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An in silico platform for predicting, 

screening and designing of 

antihypertensive peptides
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Rahul Kumar*, Minakshi Sharma & Gajendra P.S. Raghava

High blood pressure or hypertension is an affliction that threatens millions of lives worldwide. 
Peptides from natural origin have been shown recently to be highly effective in lowering blood 
pressure. In the present study, we have framed a platform for predicting and designing novel 
antihypertensive peptides. Due to a large variation found in the length of antihypertensive peptides, 

we divided these peptides into four categories (i) Tiny peptides, (ii) small peptides, (iii) medium 
peptides and (iv) large peptides. First, we developed SVM based regression models for tiny peptides 
using chemical descriptors and achieved maximum correlation of 0.701 and 0.543 for dipeptides 

and tripeptides, respectively. Second, classification models were developed for small peptides and 
achieved maximum accuracy of 76.67%, 72.04% and 77.39% for tetrapeptide, pentapeptide and 

hexapeptides, respectively. Third, we have developed a model for medium peptides using amino acid 
composition and achieved maximum accuracy of 82.61%. Finally, we have developed a model for 
large peptides using amino acid composition and achieved maximum accuracy of 84.21%. Based on 

the above study, a web-based platform has been developed for locating antihypertensive peptides in 
a protein, screening of peptides and designing of antihypertensive peptides.

In the past, various types of bioactive peptides have been discovered, these peptides play vital role in 
various types of activities e.g. opioid1, antihypertensive2, cell penetrating3, tumor homing4, antimicrobial5, 
anticancer6, hemolytic peptides7, antiparasitic peptides8, dipeptidyl peptidase inhibiting, anti-amnesic, 
antithrombotic, etc. Numerous bioactive peptides have been reported from food proteins that can be 
obtained by fermentation or enzymatic hydrolysis of these proteins. The bioactive food peptides having 
antihypertensive activities are receiving attention due to their role in cardiovascular diseases, which is a 
major cause of deaths worldwide9. There are a number of methods used for producing antihypertensive 
peptides (AHTPs) including enzymatic hydrolysis, fermentation and use of recombinant bacteria10.

There are a number of medicines commonly used to treat hypertension like nitrates, beta-blockers, 
diuretics, vasodilators, dopamine agonist calcium channel blockers11. Though most of the existing anti-
hypertensive drugs are highly effective but they have side effects e.g. skin rashes, hypotension, dry cough, 
increased potassium level, taste disturbance12. Thus, it is always challenging to discover or design safer 
drugs for prevention and treatment of hypertension. In past, attempts have been made to extract anti-
hypertensive compounds from natural resources e.g. wheat, potato, etc. It was observed that certain 
food products (e.g., milk, egg, soy, muscle proteins, pea, garlic, rice, etc.) contain antihypertensive pep-
tides10,13. In addition, several animal sources have been reported to contain antihypertensive peptides 
e.g. muscle, ovalbumin, blood, fish protein, pork meat etc.14,15. Before AHTPDB16, only limited resources 
were available on antihypertensive peptides e.g. ACEpepDB, which contains about 865 peptides from 
different sources (http://www.cftri.com/pepdb/). In addition, few quantitative structure activity relation-
ship (QSAR) based regression models have been developed for predicting inhibitory activity for tiny 
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peptides17,18. There is no prediction method available for small, medium and large peptides. In our recent 
work, we have compiled antihypertensive peptides from various resources and built a database of anti-
hypertensive peptides, AHTPDB16.

In this study, a systematic attempt has been made to develop models for predicting antihypertensive 
(AHT) peptides. It was observed that the length of antihypertensive peptides has a large variation. Thus, 
in this study, we developed four types of models for predicting AHT peptides of various sizes. We used 
machine-learning techniques for developing prediction models. One of the novelties of this study is 
web-based platform, AHTpin, developed for designing AHT peptides. AHTpin is a user-friendly plat-
form providing various options to the users for predicting, designing and screening of AHT peptides. It 
is freely available at the URL: http://crdd.osdd.net/raghava/ahtpin.

Methods
Datasets. We extracted 1745 antihypertensive peptides (AHTPs) from literature and publically avail-
able databases like AHTPDB16, BIOPEP19 and ACEpepDB (http://www.cftri.com/pepdb). We excluded 
the peptides having non-natural amino acids. Based on the length of peptides we created four types of 
datasets. We developed regression and classification models as shown in Fig.  1. Following is the brief 
description of datasets used in this paper:

Tiny peptides. We assigned dipeptides and tripeptides in the category of tiny peptides. Our datasets 
contain 131 dipeptides having inhibitory activity (IC50) between 0.92 to 17000 µ M; 205 tripeptides having 
IC50 between 0.04 to 2700 µ M. We developed regression models to predict inhibitory activity of these 
peptides. We have converted IC50 value into normalized pIC50 values {= − log (IC50 ×  10−6)} to narrow 
down the scale. In order to perform external validation of our models that is in compliance with OECD 
principles20–26, we created independent datasets (20 dipeptides and 40 tripeptides). These peptides were 
selected randomly from the main datasets with satisfying the condition of two-column statistics. Rest of 
the dipeptides (111) and tripeptides (165) were used as training datasets to develop models for external 
validation.

Small peptides. The peptides with number of residues, four, five or six have been classified into small 
peptides. We obtained total 153 tetrapeptides, 270 pentapeptides and 199 hexapeptides having antihy-
pertensive activity as positive examples. Classification based prediction models have been developed for 
small peptides.

Figure 1. Schematic diagram showing the datasets used for the development of different models. 

http://crdd.osdd.net/raghava/ahtpin
http://www.cftri.com/pepdb
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Medium peptides. All peptides having number of residues between 7 and 12 (inclusive) are called 
medium peptides in this study. We developed single classification model for these peptides. This medium 
peptide dataset contains 368 AHTPs.

Large peptides. There are few AHTPs having number of residues more than 12; we categorized these 
peptides as large peptides. We developed classification models for these peptides. Our large peptides’ 
dataset contains 76 AHTPs.

Negative Dataset. In the absence of experimentally validated non-antihypertensive peptides (non- 
AHTPs), we obtained random fragments of the same length from the Swiss-Prot proteins and used them as 
negative datasets. For instance, in case of tetrapeptides, equal number of random tetrapeptides were taken 
from the protein sequences in Swiss-Prot and used to constitute the negative dataset (provided they were 
not present in the positive dataset). This method of taking random sequences as negative dataset is a rou-
tinely used standard procedure27–30 and it is based on the assumption that probability of finding the random 
sequences to be positive is very low.

Prediction features. In this study, we have used three kinds of peptide features for developing mod-
els. These are amino acid composition, atomic composition and chemical descriptors; following is the 
brief description of these features:

(i) Amino acid composition. Amino acid composition in proteins/peptides is well conserved from spe-
cies to species and different class of proteins/peptides, so amino acid composition can be distinguishing 
feature to discriminate two classes of protein/peptides31. Amino acid composition represents the fraction 
of each amino acid in a peptide, and it is represented by the vector of 20, corresponding to each of the 
20 amino acids. Amino acid composition was calculated using the following equation (equation 1):

Composition of amino acid i
Frequency of amino acid i

Length of the protein 1
( ) =

( )

( )

Where i can be any natural amino acid.

(ii) Atomic composition. In this composition, we have calculated frequency of each atom in amino acid. 
Natural amino acids are made up of five types of atoms (C, H, N, O, S), thus first we used these five atom 
frequencies as prediction features. As peptides are made up of 20 types of amino acids, so we computed 
number and type of atoms in each amino as given in Table 1.

(iii) Chemical descriptors. Chemical descriptors play an important role in determining the biological 
activity of any chemical molecule. Therefore, they were used as critical features in developing QSAR 
models in the past. In this study, we used open source software PaDEL for calculating different types 
of descriptors32. We used this software for calculating 15,537 types of descriptors, including 1D, 2D, 3D 
and 10 different types of binary fingerprints (further information about these descriptors is available at 
PaDEL website). In the past, it has been shown that all the chemical descriptors do not correlate with 
the biological activity33. So, it is better to remove unnecessary descriptors, which can create noise or 
over-fitting in the model. To select appropriate set of descriptors for developing QSAR models, first we 
applied “RemoveUseless” function using Weka software34 at default settings (maximum variance percent-
age, M =  99), that remove descriptors, which either do not vary or vary too much at maximum variance 
percentage. Second, we applied “CfsSubsetEval” as attribute evaluator with “BestFirst” as search method 
with default settings in the forward direction (lookup size, D =  1 and amount of backtracking, N =  5) 
again using Weka software34. In the third step, we applied F-stepping35 technique to further reduce the 
non-significant descriptors. In F-stepping, we took all the descriptors obtained from “BestFirst” algo-
rithm together and checked the performance by removing each descriptor one by one (this is also called 
as backward direction of descriptor selection). If the performance is increased or unaffected by remov-
ing a descriptor, we permanently removed that descriptor. On the other hand, if the performance is 
decreased by removing a descriptor, we put back that descriptor and this cycle was repeated for each 
descriptor. Finally, we used these minimally selected descriptors as input for training and testing of SVM 
based QSAR models using leave-one-out cross-validation technique.

(iv) G-scales Descriptors. We have adopted G-scales descriptors from the study by Wang et al.17 and 
these descriptors were derived from the 457 kinds of physicochemical properties available in AAindex 
database36. Out of this large set of physicochemical properties, only eight properties were selected using 
stepwise multiple regression (SMR) and used as descriptors to characterize the peptides. We have used 
these eight descriptors (G1 - G8) for the development of QSAR models because of their superior perfor-
mance as shown by the Wang et al.17.

Support Vector Machine (SVM). In this study, we have employed a well-known supervised machine 
learning technique ‘Support Vector Machine’ for developing both regression and classification models37. 
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In our study, we have implemented SVM using SVMlight software (version 6.02), which is freely available 
at http://www.cs.cornell.edu/People/tj/svm_light/. SVMlight is a user-friendly software allowing the user 
to implement various kernels e.g. linear, polynomial, radial or sigmoid.

SVM based Regression Models. For tiny peptides, we have developed regression models using input 
features like amino acid composition, atomic composition and chemical descriptors. A regression model 
tries to correlate the input features with the biological activity (pIC50) and predicts the biological activity 
(dependent variable) of unknown peptide on the basis of input features (independent variables). Two 
major reasons account for developing regression models for tiny peptides. First, classification models 
were not possible due to limited number of negative AHT peptides and second; we got the pIC50 values 
for sufficient number of AHT peptides to develop the regression-based models. This tiny class contains 
dipeptides and tripeptides, and we developed separate regression models for both of them.

SVM based Classification Models. Classification models predict the specific class to which a new 
peptide belongs (here two classes are AHT and non-AHT) on the basis of learning on training set. For 
the classification of two classes, SVM tries to draw a hyperplane or a set of hyperplanes separating the 
two classes by ensuring largest distance with the nearest data-points of two classes. But in most of the 
cases, two classes are not linearly separable. Therefore, SVM uses kernel functions k(x,y) e.g. polyno-
mial, radial or sigmoid, which is also called as kernel trick. In our study, we used radial basis function 
(RBF) as kernel option. In SVMlight, one can define the kernel option by setting the value of t (t =  2 for 
RBF) to apply the appropriate kernel. For small, medium and large AHT peptides, we have developed 
classification models and we used randomly generated peptides as negative class (non-AHT peptides).

Evaluation of models. In this paper, we used leave-one-out cross-validation technique (LOOCV) 
for training and testing our models. LOOCV is a standard method commonly used for evaluating the 
performance of machine-learning models. For evaluating the performance of our regression models, we 
calculated the following standard parameters; Pearson’s correlation coefficient (R) and root mean square 
error (RMSE). For classification models, we have calculated sensitivity, specificity, accuracy and MCC. 
MCC is considered as the most robust parameter38 for evaluating the prediction method. The MCC value 
‘1’ corresponds to the perfect prediction, whereas ‘0’ points to a completely random prediction.

Amino 
Acids

Type of Atoms Total 
number of 

bonds
Number of 

single bonds
Number of 

Double bondsC H N O S

A 3 7 1 2 0 12 11 1

C 3 7 1 2 1 13 12 1

D 4 7 1 4 0 15 13 2

E 5 9 1 4 0 18 16 2

F 9 11 1 2 0 23 19 4

G 2 5 1 2 0 9 8 1

H 6 9 3 2 0 20 17 3

I 6 13 1 2 0 21 20 1

K 6 14 2 2 0 23 22 1

L 6 13 1 2 0 21 20 1

M 5 11 1 2 1 19 18 1

N 4 8 2 3 0 16 14 2

P 5 9 1 2 0 17 16 1

Q 5 10 2 3 0 19 17 2

R 6 14 4 2 0 25 23 2

S 3 7 1 3 0 13 12 1

T 4 9 1 3 0 16 15 1

V 5 11 1 2 0 18 17 1

W 11 12 2 2 0 28 23 5

Y 9 11 1 3 0 24 20 4

Table 1.  Atomic composition of 20 natural amino acids.

http://www.cs.cornell.edu/People/tj/svm_light/
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Results
Analysis of antihypertensive peptides. Generally, antihypertensive peptides may vary from two 
amino acids to 15 amino acids length14. We computed percent amino acid composition of peptides 
belonging to different categories like tiny, small, medium and large. For understanding the bias in the 
residue occurrence, we have computed amino acid compositions of non-AHTPs (randomly generated 
peptides from Swiss-Prot), called reference amino acid composition. As shown in Table 2, Tryptophan 
and Tyrosine are highly abundant in antihypertensive dipeptides; Phenylalanine and Glycine also fre-
quently occur in AHT dipeptides. In contrast, certain residues (like Cysteine, Glutamic acid, Serine) 
are not preferred in AHT dipeptides. In the case of AHT tripeptides, Proline, Tryptophan and Tyrosine 
frequently occur whereas residues like Aspartic Acid, Glutamic acid, Asparagine occur rarely (Fig.  2). 
Certain types of residues occur frequently in all classes of AHTPs like Proline, which is highly abundant 
in all types of AHTPs. Similarly, amino acids like Aspartic Acid, Serine is less frequent in most of the 
AHTPs in comparison to non-AHTPs (Table 2 and Fig. 2).

Performance of various SVM models. In this study, we built two types of models for antihyperten-
sive peptide prediction, depending upon the type of dataset. First, we have developed regression-based 
SVM models for tiny peptides viz, dipeptides and tripeptides. For small, medium and large peptides, we 
have developed classification models.

(i) Regression-based models for Tiny peptides. Regression-based models have been developed for pre-
dicting pIC50 values of tiny peptides. Here, we used three types of features i.e. amino acid composition, 
atomic composition and chemical descriptors to develop models. First, we used amino acid composi-
tion and achieved Pearson’s correlation coefficient (R) of 0.605 and 0.218 for dipeptides and tripeptides 
respectively (Table  3). Next, we used atomic composition and achieved maximum correlation (R) of 
0.611 and 0.315 for dipeptides and tripeptides, respectively (Table  3). Then, we used selected PaDEL 
descriptors of dipeptides (n =  12) and tripeptides (n =  20) (Supplementary Tables 1 and 2) to develop 
SVM based models and achieved maximum correlation (R) of 0.701 and 0.543 for di- and tripeptides 
respectively (Table  3). In case of G-scales descriptors, we achieved correlation of 0.681 and 0.353 for 
di- and tripeptides respectively. In order to check the predictability of our models, we evaluated them 
on independent dataset (external validation). Our dipeptide models achieved the maximum, correlation 
coefficient of 0.762 using atomic composition (Table  3). In case of tripeptides, we achieved maximum 
correlation coefficient of 0.379 using PaDEL descriptors. Our tripeptide models failed to achieve high 
performance on independent dataset; it may be due to limited set of data (Table 3).

Residue Dipeptide Tripeptide
Small 

peptide
Medium 
peptide

Large 
peptide Non-AHT

A 8.02 7.64 6.61 5.33 3.46 8.26

C 0.38 0.33 1.09 0.48 0.21 1.37

D 3.44 0.65 2.24 2.29 2.87 5.46

E 2.67 1.46 4.01 4.72 6.27 6.74

F 8.02 6.67 3.87 5.41 6.41 3.86

G 13.74 6.99 5.83 6.49 6.72 7.08

H 2.67 2.11 3.41 2.51 2.49 2.27

I 3.05 7.32 5.48 4.97 5.12 5.94

K 5.73 6.02 5.47 5.55 4.61 5.83

L 5.73 9.76 9.80 8.45 8.73 9.66

M 3.44 1.79 1.41 1.75 1.26 2.41

N 2.67 1.95 2.66 3.42 3.36 4.05

P 6.87 15.45 14.93 16.76 16.50 4.71

Q 1.91 2.11 5.73 5.52 6.38 3.93

R 6.11 4.72 4.62 3.67 2.80 5.53

S 2.67 1.79 3.20 3.44 5.75 6.58

T 2.29 2.93 3.55 3.73 5.52 5.34

V 4.20 8.13 7.19 8.99 7.75 6.87

W 7.63 3.74 2.31 1.43 0.55 1.09

Y 8.78 8.46 6.58 5.11 3.26 2.92

Table 2.  Amino acid composition of different types of AHTPs and non-AHTPs. Amino acids with 

significantly high composition are shown in bold.
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(ii) Classification models for small peptides. In the case of small peptides, we have developed SVM based 
classification models using amino acid composition, atomic composition and PaDEL descriptors. In case 
of tetrapeptides, PaDEL descriptors achieved highest accuracy of 76.67% with MCC of 0.53 (Table  4). 

Figure 2. Amino acid composition of different class of AHTs with Non-AHTs. 

Peptide Class Features

Cross Validation External Validation

R RMSE R RMSE

Dipeptides

Amino acid 0.605 0.978 0.759 1.047

Atomic 0.611 0.936 0.762 0.972

Descriptors 0.701 0.830 0.663 0.998

G-scales 0.681 0.848 0.669 0.977

Tripeptides

Amino acid 0.218 0.995 0.285 1.151

Atomic 0.315 1.009 0.189 1.383

Descriptors 0.543 0.821 0.379 0.999

G-scales 0.353 0.988 0.029 1.381

Table 3.  The Performance of SVM based regression models on leave-one-out cross-validation and 

external validation. *R: Pearson correlation coefficient; RMSE: Root Mean Square Error.

Peptides Class Features Sensitivity Specificity Accuracy MCC

Tetrapeptide

Amino Acid 71.24 79.74 75.49 0.51

Atomic 70.59 79.74 75.16 0.51

Descriptors 76.67 76.67 76.67 0.53

Pentapeptide

Amino Acid 70.74 70.37 70.56 0.41

Atomic 72.96 71.11 72.04 0.44

Descriptors 71.11 63.70 67.41 0.35

Hexapeptide

Amino Acid 72.36 80.90 76.63 0.53

Atomic 74.87 79.90 77.39 0.55

Descriptors 81.91 70.5 76.19 0.53

Table 4.  The performance of classification models on small peptides. *MCC: Matthews-correlation 

coefficient.



www.nature.com/scientificreports/

7Scientific RepoRts | 5:12512 | DOi: 10.1038/srep12512

For pentapeptides, atomic composition performed better and achieved accuracy and MCC of 72.04% 
and 0.44 respectively (Table 4). Again for hexapeptides, atomic composition achieved highest accuracy 
of 77.39% with MCC of 0.55 (Table 4).

(iii) Classification models for medium peptides. Generally, atomic composition and chemical descrip-
tors based methods are not reliable for longer peptides (length greater than 6 amino acids). Moreover, 
calculating chemical descriptors of longer peptides for building models is computer-intensive. So, we 
developed amino acid composition based and atomic composition based models for these classes of 
peptides and achieved maximum accuracy of 82.61% and 82.34% respectively with MCC of 0.65 in both 
the cases (Table  5). Figure  3 illustrates the SVM threshold wise results of amino acid composition for 
medium peptides.

(iv) Classification models for large peptides. In this case, we have developed models for peptides having 
length more than 12 residues. For these peptides also, we have developed two kinds of models. First, 
using amino acid composition, where we have achieved maximum accuracy of 84.21% with MCC of 0.68 
(Table 5). Second model was developed using atomic composition, where we have achieved maximum 
accuracy of 82.24% with MCC of 0.65 (Table 5). Figure 4 illustrates the SVM threshold wise results of 
amino acid composition for large peptides.

Comparison with previous methods. It is not possible to compare our models directly with pre-
vious methods, as previous methods used small datasets for developing models. Recently, Wang et 
al.17 developed models for predicting antihypertensive activity of peptides and demonstrated that their 
method achieved better performance than previous methods. Thus we trained and tested our models 
on Wang et al.17 dataset (58 dipeptides, 55 tripeptides) and achieved highest correlation coefficient (R) 
0.851 and 0.857 for di- and tripeptides respectively using atomic composition. The performance of our 
models was better or comparable with the previous studies17. Wang et al.17 got highest performance using 
G-scales, we test G-scales on our datasets and observed that our PaDEL descriptors outperformed the 
G-scales descriptors in case of both di- and tripeptides (Table 3). Moreover, the performance of G-scales 
descriptors on our datasets was very less as compared to the performance on their own datasets. It seems 

Peptides Class Features Sensitivity Specificity Accuracy MCC

Medium Peptides 
Amino Acid 83.42 81.79 82.61 0.65

Atomic 81.25 83.42 82.34 0.65

Large Peptides
Amino Acid 84.21 84.21 84.21 0.68

Atomic 84.21 80.26 82.24 0.65

Table 5.  The performance of classification models on medium and large peptides. *MCC: Matthews 

correlation coefficient.

Figure 3. SVM threshold wise performance of medium peptides using amino acid composition. 
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that G-scales is over optimize for dataset used by Wang et al.17. On the other hand, our PaDEL based 
descriptors and atomic composition performed reasonably well on both the datasets, which support a 
wide applicability domain of our descriptors as compared to the G-scales descriptors. It is not possible 
to compare our classification models developed on small, medium and large peptides because no such 
method is reported in literature.

Web server. With the purpose of providing service to the community, we have developed a web 
server known as AHTpin (http://crdd.osdd.net/raghava/ahtpin/). This webserver has major modules for 
designing, screening and mapping of peptides on proteins. Designing peptide module allows the user 
to generate all possible analogs and predict antihypertensive property of analogs. Screening peptides of 
AHTpin enables the user to identify antihypertensive peptides from a library of peptides. Server also 
helps the users to identify regions in a protein that have antihypertensive peptides. AHTpin also provides 
the physicochemical properties of each processed peptide, which are displayed in a sorting-enabled table.

Discussion
There are numerous studies that report the occurrence of antihypertensive peptides in various sources 
e.g. wheat, potato, vegetable, meat, egg, etc. Also, a number of synthetic compounds, which act as ACE 
inhibitors, are already available in the market for the treatment of hypertension. Since, synthetic drugs 
have numerous side effects; the inclination towards nature-derived or natural antihypertensive molecules 
is highly desired. There are few QSAR studies, which predicted the antihypertensive nature of small 
peptides, mainly di- and tripeptides18. Most of the previous studies have used smaller datasets and have 
developed only correlation or QSAR models. The present study has been made to emanate predictive 
QSAR models in addition to the classification models. These models were developed using the largest 
available datasets of antihypertensive peptides till date. In our amino acid composition analysis, we have 
found that glycine is the most prevalent amino acid in AHTs having length of two residues. Interestingly 
proline was found to be predominantly present in tripeptides, small peptides, medium peptides and 
large peptides. A scrutiny of different types of features in prediction methods becomes necessary to 
find the most significant ones associated with prediction. It was noticed that descriptor-based regres-
sion model performs better than simple amino acid and atomic composition based model for tiny pep-
tides. Due to the short length, their information is not represented by amino acid composition. Hence, 
descriptor-based regression model performed best in these cases. In comparison to the previously used 
descriptors (G-scales), our descriptors performed well on our large datasets, which supports their wide 
predictability. We developed our models in compliance with the OECD principles20, where we achieved 
reasonable performance in external validation (on independent datasets) to show the robustness and 
predictability of our models. We have also provided all the information about our models e.g. procedure, 
input features, datasets etc. on the website, which is also in accordance with OECD. For peptides having 
length equal or more than four amino acids, we developed classification models. For developing classi-
fication models, randomly generated peptides were used as negative datasets in the absence of experi-
mentally validated negative datasets. The ratio of positive and negative datasets is very critical to develop 
robust machine-learning models. One recent chemoinformatics study by Kurczab et al.39 showed that the 
preferable ratio of positive to negative is 1:9 to 1:10. But in a sequence based bioinformatics approach, 
the ratio of positive to negative datasets should be 1:1 to avoid any imbalance and biased learning40,41, 

Figure 4. SVM threshold wise performance of large peptides using amino acid composition. 

http://crdd.osdd.net/raghava/ahtpin/
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so we took negative peptides in equal ratio of positive peptides to develop our models. We found that 
our classification models performed well on all the three features viz. amino acid composition. Medium 
and large peptides have adequate length to represent them by amino acid composition vector. So, amino 
acids composition performed better in case of medium and large peptide datasets. To help researchers 
working in this area and scientific community, all these models have been integrated in the form of a 
web server called “AHTpin”, which is freely available at the URL: http://crdd.osdd.net/raghava/ahtpin.
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