
IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,, MANUSCRIPT ID 1

An FPGA based Energy-Efficient Read Mapper
with Parallel Filtering and in-situ Verification

Venkateshwarlu Yellaswamy Gudur, Sidharth Maheshwari, Amit Acharyya, Member, IEEE and

Rishad Shafik, Senior Member, IEEE

Abstract—In the assembly pipeline of Whole Genome Sequencing (WGS), read mapping is a widely used method to re-

assemble the genome. It employs approximate string matching and dynamic programming-based algorithms on a large volume

of data and associated structures, making it a computationally intensive process. Currently, the state-of-the-art data centers for

genome sequencing incur substantial setup and energy costs for maintaining hardware, data storage and cooling systems. To

enable low-cost genomics, we propose an energy-efficient architectural methodology for read mapping using a single system-

on-chip (SoC) platform. The proposed methodology is based on the q-gram lemma and designed using a novel architecture for

filtering and verification. The filtering algorithm is designed using a parallel sorted q-gram lemma based method for the first time,

and it is complemented by an in-situ verification routine using parallel Myers bit-vector algorithm. We have implemented our

design on the Zynq Ultrascale+ XCZU9EG MPSoC platform. It is then extensively validated using real genomic data to

demonstrate up to 7.8× energy reduction and up to 13.3× less resource utilization when compared with the state-of-the-art

software and hardware approaches.

Index Terms—Field programmable gate array, genome sequencing, filtering, low-cost, low-energy, read mapping, verification

—————————— ——————————

1 INTRODUCTION

he enormous advances in genomics in the past decade
and the next-generation sequencing (NGS) methodol-

ogies have revolutionized the genomic research [1]–[3].
The information divulged by whole genome sequencing
(WGS) has the potential to transform personalized treat-
ment and diagnostics by the likes of early detection of
health conditions, monitoring therapeutic progress and
susceptibility to diseases, and thereby reducing morbidity
and mortality [3], [4]. Genomic researchers are persistent-
ly investigating its role on predictive, preventive, partici-
patory, and personalized (P4) medicine [2] with the aim
of understanding the impact of genomic variants on
6000+ genetic diseases, including cancer. As such, it is
reasonable to foresee that a significant fraction of popula-
tion will have their genomes routinely analyzed at hospi-
tals and clinics in the near future [1], [5], [6].

WGS is the process of determining the DNA sequence,
i.e., the order of the nucleotide bases in the genome and
its analysis. Sequencing and assembly pipelines of the
WGS are responsible for obtaining the genomic data. The
sequencing process identifies the structure of the genome
as small randomly fractured segments, called reads, and
the assembly pipeline re-assembles the actual genomes
using reads. The process of assembling reads to construct
the original genome using a reference genome as a blue-
print is called read mapping. Owing to the Human Ge-
nome Project and enormous advances in NGS methodol-

ogies, the cost of sequencing is declining [7]–[9]. Howev-
er, in read mapping, the resources for storing, processing,
analyzing and other computational capabilities are not
growing on par with the rate of sequence data generation
[5], [8]. State-of-the-art methodologies in read mapping
incur substantial infrastructure costs and are computa-
tionally intensive and also consume a vast amount of en-
ergy due to the volume of genomic data that are generat-
ed every day [5], [10].

In an effort to improve the performance of read map-
ping, researchers have traditionally resorted to accelerat-
ing using software algorithms and/or hardware imple-
mentations, implemented on CPUs, graphics processing
units (GPUs), CPU+GPUs, field programmable gate ar-
rays (FPGAs) [11]–[20]. However, they do not address the
energy cost as a direct minimization objective, which
needs a careful tradeoff between algorithmic design and
implementation.

In this paper, we propose a novel energy-efficient read
mapper using a single FPGA system-on-chip (SoC) plat-
form. Read mapping includes two stages, filtering and
verification [9], [14], [21]–[23]. The first stage identifies
candidate locations in the reference genome for the reads
and the second stage calculates the exact alignment of the
reads to the reference genome. Core to our approach is a
parallel filtering, complemented by in-situ verification for
memory and computation compaction. The filtering algo-
rithm is designed using a parallel sorted q-gram based
method for the first time. Q-grams, derived from query
reads, are used in the filtering operation by searching
them in the reference genome using a binary search
method, and the match results are used to determine the

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 V.Y. Gudur and A. Acharyya are with the Department of Electrical Engi-
neering, Indian Institute of Technology Hyderabad, 502285, Telangana,
India. E-mail: {ee15resch02009, amit_acharyya}@iith.ac.in.

 S. Maheshwari and R. Shafik are with the School of Engineering, Newcastle
University, Newcastle Upon Tyne, UK, NE1 7RU. E-mail:
{s.maheshwari2, Rishad.Shafik}@newcastle.ac.uk.

T

2 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

candidate locations for the reads. Filtering is followed by
an in-situ verification routine designed using parallel My-
ers bit-vector algorithm. For a given number of mis-
matches between query reads and the reference genome,
the candidate locations where the reads may be located
are examined in verification to align the reads to the ref-
erence genome. The proposed architectures for filtering
and verification exploit the parallelism offered by FPGAs
and are efficiently designed catering the need for low-
energy consuming approaches of read mapping. The key
contributions of this work are as follows:
 a q-gram lemma based novel methodology for parallel

filtering;
 an in-situ verification using parallel Myers bit-vector

algorithm for reducing memory footprint and increas-
ing performance; and

 a single FPGA SoC based implementation featuring
hardware/software codesign for energy and resource
efficiency.
The proposed design is implemented on a Zynq Ul-

trascale+ MPSoC XCZU9EG FPGA platform. We compare
our design with state-of-the-art software and hardware
methods and show significant energy and performance-
resource efficiencies. The average gain over energy con-
sumption and resource utilization is 7.8× and 13.3× for
software methods and 3.97× and 5.62× for hardware
methods.

2 RELATED WORK

The mapping of millions of reads obtained by sequencing
process to a reference genome (~3.2 billion base-pairs in
the human genome) is time and resource consuming. As
such, heuristic approaches based on q-gram filters are
used in read mapping [9], [22], [24]. These approaches of
read mapping in genome sequencing include two stages,
filtering and verification. For a given threshold of permis-
sible number variations of the reads with respect to a sec-
tion of the reference genome, the first stage eventually
prunes the number of candidate locations for the reads by
eliminating the parts of the reference genome where the
chances of finding the reads are minimal [25], [26]. Using
dynamic programming methods, the second stage com-
pares and performs the alignment of the reads to the sec-
tions of the reference genome filtered by the first stage.
Myers bit-vector algorithm is a popular algorithm for ap-
proximate string matching used for alignment in the veri-
fication stage [27]. It is dynamic programming based al-
gorithm to find the edit distance between two strings us-
ing addition, shifting and other bitwise operations. It is
extensively used in genomics for the problems of local
and global alignment [28], [29].

Software based read mappers include BWA-MEM,
Bowtie, mrFAST, SOAP, RazerS, SHRiMP2, GEM, RazerS
3, Yara, Hobbes3, CORAL and GRIM-Filter [28]–[37], [53].
In the filtration stage of many of these read mappers, pi-
geonhole principle and q-gram lemma approaches are
used [9], [38]. In the pigeonhole principle, if a read is
fragmented into 1k segments, then in the approximate
match of the read to the reference genome with k errors,
there is at least one segment without error [39]. As short

segments of the read are more likely found, the specificity
of these filters is less. GEM mapper, RazerS 3, BitMapper,
Hobbes3 and CORAL are the read mappers based on the
pigeonhole principle [29], [34], [35], [37], [40]. A string of
length q is called q-gram. In q-gram lemma, for a maxi-
mum of k errors, two strings each of length n share

 1 1n k q number of common substrings [25]. In read
mappers based on q-gram approach, a q-gram counting
filter searches for regions in the reference genome that
satisfies the condition for the minimum number of com-
mon substrings. The modified SWIFT, RazerS, SHRiMP2
and RazerS 3 are the read mappers based on q-gram
lemma [26], [28], [29], [36]. Kim et al. present a pro-
cessing-in-memory approach to perform filtering by ex-
ploring 3D-stacked DRAM memory technologies with
high-memory bandwidth [53]. However, the portability of
the hardware architecture is limited by their approach.

 NGS methodologies generate a massive amount of se-
quence data, and it is doubling every 7 months [5], [8].
With growing performance demands, application-specific
high-performance servers or clusters are the typical im-
plementation choices using GPUs or FPGAs [11]–[17],
[20]. In the literature, ASIC custom hardware accelerators
are used for sequence alignment [54]–[56]. However,
large monetary investments for chip design and the rigid
architecture performing fixed operations limit the ASICs
for wide adoption in genomics applications. Due to the
high cost and energy consumption of GPU based clusters,
FPGAs are often preferred for processing genomic data as
they offer massive parallelism, low cost and high energy
efficiency [12], [14], [18], [20]. Various algorithms for ap-
plications like pairwise sequence alignment, database
searching, string matching, multiple sequence alignment,
read mapping, etc., are designed using reconfigurable
FPGA hardware [12], [18]–[20], [24], [41]–[44]. An exten-
sive survey for sequence alignment using reconfigurable
platforms is presented in [45].

A hybrid accelerator composed of both CPU and
FPGA where only the seed generation and extension is
implemented on FPGA is proposed in [44]. FPGA based
MapReduce framework with multiple hardware accelera-
tors is presented in [46] to align short reads to a reference
genome. FM-index based approximate string matching
for Bowtie running on FPGA using concurrent multiple
hardware threads is presented in [47]. A multiple FPGA
system for short read alignment with a maximum of two
mismatches is presented in [15]. In this work, off-chip
DRAM chips are used to store the expanded FM-indexes,
and the time to reconfigure the FPGAs, transfer the FM-
indexes and disk IO operations is omitted. An FPGA
based system to accelerate and improve the NGS long
read mapping using Smith-Waterman Algorithm is pro-
posed in [48]. An FPGA based accelerated approach to
compute edit-distance approximations for short read
alignment is proposed in [17]. A hardware based pre-
alignment filter using FPGA is proposed in [24]. Here, in
addition to the memory bandwidth bottleneck, the
standalone hardware filter requires existing read mappers
to perform the verification.

To date, FPGAs are used as accelerators or co-

GUDUR ET AL.: AN FPGA BASED ENERGY-EFFICIENT READ MAPPER WITH PARALLEL FILTERING AND IN-SITU VERIFICATION 3

processors in separate filtering and verification pipelines
within read mapping. To the best of our knowledge, a
complete hardware system for the whole operation of
read mapping using both filtering and verification is not
available so far. In view of the above, we propose a low-
energy read mapping methodology in Section 3. Initially,
a system level description for the proposed methodology
is presented. Then we explain our proposed q-gram lem-
ma based parallel filtering and verification methodolo-
gies. In Section 4, the practical implementation of the
proposed methodology is presented, together with its
extensive validations. Finally, Section 5 concludes the
paper.

3 PROPOSED METHODOLOGY FOR READ MAPPING

Fig. 1 depicts the proposed read-mapping methodology.
The methodology includes two levels, (a) preprocessing
and (b) filtering and verification. Preprocessing is re-
quired for both filtering and verification. FPGA based
hardware systems with limited memories are not useful
for implementation of the whole operation of read map-
ping on the entire genome in one go. In order to facilitate
working with memory restricted FPGAs and reduce the
complexity of hardware required for filtering and verifi-
cation operations, the reference genome is divided into
smaller overlapping segments called sections. In the pre-
processing for filtering, for every genome section, all the
q-grams are obtained. These q-grams, which are in text
format, are encoded into two-bit. The encoded q-grams
have numerical values, and they are sorted in an array
according to their values. For every genome section, there
is a sorted q-grams array. As discussed later, this is help-
ful for a hardware compatible algorithm architecture de-
sign irrespective of the resources available on the hard-
ware platform. In the preprocessing for verification, the
sections of the genome are just two-bit encoded. Our
methodology is generic and portable to any FPGA plat-
form, irrespective of the hardware resources available on
the platform.

A read is mapped to the reference genome within an
edit distance, e , to accommodate sequencing errors and
true variations in the original genome [33]–[35]. In our
methodology for filtering, called parallel sorted q-gram
lemma based filter, the filter identifies all those reads which
can be mapped to the reference genome within the edit
distance. Q-grams obtained from reads are parallelly
matched with the q-grams in the sorted array of the ge-
nome section. The number of common substrings be-
tween the query read and the genome section derived for
the edit distance, e , is compared with the total number of
q-gram matches found in the array. The verification stage
is selectively enabled whenever the number of matches
crosses the number of common substrings. In the verifica-
tion stage, the read is exactly aligned to the genome sec-
tion using approximate string matching. The in-situ veri-
fication avoids memory-intensive operations that involve
moving and saving the data in the filtering stage. Algo-
rithm 1 gives an overview of the proposed methodology,
including the above steps.

Fig. 2 gives the flow of preprocessing, filtering and

verification. The details are as follows.

A. Preprocessing

Fig. 2 (a) shows preprocessing for filtering, and it includes
four steps, viz. segmentation, creation of q-grams, encod-
ing and sorting. Initially, the reference genome is seg-
mented into n small sections. For a read length R and edit
distance e , the section size must be at least R e so that the
given read can be mapped within the edit distance. A
query read can be on the border of two sections. The
overlapping part between the two sections has to consider
mapping the read within the edit distance. As such, we
choose R e as the overlapping size. Given a length of q-
gram, q , all the possible q-grams are obtained from the
section. From a section of length N , the number of q-
grams X obtained from it is given as – 1X N q . Nu-
cleotides in the q-grams are in text format. To reduce the
memory requirement, all the q-grams consisting of the
nucleotides (A, C, G and T) are encoded in two-bit binary
numbers (00, 01, 10, and 11). The N symbol is treated as
any nucleotide, and one of the four nucleotides is ran-
domly selected for every N symbol. All the encoded q-
grams are sorted in ascending order according to their
numerical values and stored in an array. The array is
called a sorted q-gram array (SQA). For a given reference
genome, sorting is required to be performed only a single
time for creating the SQAs. In the proposed methodology,
we do not limit the sorted q-gram array creation in the
preprocessing step by choice of sorting algorithm. Any
sorting algorithm can be used to obtain the SQAs. The bit
vectors in [53] maintain a sorted order of q-grams similar
to our approach. However, as discussed later, the two-bit

In-situ

Verification

Parallel

Sorted

Q-gram

Lemma

 based

Filter

1. Segmentation

2. Create Q-

grams

3. Encoding

4. Sort Q-grams
Enable

verification

Preprocessing

for Filtering

1. Segmentation

2. Encoding

Preprocessing
Filtering

+

Verification

R
e

fe
re

n
ce

 G
e

n
o

m
e

Preprocessing for

Verification

Sections of genome for

filtering

Section 1 Section 2 Section n

Sections of genome for

verification

Section 1 Section 2 Section n

R
e

a
d

s

Fig. 1. System level representation of the proposed methodology.

Algorithm 1. Flow of the proposed methodology for read mapping

Input: Reference genome, Reads
Output: Reads with their mappings
1 Preprocess the reference genome for filtering and verification
2 for each section of the genome
3 Filtering
4 for each read obtain all the q-grams
5 Search all the q-grams in the genome section for the fil-

ter
6 if total number of matches of all the q-grams exceed

threshold
7 Enable verification for the read
8 Verification
9 for every read passed by the filter

10 Perform exact alignment for that read in the genome sec-
tion

4 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

encoding of q-grams in our methodology facilitates bina-
ry searching in hardware and essentially reduces the
memory transactions in the proposed hardware centric
architecture. Preprocessing for verification includes two
steps, segmentation and encoding. Each genome section
from the n sections, is simply two-bit encoded, as ex-
plained earlier.

B. Filtering

For a practical value of e , usually 5% of the read length, it
is observed that more than 98% of the reads exhibit incor-
rect mappings [21]. The computationally intensive exact
alignment involving dynamic programming methods can
be avoided by selectively enabling the verification. This is
achieved by the filtering stage. Fig. 2 (b) shows the flow
of filtering. The sorted q-gram arrays (SQAs) for all the
sections are obtained from preprocessing. For every two-
bit encoded read of length R , the number of q-grams M

each of length q is given as – 1M R q . For a given
number of mismatches or errors, the number of common
substrings between the query read and the genome sec-
tion is the threshold value required for enabling the veri-
fication. It is the minimum number of q-grams of the read
required to match in the array. It is given as

 – 1 1ThesholdC R e q where
ThesholdC is the count of q-

gram matches, i.e., common substrings, R is the read
length, e is the edit distance and q is the length of q-gram.
As SQA involves sorted q-grams, binary search is efficient
to search all query q-grams of the read [49]. Whenever the
threshold value is met by the query read, a signal to ena-
ble verification is activated. For every genome section, the
procedure is repeated for all the reads.

C. Verification

Fig. 2 (c) shows the flow of verification. In the verification
stage, approximate string matching is employed to align
the query read to the genome section. Genome sections
are encoded in the preprocessing stage. The verification
stage is designed using the Myers bit-vector algorithm
[27]. Initially, in precomputation, two arrays are comput-
ed, one each for the bits of the nucleotides in the query
read. It is followed by parallel bit-vector operations be-
tween the arrays and the two-bit encoded nucleotides of

the genome section. The nucleotides from the section are
passed sequentially. The alignment of the read with the
section is quantitatively indicated by a score. The read is
assumed to be mapped to a location whenever the corre-
sponding alignment score for the location is equal to or
lesser than the edit distance, e .

The detailed architecture of our method is presented in
the next sub-sections. Initially, system-level architecture
for read mapping using the proposed methodologies for
filtering and verification is presented, followed by their
detailed architectures.

3.1 System Architecture

The complete system architecture using the proposed
methodologies for filtering and verification is given in
Fig. 3. Initially, during the preprocessing phase, as shown
in Fig. 1 and Fig. 2 (a), the reference genome is segmented
into different overlapping small sections. For the filtering,
this is followed by q-grams creation and two-bit encoding
of the q-grams. The encoded q-grams of each section are
sorted according to their binary values. For the verifica-
tion, the segmented sections are two-bit encoded. Once
the preprocessing is completed, the sorted q-grams for
filtering and encoded sections for verification are stored
in external memories. The reads obtained from a sequenc-
ing machine are also stored in the external memory.

The System Control Logic controls the filtering and veri-
fication and maintains the flow of the system operations.
Read FIFOIn is used to feed the read from the external
memory to the system. The nucleotides of the reads are
two-bit encoded, and transferring them to the system
saves many memory operations. The reads are stored in a
FIFO (first-in, first-out) memory inside the system. Enable
Filt Op and Enable Verif Op are the global signals to enable
the filtering and verification operations, respectively. The
Array signals are used to update SQAs to the Filtering
core. The Section signals are used to update encoded sec-
tions to the Verification core. QSE En is the binary vector
used to enable or disable the q-gram search engines
(QSEs) inside the filtering core, which is used to search a
q-gram in the SQA. Count Threshold is the minimum
number of common substrings used in filtering. Score
Threshold is the edit distance, e , used to compare with the

Repeat for all
sections of

the genome

All reads
completed?

Enable Verification

Encoded and
sorted genome
section, reads

Obtain all q-grams
from a read

Search all q-grams
in the genome

section for filter
using binary search

Number
of matches >=

threshold
for e?

Yes

No

Yes

No

Encoded genome
section, reads

Precomputation
for read

Verification
enabled for the

read?

For each encoded
nucleotide of the
section, compute

alignment of the read

Alignment
score <= e?

End of
section?

Store mapping
information of

the read

No

Yes

Yes

Yes

No
No

Q-Gram X

4. Sort Q-Grams

GATCCAAAAG...

Length N
Q-Gram 1

Q-Gram 2
Q-Gram 3

Q-Gram 4 Q-Gram i

Reference Genome

TCCAAA... 110101000000...

GATCCA... 100011010100...

ATCCAA... 001101010000...

CCAAAA... 010100000000...

Q-Gram 1

Q-Gram 2

Q-Gram 3

Q-Gram 4

Q-Grams 2-bit encoded Q-Grams Sorted Q-Grams

Section 1 Section 2 ... Section j ... Section n

1. Segmentation

2. Create Q-Grams

3. Encoding

001101010000...

010100000000...

100011010100...

110101000000...

(a) (b) (c)

q

Start Start

End End

Fig. 2. Detailed steps in the proposed methodology (a) Illustration of preprocessing for filtering (b) Filtering flow (c) Verification flow

GUDUR ET AL.: AN FPGA BASED ENERGY-EFFICIENT READ MAPPER WITH PARALLEL FILTERING AND IN-SITU VERIFICATION 5

alignment score in the verification. The mapping infor-
mation of a read is indicated by Match signals and Score.

Initially, the SQA of a section of the reference genome
is transferred to the filtering core using the Array signals.
Then, the corresponding encoded section is transferred to
the verification core using Section signals. The system be-
gins mapping operation once the Start Search signal is
activated. The encoded reads are sent to the system and
stored in the FIFO memory from where they are inputted
to both the Filtering and Verification cores. Filtering is per-
formed on the reads, and depending on the Verification En
signal, the Verification core activates the read and decides
to perform verification. On activating the Verif En signal
by the Filtering core, the Verification core aligns the read to
the section of the reference genome and completes the
mapping of the read. The outputs related to the mapped
read are stored in Output FIFOs. The outputs can be com-
bined and stored in a single FIFO, or multiple FIFOs can
be used for each output signal. Handshaking Signals are
used at various stages for multiple purposes, e.g., to indi-
cate the start and end of transferring operations like
transfer of genome sections and reads, to indicate the end
of searching of all reads, to communicate with the top-
level modules, and to interact with internal modules us-
ing the system control signals. Once the mapping of reads
for the section is completed, on the next section, above
operations are performed in a similar fashion.

Large memory requirements inside the system and the
associated memory intensive operations for storing the
entire reference genome are big drawbacks in FPGA
based read mapping methods. In the proposed method-
ology, as read mapping is performed by dividing the ref-
erence genome into smaller sections, these drawbacks are
eliminated. Depending on the availability of the system

resources, the size of the sections can be determined.
However, as experimentally validated later, smaller sizes
of sections eliminate most of the incorrect mappings and
thereby reduce the computational burden on verification.
Such a choice of small section size increases the filtering
time, as all the reads are repeatedly searched in the sec-
tions. Choosing larger sizes of sections leads to filtering of
many reads as the likelihood of q-grams matching in-
creases and the threshold of common substrings is met.
This, in turn, increases the time and computational bur-
den on the verification stage. Optimum section size has to
be decided so that most incorrect mappings are eliminat-
ed while simultaneously the time required for filtering
and verification operations is maintained.

3.2 Filtering using Parallel Q-grams

In this sub-section, we present the q-gram search engine
for searching q-grams in a section of the genome. It is fol-
lowed by the q-gram based filtering methodology that
uses multiple q-gram search engines in parallel for
searching q-grams of a read in a section of the reference
genome.

3.2.1 Q-gram search engine architecture

Q-gram search engine (QSE) is the core used to search q-
grams obtained from a read in the SQAs using binary
search. Fig. 4 shows the architecture for the QSE using the
concept of sorted q-grams. The QSE En signal is used to
enable and disable the search engine core. The local
memory is updated with SQAs using the Array signals.
Search En signal is used to indicate the start of the search-
ing operation for a query q-gram in the array. For a two-
bit encoded Query Q-Gram and the corresponding binary
value, the control logic searches for the q-gram in the lo-

S
e

ct
io

n
 n

S
e

ct
io

n
 j

S
e

ct
io

n
 2

S
e

ct
io

n
 1

R
e

fe
re

n
ce

 G
e

n
o

m
e

S
e

ct
io

n
 n

S
e

ct
io

n
 j

S
e

ct
io

n
 2

S
e

ct
io

n
 1

R
e

ad
 m

..
.

R
e

ad
 i

..
.

R
e

ad
 2

R
e

ad
 1

R
e

ad
 m

..
.

R
e

ad
 i

..
.

R
e

ad
 2

R
e

ad
 1

A
rr

a
y

U
p

d
a

te

A
rr

a
y

W
ri

te
 E

n

A
rr

a
y

D
In

A
rr

a
y

W
ri

te
 A

d
d

r

Q
SE

 E
n

a
b

le

S
e

a
rc

h
 E

n

C
o

u
n

t
T

h
re

sh
o

ld
Verification En

C
le

ar
 I

n
te

rn
a

l R
e

g
s

Sy
st

e
m

 C
o

n
tr

o
l

Si
gn

al
s

Verif En
Valid Match

Score

Verification Done
Match Location

S
ys

te
m

 C
o

n
tr

o
l

Si
gn

a
ls

Verification

Filtering

Q
u

e
ry

 R
e

a
d

S
e

ct
io

n
 A

d
d

r

S
e

ct
io

n
 U

p
d

a
te

V
e

ri
f

R
e

se
t

S
e

ct
io

n
 D

In

P
re

co
m

p
u

ta
ti

o
n

 E
n

E
n

a
b

le
 S

co
ri

n
g

S
co

re
 T

h
re

sh
o

ld

Q
u

e
ry

 R
e

a
d

Database
for

Verification

Database
for

Filtering

System Control Logic

C
lo

ck

R
e

se
t

E
n

a
b

le
F

ilt
 O

p

E
n

a
b

le
V

e
ri

f
O

p

Q
SE

 E
n

A
rr

a
y

U
p

d
a

te

A
rr

a
y

W
ri

te
 E

n

A
rr

a
y

W
ri

te

A
d

d
r

A
rr

a
y

D
In

R
e

a
d

F

IF
O

In

S
ta

rt

S
e

a
rc

h

Match
Found

S
e

ct
io

n
U

p
d

a
te

S
e

ct
io

n
A

d
d

r

S
co

re
T

h
re

sh
o

ld
C

o
u

n
t

T
h

re
sh

o
ld

S
e

ct
io

n

D
In

Section
End

Score

Match
Location

Hand
shaking
Signals

Q-Grams

E
n

co
d

e
d

 S
e

ct
io

n
s

Encoded
Q-Grams

Sorted Q-
Grams

FIFO for Reads

Read Memory

S
e

g
m

e
n

te
d

S
e

ct
io

n
s

O
u

tp
u

t
x

..
.

O
u

tp
u

t
k

..
.

O
u

tp
u

t
2

O
u

tp
u

t
1FIFOs for

Storing

Outputs

Fig. 3. Architecture of proposed methodology for read mapping using filtering and verification. Dotted lines indicate connection to memories.

6 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

cal memory array. The local memory contains an SQA. As
such, binary searching is an efficient method, and it is
implemented to find the q-gram in the SQA [49]. A com-
parator compares the binary value of query q-gram with
the sorted q-gram produced for a corresponding address.
Depending on the comparator output, the Array Address
Limits Generator circuit computes the low-end and high-
end address values required in the binary search algo-
rithm for calculating the next address of the local memory
with the help of Local Memory Address Generator. The Ar-
ray Update signal is used to connect the address lines of
the local memory to the write and read addresses during
the updating of memory and searching operations, re-
spectively. The control logic outputs a flag whenever the
query q-gram is found in the local memory containing the
SQA. The searching operation takes a maximum of

2log ()X clock cycles where X is the number of q-grams
obtained from the corresponding section of the reference
genome.

3.2.2 Proposed filtering using q-gram search engines

The proposed filtering methodology requires searching
all the q-grams obtained from a read. To search M q-
grams in parallel, M QSE cores are required. Fig. 5 shows
the architecture for the filtering using QSE cores in paral-
lel. Each core in the architecture can search for a q-gram
in the SQA representing the genome section. All the M q-
grams are searched in parallel and in turn, the entire read
is filtered in the section. There are as many numbers of
search engine cores in the architecture as the number of q-
grams of the read. The Array Signals are composed of sig-
nals required to update the QSE cores with SQAs ob-
tained from the sections of the reference genome. A multi-
bit signal, QSE Enable Vector, is generated by the Filtering
Control Logic for selective enabling and disabling of the
QSE cores using the value of the QSE Enable. The binary
value of QSE Signal corresponds to the particular QSE
number to be enabled/disabled. Special values like all 1’s
or 0’s can be used to turn on/off all the QSE cores. Each
two-bit encoded q-gram obtained from the Query Read is
searched by the QSE core in its local memory containing
the SQA of the genome section. Count Threshold is the
minimum number of q-grams required to match in the
SQA. The System Control Signals are used for miscellane-
ous activities and handshaking between the filtering core
and other modules of the system.

The Search En signal enables the searching of query q-

grams of the read. All the QSE cores work in parallel and
search their respective q-grams in the SQAs stored in the
local memories. The entire query read comprising of M q-
grams are searched in just

2log ()X clock cycles, which is
required by a single QSE engine for a section from which
X q-grams are obtained. Whenever a q-gram is identified

in the local memory, the QSE core outputs a flag to indi-
cate the match. The Count 1s’ Circuit sums all the flags
obtained from the QSE cores. The Comparator compares
the sum with the value of Count Threshold. Whenever the
required number of q-grams are matched in the array
(i.e., section of the reference genome), the Verification En is
activated to enable the verification and alignment of the
query read in the section of the reference genome. The
accurate alignment of the query read in the section is ac-
complished by the verification core as described later. If
the number of q-grams matched in the section is less than
the Count Threshold value, it indicates that the section of
the reference genome is not a candidate location for the
query read. It is an incorrect mapping for the query read,
and thus the section of the reference genome is rejected
for verification of the corresponding query read. This se-
lective enabling of the verification by the filtering core
assists in reducing the load on the computationally inten-
sive verification and alignment operation and thereby
conserving time and resources.

3.3 Memory-aware in-situ Verification

A genome section is a candidate location for every read
with common substrings more than the threshold value.
In the proposed verification, the read is exactly aligned
with the genome section using hardware based Myers bit-
vector algorithm [27]. In the original Myers bit-vector
algorithm [27], CPU registers are directly used for reads
up to 64 base-pairs. Reads of 65 base-pairs and higher
require multiple CPU registers to emulate the bit-vectors
and operations [27], [29]. However, there is performance
degradation due to additional processing overhead
caused by operations on multiple registers. The banded
version of the Myers bit-vector algorithm is four times
faster than the original algorithm [57]. However, it uses
multiple conditional loops and controlling statements
leading to a complex state machine and architecture when
implemented on hardware. As a result, there might be
limitations on the frequency of the operations of the
hardware that leads to degraded speed performance. In

Array Addr
Generation and

Control Logic

...

...

10011...01
...

10000...11
10010...00

...

...

00011...00
...

00001...00

00010...01

LocMem
Wr/!Rd En

Array Update

Array
Write En

Lo
cM

e
m

 D
O

u
t

Array DIn

Query
Q-Gram

LocalMem
Addr

Generator

Comparator

Array Write Addr

1

0

Lookout Addr

LocMem Addr

<

=

>

Lo
w

 A
d

d
r

H
ig

h
 A

d
d

r

Array Addr
Limits

Generator

Flag Q-Gram Found

QSE En

Sorted Q-Grams

Search En

Fig. 4. Detailed hardware architecture of q-gram search engine.

Read

QSE Enable Vector
Array

Signals

Q-Gram 1

Q-Gram 2
Q-Gram 3

Q-Gram i Q-Gram M

Search En

Flag Q-Gram
Found

Array Update

Array Write En

Array DIn

Query Read

Array Write Addr

QSE Enable

Search En

Count Threshold

Verification En

Clear Internal Regs

System Control Signals

Q-Gram
Search

Engine 1

Q-Gram

Search

Engine 2

Q-Gram

Search

Engine M

Q-Gram

Search

Engine i

Q-Gram

Search

Engine 3

Count Threshold

Comparator
Count 1s’

Circuit

Concatenate

Bits to

Vector

Filtering
Control Logic

Fig. 5. Detailed hardware architecture of the proposed parallel filter-

ing methodology using sorted q-grams.

GUDUR ET AL.: AN FPGA BASED ENERGY-EFFICIENT READ MAPPER WITH PARALLEL FILTERING AND IN-SITU VERIFICATION 7

the proposed Myers bit-vector algorithm based verifica-
tion using hardware processing on an FPGA, there is no
limitation on reads size as the entire read can be pro-
cessed in a single iteration without the need for multiple
loops. In addition, to design a simple hardware architec-
ture supporting a maximum operating frequency without
timing violations, the original Myers bit-vector algorithm
is used instead of its banded version.

Fig. 6 shows the architecture of the proposed verifica-
tion methodology. The encoded genome sections, in
which alignment has to be done, are transferred to the
verification core and stored in the Memory Array using the
Section signals. In the filtering stage, the Verification Enable
signal is activated for a Query Read whenever the number
of q-grams matched in the genome section is higher than
the Count Threshold. This signal, indicated by Verif En, is
used to enable the verification core.

In the precomputation stage, the pre-equal vector is
computed for the given read using the top region of the
architecture. As the read is two-bit encoded, the pre-equal
vector is divided into two vectors, one for each bit of the
nucleotide. When the Precomputation En signal is enabled,
the pre-equal vector, comprised of Peq2 and Peq1, is calcu-
lated for each nucleotide of the read. Counter for Peq is
used to keep track of the nucleotide position in the read.
The bits of Peq2 and Peq1 vectors corresponding to the
location of the nucleotide in the read are set to the two-bit
encoded value of the nucleotide. This is achieved as fol-
lows: a constant 1 is left-shifted by the count value and
the Peq registers enabled by the Verification Control Logic
are bitwise ORed with the shifted value. Once the compu-
tation of the pre-equal vector is completed, Enable Scoring
signal is activated.

Operations between the bits of Peq registers and the
two-bit encoded nucleotides of the genome section occur
in parallel. For each nucleotide of the genome section, the
State Machine compares the nucleotide with A, C, G, and
T and computes the score of alignment. The input line of
the multiplexer corresponding to the current two-bit en-
coded nucleotide of the section is activated and connected
to the register of the equal vector, indicated by Reg Eq.

The state machine runs through multiple states to com-
pute different bit-vectors, as described in the Myers bit-
vector algorithm, and performs operations parallelly on
all the bits of the read using the bit-vectors. A separate
counter, Counter for Section, is used to keep track of the
nucleotides of the genome section. For the sake of sim-
plicity, the enable signals from the control logic to the
registers and counters are not connected. The edit dis-
tance value, e , is indicated by Score Threshold. It is the
score required to indicate a valid mapping for the read.
The read alignment to the genome section within the
permissible edit distance is indicated by the Valid Match
signal. Verification Done is used to indicate the end of the
verification operation, and it is also used to resume the
filtering whenever it is halted for verification. For every
valid mapping, the corresponding Score and the Match
Location of the read in the genome section can be read in
the top-level system where the verification core is instan-
tiated.

As described in the earlier sections, the verification
core is placed alongside the filtering core. This in situ ver-
ification of reads in the sections of the reference genome
is helpful to realize a complete system on a single FPGA
device. The filtering output generated for all the reads in
all the sections is large and storing it is memory intensive.
Verification is performed for all the eligible reads as indi-
cated by the filtering. As such, there is no need to store
the filtering output. Thus, the need for intensive memory
operations related to the data of filtering is eliminated by
the proposed in-situ verification, thereby achieving a
compact and memory-aware implementation.

4 EVALUATION

In this section, the implementation of the proposed meth-
odology is presented, followed by a detailed evaluation
and comparison with the existing literature.

4.1 System Implementation on SoC FPGA

The system designed using the proposed filtering and
verification methodologies is implemented on a system-
on-chip (SoC) FPGA device. SoC FPGAs have a processor
to run the software and a reprogrammable logic to design
any user specific hardware [50]. Hardware/software
codesign incorporating the advantages of both the hard-
ware and software is used to implement the system [20],
[51]. Fig. 7 presents the system-level implementation for
read mapping. Many of the control actions required by
the system, including the transfer of sections and reads,
controlling of outputs, and handling of external memo-
ries, necessitates a sophisticated control and state ma-
chine. In such a scenario of many control actions, an intel-
ligent processor comes in handy. The Processing System
(PS) may include any softcore processor or an ARM pro-
cessor on SoC FPGAs and executes the software part of
the system. The ZCU102 evaluation kit from Xilinx de-
signed using the Zynq UltraScale+ MPSoC FPGA and
Xilinx Vivado Design Suite 2017.3 software tools are used
for the implementation following the embedded system
design flow [50]. The FPGA device on ZCU102 kit has

Verification Control Logic

Valid Match

Score

Verification Done

Match Location

System Control Signals

Memory Array for Genome Section

Counter
for Peq

Reg Peq2

<<

| Bit
 OR

Constant 1
Register

DIn

En

Register
En

DIn

| Bit
 OR

Reg Peq1

En

En

DIn

DIn

11

00

01

10

& Bit
AND

& Bit
AND

& Bit
AND

& Bit
AND

Reg Eq
En

DIn

State
Machine

Counter
for

Section

Section Addr

Section Update

Query Read

Verif Reset

Section DIn

Precomputation En

Verif En

Enable Scoring

Score Threshold

2-bit encoded
characters of

section

Pre-equal Vector Computation

State Machine
Signals

Fig. 6. Detailed hardware architecture for verification

8 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

ARM Cortex-A53 processor, and it can be used as the
processing system to run the flow of the system as de-
scribed in Algorithm 1. In addition to the PS, the FPGA
device also includes reconfigurable hardware fabric re-
quired for the implementation of the hardware system
shown in Fig. 3. C program is written to run on the PS to
perform all the control actions, and it acts as the top-level
system where the read mapping system shown in Fig. 3 is
called using hardware drivers.

The Processor System Reset is used to provide a syn-
chronous reset to the entire system, including the hard-
ware blocks. The Processor Memory is used as system
memory for the PS, and it is made of on-chip or on-board
DDR memory. As on-chip memory is limited for FPGA
devices, on-board DDR memory is suitable for programs
that create a large memory footprint. The Memory Control-
ler facilitates communication between memory modules
and PS. It is also useful for sending and receiving high-
speed data from custom designed blocks, for example, the
hardware system. The sorted q-grams and encoded ge-
nome sections and reads are stored on external memories,
including USB drive, SDHC card, and SATA hard disk. In
our implementation, we use high speed Secure Digital
High Capacity (SDHC) card. The SD card is interfaced to
the PS using Secure Digital Input/Output (SDIO) inter-
face. The UART Terminal can be used to display messages
indicating the status of the system and also to interact
with the user. If selected by the user, it may also be used
to show the mapping results of the system. All the pe-
ripherals are connected to the PS using Advanced Extensi-
ble Interface (AXI) Interconnect. The entire system shown in
Fig. 3 is packaged as an IP and interfaced to the PS. It is
indicated by Custom IP of the hardware. The Custom IP is
instantiated in a top module, including all the blocks of
Fig. 7. The outputs obtained from the Custom IP are stored
in the FIFO Memory. The output is read by the PS and
depending on the user’s selection, either it can be dis-
played on UART or stored in a separate file on the SDHC
card for further studies.

The entire flow of the system implementation and its
working is presented in Algorithm 2. Initially, the user
shall be asked whether the preprocessing is already per-
formed or need to perform freshly on the reference ge-
nome stored on the SDHC card. In case preprocessing is
performed by an external computer, the files related to
the sorted q-grams of filtering and the encoded sections of
verification are stored on the SDHC card. For a fresh pre-

processing by the system, original text file of the reference
genome is expected on the SD card and the output files
from preprocessing are stored on the same card. Once the
preprocessing files are ready, system control reads the
sorted q-grams and encoded sections from their corre-
sponding files on the SD card. The system control identi-
fies and distinguishes between the sections in the files as
indicated by special characters and transfers them to the
filtering and verification cores through the interface to the
Custom IP. After sending the sections, the reads are ob-
tained from their corresponding file. The reads are two-
bit encoded on the fly and sent to the FIFO Memory using
the memory controller. The encoding time of the reads
doesn’t affect the system performance as the conversion is
done in software in parallel to the operations in Custom IP
and FIFO type memory is used for storing reads. The fil-
tering and verification operations are performed on the
reads as described in earlier sections. The outputs ob-
tained from the Custom IP are stored in the output FIFO
Memory and read by the PS. The output is either dis-
played on UART or stored in a separate file on the SD
card. The flow of the entire system is maintained by the
software as all the control actions are performed by the C
program running on the PS.

4.2 Experimental Results and Analysis

In this sub-section, we evaluate the performance of the
proposed low-energy and low-cost methodology for read
mapping. Initially, resource consumption for the imple-
mentation of the proposed architectures is presented. It is
followed by the effect of different section sizes on map-
ping time. Later, the sensitivity and accuracy results of
the proposed methodology as compared to a gold stand-
ard in the literature are presented. Finally, a detailed
comparison with state-of-the-art software and hardware
methodologies in the literature is presented.

4.2.1 Resource utilization

The proposed read mapping methodology presented in
Fig. 3 and implemented in Fig. 7 are targeted for Zynq
UltraScale+ XCZU9EG-2FFVB1156 device and imple-
mented using Xilinx ZCU102 evaluation kit and Vivado
2017.3 Design Suite software tools. To evaluate the opti-
mum value for section size as stated in previous section,
the architecture is implemented for different section sizes.
The architecture, including sections of 512, 1024, 2048,

High Speed
SD Card

Processor System
Reset Processing System

Processor
Memory

Memory
Controller

FIFO Memory

Sorted Q-Grams
Database

Encoded Sections
of Genome

Reads

Custom IP of the Hardware

R
e

a
d

 m
..

.
R

e
a

d
 i

..
.

R
e

a
d

 2
R

e
a

d
 1

Filtering

Verification
Control

Logic

UART
Terminal

AXI Interconnect

Fig. 7. System level implementation of the proposed methodology.

Algorithm 2. Flow of the system implementation using the proposed
methodology for read mapping

Input: Reference genome RG, Reads Rds
Output: Reads with their mappings Op
1 If preprocessing files are present proceed to 3
2 Perform preprocessing and write sorted q-grams and encoded

section files on SD card
3 Read files: sorted q-grams into fileSoQ, encoded sections into

fileSeE and reads into fileRds
4 while fileSoQ and fileSeE not empty do
5 Read section from fileSoQ and send to filtering, read section

from fileSeE and send to verification and start search
6 while fileRds not empto do
7 Read the reads from fileRds and send to Custom IP
8 Obtain output and store in Op on SD card or display on

UART
9 end

10 end

GUDUR ET AL.: AN FPGA BASED ENERGY-EFFICIENT READ MAPPER WITH PARALLEL FILTERING AND IN-SITU VERIFICATION 9

4096 and 8192 sizes, is designed, and the corresponding
post-implementation resource utilization for a clock fre-
quency of 187.498 MHz is given in Table 1. Here, all the
architectures are designed to map reads of 100 base-pairs.
Long reads require a large number of parallel q-gram
search engines leading to more requirement of on-chip
memory. However, the filtering architecture can be modi-
fied to work in batches of q-grams where each batch con-
tains a maximum number of q-grams as decided by the
available memory resources. The maximum available
resources on the FPGA are 274,080 (LUT), 144,000 (LU-
TRAM), 548,160 (Flip-flop) and 912 (BRAM). It can be
seen that resource utilization is rising proportionately
with section size. When the complete system is imple-
mented, additional BRAM resources are utilized for buff-
ering the query reads and also for implementing FIFO
memories. For each section size, the corresponding power
consumption for the entire system is 4.404, 4.435, 4.538,
4.753 and 4.737 watts, respectively. Out of these total
power consumption values, the ARM core (PS) consumes
3.2 watt. The sorted q-gram file of chromosome 20 is ~688
MB, while the encoded section file is 44 MB. For 3.2 bil-
lion base-pair, corresponding files are ~34 GB and ~2.2
GB, respectively. The 64 GB SDHC card interfaced with
the ZCU102 kit can conveniently store the files of a suffi-
ciently large reference genome.

4.2.2 Effect of section size on read mapping time

The effect of section size on filtering and verification time
is studied in this sub-section. In the experiments, all the
studies are performed using real reads and genomes
downloaded from EMBL-ENA (www.ebi.ac.uk/ena) and
UCSC Genome Browser. The read simulator software
mason (mason2-2.0.9) [52] is used to generate simulated

reads of 100 base-pairs with different errors. These reads
are mapped to chromosome 20. The time required to send
the reference sections from the SDHC card and write the
outputs is negligible compared to the filtering and verifi-
cation time. The proposed architecture for read mapping
supports working on different sections and reads in a
streaming fashion without affecting the overall mapping
time. As such, we only consider filtering and verification
time to emphasize the proposed methodology and archi-
tectures. The total time for read mapping, including filter-
ing and verification, is given in Fig. 8. Here, 6 sets of
100,000 reads are used for mapping, and average values
obtained for a frequency of 187.498 MHz are presented in
the chart.

Initially, at lower values of edit distances, for increas-
ing section size, it is observed that the total mapping time
reduces as the corresponding filtering time reduces with
section size. Filtering time is approximately halved for
increasing section size. As the number of errors allowed
for lower edit distance values is small, the value of corre-
sponding verification time is also small because the num-
ber of reads passed by the filter is very few. Later, for
higher values of edit distances, it is observed that the like-
lihood of q-gram match increases and the number of
reads identified by the filter for verifying in the candidate
locations also increases. As such, for increasing edit dis-
tance values, verification time dominates the entire map-
ping operation. In the evaluation of the total time for dif-
ferent section sizes, it is evident from the chart that the
architectures with sections of 2048 and 4096 sizes perform
better as compared to other section sizes. In this study,
section sizes of 128 and 256 are not considered as only the
filtering time alone is observed to be more than 6.3 and

Fig. 8. Effect of section size on read mapping for different edit distances. 6 read-sets are used. The proposed method is designed using 2048
section size running at a frequency of 187.498 MHz. In the chart, only verification time is labelled in seconds.

TABLE 1
Resource Utilization on FPGA Implementation for Different Section Sizes

Section Size 512 1024 2048 4096 8192
Resource LUT LMem FF BRAM LUT LMem FF BRAM LUT LMem FF BRAM LUT LMem FF BRAM LUT LMem FF BRAM

QSE 126 0 47 0.5 131 0 52 1 137 0 57 2 151 0 62 4 167 0 67 7.5
Filtering 11014 0 4038 42.5 11352 0 4467 85 11834 0 4896 170 12913 0 5325 340 14376 0 5754 637.5

Verification 1531 0 1653 0 3327 0 2683 0 5417 0 4735 0 12623 0 8835 0 23660 0 17028 0
System 18730 203 14448 882.5 30656 8907 16651 912 82609 54475 20393 912 184950 143563 25774 912 138766 86219 32077 906

*QSE: Q-gram search engine; resource type on FPGA, LMem: LUT Memory, FF: Flip-flop, BRAM: Block RAM. All the implementations are run using Vivado
2017.3 Design Tools and targeted on Xilinx XCZU9EG-2FFVB1156 FPGA device.

10 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

1.6 hours, respectively. In order to strike a balance be-
tween resource utilization and the total time taken for
mapping, 2048 can be safely chosen as an optimum value
of the section size. In the subsequent sections and exper-
imental evaluations, the architecture with 2048 section
size is used in all the studies.

4.2.3 Evaluation of mapping sensitivity

The mapping accuracy of the proposed methodology is
studied by mapping real and simulated reads. Real reads
are obtained from the ERR240727_1 reads-set of 100 base-
pairs size. Mason (mason2-2.0.9) [52] software is used to
produce simulated reads of 100 base-pairs size from the
chromosomes. Illumina profile is used with all the error
model values set to 0.01. For each chromosome, 100,000
reads of both the types are mapped using the system de-
signed with the 2048 section size. RazerS 3 is an all-
mapper and has the highest accuracy and sensitivity
compared to other methods [29]. In the literature, it is
used to build the gold standard for Rabema [58] accuracy
benchmarking [33], [35], [37]. As such, due to its accuracy,
sensitivity, and all-mapper capability, RazerS 3 [29] is
chosen as a gold standard in the evaluation of mapping
sensitivity of the proposed methodology.

In the proposed methodology, we do not produce the
CIGAR string and SAM output format yet. However, we
compare RazerS 3 and the proposed methodology out-
puts in terms of read identification, matched location and
edit distance (score) with include all accuracy of Rabema
benchmarking [58]. The number of locations obtained for
all the reads mapped with different edit distances is re-
ported in Table 2. When edit distance values ranging
from 0 to a maximum of 5 (5% of 100, [21]) are consid-
ered, it is found that the number of mappings given by
RazerS 3 and the proposed methodology is equal. Also,
when outputs of both the methods are parsed, it is ob-

served that the mapping locations and edit-distance val-
ues are equal. However, a few mapping locations are ob-
served to be slightly varying within a range of the corre-
sponding edit distance value. As indicated in [29], there
can be multiple beginning positions of a read and these
variations in mapping locations of reads are expected
while working with a dynamic programming based
alignment algorithm. In evaluating the accuracy and sen-
sitivity score for different edit distance values, the pro-
posed methodology is found to have a 100% score. By this
study, it is experimentally validated that the proposed
methodology is fully sensitive and accurately generates
the mapping information. The proposed read mapping
methodology has the all-mapper capability and is consid-
ered as an all-mapper method.

4.2.4 Effect of reference size

In the previous sub-sections of evaluation, chromosome
20 is used as a reference for mapping. In this sub-section,
different chromosomes and the effect of their sizes on
mapping-time are studied for varying edit distances. The
selected chromosomes are 2, 8 and 20 each of 242,193,528,
145,138,636 and 64,444,167 nucleotides. For a clear under-
standing of the effect of edit distance, only simulated
reads are used in this study. For each chromosome, 6 sets
of 100,000 reads are produced using mason software (18
sets in total). The average values of mapping time for edit
distance ranging from 0 to 5 are given in Table 3. In all the
experiments on a chromosome, the filtering time is nearly
constant for different values of edit distance, whereas
verification time increases with edit distance. The increase
in verification time is maintained, as explained in earlier
sections that more reads are needed to be verified and
aligned for higher values of edit distance. It is observed
that the filtering time is proportional to the size of the
reference chromosome under consideration, and thereby
the reference size directly influences the total time.

4.3 Performance Evaluation

A detailed comparative study and analysis with the exist-
ing software and hardware methods for read mapping
are presented in this section. Initially, the proposed meth-
odology is compared with state-of-the-art software meth-
ods followed by hardware methods. In order to justify the
comparison with a few hardware-based sequence align-
ments, the proposed methodology is also evaluated with
the sequence alignment operation.

4.3.1 Efficiency in comparison with software methods

TABLE 2
Number of Locations Reported by the Proposed Methodology

Type of
Reads

Chromosome
 Edit Distance

0 1 2 3 4 5

Simulated
2 4214 17697 39368 62237 80690 93673
8 4175 17387 39055 61840 80641 93584

20 4200 17768 39378 62300 81149 94229

Real
2 3931 5709 7601 9855 12485 15718
8 2491 3919 5608 7743 10204 13147

20 1312 2398 3943 6086 8971 12567

*Two types of reads each with 3 sets of 100,000 reads obtained from
ERR240727_1 and mason software with 100 base-pairs size are mapped to
different chromosomes. Accuracy of the reported locations and edit distances
is on a par with the gold standard RazerS 3.

TABLE 3
Effect of Reference Size on Filtering and Verification Time

Edit Distance
Chromosome 2 Chromosome 8 Chromosome 20

Filtering Verification Total Filtering Verification Total Filtering Verification Total

0 1731.763 0.290 1732.053 1037.790 0.274 1038.065 460.796 0.599 461.395
1 1731.788 2.303 1734.091 1037.790 1.558 1039.348 460.796 2.839 463.635
2 1731.775 7.521 1739.296 1037.787 5.251 1043.038 460.794 8.974 469.769
3 1731.730 16.412 1748.142 1037.773 11.644 1049.417 460.786 19.269 480.055
4 1731.668 39.003 1770.671 1037.732 28.688 1066.420 460.757 44.109 504.866
5 1730.980 612.847 2343.827 1037.323 345.255 1382.578 460.465 331.384 791.849

*All the time values are in seconds. Size of the chromosomes 2, 8 and 20 are 242,193,528, 145,138,636 and 64,444,167 bases. Reads are simulated using the mason
software and multiple read-sets (total 18 sets, 6 for each chromosome) are used.

GUDUR ET AL.: AN FPGA BASED ENERGY-EFFICIENT READ MAPPER WITH PARALLEL FILTERING AND IN-SITU VERIFICATION 11

The proposed methodology is compared with state-of-
the-art software methods available in the literature. In
this comparative study, multiple sets of 100,000 reads of
100 base-pairs size are mapped to chromosome 2, 8 and
20 with an edit distance of 3 as some software allows only
a maximum value of 3. For each chromosome, 6 real and 6
simulated read-sets are considered. The results obtained
are averaged for these multiple sets. All the software
methods are run on a computer system with Xeon E5-
2650 v2 CPU @ 2.60 GHz with 32 GB RAM and running
Ubuntu Linux (version 18.04.2) operating system. A pow-
er meter is connected between the mains power supply
and the computer system, and average values of power
are tabulated in the table. All the software methods are
invoked by their respective commands and indexing is
performed wherever required. While performing the
mapping, all unwanted processes are turned off, and only
the basic processes essential for the software are run.

In order to have a fair comparison between the soft-
ware running on CPU and the proposed methodology, a
single thread is used to run the software (wherever appli-
cable), and a single FPGA is used to run the proposed
methodology. The total energy consumption for the read
mapping is dependent on the application power. As it is
dependent on the application and its run time, it is called
dynamic power. It is the difference between the average
power values observed while the software is running and
the idle system, i.e., no software is running and the sys-
tem is in idle state. Table 4 shows the average power val-
ues and mapping time, while Table 5 shows the average
energy consumption and energy efficiency for normal
and dynamic cases. It is evident from Table 5 that the
proposed methodology requires the least amount of ener-
gy to perform the mapping. The results obtained in dy-
namic conditions assist better in comprehending the en-
ergy consumption associated with the read mapping and
establish a fair comparison of the software methods and
the proposed method. On average, it is observed that per
unit energy, the proposed methodology is 7.8× more en-
ergy efficient than the software methods while mapping
the reads. In comparison with application energy, i.e.,
dynamic conditions, efficiency is observed to be 12.12×.
For chromosomes 2 and 8, though the best software
method Hobbes3 is observed to be less energy consuming
than the proposed methodology, in comparison with the

application energy, the proposed methodology is more
efficient. In addition to the gain over energy consump-
tion, the proposed methodology is entirely implemented
on a single SoC FPGA hardware platform avoiding the
use of costly infrastructure.

In order to normalize and study the energy and cost ef-
ficiencies, we define two metrics PCpJ and PCpsWD. The
first metric is the number of pairs compared (PC) per unit
energy, where PC is obtained by the product of the num-
ber of reads, read size and reference size (PC/J). The sec-
ond metric is a performance metric per all the required
resources, including time, power and cost. It is given as
throughput per unit watt per $ (PC/s/W/$). The cost of
the FPGA used for implementation is $2,495, while the
cost of the computer system used to run all the software
methods is $4,250. The normalized energy and resource
efficiencies, along with the dynamic results, are plotted in
Fig. 9. In comparison with Hobbes3, as observed to be the
best among all the software methods, in dynamic condi-
tions, the proposed methodology is observed to be 1.17–
1.86× more energy-efficient. In terms of performance-
resource efficiency, the gains in normal and dynamic
conditions are 1.19–1.89× and 1.99–3.17×. In comparison
with all other software methods, the gains over energy
and resources are 1.3–45.3× and 2.1–77.1× in normal and

TABLE 4
Power and Time Performance of the Proposed Methodology in

Comparison with Software Methods

Method Version
Pavg
(W)

Pavg-Dy
(W)

Mapping Time (s)
Chr 2 Chr 8 Chr 20

Bowtie2 [31] 2.3.5.1 75.62 21.607 3969 1949 1315
BWA-MEM [30] 0.7.17 77.04 23.028 128.89 95.41 71.13

GEM [34] 3.6.1. 75.62 21.607 235 211 157
Hobbes3 [35] 3.0 78.39 24.379 71.47 56.55 31.24
mrFAST [32] 2.6.1.0 76.97 22.957 1139.97 626.05 604
RazerS [28] 1.5.8 75.04 21.028 230.23 138.76 95.19

RazerS3-P [29] 3.5.8 76.81 22.799 136.21 87.99 63.79
RazerS3-S [29] 3.5.8 75.81 21.799 175.74 108.06 78.17

Yara [33] 0.9.11 75.62 21.607 542.01 342.56 204.48
Proposed - 4.57 0.851 1748.14 1049.41 480.06

* A CPU with Xeon E5-2650 v2 @ 2.60 GHz with 32 GB RAM running

Ubuntu Linux (version 18.04.2) operating system is used to run all the soft-

ware. In this study, 6 sets of real reads obtained from ERR240727_1 and 6

sets produced using mason software are used for each chromosome. Average

values of power and time are reported. In RazerS3, -P and -S stands for pi-

geonhole and swift filters. Dy– is used to indicate measurements observed

during dynamic power consumption. Chr– chromosome.

TABLE 5
Energy Consumption and Efficiency of the Proposed Methodology in Comparison with Software Methods

Method

Energy
(J)

Energy-Dy
(J)

Energy Efficiency
(Reads/J)

Energy Efficiency-Dy
(Reads/J)

Chr 2 Chr 8 Chr 20 Chr 2 Chr 8 Chr 20 Chr 2 Chr 8 Chr 20 Chr 2 Chr 8 Chr 20

Bowtie2 [31] 300147.2 147389.0 99444.1 85756.4 42111.1 28412.6 0.333 0.678 1.006 1.166 2.375 3.520
BWA-MEM [30] 9929.7 7350.8 5480.2 2967.9 2197.1 1638.0 10.071 13.604 18.247 33.694 45.515 61.050

GEM [34] 17771.4 15956.4 11872.8 5077.5 4559.0 3392.2 5.627 6.267 8.423 19.695 21.935 29.479
Hobbes3 [35] 5602.9 4432.4 2448.9 1742.4 1378.4 761.6 17.848 22.561 40.834 57.393 72.548 131.308
mrFAST [32] 87747.3 48188.4 46491.9 26170.2 14372.0 13866.0 1.140 2.075 2.151 3.821 6.958 7.212
RazerS [28] 17277.2 10413.1 7143.8 4841.2 2917.8 2001.7 5.788 9.603 13.998 20.656 34.272 49.957

RazerS3-P [29] 10462.5 6759.3 4900.3 3105.3 2006.2 1454.4 9.558 14.794 20.407 32.203 49.845 68.755
RazerS3-S [29] 13323.3 8192.2 5926.3 3830.9 2355.5 1704.0 7.506 12.207 16.874 26.104 42.453 58.686

Yara [33] 40988.1 25905.1 15463.1 11710.9 7401.4 4418.0 2.440 3.860 6.467 8.539 13.511 22.635
Proposed 8001.2 4803.2 2197.2 1488.5 893.6 408.8 12.498 20.820 45.512 67.181 111.912 244.644

*Normal and dynamic energy consumption (application energy) are indicated by Energy and Energy-Dy. Their values and the corresponding energy efficiencies
with respect to reads mapped per joule energy consumption are reported in the table for different chromosomes. In RazerS3, -P and -S stands for pigeonhole and
swift filters. Chr– chromosome.

12 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

3.4–69.5× and 3.4–118.4× in dynamic conditions. On aver-
age, the gain over performance-resource efficiency is ob-
served to be 13.3× and 20.65× in normal and dynamic
conditions, respectively.

4.3.2 Efficiency in comparison with hardware methods

In this sub-section, the proposed methodology is evaluat-
ed with energy and resource efficiencies in comparison
with state-of-the-art hardware methods. Due to the de-
pendence on FPGA technology and architecture, it is dif-
ficult to make a direct comparison between two different
FPGA designs. As RTL designs and files of most of the
hardware methods are unavailable, it is impractical to
implement them on our FPGA device. For example, the
Gatekeeper [24] proposed by Alser et al. couldn't fit on
the Zynq Ultrascale+ FPGA device chosen in this study as
it occupied more than 134% LUTs. With respect to the
methods in the literature, the primary concerns are ener-
gy and resource efficiencies. Consequently, we focus
mainly on the energy and resource consumption of the
read mapping application as a whole irrespective of the
platform and hardware. Accordingly, all the hardware
methods shall be assumed to be running on their respec-
tive platforms, as described in the literature.

The energy and resource performance metrics men-
tioned in the earlier sections shall be used in this compar-
ative study. Few hardware methods require a computer
system to run the whole operation of read mapping. A
$1,000 computer system is considered for the sake of gen-
erality. The comparison is tabulated in Table 6, along with
the information of experiments as reported in the litera-

ture. The power values are either obtained from the litera-
ture or from the reports after synthesizing the designs
targeting their respective platforms. In some cases where
neither power values nor design files are present, the
FPGA resource utilization reported in the literature is
used to estimate the power values using Xilinx Power
Estimator. In some cases, if energy values are available,
then these values are used. In the case of the hybrid sys-
tems, the power consumption of the CPU is estimated by
the information provided in the respective articles using
power calculators (http://powersupplycalculator.net,
https://www.msi.com/calculator). The average power,
Pavg, is calculated from the view of a simple calculation
of energy consumption considering the respective execu-
tion time of hardware and CPU. The product of Pavg and
time gives the total energy consumption. As an example,
power and time values of [24] are estimated as follows.

By using the mapping performances of 16 core and
single systems, the total time is estimated as 43.68 hours
for the single core system. As the hardware accelerator
consumes 5% of the total time, it takes 7861.893 seconds
while the CPU takes 149375.971 seconds for mapping
reads mentioned in Table 6. For average CPU power of
168 watt and hardware power of 12.5 watt, the Pavg, is
(12.5×7861.893 + 168×149375.971)/ 157237.864 = 160.225
watt.

It is imperative to note that the PCpsWD metric highly
depends on the cost of the hardware platform considered
and this metric only gives a general idea of the efficiency.
In the proposed design, reads are searched individually,
one at a time. For a fair comparison, we have considered

Fig. 9. Comparison of the proposed methodology for read mapping with software methods. The bar and line plots correspond to energy and
performance-resource efficiencies, respectively. In RazerS3, -P and -S stands for pigeonhole and swift filters. Dy– is used to indicate meas-
urements observed during dynamic power consumption. PCpJ: pairs compared per unit energy; PCpsWD: throughput per unit watt per $.

TABLE 6
Energy Efficiency and Resource Performance of the Proposed Methodology in Comparison with Hardware Methods

Method Platform,$Cost
Pavg
(W)

Time
(s)

Energy
(J)

Reads
Read
Size

Reference Size
Energy

Efficiency
(PC/J)

Resource Per-
formance

(Thrp/W$)

Alser [24] CPU + XC7VX690T,4995 160.225 157237.864 25.193 (M) 4093747 100 3,101,809,796 50.402 7.463
Benkrid [12] Virtex-4 LX160,10000 139 1.871 260.069 1 256 141,218,456 0.139 0.014

Kierzynka [18] Zynq XC7Z045,847 8.7 716572080 6234.18 (M) 1503238553 100 3,101,809,796 74.792 88.302
Cruz [41] Zynq XC7Z100,1313 0.56 1.013 0.9868 NA NA 453,920,704 0.46 0.609

Neves [42] Zynq XC7Z020,895 0.289 0.068 0.0196 1 2276 4,092 0.475 0.560
Oliver [19] CPU + XC6VLX240T,1995 110.66 224 24788.624 100000 50 222,389,117 44.857 14.977

Xin [43] Virtex-6 XC6VLX365T,2495 6.377 37 235.949 1000000 36 1,000,000 152.575 61.152
Chen [44] CPU+Virtex-5 XC5VLX330,1895 74.785 38 2841.859 1000000 100 4,938,920 173.792 91.711
Proposed Zynq XCZU9EG, 2495 4.577 480 2197.2123 100000 100 64,444,167 293.299 117.555

*PC/J: pairs compared per joule, Thrp: throughput (PC/s). Platform indicates the hardware resources required to perform the entire operation of read mapping.
All the FPGA devices are from Xilinx. Wherever required, a $1,000 computer system is considered for the sake of generality. Values of energy efficiency is in
billion (109) and resource performance in million (106).

http://powersupplycalculator.net/
https://www.msi.com/calculator

GUDUR ET AL.: AN FPGA BASED ENERGY-EFFICIENT READ MAPPER WITH PARALLEL FILTERING AND IN-SITU VERIFICATION 13

single-core values reported in [24]. It is seen that the pro-
posed methodology is 1.68–2109.93× and 1.28-8396.78×
more energy and resource efficient, respectively. As the
methods presented in [12], [41], [42] are sequence align-
ments, a fair comparison is not maintained while PCpJ
and PCpsWD metrics are used on the test data given in
Table 6. In the next sub-section, these methods are com-
pared with the proposed methodology using the metrics
given in their respective articles. On excluding these
methods, the gain over energy and resources obtained by
the proposed methodology are 1.68–6.53× and 1.28–
15.75×, respectively. On average, the gain over energy
consumption and resource utilization is 3.97× and 5.62×.

4.3.3 Efficiency in comparison with hardware methods
for sequence alignment

In the comparison of our methodology with the hardware
methods proposed by Benkrid, Cruz and Neves [12], [41],
[42], many of the reads are filtered out by the filtering
stage in our design. The earlier defined metrics and per-
formance results in Table 6 take this into account. In our
design, the verification stage performs the alignment op-
eration using the Myers bit-vector algorithm. Here, we
compare the above alignment methods with the proposed
verification. The proposed design is considered without
the effect of the filtering stage. This design is then used to
perform alignment of a 100 base-pairs size query se-
quence to a 2164 base-pairs size reference sequence. The
results are tabulated in Table 7.

In this comparison, the dynamic power value for
alignment, as reported in [12], is used. The performance
and energy metrics defined as the number of cell updates
per second (CUPS) and the number of cell updates per
joule (CUPJ), respectively, are used in the comparison.
CUPS and CUPJ are similar to the throughput (PC/s) and
energy efficiency (PCpJ) metrics as defined earlier in sec-
tion 4.3.1. In addition, the performance-resource metric
PCpsWD is also studied for the new test data. The CUPS
improvement of the proposed methodology in compari-
son with Benkrid et al. is less than unity. However, the
gain over energy and resources is better. In comparison
with all the methods, it is observed that the proposed
methodology is more energy and resource efficient, to the
tune of 8.38–9.03× and 2.73–33.62×, respectively.

In brief, the proposed methodology is the most energy-
efficient in comparison with state-of-the-art software and
hardware methods. Also, it produces more mappings per
resources than other methods available in the literature.
The features of better energy-efficiency and resource-

performance of the proposed methodology can make
low-cost genomics possible.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel, low-cost solution for
read mapping. A sorted q-gram lemma based parallel
filtering methodology followed by an in-situ verification
designed using Myers bit-vector algorithm are key to the
proposed solution. The proposed methodology is imple-
mented using a single Zynq Ultrascale+ XCZU9EG-
2FFVB1156 FPGA device and thoroughly evaluated using
real and simulated reads. The experimental results
demonstrate clear gains in terms of energy and resource
footprints while maintaining accuracy and full sensitivity
when validated against the existing methods. Compared
to state-of-the-art software and hardware methodologies,
the proposed methodology achieves up to 7.8× more en-
ergy efficiency and up to 13.3× less resource utilization.
We believe that the proposed methodology opens up new
possibilities for low-cost and embedded genomic systems
that may potentially find applications in healthcare.

As future work, we intend to optimize our architec-
tures and improve the time performance of the proposed
read mapping. We plan to design filtering and verifica-
tion to work on multiple reads simultaneously. Addition-
ally, in architectures with large section sizes, verification
dominates the execution time of read mapping. The SQA
can be investigated to include locations that can improve
verification time by providing a small range of the refer-
ence genome rather than working on the entire section.

ACKNOWLEDGMENT

V. Y. Gudur’s research is supported by the Visvesvaraya
PhD Scheme for Electronics & IT by MeitY, Government
of India (GOI) and partly by the IOT Based Holistic Pre-
vention and Prediction of CVD (i-PREACT) project under
ICPS Programme, Department of Science & Technology,
GOI. S. Maheshwari’s research is supported by EPSRC
DTP scholarship at Newcastle University, UK. The au-
thors would like to acknowledge the funding supports
from the Royal Society Exchange (IE161183) and EPSRC
IAA ‘Whipserable’ projects.

REFERENCES
[1] E. Ayday, E. De Cristofaro, J. Hubaux and G. Tsudik, "Whole Genome

Sequencing: Revolutionary Medicine or Privacy Nightmare?," in
Computer, vol. 48, no. 2, pp. 58-66, Feb. 2015.

[2] C. Auffray, D. Charron, and L. Hood, “Predictive, preventive,

TABLE 7
Comparison of Sequence alignment using Proposed Methodology and Hardware Methods

Method
Pavg
(W)

Time
(s)

Energy
(J)

Query
Size

Reference
Size

CUPS
(#/s)

CUPJ
(#/J)

Resource
Performance (Thrp/W$)

Benkrid [12] 39 1.871 72.969 256 141,218,456 19.322 (0.98) 495.442 (8.38) 0.049 (33.62)
Cruz [41] 0.56 1.013 0.9868 NA 453,920,704 0.448 (42.45) 460 (9.034) 0.609 (2.73)

Neves [42] 0.289 0.068 0.0196 2276 4,092 0.137 (138.88) 474.737 (8.75) 0.560 (2.97)
Proposed 4.577 0.011 m 0.05034 m 100 2,164 19.021 (1) 4155.888 (1) 1.665 (1)

*CUPS: number of cell updates per second (×109). CUPJ: number of cell updates per joule (×106). Thrp: throughput (PC/s, ×106). The proposed method is used
for alignment without considering the effect of filtering. The power value of the proposed method is for the entire system including filtering and verification.
System designed only for alignment will consume lesser power. Time and energy values for the proposed method are in millisecond and milli-joule, respective-
ly. Gain of proposed with respect to the method is given inside brackets.

14 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

personalized and participatory medicine: Back to the future,” Genome
Med., vol. 2, no. 8, pp. 8–10, 2010.

[3] C. S. Bloss, B. F. Darst, E. J. Topol, and N. J. Schork, “Direct-to-consumer
personalized genomic testing,” Hum. Mol. Genet., vol. 20, no. R2, pp. 132–
141, 2011.

[4] A. Al Kawam, “Understanding the Bioinformatics Challenges of
Integrating Genomics Into Healthcare,” IEEE J. Biomed. Heal. Informatics,
vol. 22, no. 5, pp. 1672–1683, 2018.

[5] Z. D. Stephens et al., “Big data: Astronomical or genomical?,” PLoS Biol.,
vol. 13, no. 7, pp. 1–11, 2015.

[6] G. P. Consortium, "A map of human genome variation from population-
scale sequencing," Nature, vol. 467, pp. 1061-1073, 2010.

[7] B. Schmidt and A. Hildebrandt, “Next-generation sequencing: big data
meets high performance computing,” Drug Discov. Today, vol. 22, no. 4,
pp. 712–717, 2017.

[8] J. A. Reuter, D. V. Spacek, and M. P. Snyder, “High-Throughput
Sequencing Technologies,” Mol. Cell, vol. 58, no. 4, pp. 586–597, 2015.

[9] H. Ye, J. Meehan, W. Tong, and H. Hong, “Alignment of short reads: A
crucial step for application of next-generation sequencing data in
precision medicine,” Pharmaceutics, vol. 7, no. 4, pp. 523–541, 2015.

[10] A. Ghosh, “The big push for renewable energy in India: What will drive
it?,” Bull. At. Sci., vol. 71, no. 4, pp. 31–42, 2015.

[11] C. B. Olson et al., “Hardware acceleration of short read mapping,” Proc.
2012 IEEE 20th Int. Symp. Field-Programmable Cust. Comput. Mach. FCCM
2012, pp. 161–168, 2012.

[12] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, and X. Tian, “High
performance biological pairwise sequence alignment: FPGA versus GPU
versus cell BE versus GPP,” Int. J. Reconfigurable Comput., vol. 2012, 2012.

[13] S. Aluru and N. Jammula, “A review of hardware acceleration for
computational genomics,” IEEE Des. Test, vol. 31, no. 1, pp. 19–30, 2014.

[14] E. J. Houtgast, V. M. Sima, G. Marchiori, K. Bertels, and Z. Al-Ars,
“Power-efficiency analysis of accelerated BWA-MEM implementations on
heterogeneous computing platforms,” 2016 Int. Conf. Reconfigurable
Comput. FPGAs, ReConFig 2016, pp. 1–8, 2016.

[15] J. Arram, T. Kaplan, W. Luk, and P. Jiang, “Leveraging FPGAS for
accelerating short read alignment,” IEEE/ACM Trans. Comput. Biol.
Bioinforma., vol. 14, no. 3, pp. 668–677, 2017.

[16] N. Cadenelli, Z. Jaks ̆ić, J. Polo, and D. Carrera, “Considerations in using
OpenCL on GPUs and FPGAs for throughput-oriented genomics
workloads,” Futur. Gener. Comput. Syst., vol. 94, pp. 148–159, 2019.

[17] S. S. Banerjee et al., “ASAP: Accelerated Short-Read Alignment on
Programmable Hardware,” IEEE Trans. Comput., vol. 68, no. 3, pp. 331–
346, 2019.

[18] M. Kierzynka, L. Kosmann, and S. Krupop, “Energy efficiency of
sequence alignment tools — Software and hardware perspectives,” Futur.
Gener. Comput. Syst., 2016.

[19] O. Knodel, T. B. Preusser, and R. G. Spallek, “Next-generation massively
parallel short-read mapping on FPGAs,” Proc. Int. Conf. Appl. Syst. Archit.
Process., pp. 195–201, 2011.

[20] V. Y. Gudur and A. Acharyya, “Hardware-Software Codesign based
Accelerated and Reconfigurable Methodology for String Matching in
Computational Bioinformatics Applications,” IEEE/ACM Trans. Comput.
Biol. Bioinforma., pp. 1–14, 2018.

[21] H. Xin et al., “Shifted Hamming distance: A fast and accurate SIMD-
friendly filter to accelerate alignment verification in read mapping,”
Bioinformatics, vol. 31, no. 10, pp. 1553–1560, 2015.

[22] H. Li and N. Homer, “A survey of sequence alignment algorithms for
next-generation sequencing,” Brief. Bioinfo., vol. 11,no. 5,pp. 473–483, 2010.

[23] Y. Chan, K. Xu, H. Lan, W. Liu, Y. Liu and B. Schmidt, "PUNAS: A
Parallel Ungapped-Alignment-Featured Seed Verification Algorithm for
Next-Generation Sequencing Read Alignment," 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Orlando, FL, 2017,
pp. 52-61.

[24] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan,
“GateKeeper: a new hardware architecture for accelerating pre-alignment
in DNA short read mapping,” Bioinformatics, vol. 33, no. 21, pp. 3355–
3363, 2017.

[25] S. Burkhardt A. Crauser P. Ferragina H.-P. Lenhof E. Rivals M. Vingron,
"Q-gram based database searching using a suffix array (QUASAR)," Proc.
Int. Conf. Computat. Molec. Biol., pp. 77-83, 1999.

[26] K. Rasmussen J. Stoye E. W. Myers, "Efficient q-Gram Filters for Finding
All epsilon-Matches Over a Given Length," Journal of Computational
Biology, vol. 13, pp. 296-308, 2006.

[27] G. Myers, “A Fast Bit-Vector Algorithm for Approximate String Matching
Based on Dynamic Programming,” Journal of the ACM, vol. 46, no. 3, pp.
395–415, 1999.

[28] D. Weese, A. Emde, T. Rausch, and A. Do, “RazerS — fast read mapping
with sensitivity control,” Genome Research, vol. 19, no. 9, pp. 1646–1654,
2009.

[29] D. Weese, M. Holtgrewe, and K. Reinert, “Sequence analysis RazerS 3  :
Faster , fully sensitive read mapping,” Bioinformatics, vol. 28, no. 20, pp.
2592–2599, 2012.

[30] H. Li and R. Durbin, “Fast and accurate long-read alignment with
Burrows – Wheeler transform,” Bioinforma, vol. 26, no. 5,pp. 589–595, 2010.

[31] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
Bowtie 2,” Nat. Methods, vol. 9, no. 4, pp. 357–359, 2012.

[32] C. Alkan et al., “Personalized copy number and segmental duplication
maps using next-generation sequencing,” Nat. Genet., vol. 41, no. 10, pp.
1061–1067, 2009.

[33] E. Siragusa, “Approximate string matching for high-throughput
sequencing,” Free University of Berlin, 2015.

[34] S. Marco-Sola, M. Sammeth, R. Guigó, and P. Ribeca, “The GEM mapper:
Fast, accurate and versatile alignment by filtration,” Nat. Methods, vol. 9,
no. 12, pp. 1185–1188, 2012.

[35] J. Kim, “Hobbes3  : Dynamic Generation of Variable-Length Signatures
for Efficient Approximate Subsequence Mappings,” 2016 IEEE 32nd Int.
Conf. Data Eng., pp. 169–180, 2016.

[36] M. David, M. Dzamba, D. Lister, L. Ilie, and M. Brudno, “SHRiMP2:
Sensitive yet practical short read mapping,” Bioinformatics, vol. 27, no. 7,
pp. 1011–1012, 2011.

[37] S. Maheshwari, V. Y. Gudur, R. Shafik, I. Wilson, A. Yakovlev, and A.
Acharyya, “CORAL: Verification-aware OpenCL based Read Mapper for
Heterogeneous Systems,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol.
14, no. 8, pp. 1–1, 2019.

[38] K. Reinert, B. Langmead, D. Weese, and D. J. Evers, “Alignment of Next-
Generation Sequencing Reads,” Annu. Rev. Genomics Hum. Genet., vol. 16,
no. 1, pp. 133–151, 2015.

[39] R. Baeza-Yates and G. Navarro, "Faster Approximate String Matching,"
Algorithmica, vol. 23, no. 2, pp. 127-158, 1999.

[40] H. Cheng, H. Jiang, J. Yang, Y. Xu, and Y. Shang, “BitMapper: An efficient
all-mapper based on bit-vector computing,” BMC Bioinformatics, vol. 16,
no. 1, 2015.

[41] M. T. Cruz, P. Tomás, and N. Roma, “Energy-efficient architecture for DP
local sequence alignment: Exploiting ILP and DLP,” Lect. Notes Comput.
Sci., vol. 9044, pp. 194–206, 2015.

[42] N. Neves et al., “Multicore SIMD ASIP for Next-Generation Sequencing
and Alignment Biochip Platforms,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 23, no. 7, pp. 1287–1300, 2015.

[43] Y. Xin et al., “Parallel architecture for DNA sequence inexact matching
with Burrows-Wheeler Transform,” Microelectronics J., vol. 44, no. 8, pp.
670–682, 2013.

[44] Y. Chen, B. Schmidt and D. L. Maskell, "A hybrid short read mapping
accelerator," BMC Bioinform., vol. 14, no. 1, pp. 67, 2013.

[45] H. C. Ng, S. Liu, and W. Luk, “Reconfigurable acceleration of genetic
sequence alignment: A survey of two decades of efforts,” 2017 27th Int.
Conf. F. Program. Log. Appl. FPL 2017, 2017.

[46] C. Wang, X. Li, P. Chen, A. Wang, X. Zhou, and H. Yu, “Heterogeneous
cloud framework for big data genome sequencing,” IEEE/ACM Trans.
Comput. Biol. Bioinforma., vol. 12, no. 1, pp. 166–178, 2015.

[47] E. B. Fernandez, J. Villarreal, S. Lonardi and W. A. Najjar, "FHAST: FPGA-
Based Acceleration of Bowtie in Hardware," in IEEE/ACM Transactions on
Comput. Bio. and Bioinform., vol. 12, no. 5, pp. 973-981, 1 Sept.-Oct. 2015.

[48] P. Chen, C. Wang, X. Li, and X. Zhou, “Accelerating the next generation
long read mapping with the FPGA-based system,” IEEE/ACM Trans.
Comput. Biol. Bioinforma., vol. 11, no. 5, pp. 840–852, 2014.

[49] D. Z. Chen, “Efficient Parallel Binary Search on Sorted Arrays, with
Applications,” IEEE Trans. Parallel Distrib. Syst., vol. 6, no. 4, pp. 440–445,
1995.

[50] M. Santarini, "Zynq-7000 EPP Sets Stage for New Era of Innovations",
Xcell journal, no. 75, pp. 8-13, 2011.

[51] J. Teich, "Hardware/Software Codesign: The Past, the Present, and
Predicting the Future", Proceedings of the IEEE, vol. 100, no., pp. 1411-1430,
2012.

[52] M. Holtgrewe, “Mason – A Read Simulator for Second Generation
Sequencing Data,” Tech. Rep. TR-B-10-06, Free University of Berlin, 2010.

[53] J. S. Kim et al., “GRIM-Filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies,” BMC Genomics, vol.
19, no. Suppl 2, 2018.

[54] M. Alser et al., “Accelerating genome analysis: A primer on an ongoing
journey,” arXiv, no. October 2020, pp. 65–75, 2020.

[55] D. S. Cali et al., “GenASM: A high-performance, low-power approximate
string matching acceleration framework for genome sequence analysis,”
Proc. Annu. Int. Symp. Microarch., MICRO, vol.2020-Oct.,pp. 951–966, 2020.

[56] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000× acceleration on long read assembly,”
ACM SIGPLAN Not., vol. 53, no. 2, pp. 199–213, 2018.

[57] H. Hyyrö, “A bit-vector algorithm for computing Levenshtein and
Damerau edit distances,” Nord. J. Comput., pp. 1–11, 2003.

[58] M. Holtgrewe, A. K. Emde, D. Weese, and K. Reinert, “A novel and well-
defined benchmarking method for second generation read mapping,”
BMC Bioinformatics, vol. 12, 2011.

Venkateshwarlu Y. Gudur is working towards the
Ph.D. degree in Microelectronics and VLSI at the De-
partment of Electrical Engineering, Indian Institute of
Technology (IIT) Hyderabad, India. His research inter-
ests include hardware acceleration in healthcare ap-
plications, VLSI, SoC and reconfigurable computing.

Sidharth Maheshwari is a final year Ph.D. student at
the School of Engineering, Newcastle University, UK.
He is working on energy-efficient and performance-
driven embedded genomics solutions to computational
pipelines of whole genome sequencing. His research
interests include Bioinformatics, VLSI and Biomedical
Engineering.

Amit Acharyya received the Ph.D. degree from the
School of Electronics and Computer Science, Univer-
sity of Southampton, U.K., in 2011. He is currently an
Associate Professor with IIT Hyderabad, India. His
research interests include signal processing algo-
rithms, VLSI architectures, low power design tech-
niques, bioinformatics.

Rishad Shafik (MIET, SMIEEE) is an Associate Pro-
fessor (Senior Lecturer) of Electronic Systems within
the School of Engineering, Newcastle University, UK.
He received his Ph.D. from Southampton in 2010. He
is the author/co-author of 130+ IEEE/ACM journal and
conference articles, with three best paper nomina-
tions. His research interests include energy-efficiency
and autonomy aspects of embedded computing sys-
tems.

