-deflection behavior. Figure 20 shows the variation of central

displacement with a/h ratio for various values of nonlocal parameter. At lower a/h values, the

nonlocal parameter has a significant effect on the dimensionless central deflection. At higher values

of a/h ratio, this effect is not much pronounced.

E1/E2

µ = 0
µ = 1
µ = 3
µ = 5
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(w̄
)

5 10 15 20 25 30 35 40
0.005

0.010

0.015

0.020
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Figure 19. Deflection versus E1/E2 plots for (0◦/90◦/90◦/0 ) plate with SS-3 boundary condition.
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Figure 20. a/h ratio vs central deflection for various nonlocal parameter in the (0◦/90◦/90◦/0 )plate with
SS-3 boundary condition.

T
h
ic

k
n
es

s
o
f

th
e

p
la

te

Non dimensionalized stress

µ = 0

µ = 1

µ = 3

µ = 5

-1 -0.75 -0.5 0.5 0.75 1

0

0

-0.1

0.1

0.2

-0.2

0.25

0.25
-0.25

-0.25

Figure 21. Variation of σyy at x = a/2, y = a/2 along the thickness of (0◦/90◦/90◦/0 ) laminate for various
nonlocal parameters (µ).
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Figure 22. Variation of σxx at x = a/2, y = a/2 along the thickness of (0◦/90◦/90◦/0 ) laminate for various
nonlocal parameters (µ).
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Figure 23. Variation of σxz through the thickness for (0◦/90◦/90◦/0) laminate for various nonlocal
parameters (µ).
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Figure 24. Variation of σyz through the thickness of a (0◦/90◦/90◦/0) laminate for various nonlocal
parameters (µ).

For analyzing stress at a given point in the plate, various points along the thickness direction of

the laminate are considered and plotted for an unit value of applied load. The stresses are plotted

at x = a/2, y = a/2 for various values of nonlocal parameter as shown in Figure 21. The plots

clearly signify the importance of nonlocal parameter on the estimation of stress. Variation of (σxz)

and (σyz) is also shown in Figure 23 and Figure 24 respectively.

Example 2: Shear locking behavior

Various methods to eliminate locking behavior has been discussed in section 7 . Two different

discretized domain of 32 and 72 elements (see Figure 25) are taken to demonstrate the consistent

interpolation and reduced integration technique. A square cross-ply symmetric (0◦/90◦/90◦/0◦)

laminated plate of length a=5 units is considered. The laminate is made up of equal thickness layers

each of 0.125 units. The plate is subjected to sinusoidal load of unit intensity. The plate is analyzed

for thin plate limits and simply supported boundary condition of SS-3 type is considered. Material

properties of the plate considered are

E1/E2 = 25, G12/E2 = 0.5, G23/E2 = 0.2, G12 = G13, ν12 = 0.25, ν12 = ν13

. For reduced integration studies, the effect of various integration scheme by taking different number

of Gauss points in the background triangular subdomain is considered. The position of different

Gauss points is shown in Figure 10. Various combination of Gauss points are taken for full and

reduced integration. The dimensionless central deflection of the plate are given in Table IV for

various choices of integration schemes. It is observed that comparative values of central deflection

are obtained in thin plate limits for different combination of Gauss points. The results are also

compared with reference values from literature. Results for consistent interpolation procedure is

presented in Table V where we have taken the same number of Gauss points to integrate the bending

terms and the shear energy terms. It is observed that consistent interpolation gives the comparative

central deflection value irrespective of the number of Gauss points used. Hence, the method of

consistent interpolation proved to be efficient in eliminating shear locking in the proposed element.
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(a) 32 elements (b) 70 elements

(c) Boundary condition

Figure 25. Discretization considered to analyze plate for reduced integration and consistent interpolation
technique.

Example 3

A four-layer square symmetric cross-ply laminated plate (-45◦/45◦/45◦/-45◦) is considered for the

analysis. Dimension of the square plate is taken as a=5 units. Layers of equal thickness of 0.125
units is considered. The a/h ratio of the plate is taken as 10. The plate is subjected to sinusoidal load

of unit intensity. Simply supported boundary condition of SS-1 and SS-3 type are considered. The

domain is discretized using polygonal elements as shown in Figure 26(a). Orientation of an angle

ply is shown in Figure 26(c). The nonlocal parameter is taken as 0,1,3 and 5. Material properties

considered are given below:

E1/E2 = 25, G12/E2 = 0.5, G23/E2 = 0.2, G12 = G13, ν12 = 0.25, ν12 = ν13

Plots for dimensionless central deflection versus load are shown in Figure 27 and Figure 28

for various nonlocal parameter, considering SS-1 and SS-3 boundary condition respectively. It is

observed that SS-3 boundary condition makes the plate stiffer compared to SS-1 boundary condition.

Also the lamination scheme (-45◦/45◦/45◦/-45◦) has comparatively lesser deflection values than

(0◦/90◦/90◦/0◦) lamination scheme when same SS-3 boundary condition is taken (see example-1)

for various nonlocal parameter.
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Table IV. Effect of reduced integration on the deflection of plate.

Mesh B.C Integration Type Central deflection

32 elements SS3 F(3) 1.6945

SS3 F(3)R(1) 1.8466

SS3 F(6) 1.6725

SS3 F(6)R(3) 1.6701

SS3 F(13)R(13) 1.6788

SS3 F(13)R(6) 1.2145

70 elements SS3 F(3) 1.7373

SS3 F(3)R(1) 1.8578

SS3 F(6) 1.7198

SS3 F(6)R(3) 1.7094

SS3 F(13)R(13) 1.4229

SS3 F(13)R(6) 1.2309

F(M)R(N): ’M’ number of Gauss points in full integration (bending terms) and ’N’ Gauss point for

reduced integration (shear terms) considered in each triangular subdomain of the parent polygonal

element.

F(M): ’M’ number of Gauss points for both shear and bending terms.

Table V. Effect of consistent interpolation on the deflection of plate.

Mesh B.C Integration Type Central deflection

32 elements SS3 F(3) 1.6945

SS3 F(6) 1.6725

SS3 F(13) 1.4193

70 elements SS3 F(3) 1.6482

SS3 F(6) 1.6416

SS3 F(13) 1.6418

F(K): ’K’ number of Gauss points are taken for full integration in each triangular subdomain of the

parent polygonal element.
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(a) (b)

θ

1

1

Fiber 

(c)

Figure 26. (a) Polygonal mesh discretization of square plate with 70 elements. (b) Boundary condition of
the plate. (c) Geometry of an angle-ply oriented at angle θ.
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Figure 27. Load versus central deflection for (-45◦/45◦/45◦/-45 )plate with SS-1 boundary condition.
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Figure 28. Load versus central deflection for (-45◦/45◦/45◦/-45 )plate with SS-3 boundary condition.
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(a) (b)

Figure 29. (a) Polygonal mesh discretization of square plate with 70 elements. (b) Boundary condition. (c)
Geometry of 4 layer cross-ply (0◦/90◦/90◦/0◦) laminate.
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Figure 30. Load versus central deflection for (0◦/90 )plate with SS-1 boundary condition.

Example 4

A two-layer square symmetric cross-ply laminated plate (0◦/90◦) is considered with SS-1 type

boundary condition. Dimension of the square plate is taken as a=5 units. Layers of equal thickness

of 0.125 units is considered. The a/h ratio of the plate is taken as 10. Sinusoidal load of unit intensity
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is applied. Mesh discretization given in the Figure 29(a) is used. The nonlocal parameter is taken as

0,1,3 and 5. Material properties considered are given below:

E1/E2 = 25, G12/E2 = 0.5, G23/E2 = 0.2, G12 = G13, ν12 = 0.25, ν12 = ν13

Figure 30 shows the plot for dimensionless central deflection versus load for various nonlocal

parameters.

9. CONCLUSIONS

In this study, a locking-free n-sided C1 polygonal finite element is presented for nonlinear analysis

of laminated plates. The plate kinematics is based on Reddy’s third-order shear deformation theory

(TSDT) [1, 2]. The inplane displacements are approximated using barycentric form of Lagrange

shape functions. The weak-form Galerkin formulation based on the kinematics of TSDT requires

the C1 approximation of the transverse displacement over the polygonal element. This is achieved

by embedding the C0 Lagrange interpolants over a cubic Bernstein–Bezier patch defined over the

n-sided polygonal element. Such an approach ensures the continuity of the derivative field at the

inter-element edges. In addition, Eringen’s stress-gradient nonlocal [3] constitutive equations are

used in the present formulation to account for nonlocality. The effect of geometric nonlinearity is

taken by considering the von Kármán’ geometric nonlinearity. Examples are presented to show the

effect of nonlocality, geometric nonlinearity, and the lamination scheme on the bending behavior

of laminated composite plates. In linear analysis it is observed that polygonal finite elements

provide greater flexibility and better convergence. This is also confirmed from the patch test studies

on inplane displacements and convergence stuides on out of plane displacements. The effect of

reduced integration and consistent interpolation are found to improve the results of the polygonal

element. Eringens nonlocality is able to capture the length scale effects. The nonlocal parameter

(µ) has a greater effect in polygonal finite element framework than in finite element method. The

dimensionless central deflection and stress values increase, as we increase the nonlocal parameter

value. It has been shown from this study that n sided polygonal finite element method has more

advantages in terms of discretization and accuracy which is C1 continuous.

A. APPENDIX-1

Displacement field

In the third-order shear deformation theory, the displacement field is expanded up to third degree of

the thickness coordinate:

u(x, y, z) = u0(x, y) + zφx −
4z3

3h2

(

φx +
∂w0

∂x

)

v(x, y, z) = v0(x, y) + zφy −
4z3

3h2

(

φy +
∂w0

∂y

)

(38)

w(x, y, z) = w0(x, y)

where (u0, v0, w0) displacements of the point on the mid plane in the in plane directions. (i.e.,

z = 0). φx and φy represent the rotations of a transverse normal line at the mid-plane (φx = ∂u
∂z

and

φy =
∂v
∂z

). h is the total thickness of the plate.
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Strain–displacement relations

The Green–Lagrange strain components that account for the geometric nonlinearity in TSDT are
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=

{
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B. APPENDIX-2

Lamina constitutive relations

Since the laminate is made of several orthotropic layers, with their material axes oriented arbitrarily

with respect to laminate coordinates, the constitutive equations of each layer must be transformed to

the laminate coordinates (x, y, z). The transformed stress–strain relations in the laminate coordinates

(x, y, z) are given by







σxx
σyy
σxy







=





Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66











εxx
εyy
γxy







,

{

σyz
σxz

}

=

[

Q̄44 Q̄45

Q̄45 Q̄55

]{

γyz
γxz

}

(44)
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where

Q̄11 = Q11 cos
4 θ+ 2 (Q12 + 2Q66) sin

2 θ cos2 θ +Q22 sin
4 θ

Q̄12 = (Q11 +Q22 − 4Q66) sin
2 θ cos2 θ +Q12

(

sin4 θ + cos4 θ
)

Q̄16 = (Q11 −Q12 − 2Q66) sin θ cos
3 θ + (Q12 −Q22 + 2Q66) sin

3 θ cos θ
(45)

Q̄22 = Q11 sin
4 θ + 2 (Q16 + 2Q66) sin

2 θ cos2 θ +Q22 cos
4 θ

Q̄26 = (Q11 −Q12 − 2Q66) sin
3 θ cos θ + (Q12 −Q22 + 2Q66) sin θ cos

3 θ

Q̄66 = (Q11 +Q22 − 2Q12 − 2Q66) sin
2 θ cos2 θ +Q66(sin

4 θ + cos4 θ)

Q̄44 = Q44 cos
2 θ+Q55 sin

2 θ

Q̄45 = (Q55 −Q44) cos θ sin θ (46)

Q̄55 = Q44 sin
2 θ +Q55 cos

2 θ

where

Q11 =
E1

1− ν12ν21
, Q12 =

ν12E2

1− ν12ν21
, Q22 =

E2

1− ν12ν21
, Q66 = G12, (47)

Q16 = Q26 = 0, Q44 = G23, Q55 = G13 (48)

where θ is the orientation, measured in counterclockwise, from the fiber direction to the positive

x-axis, E1 and E2 are elastic moduli, ν12 and ν21 are Poisson’s ratios, and G12, G13 and G23 are the

shear moduli.

C. APPENDIX-3

The coefficients of the stiffness matrix in equation ((31)) are as follows:

K11
ij =

∫

Ωe

(

A11

∂ψ
(1)
j

∂x

∂ψ
(1)
i

∂x
+ A66

∂ψ
(1)
j

∂y

∂ψ
(1)
i

∂y
+ A16(

∂ψ
(1)
j

∂y

∂ψ
(1)
i

∂x
+
∂ψ

(1)
j

∂x

∂ψ
(1)
i

∂y
)

)

dxdy

(49)

K12
ij =

∫

Ωe

(

A12

∂ψ
(1)
j

∂y

∂ψ
(1)
i

∂x
+ A66

∂ψ
(1)
j

∂x

∂ψ
(1)
i

∂y
+ A16

∂ψ
(1)
j

∂x

∂ψ
(1)
i

∂x
+ A26

∂ψ
(1)
j

∂y

∂ψ
(1)
i

∂y

)

dxdy

(50)

K13
ij =

∫

Ωe

[

∂ψ
(1)
i

∂x

(

1

2
A11

∂w

∂x

∂ϕj
∂x

+
1

2
A12

∂w

∂y

∂ϕj
∂y

+
1

2
A16(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

) − c1E11
∂2ϕj
∂x2

− c1E12
∂2ϕj
∂y2

− 2c1E16
∂2ϕj
∂x∂y

)

+
∂ψ

(1)
i

∂y

(

1

2
A16

∂w

∂x

∂ϕj
∂x

+
1

2
A26

∂w

∂y

∂ψj
∂y

+
1

2
A66(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

) − c1E16
∂2ϕj
∂x2

− c1E26
∂2ϕj
∂y2

− 2c1E66
∂2ϕj
∂x∂y

)]

dxdy (51)

K14
ij =

∫

Ωe

[

∂ψ
(1)
i

∂x

(

B11

∂ψ
(2)
j

∂x
+ B16

∂ψ
(2)
j

∂y
− c1E11

∂ψ
(2)
j

∂x
− c1E16

∂ψ
(2)
j

∂y

)

+
∂ψ

(1)
i

∂y

(

B16

∂ψ
(2)
j

∂x
+ B66

∂ψ
(2)
j

∂y
− c1E16

∂ψ
(2)
j

∂x
− c1E66

∂ψ
(2)
j

∂y

)]

dxdy (52)
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K15
ij =

∫

Ωe

[

∂ψ
(1)
i

∂x

(

B12

∂ψ
(2)
j

∂y
+ B16

∂ψ
(2)
j

∂x
− c1E22

∂ψ
(2)
j

∂y
− c1E26

∂ψ
(2)
j

∂x

)

+
∂ψ

(1)
i

∂y

(

B26

∂ψ
(2)
j

∂y
+ B66

∂ψ
(2)
j

∂x
− c1E26

∂ψ
(2)
j

∂y
− c1E66

∂ψ
(2)
j

∂x

)]

dxdy (53)

K21
ij =

∫

Ωe

(

A12

∂ψ
(1)
j

∂x

∂ψ
(1)
i

∂y
+ A16

∂ψ
(1)
j

∂x

∂ψ
(1)
i

∂x
+ A26

∂ψ
(1)
j

∂y

∂ψ
(1)
i

∂y
+ A66

∂ψ
(1)
j

∂y

∂ψ
(1)
i

∂x

)

dxdy

(54)

K22
ij =

∫

Ωe

(

A22

∂ψ
(1)
j

∂y

∂ψ
(1)
i

∂y
+ A26(

∂ψ
(1)
j

∂x

∂ψ
(1)
i

∂y
+
∂ψ

(1)
j

∂y

∂ψ
(1)
i

∂x
) + A66

∂ψ
(1)
j

∂x

∂ψ
(1)
i

∂x

)

dxdy

(55)

K23
ij =

∫

Ωe

[

∂ψ
(1)
i

∂y

(

1

2
A12

∂w

∂x

∂ϕj
∂x

+
1

2
A22

∂w

∂y

∂ϕj
∂y

+
1

2
A26(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂y

) − c1E12
∂2ϕj
∂x2

− c1E22
∂2ϕj
∂y2

− 2c1E26
∂2ϕj
∂x∂y

)

+
∂ψ

(1)
i

∂x

(

1

2
A16

∂w

∂x

∂ϕj
∂x

+
1

2
A26

∂w

∂y

∂ϕj
∂y

+
1

2
A66(

∂w

∂x

∂ϕj
∂y

∂w

∂y

∂ϕj
∂y

)− c1E16
∂2ψj
∂x2

− c1E26
∂2ϕj
∂y2

− 2c1E66
∂2ϕj
∂x∂y

)]

dxdy (56)

K24
ij =

∫

Ωe

[

∂ψ
(1)
i

∂y

(

B21

∂ψ
(2)
j

∂x
+ B26

∂ψ
(2)
j

∂y
− c1E12

∂ψ
(2)
j

∂x
− c1E26

∂ψ
(2)
j

∂y

)

+
∂ψ

(1)
i

∂x

(

B16

∂ψ
(2)
j

∂x
+ B66

∂ψ
(2)
j

∂y
− c1E16

∂ψ
(2)
j

∂x
− c1E66

∂ψ
(2)
j

∂y

)]

dxdy (57)

K25
ij =

∫

Ωe

[

∂ψ
(1)
i

∂y

(

B22

∂ψ
(2)
j

∂y
+ B26

∂ψ
(2)
j

∂x
− c1E22

∂ψ
(2)
j

∂y
− c1E26

∂ψ
(2)
j

∂x

)

+
∂ψ

(1)
i

∂x

(

B26

∂ψ
(2)
j

∂y
+ B66

∂ψ
(2)
j

∂x
− c1E26

∂ψ
(2)
j

∂y
− c1E66

∂ψ
(2)
j

∂x

)]

dxdy (58)

K31
ij =

∫

Ωe

[

∂ϕi
∂x

(

A11
∂w

∂x

∂ψ
(1)
j

∂x
+A16

∂w

∂x

∂ψ
(1)
j

∂y
+A16

∂w

∂y

∂ψ
(1)
j

∂x
+ A66

∂w

∂y

∂ψ
(1)
j

∂y

)

+
∂ϕi
∂y

(

A12
∂w

∂y

∂ψ
(1)
j

∂x
+ A16

∂w

∂x

∂ψ
(1)
j

∂x
+A26

∂w

∂y

∂ψ
(1)
j

∂y
+A66

∂w

∂x

∂ψ
(1)
j

∂y

)

+
∂2ϕi
∂x2

(

−c1E11

∂ψ
(1)
j

∂x
− c1E16

∂ψ
(1)
j

∂y

)

+
∂2ϕi
∂y2

(

−c1E12

∂ψ
(1)
j

∂x
− c1E26

∂ψ
(1)
j

∂y

)

+
∂2ϕi
∂x∂y

(

−2c1E16

∂ψ
(1)
j

∂x
− 2c1E66

∂ψ
(1)
j

∂y

)]

dxdy (59)
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K32
ij =

∫

Ωe

[

∂ϕi
∂x

(

A12
∂w

∂x

∂ψ
(1)
j

∂y
+A16

∂w

∂x

∂ψ
(1)
j

∂x
+A26

∂w

∂y

∂ψ
(1)
j

∂y
+ A66

∂w

∂y

∂ψ
(1)
j

∂x

)

+
∂ϕi
∂y

(

A22
∂w

∂y

∂ψ
(1)
j

∂y
+ A66

∂w

∂x

∂ψ
(1)
j

∂x
+A26

∂w

∂x

∂ψ
(1)
j

∂y
+A26

∂w

∂x

∂ψ
(1)
j

∂x

)

+
∂2ϕi
∂x2

(

−c1E12

∂ψ
(1)
j

∂y
− c1E16

∂ψ
(1)
j

∂x

)

+
∂2ϕi
∂y2

(

−c1E22

∂ψ
(1)
j

∂y
− c1E26

∂ψ
(1)
j

∂x

)

+
∂2ϕi
∂x∂y

(

−2c1E26

∂ψ
(1)
j

∂y
− 2c1E66

∂ψ
(1)
j

∂x

)]

dxdy (60)

K33
ij =

∫

Ωe

[

∂ϕi
∂x

(

1

2
A11

(∂w

∂x

)2 ∂ϕj
∂x

+
1

2
A12(

∂w

∂y
)2
∂ϕj
∂y

+
1

2
A16

∂w

∂x
(
∂w

∂x

∂ϕj
∂y

+
∂w

∂x

∂ϕj
∂y

)

+
1

2
A16

∂w

∂x

∂w

∂y

∂ϕj
∂x

+
1

2
A26

(∂w

∂y

)2∂ϕj
∂y

+
1

2
A66

∂w

∂y
(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

) +A45
∂ϕj
∂y

+A55
∂ϕj
∂x

− 2c2D45
∂ϕj
∂y

− 2c2D55
∂ϕj
∂x

+ c22F45
∂ϕj
∂y

+ c22F55
∂ϕj
∂x

− c1E11
∂2ϕj
∂x2

∂w

∂x

− c1E12
∂2ϕj
∂y2

∂w

∂x
− 2c1E16

∂2ϕj
∂x∂y

∂w

∂x
− c1E16

∂2ϕj
∂x2

∂w

∂y
− c1E26

∂2ϕj
∂y2

∂w

∂y

− 2c1E66
∂2ϕj
∂x∂y

∂w

∂y

)

+
∂ϕi
∂y

(

1

2
A16

(∂w

∂x

)2 ∂ϕj
∂x

+
1

2
A26

∂w

∂y

∂w

∂x

∂ϕj
∂y

+
1

2
A66

∂w

∂x
(
∂w

∂y

∂ϕj
∂x

+
∂w

∂y

∂ϕj
∂x

) +
1

2
A12

(∂w

∂x

)2 ∂ϕj
∂x

+
1

2
A22

(∂w

∂y

)2∂ϕj
∂y

+
1

2
A26

∂w

∂y
(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

) +A44
∂ϕj
∂y

+ A45
∂ϕj
∂x

− 2c2D44
∂ϕj
∂y

− 2c2D45
∂ϕj
∂x

+ c22F44
∂ϕj
∂y

+ c22F45
∂ϕj
∂x

− c1E12
∂2ϕj
∂y2

∂w

∂x
− c1E12

∂2ϕj
∂x2

∂w

∂y
− 2c1E26

∂2ϕj
∂x∂y

∂w

∂y

− c1E16
∂2ϕj
∂x2

∂w

∂x
− c1E26

∂2ϕj
∂y2

∂w

∂x
− 2c1E66

∂2ϕj
∂x∂y

∂w

∂x

)

+
∂2ϕi
∂x2

(

−
1

2
c1E11

∂w

∂x

∂ϕj
∂x

−
1

2
c1E12

∂w

∂y

∂ϕj
∂y

−
1

2
c1E16(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

) + c21H11
∂2ϕj
∂x2

+ c21H12
∂2ϕj
∂y2

+ 2c21H16
∂2ϕj
∂x∂y

)

+
∂2ϕi
∂y2

(

−
1

2
c1E12

∂w

∂x

∂ϕj
∂x

−
1

2
c1E22

∂w

∂y

∂ϕj
∂y

−
1

2
c1E26(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

) + c21H12
∂2ϕj
∂x2

+ c21H22
∂2ϕj
∂y2

+ 2c21H26
∂2ϕj
∂x∂y

)

(61)

K34
ij =

∫

Ωe

[

∂ϕi
∂x

(

A55ψ
(2)
j − 2c2D55ψ

(2)
j + c22F55ψ

(2)
j + (B11 − c1E11)

∂w

∂x

∂ψ
(2)
j

∂x

+ (B16 − c1E16)
∂w

∂x

∂ψ
(2)
j

∂y
+ (B16 − c1E16)

∂w

∂y

∂ψ
(2)
j

∂x
+ (B66 − c1E66)

∂w

∂y

∂ψ
(2)
j

∂y

)

+
∂ϕi
∂y

(

A45ψ
(2)
j − 2c2D45ψ

(2)
j + c22F45ψ

(2)
j + (B12 − c1E12)

∂w

∂y

∂ψ
(2)
j

∂x
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+ (B26 − c1E26)
∂w

∂y

∂ψ
(2)
j

∂y
+ (B16 − c1E16)

∂w

∂x

∂ψ
(2)
j

∂x
+ (B66 − c1E66)

∂w

∂x

∂ψ
(2)
j

∂y

)

+
∂2ϕi
∂x2

(

−c1F11

∂ψ
(2)
j

∂x
− c1F16

∂ψ
(2)
j

∂y
+ c21H11

∂ψ
(2)
j

∂x
+ c21H16

∂ψ
(2)
j

∂y

)

+
∂2ϕi
∂y2

(

−c1F12

∂ψ
(2)
j

∂x
− c1F26

∂ψ
(2)
j

∂y
+ c21H12

∂ψ
(2)
j

∂x
+ c21H26

∂ψ
(2)
j

∂y

)

+
∂2ϕi
∂x∂y

(

−2c1F16

∂ψ
(2)
j

∂x
− 2c1F66

∂ψ
(2)
j

∂y
+ 2c21H16

∂ψ
(2)
j

∂x
+ 2c21H66

∂ψ
(2)
j

∂y

)]

dxdy

(62)

K35
ij =

∫

Ωe

[

∂ϕi
∂x

(

A45ψ
(2)
j − 2c2D45ψ

(2)
j + c22F45ψ

(2)
j + (B12 − c1E12)

∂w

∂x

∂ψ
(2)
j

∂y

+ (B16 − c1E16)
∂w

∂x

∂ψ
(2)
j

∂x
+ (B26 − c1E26)

∂w

∂y

∂ψ
(2)
j

∂y
+ (B66 − c1E66)

∂w

∂y

∂ψ
(2)
j

∂x

)

+
∂ϕi
∂y

(

A44ψ
(2)
j − 2c2D44ψ

(2)
j + c22F44ψ

(2)
j + (B22 − c1E22)

∂w

∂y

∂ψ
(2)
j

∂y

+ (B26 − c1E26)
∂w

∂y

∂ψ
(2)
j

∂x
+ (B26 − c1E26)

∂w

∂x

∂ψ
(2)
j

∂y
+ (B66 − c1E66)

∂w

∂x

∂ψ
(2)
j

∂x

)

+
∂2ϕi
∂x2

(

−c1F12

∂ψ
(2)
j

∂y
− c1F16

∂ψ
(2)
j

∂x
+ c21H12

∂ψ
(2)
j

∂y
+ c21H16

∂ψ
(2)
j

∂x

)

+
∂2ϕi
∂y2

(

−c1F22

∂ψ
(2)
j

∂y
− c1F26

∂ψ
(2)
j

∂x
+ c21H22

∂ψ
(2)
j

∂y
+ c21H26

∂ψ
(2)
j

∂x

)

+
∂2ϕi
∂x∂y

(

−2c1F26

∂ψ
(2)
j

∂y
− 2c1F66

∂ψ
(2)
j

∂x
+ 2c21H26

∂ψ
(2)
j

∂y
+ 2c21H66

∂ψ
(2)
j

∂x

)]

dxdy

(63)

K41
ij =

∫

Ωe

[

∂ψ
(2)
i

∂x

(

B11

∂ψ
(1)
j

∂x
+ B16

∂ψ
(1)
j

∂y
− c1E11

∂ψ
(1)
j

∂x
− c1E16

∂ψ
(1)
j

∂y

)

+
∂ψ

(2)
i

∂y

(

B16

∂ψ
(1)
j

∂x
+ B66

∂ψ
(1)
j

∂y
− c1E16

∂ψ
(1)
j

∂x
− c1E66

∂ψ
(1)
j

∂y

)]

dxdy (64)

K42
ij =

∫

Ωe

[

∂ψ
(2)
i

∂x

(

B12

∂ψ
(1)
j

∂y
+ B16

∂ψ
(1)
j

∂x
− c1E12

∂ψ
(1)
j

∂y
− c1E16

∂ψ
(1)
j

∂x

)

+
∂ψ

(2)
i

∂y

(

B26

∂ψ
(1)
j

∂y
+ B66

∂ψ
(1)
j

∂x
− c1E26

∂ψ
(1)
j

∂y
− c1E66

∂ψ
(1)
j

∂x

)]

dxdy (65)
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K43
ij =

∫

Ωe

[

∂ψ
(2)
i

∂x

(

1

2
B11

∂w

∂x

∂ϕj

∂x
+

1

2
B12

∂w

∂y

∂ϕj

∂y
+

1

2
B16(

∂w

∂x

∂ϕj

∂y
+
∂w

∂y

∂ϕj

∂x
)− c1

1

2
E11

∂w

∂x

∂ϕj

∂x

− c1
1

2
E12

∂w

∂y

∂ϕj
∂y

−
1

2
c1E16(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)− c1F11
∂2ϕj
∂x2

− c1F12
∂2ϕj
∂y2

− 2c1F16
∂2ϕj
∂x∂y

+ c21H11
∂2ϕj
∂x2

+ c21H12
∂2ϕj
∂y2

+ 2c21H16
∂2ϕj
∂x∂y

)

+
∂ψ

(2)
i

∂y

(

1

2
B16

∂w

∂x

∂ϕj
∂x

+
1

2
B26

∂w

∂y

∂ϕj
∂y

+
1

2
B66(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)− c1
1

2
E16

∂w

∂x

∂ϕj
∂x

− c1
1

2
E26

∂w

∂y

∂ϕj
∂y

−
1

2
c1E66(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)− c1F16
∂2ϕj
∂x2

− c1F26
∂2ϕj
∂y2

− 2c1F66
∂2ϕj
∂x∂y

+ c21H16
∂2ϕj
∂x2

+ c21H26
∂2ϕj
∂y2

+ 2c21H66
∂2ϕj
∂x∂y

)

+ ψ
(2)
i

(

A45
∂ϕj
∂y

+A55
∂ϕj
∂x

− 2c2D45
∂ϕj
∂y

− 2c2D55
∂ϕj
∂x

+ c22F45
∂ϕj
∂y

+ c22F55
∂ϕj
∂x

)]

dxdy (66)

K44
ij =

∫

Ωe

[

∂ψ
(2)
i

∂x

(

D11

∂ψ
(2)
j

∂x
+D16

∂ψ
(2)
j

∂y
− 2c1F11

∂ψ
(2)
j

∂x
− 2c1F16

∂ψ
(2)
j

∂y
+ c21H11

∂ψ
(2)
j

∂x

+ c21H16

∂ψ
(2)
j

∂y

)

+
∂ψ

(2)
i

∂y

(

D16

∂ψ
(2)
j

∂x
+D66

∂ψ
(2)
j

∂y
− 2c1F16

∂ψ
(2)
j

∂x
− 2c1F66

∂ψ
(2)
j

∂y

+ c21H16

∂ψ
(2)
j

∂x
+ c21H66

∂ψ
(2)
j

∂y

)

+ ψ
(2)
i

(

A55ψ
(2)
j − 2c2D55ψ

(2)
j + c22F55ψ

(2)
j

)]

dxdy

(67)

K45
ij =

∫

Ωe

[

∂ψ
(2)
i

∂x

(

D12

∂ψ
(2)
j

∂y
+D16

∂ψ
(2)
j

∂x
− 2c1F12

∂ψ
(2)
j

∂y
− 2c1F16

∂ψ
(2)
j

∂x
+ c21H12

∂ψ
(2)
j

∂y

+ c21H16

∂ψ
(2)
j

∂x

)

+
∂ψ

(2)
i

∂y

(

D26

∂ψ
(2)
j

∂y
+D66

∂ψ
(2)
j

∂x
− 2c1F26

∂ψ
(2)
j

∂y
− 2c1F66

∂ψ
(2)
j

∂x

+ c21H26

∂ψ
(2)
j

∂y
+ c21H66

∂ψ
(2)
j

∂x

)

+ ψ
(2)
i (A45ψ

(2)
j − 2c2D45ψ

(2)
j + c22F45ψ

(2)
j )

]

dxdy

(68)

K51
ij =

∫

Ωe

[

∂ψ
(2)
i

∂y

(

B12

∂ψ
(1)
j

∂x
+ B26

∂ψ
(1)
j

∂y
− c1E12

∂ψ
(1)
j

∂x
− c1E26

∂ψ
(1)
j

∂y

)

+
∂ψ

(2)
i

∂x

(

B16

∂ψ
(1)
j

∂x
+ B66

∂ψ
(1)
j

∂y
− c1E16

∂ψ
(1)
j

∂x
− c1E66

∂ψ
(1)
j

∂y

)]

dxdy (69)

K52
ij =

∫

Ωe

[

∂ψ
(2)
i

∂y

(

B22

∂ψ
(1)
j

∂y
+ B26

∂ψ
(1)
j

∂x
− c1E22

∂ψ
(1)
j

∂y
− c1E26

∂ψ
(1)
j

∂x

)

+
∂ψ

(2)
i

∂x

(

B26

∂ψ
(1)
j

∂y
+ B66

∂ψ
(1)
j

∂x
− c1E26

∂ψ
(1)
j

∂y
− c1E66

∂ψ
(1)
j

∂x

)]

dxdy (70)
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K53
ij =

∫

Ωe

[

∂ψ
(2)
i

∂x

(

1

2
B16

∂w

∂x

∂ϕj
∂x

+
1

2
B26

∂w

∂y

∂ϕj
∂y

+ B66(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

) − c1
1

2
E16

∂w

∂x

∂ϕj
∂x

− c1
1

2
E26

∂w

∂y

∂ϕj
∂y

− c1E66(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)− c1F16
∂2ϕj
∂x2

− c1F26
∂2ϕj
∂y2

− 2c1F66
∂2ϕj
∂x∂y

+ c21H16
∂2ϕj
∂x2

+ c21H26
∂2ϕj
∂y2

+ 2c21H66
∂2ϕj
∂x∂y

)

+
∂ψ

(2)
i

∂y

(

1

2
B12

∂w

∂x

∂ϕj
∂x

+
1

2
B22

∂w

∂y

∂ϕj
∂y

+ B26(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)− c1
1

2
E12

∂w

∂x

∂ϕj
∂x

− c1
1

2
E22

∂w

∂y

∂ϕj
∂y

− c1E26(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)− c1F12
∂2ϕj
∂x2

− c1F22
∂2ϕj
∂y2

− 2c1F26
∂2ϕj
∂x∂y

+ c21H12
∂2ϕj
∂x2

+ c21H22
∂2ϕj
∂y2

+ 2c21H26
∂2ϕj
∂x∂y

)

+ ψ
(2)
i (A44

∂ϕj
∂y

+A45
∂ϕj
∂x

− 2c2D44
∂ϕj
∂y

− 2c2D45
∂ϕj
∂x

+ c22F44
∂ϕj
∂y

+ c22F45
∂ϕj
∂x

)

]

dxdy (71)

K54
ij =

∫

Ωe

[

∂ψ
(2)
i

∂y

(

D12

∂ψ
(2)
j

∂x
+D26

∂ψ
(2)
j

∂y
− 2c1F12

∂ψ
(2)
j

∂x
− 2c1F26

∂ψ
(2)
j

∂y
+ c21H12

∂ψ
(2)
j

∂x

+ c21H26

∂ψ
(2)
j

∂y

)

+
∂ψ

(2)
i

∂x

(

D16

∂ψ
(2)
j

∂x
+D66

∂ψ
(2)
j

∂y
− 2c1F16

∂ψ
(2)
j

∂x
− 2c1F66

∂ψ
(2)
j

∂y

+ c21H16

∂ψ
(2)
j

∂x
+ c21H66

∂ψ
(2)
j

∂y

)

+ ψ
(2)
i

(

A45ψ
(2)
j − 2c2D45ψ

(2)
j + c22F45ψ

(2)
j

)]

dxdy

(72)

K55
ij =

∫

Ωe

[

∂ψ
(2)
i

∂y

(

D22

∂ψ
(2)
j

∂y
+D26

∂ψ
(2)
j

∂x
− 2c1F22

∂ψ
(2)
j

∂y
− 2c1F26

∂ψ
(2)
j

∂x
+ c21H22

∂ψ
(2)
j

∂y

+ c21H26

∂ψ
(2)
j

∂x

)

+
∂ψ

(2)
i

∂x

(

D26

∂ψ
(2)
j

∂y
+D66

∂ψ
(2)
j

∂x
− 2c1F26

∂ψ
(2)
j

∂y
− 2c1F66

∂ψ
(2)
j

∂x

+ c21H26

∂ψ
(2)
j

∂y
+ c21H66

∂ψ
(2)
j

∂x

)

+ ψ
(2)
i (A44ψ

(2)
j − 2c2D44ψ

(2)
j + c22F44ψ

(2)
j )

]

dxdy

(73)

The elements of the force vector are given by

F 1
i =

∮

Γe

(Nxxn̂x +Nxyn̂y)ds (74)

F 2
i =

∮

Γe

(Nxyn̂x +Nyyn̂y)ds (75)

F 3
i =

∫

Ωe

(1 − µ∇2)qϕidxdy +

∮

Γe

{

(Q̄xn̂x + Q̄yn̂y) + (Nxx
∂w0

∂x
+Nxy

∂w0

∂y
)n̂x + (Nxy

∂w0

∂x
+

Nyy
∂w0

∂y
)n̂y + c1

[

(
∂Pxx
∂x

+
∂Pxy
∂y

)n̂x + (
∂Pyy
∂y

+
∂Pxy
∂x

)n̂y

]

− c1

[

(Pxx + Pxy)n̂x

+ (Pyy + Pxy)n̂y

]}

ds (76)
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F 4
i =

∮

Γe

(Mxxn̂x +Mxyn̂y)ψ
(2)ds (77)

F 5
i =

∮

Γe

(Mxyn̂x +Myyn̂y)ψ
(2)ds (78)

Solution of nonlinear equations

Newton-Raphson method is employed for solving the nonlinear finite element equations. The

linearized equations for the incremental solution at the (r + 1)st iteration are written as:

δ∆ = −(T̂(∆r
s+1))

−1Rr
s+1 (79)

T̂(∆r
s+1)

[

∂R

∂∆

]r

s+1

, Rr
s+1 = K̂(∆r

s+1)∆
r
s+1 − F̂ (80)

The total solution is obtained from

∆r+1
s+1 = ∆r

s+1 + δ∆

The tangent stiffness coefficients can be computed as (see [96])

Tαβij ≡
∂Rαi

∂∆β
j

= Kαβ
ij +

nγ
∑

k=1

∂Kαγ
ik

∂∆β
j

∆γ
k −

∂Fαi

∂∆β
j

(81)

Using the above equation the tangent stiffness coeffcients are derived as follows,

T 11
ij = K11

ij , T 12
ij = K12

ij (82)

T 13
ij = K13

ij +

∫

Ωe

[

∂ψ
(1)
i

∂x

(

1

2
A11

∂w

∂x

∂ϕj
∂x

+
1

2
A12

∂w

∂y

∂ϕj
∂y

+
1

2
A16(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)

)

+
∂ψ

(1)
i

∂y

(

1

2
A16

∂w

∂x

∂ϕj
∂x

+
1

2
A26

∂w

∂y

∂ψj
∂y

+
1

2
A66(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)

)]

dxdy (83)

T 14
ij = K14

ij , T 15
ij = K15

ij (84)

T 21
ij = K21

ij , T 22
ij = K22

ij (85)

T 23
ij = K23

ij +

∫

Ωe

[

∂ψ
(1)
i

∂y

(

1

2
A12

∂w

∂x

∂ϕj
∂x

+
1

2
A22

∂w

∂y

∂ϕj
∂y

+
1

2
A26(

∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂y

)

)

+
∂ψ

(1)
i

∂x

(

1

2
A16

∂w

∂x

∂ϕj
∂x

+
1

2
A26

∂w

∂y

∂ϕj
∂y

+
1

2
A66(

∂w

∂x

∂ϕj
∂y

∂w

∂y

∂ϕj
∂y

)

)]

dxdy (86)

T 24
ij = K24

ij , T 25
ij = K25

ij (87)
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T 31
ij = K31

ij , T
32
ij = K32

ij (88)

T 33
ij = K33

ij +

∫

Ωe

{

∂ϕi
∂x

∂ϕj
∂y

(A11
∂u

∂x
+ A16

∂u

∂y
) +

∂ϕi
∂y

∂ϕj
∂y

(A12
∂u

∂x
+A26

∂u

∂y
) +

(

∂ϕi
∂x

∂ϕj
∂y

+

∂ϕi
∂y

∂ϕj
∂x

)(

A11
∂u

∂x
+ A16

∂u

∂y

)

+
∂ϕi
∂x

∂ϕj
∂x

(A16
∂v

∂x
+ A12

∂v

∂y
) +

∂ϕi
∂y

∂ϕj
∂y

(A26
∂v

∂x

+ A22
∂v

∂y
) +

(

∂ϕi
∂x

∂ϕj
∂y

+
∂ϕi
∂y

∂ϕj
∂x

)(

A66
∂v

∂x
+A26

∂v

∂y

)

+
∂ϕi
∂x

∂ϕj
∂x

(

A11(
∂w

∂x
)2

+ A66(
∂w

∂y
)2 + 2A16

∂w

∂x

∂w

∂y

)

+
∂ϕi
∂y

∂ϕj
∂y

(

A66(
∂w

∂x
)2 + A22(

∂w

∂y
)2 + 2A26

∂w

∂x

∂w

∂y

)

+

(

∂ϕi
∂x

∂ϕj
∂y

+
∂ϕi
∂y

∂ϕj
∂x

)(

A16(
∂w

∂x
)2 + A26(

∂w

∂y
)2 + (A16 +A66)

∂w

∂x

∂w

∂y

)

− c1

[

∂ϕi
∂x

∂ϕj
∂y

(

E11
∂2w

∂x2
+E12

∂2w

∂y2
+ 2E16

∂2w

∂x∂y

)

+
∂ϕi
∂y

∂ϕj
∂y

(

E12
∂2w

∂x2
+ E22

∂2w

∂y2

+ 2E23
∂2w

∂x∂y

)

+

(

∂ϕi
∂x

∂ϕj
∂y

+
∂ϕi
∂y

∂ϕj
∂x

)(

E16
∂2w

∂x2
+E26

∂2w

∂y2
+ 2E66

∂2w

∂x∂y

)]

−
c1
2

[

∂w

∂x

(

E11
∂2ϕi
∂x2

∂ϕj
∂x

+E16
∂2ϕi
∂x2

∂ϕj
∂y

+ E12
∂2ϕi
∂y2

∂ϕj
∂x

+E26
∂2ϕi
∂y2

∂ϕj
∂y

+ 2E16
∂2ϕi
∂x∂y

∂ϕj
∂x

+ 2E66
∂2ϕj
∂x∂y

∂ϕj
∂y

)

+
∂w

∂y

(

E12
∂2ϕi
∂x2

∂ϕj
∂y

+E16
∂2ϕi
∂x2

∂ϕj
∂x

+ E22
∂2ϕi
∂y2

∂ϕj
∂y

+E26
∂2ϕi
∂y2

∂ϕj
∂x

+ 2E26
∂2ϕi
∂x∂y

∂ϕj
∂y

+ 2E66
∂2ϕi
∂x∂y

∂ϕj
∂x

)]}

dxdy (89)

T 34
ij = K34

ij , T 35
ij = K35

ij (90)

T 41
ij = K41

ij , T 42
ij = K42

ij (91)

T 43
ij = K43

ij +

∫

Ωe

[

∂ψ
(2)
i

∂x

(

1

2
B11

∂w

∂x

∂ϕj
∂x

+
1

2
B12

∂w

∂y

∂ϕj
∂y

+ B16(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)

− c1
1

2
E11

∂w

∂x

∂ϕj
∂x

− c1
1

2
E12

∂w

∂y

∂ϕj
∂y

− c1E16(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)

)

+
∂ψ

(2)
i

∂y

(

1

2
B16

∂w

∂x

∂ϕj
∂x

+
1

2
B26

∂w

∂y

∂ϕj
∂y

+ B66(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

) − c1
1

2
E16

∂w

∂x

∂ϕj
∂x

− c1
1

2
E26

∂w

∂y

∂ϕj
∂y

− c1E66(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)

)]

dxdy (92)

T 44
ij = K44

ij , T 45
ij = K45

ij (93)

T 51
ij = K51

ij , T 52
ij = K52

ij (94)
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T 53
ij = K53

ij +

∫

Ωe

[

∂ψ
(2)
i

∂x

(

1

2
B16

∂w

∂x

∂ϕj
∂x

+
1

2
B26

∂w

∂y

∂ϕj
∂y

+ B66(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)

− c1
1

2
E16

∂w

∂x

∂ϕj
∂x

− c1
1

2
E26

∂w

∂y

∂ϕj
∂y

− c1E66(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)

)

+
∂ψ

(2)
i

∂y

(

1

2
B12

∂w

∂x

∂ϕj
∂x

+
1

2
B22

∂w

∂y

∂ϕj
∂y

+ B26(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

) − c1
1

2
E12

∂w

∂x

∂ϕj
∂x

− c1
1

2
E22

∂w

∂y

∂ϕj
∂y

− c1E26(
∂w

∂x

∂ϕj
∂y

+
∂w

∂y

∂ϕj
∂x

)

)]

dxdy (95)

T 54
ij = K54

ij , T 55
ij = K55

ij (96)

D. APPENDIX-4

The stress resultants in (20) are given as follows where x and y values are replaced with α and β
respectively.







Nxx
Nyy
Nxy







=





A11 A12 A16

A12 A22 A26

A16 A26 A66















ε
(0)
xx

ε
(0)
yy

γ
(0)
xy











+





B11 B12 B16

B12 B22 B26

B16 B26 B66















ε
(1)
xx

ε
(1)
yy

γ
(1)
xy











+





E11 E12 E16

E12 E22 E26

E16 E26 E66















ε
(3)
xx

ε
(3)
yy

γ
(3)
xy











(97)







Mxx

Myy

Mxy







=





B11 B12 B16

B12 B22 B26

B16 B26 B66











ε
(0)
xx

ε
(0)
yy

γ
(0)
xy






+





D11 D12 D16

D12 D22 D26

D16 D26 D66















ε
(1)
xx

ε
(1)
yy

γ
(1)
xy











+





F11 F12 F16

F12 F22 F26

F16 F26 F66















ε
(3)
xx

ε
(3)
yy

γ
(3)
xy











(98)







Pxx
Pyy
Pxy







=





E11 E12 E16

E12 E22 E26

E16 E26 E66















ε
(0)
xx

ε
(0)
yy

γ
(0)
xy











+





F11 F12 F16

F12 F22 F26

F16 F26 F66















ε
(1)
xx

ε
(1)
yy

γ
(1)
xy











+





H11 H12 H16

H12 H22 H26

H16 H26 H66











ε
(3)
xx

ε
(3)
yy

γ
(3)
xy






(99)

{

Qyz
Qxz

}

=

[

A44 A45

A45 A55

]

{

γ
(0)
yz

γ
(0)
xz

}

+

[

D44 D45

D45 D55

]

{

γ
(2)
yz

γ
(2)
xz

}

(100)

This article is protected by copyright. All rights reserved.



A
c
c
e
p

te
d

A
r
ti

c
le

44

{

Ryz
Rxz

}

=

[

D44 D45

D45 D55

]

{

γ
(0)
yz

γ
(0)
xz

}

+

[

F44 F45

F45 F55

]

{

γ
(2)
yz

γ
(2)
xz

}

(101)

{Aij, Bij, Dij, Eij, Fij, Hij} =

N
∑

k=1

∫ zk+1

zk

Q̄
(k)
ij

(

1, z, z2, z3, z4, z6
)

dz (i, j = 1, 2, 6) (102)

{Aij, Dij, Fij} =

N
∑

k=1

∫ zk+1

zk

Q̄
(k)
ij

(

1, z2, z4
)

dz (i, j = 4, 5) (103)

The nonlocal governing equations in terms of local stress resultants can be obtained by applying

the operator L on both sides of the equations (14) - (18). Making use of the relations in equation

(19), we obtain:

∂Nxx
∂x

+
∂Nxy
∂y

= 0 (104)

∂Nxy
∂x

+
∂Nyy
∂y

= 0 (105)

∂Q̄x
∂x

+
∂Q̄y
∂y

+
∂

∂x

(

Nxx
∂w0

∂x
+Nxy

∂w0

∂y

)

+
∂

∂y

(

Nxy
∂w0

∂x
+Nyy

∂w0

∂y

)

(106)

+c1

(

∂2Pxx

∂x 2 + 2
∂2Pxy
∂x ∂y

+
∂2Pyy

∂y2

)

= −q
(

1− µ∇2
)

∂M̄xx

∂x
+
∂M̄xy

∂y
− Q̄x = 0 (107)

∂M̄xy

∂x
+
∂M̄yy

∂y
− Q̄y = 0 (108)
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