An Efficient Direct Solution of Cave-Filling Problems

Kalpana Naidu, *Student Member, IEEE*, Mohammed Zafar Ali Khan, *Senior Member, IEEE*, and Lajos Hanzo, *Fellow, IEEE*

AQ:2

AQ:1 ¹ *Abstract***—Waterfilling problems subjected to peak power constraints are solved, which are known as cave-filling problems (CFP). The proposed algorithm finds both the optimum number of positive powers and the number of resources that are assigned the peak power before finding the specific powers to be assigned. The proposed solution is non-iterative and results in a** computational complexity, which is of the order of M , $O(M)$, **where** *M* **is the total number of resources, which is significantly** lower than that of the existing algorithms given by an order of M^2 , $O(M^2)$, under the same memory requirement and sorted **parameters. The algorithm is then generalized both to weighted CFP (WCFP) and WCFP requiring the minimum power. These extensions also result in a computational complexity of the order of** *M***,** *O*(*M*)**. Finally, simulation results corroborating the analysis are presented.**

¹⁶ *Index Terms***—Weighted waterfilling problem, Peak power** ¹⁷ **constraint, less number of flops, sum-power constraint, cave** ¹⁸ **waterfilling.**

19 I. INTRODUCTION

T ATERFILLING Problems (WFP) are encountered in 20 **VV** numerous communication systems, wherein specifi- cally selected powers are allotted to the resources of the transmitter by maximizing the throughput under a total sum power constraint. Explicitly, the classic WFP can be visualized as filling a water tank with water, where the bottom of the tank has stairs whose levels are proportional to the channel quality, as exemplified by the Signal-to-Interference Ratio (SIR) of the Orthogonal Frequency Division Multiplexing (OFDM) sub-carriers [1], [2].

 This paper deals with the WaterFilling Problem under Peak Power Constraints (WFPPPC) for the individual resources. In contrast to the classic WFP where the 'tank' has a 'flat lid', in WFPPPC the 'tank' has a 'staircase shaped lid',

³⁴ where the steps are proportional to the individual peak power

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

constraint. This scenario is also metaphorically associated with 35 a 'cave' where the stair-case shaped ceiling represents the peak $\frac{36}{2}$ power that can be assigned, thus fulfilling all the require- ³⁷ ments of WFPPPC. Thus WFPPPC is often referred to as 38 a 'Cave-Filling Problem' (CFP) [3], [4].

In what follows, we will use the 'cave-filling' metaphor to 40 develop insights for solving the WFPPPC. Again, the user's 41 resources can be the sub-carriers in OFDM or the tones in ⁴² a Digital Subscriber Loop (DSL) system, or alternatively the 43 same sub-carriers of distinct time slots [5].

More broadly, the CFP occurs in various disciplines of 45 communication theory. A few instances of these are: ⁴⁶

- a) protecting the primary user (PU) in Cognitive 47 Radio (CR) networks [6]–[9]; 48
- b) when reducing the Peak-to-Average-Power 49 Ratio (PAPR) in Multi-Input-Multi-Output (MIMO)- 50 OFDM systems $[10]$, $[11]$; $\frac{51}{2}$
- c) when limiting the crosstalk in Discrete Multi- ⁵² Tone (DMT) based DSL systems $[12]$ – $[14]$; $\frac{53}{2}$
- d) in energy harvesting aided sensors; and $_{54}$
- e) when reducing the interference imposed on nearby 55 sensor nodes $[15]$ – $[17]$. 56

Hence the efficient solution of CFP has received some attention in the literature, which can be classified into iterative and $_{58}$ exact direct computation based algorithms.

Iterative algorithms conceived for CFP have been consid- 60 ered in $[18]$ – $[20]$, which may exhibit poor accuracy, unless 61 the initial values are carefully selected. Furthermore, they 62 may require an extremely high number of iterations for their $\overline{63}$ accurate convergence.

Exact direct computation based algorithms like the Fast 65 WaterFilling (FWF) algorithm of [21], the Geometric ϵ_6 WaterFilling with Peak Power (GWFPP) constraint based algo- 67 rithm of $[22]$ and the Cave-Filling Algorithm (CFA) obtained 68 by minimizing Minimum Mean-Square Error (MMSE) of 69 channel estimation in [3] solve CFPs within limited number $\frac{1}{70}$ of steps, but impose a complexity on the order of $O(M^2)$. $\frac{71}{24}$

All the existing algorithms solve the CFPs by evaluating 72 the required powers multiple times, whereas the proposed $\frac{73}{2}$ algorithm directly finds the required powers in a single step. ⁷⁴ Explicitly, the proposed algorithm reduces the number of π Floating point operations (flops) by first finding the number of τ ⁶ positive powers to be assigned, namely K , and the number of π powers set to the maximum possible value, which is denoted 78 by *L*. This is achieved in two (waterfilling) steps. First we use $\frac{79}{6}$ 'coarse' waterfilling to find the number of positive powers to 80

0090-6778 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Manuscript received November 30, 2015; revised March 14, 2016; accepted April 24, 2016. This work was supported in part by the Engineering and Physical Sciences Research Council EP/Noo4558/1 and EP/L018659/1, in part by the European Research Council advanced fellow grant under Beam-me-up, and in part by the Royal Society under Wolfson research merit award. The associate editor coordinating the review of this paper and approving it for publication was M. Tao.

K. Naidu and M. Z. Ali Khan are with the Department of Electrical Engineering, IIT Hyderabad, Hyderabad 502205, India (e-mail: ee10p002@iith.ac.in; zafar@iith.ac.in).

L. Hanzo is with the Department of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail: lh@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/TCOMM.2016.2560813

81 be assigned and then we embark on step-by-step waterfilling ⁸² to find the number of positive powers that have to be set to ⁸³ the affordable peak powers.

84 In this paper we present an algorithm designed for the 85 efficient solution of CFPs. The proposed solution is then ⁸⁶ generalized for **conceiving** both a Weighted CFP (WCFP) 87 and a WCFP having both a Minimum and a Maximum ⁸⁸ Power (WCFP-MMP) constraint. It is demonstrated that the ⁸⁹ maximum throughput is achieved at a complexity order of $\mathfrak{O}(M)$ by all the three algorithms proposed.

91 The outline of the paper is as follows. Section II outlines ⁹² our system model and develops the algorithms for solv-⁹³ ing the CFP. In Section III we conceive the WCFP, while 94 Section IV presents our WCFP-MMP. Our simulation results ⁹⁵ are provided in Section V, while Section VI concludes the ⁹⁶ paper.

97 **II. THE CAVE-FILLING PROBLEM**

 In Subsection II-A, we introduce the CFP. The com- putation of the number of positive powers is presented in Subsection II-B, while that of the number of powers set to the maximum is presented in Subsection II-C. Finally, the computational complexity is evaluated in Subsection II-D.

¹⁰³ *A. The CFP*

 The CFP maximizes the attainable throughput, *C*, while satisfying the sum power constraint; Hence, the sum of powers allocated is within the prescribed power budget, P_t , while the power, P_i , $\forall i$ assigned for the i^{th} resource is less than to the peak power, P_{it} , $\forall i$. Our optimization problem is then formulated as:

$$
\max_{\{P_i\}_{i=1}^M} C = \sum_{i=1}^M \log_2 \left(1 + \frac{P_i}{N_i} \right)
$$

subject to:
$$
\sum_{i=1}^M P_i \le P_i;
$$

$$
P_i \leq P_{it}, \quad i \leq M,
$$

$$
\text{and } P_i \ge 0, \quad i \le M,\tag{1}
$$

Ni λ

 where *M* is the total number of resources (such as OFDM sub-carriers) and $\{N_i\}_{i=1}^M$ is the sequence of interference plus noise samples. The above optimization problem occurs in the following scenarios:

- ¹¹⁸ (a) In the downlink of a wireless communication sys-¹¹⁹ tem, where the base station (BS) assigns a resource ¹²⁰ (e.g. frequency band) to a user and allocates a certain ¹²¹ power, P_i , to the i^{th} resource while obeying the total 122 power budget (P_t) . The BS ensures that $P_i \leq P_{it}$ for ¹²³ avoiding the near-far problem [23].
- ¹²⁴ (b) In an OFDM system, a transmitter assigns specific pow-¹²⁵ ers to the resources (e.g. sub-carriers) for satisfying the total power budget, P_t . Furthermore, to reduce the PAPR ¹²⁷ problem, the maximum powers assigned are limited to $_{128}$ be within the peak powers [24], [25].

Theorem 1: The solution of the CFP (1) *is of the 'form'* ¹²⁹

$$
P_i = \begin{cases} \left(\frac{1}{\lambda} - N_i\right), & 0 < P_i < P_{ii};\\ P_{ii}, & \frac{1}{\lambda} \ge H_i \triangleq (P_{ii} + N_i);\\ 0, & \frac{1}{\lambda} \le N_i \end{cases} \tag{2}
$$

where $\frac{1}{\lambda}$ *is the water level of the CFP*".

Proof: The proof is in Appendix VI-A. \Box 132

Remark 1: Note that as in the case of conventional water- ¹³³ *filling, the solution of CFP is of the form* (2)*. The actual* ¹³⁴ *solution is obtained by solving the solution form along with* ¹³⁵ *the primal feasibility constraints. Furthermore, for the set of* ¹³⁶ *primal feasibility constraints of our CFP, the Peak Power* ¹³⁷ *Constraint of P*^{*i*} \leq *P*^{*it*}, \forall *i is incorporated in the solution form.* 138 *By contrast, the sum power constraint is considered along* ¹³⁹ *with* (2) *to obtain the solution in Propositions 1 and 2.* 140

Remark 2: Observe from (2) *that for* $0 < P_i < P_{it}$, 141 $P_i = (\frac{1}{\lambda} - N_i)$ *which allows* $\frac{1}{\lambda}$ *to be interpreted as the* 142 *'water level'. However, in contrast to conventional water-* ¹⁴³ *filling, the 'water level' is upper bounded by* $max_i P_{it}$ *. Beyond* 144 *this value, no 'extra' power can be allocated and the 'water* ¹⁴⁵ *level' cannot increase. The solution of this case is considered* ¹⁴⁶ *in Proposition 1.* 147

It follows that (2) *has a nice physical interpretation, namely* ¹⁴⁸ *that if the 'water level' is below the noise level Nⁱ , no power* ¹⁴⁹ *is allocated. When the 'water level' is between* N_i *and* P_{it} *, the* 150 *difference of the 'water level' and the noise level is allocated.* ¹⁵¹ *Finally, when the 'water level' is higher than the 'peak level',* ¹⁵² H_i *; the peak power* P_{it} *is allocated.* 153

The above solution 'form' can be rewritten as 154

$$
P_i = \left(\frac{1}{\lambda} - N_i\right)^+, \quad i = 1, \cdots, M; \quad and \tag{3}
$$
\n
$$
P_i < P_i, \quad i = 1, \cdots, M \tag{4}
$$

$$
P_i \leq P_{it}, \quad i = 1, \cdots, M \tag{4}
$$

where we have $A^+ \triangleq \max(A, 0)$. The solution for (1) has a 157 simple form for the case the 'implied' power budget, P_{It} as 158 defined as $P_{It} = \sum_{i=1}^{M} P_{it}$ is less than or equal to P_t and is 159 given in Proposition 1.

Proposition 1: If the 'implied' power budget is less than or 161 *equal to the power budget* $(\sum_{i=1}^{M} P_{it} \leq P_t)$, then peak power 162 allocation to all the M resources gives optimal capacity.

Proof: Taking summation on both sides of $P_i \n\t\leq P_{it}$, $\forall i$, 164 we obtain the 'implied' power constraint

$$
\sum_{i=1}^{M} P_i \le \underbrace{\sum_{i=1}^{M} P_{it}}_{P_{IT}}.
$$
 (5) 166

However from (1) we have 167

$$
\sum_{i=1}^{M} P_i \le P_t. \tag{6}
$$

Consequently, if $P_{It} \leq P_t$, then peak power allocation to all 169 the *M* resources (i.e. $P_i = P_{it}$, $\forall i$) fulfils all the constraints 170 $\sum_{i=1}^{M} P_{it}$. Since the maximum power that can be allocated to 172 of (1). Consequently, the total power allocated to *M* resources 171 ¹⁷³ any resource is it's peak power, peak power allocation to all 174 the *M* resources produces optimal capacity.

 Note that in this case the total power allocated is less than ¹⁷⁶ (or equal to) P_t . However, if $P_t \le \sum_{i=1}^{M} P_{it}$, then all the *M* resources cannot be allocated peak powers since it violates the total sum power constraint in (1).

¹⁷⁹ In what follows, we pursue the solution of (1) for the case

 $P_t < \sum^{M}$

i=1 180 $P_t < \sum P_{it}$. (7)

¹⁸¹ We have,

¹⁸² *Proposition 2: The optimal powers and hence optimal* ¹⁸³ *capacities are achieved in* (1) *(under the assumption* (7)*)* ¹⁸⁴ *only if*

$$
\sum_{i=1}^{M} P_i = P_t.
$$
 (8)

Proof: The proof is in Appendix VI-B. Since finding both the number of positive powers and the number of powers that are set to the maximum is crucial for solving the CFP, we formally introduce the following definitions.

191 *Definition 1 (The Number of Positive Powers, K): Let* $\mathcal{I} =$ $\{i; such that P_i > 0\}$ *be the set of resource indices, where P_i* 192 193 *is positive. Then the number of positive powers,* $K = |\mathcal{I}|$ *, is* 194 *given by the cardinality,* $|\mathcal{I}|$ *, of the set.*

 Definition 2 (The Number of Powers Set to the Peak Power, L): Let $\mathcal{I}_{\mathcal{P}} = \{i; \text{ such that } P_i = P_{it}\}$ be the set of *resource indices, where Pⁱ has the maximum affordable value of Pit* ¹⁹⁸ *. Then the number of powers set to the peak power,* $L = |\mathcal{I}_{\mathcal{P}}|$ *, is the cardinality,* $|\mathcal{I}_{\mathcal{P}}|$ *of the set.*

 Without loss of generality, we assume that the interference plus noise samples N_i are sorted in ascending order, so that the first *K* powers are positive, while the remaining ones are set to zero. Then, (8) becomes

 $\sum_{k=1}^{K}$ *i*=1 $\sum P_i = P_t.$ (9)

205 Note that H_i and P_{it} are also arranged in the ascending order 206 of N_i , in order to preserve the original relationship between H_i and N_i .

²⁰⁸ *B. Computation of the Number of Positive Powers*

 The CFP can be visualized as shown in Fig. 1a. In a cave, the water is filled i.e. the power is apportioned between the floor of the cave and the ceiling of the cave. The levels of the ith 'stair' of the floor staircase and of the ceiling staircase are N_i and $H_i \triangleq (P_{it} + N_i)$, respectively. The widths of all stairs are assumed to be 1. Since the power gap between the floor stair and the ceiling stair is P_{it} , the allocated power has to 216 satisfy $P_i \leq P_{it}$.

217 As the water is poured into the cave, observe from Fig. 1b ²¹⁸ that it obeys the classic waterfilling upto the point where the ²¹⁹ 'waterlevel' $(\frac{1}{\lambda})$ reaches the ceiling stair of the 1st resource. ²²⁰ From this point onwards, water can only be stored above ²²¹ the second stair, as depicted in Fig. 1c upto a point where

Fig. 1. Geometric Interpretation of CFP for $K = 4$. (a) Heights of *i*th stair in cave floor staircase and cave roof staircase are N_i and $H_i (= P_{it} + N_i)$. (b) Water is filled (Power is allotted) in between the cave roof stair and cave floor stair, at this waterlevel the peak power constraint for *P*1 constraints further allocation to P_1 . (c) A similar issue occurs to P_2 also.Observe that the variable $Z_{m,4}$ represents the height of m^{th} cave roof stair below the $(4+1)^{th}$ cave floor stair. (d) Power allotted for i^{th} resource is $P_i = min\{\frac{1}{\lambda}, H_i\} - N_i$. Observe the waterlevel between 4^{th} and 5^{th} resource. (e) The area $\frac{1}{\lambda}K$, shown in this figure, is smaller than the area $N_{K+1}K$ shown in (f).

the water has filled the gap between the floor stair and the 222 ceiling stair of both the first and the second stairs. In terms 223 of power, we have $P_i = P_{it}$ for the resources $i = 1$ and 2. 224 Mathematically, we have $P_i = P_{it}$ if $H_i \leq \frac{1}{\lambda}$ **.** 225

As more water is poured, observe from Fig. 1d that for the 226 third and the fourth stairs, we have $H_i > \frac{1}{\lambda}$. It is clear from 227 the above observations (also from (2)) that the power assigned $_{228}$ to the i^{th} resource becomes: 229

$$
P_i = \min\left\{\frac{1}{\lambda}, H_i\right\} - N_i, \quad i \leq K. \tag{10} \tag{10}
$$

In Fig. 1d, the height of the fifth floor stair exceeds $\frac{1}{\lambda}$. ²³¹ As water can only be filled below the level $\frac{1}{\lambda}$, no water is 232

AQ:3

Algorithm 1 ACF Algorithm for Obtaining *K*

Require: Inputs required are *M*, P_t , N_i & H_i (in ascending order of *Ni*). **Ensure:** Output is K , $I_{R_{K-1}}$, I_{R_K} , d_K . 1: $i = 1$. Denote $d_0 = P_t$, $U_0 = 0$ and $I_{R_0} = \emptyset$ 2: Calculate $d_i = d_{i-1} + N_i$. 3: \triangleright Calculate the area $U_i = \sum_{m=1}^{i} Z_{m,i}^+$ as follows: 4: $I_{R_i} = I_{R_{i-1}} \cup \{m; \text{ such that } N_{i+1} > H_m \& m \neq I_{R_{i-1}}\};$ $Z_{m,i} = N_{(i+1)} - H_m, m \in (I_{R_i} - I_{R_{i-1}})$ 5: $U_i = U_{i-1} + |I_{R_{i-1}}|(N_{i+1} - N_i) + \sum_{m \in (I_{R_i} - I_{R_{i-1}})} Z^+_{m,i}$ 6: Calculate the area $Q_i = i N_{(i+1)}$ 7: **if** $Q_i \geq (d_i + U_i)$ then 8: $K \leftarrow i$. Exit the algorithm. 9: **else** 10: $i \leftarrow i+1$, Go to 2 11: **end if**

233 filled above the fifth bottom stair. This results in $K = 4$, as ²³⁴ shown in Fig. 1d. The area of the water-filled cave crosssection becomes equal to P_t .

 236 Fig. 1c also introduces the variable $Z_{i,k}$ as the depth of ²³⁷ the i^{th} ceiling stair below the $(k + 1)^{st}$ bottom stair; that is, ²³⁸ we have:

$$
Z_{i,k} = N_{(k+1)} - H_i, \quad i \le k. \tag{11}
$$

240 The variable $Z_{i,k}$ allows us to have a reference, namely a 241 constant roof ceiling of N_{i+1} , while verifying whether $K = i$. $_{242}$ Figure 1c depicts this dynamic for $i = 4$. The constant roof reference is given at N_{i+1} . Observe that we have $Z_{i,k}^{+} > 0$ for $i = 1, 2$ and $Z_{i,k}^{+} = 0$ for $i = 3, 4$ with $k = 4$. This allows ²⁴⁵ us to quantify the total cave cross-section area in Fig 1e, upto 246 the i^{th} step in three parts:

- ²⁴⁷ the area occupied by roof stairs below the constant roof reference, given by $\sum_{k=1}^{i} Z_{k,i}^{+}$;
- \bullet the area occupied by the 'water', given by P_t ;
- the area occupied by the floor stairs, $\sum_{k=1}^{i} N_k$.

²⁵¹ This is depicted in Fig. 1e. Observe from Fig. 1e that ²⁵² if the waterlevel of $\frac{1}{\lambda}$ is less than the $(i + 1)^{st}$ water level 253 $(i + 1 = 5$ in this case), then the cave cross-section area given by $\sum_{k=1}^{i} Z_{k,i}^{+} + P_t + \sum_{k=1}^{i} N_k$ (shown in Fig. 1e) would 255 be less than the total area of $i N_{i+1}$, as shown in Fig. 1f. Furthermore, if the waterlevel $\frac{1}{\lambda}$ is higher than the $(i + 1)^{st}$ 256 ²⁵⁷ water level $(i + 1 = 2, 3, 4$ in this case), then the area given ²⁵⁸ by $\sum_{k=1}^{i} Z_{k,i}^{+} + P_t + \sum_{k=1}^{i} N_k$ would be higher than the total 259 area of $i N_{i+1}$, as shown in Fig. 1f.

 Based on the insight gained from the above geometric interpretation of the CFP, we develop an algorithm for finding *K* for any arbitrary CFP, which we refer to as the **Area based Cave-Filling (ACF)** of Algorithm 1.

 Note that d_0 in Algorithm 1 represents an initialization 265 step that eliminates the need for the addition of P_t at every resource-index *i* and the set I_{R_i} contains the indices of the $_{267}$ ceiling steps, whose 'height' is below N_{i+1} . Furthermore, the additional outputs of Algorithm 1 are required for finding the number of roof stairs that are below the waterlevel in Algorithm 2. We now prove that Algorithm 1 indeed finds the optimal value of K.

Require: Inputs required are K , d_K , $I_{R_{K-1}}$, I_{R_K} , N_i & H_i (in ascending order of *Ni*)

Ensure: Output is *L*, *IS*.

- 1: Calculate $P_R = d_K KN_K + |I_{R_K-1}|N_K \sum_{m \in I_{R_K-1}} H_m$
	- 2: Calculate $I_B = I_{R_K} I_{R_{K-1}}$ & $D_1 = K |I_{R_{K-1}}|$.
- 3: If $|I_B| = 0$, set $L = 0$, $I_S = \emptyset$. Exit the algorithm.
- 4: Sort ${H_m}_{m \in I_B}$ in ascending order and denote it as ${H_m}_B$ and the sorting index as *I^S* .
- 5: Initialize $m = 1$, $F_m = (H_{mB} N_K)D_m$.
- 6: **while** $F_m < P_R$ **do**
- 7: $m = m + 1$.
- 8: $D_m = D_{m-1} 1$
- 9: $F_m = F_{m-1} + (H_{m} H_{m-1})B)D_m$

10: **end while**

11: $L = m - 1$.

Theorem 2: The Algorithm 1 delivers the optimal value of ²⁷² *the number of positive powers, K, as defined in Definition 1.* 273

Proof: We prove Theorem 2 by first proving that $\phi(i) = 274$ $d_i + U_i$, is a monotonically increasing function of the resourceindex *i*. It then follows that $Q_i \geq (d_i + U_i)$ gives the first *i*, 276 for which the waterlevel is below the next step. Consider 277

$$
\phi(i) - \phi(i-1) \tag{278}
$$

$$
= d_i - d_{i-1} + U_i - U_{i-1} \tag{12}
$$

$$
= N_i + |I_{R_{i-1}}| (N_{i+1} - N_i) + \sum_{m \in (I_{R_i} - I_{R_{i-1}})}^{i} Z_{m,i}^{+}
$$
 (13) 280

 $> 0,$ (14) 281

where (13) follows from (12) by using the definitions of d_i 282 and U_i in Algorithm 1. Since the interference plus noise levels $_{283}$ *N_i* are positive, we have $(N_{i+1} - N_i) \geq 0$, and since the N_i 's 284 are in ascending order, (14) follows from (13). ²⁸⁵

Let us now consider the reference area, $Q_i = i N_{i+1}$. Within 286 this reference area; certain parts are occupied by the floor 287 stairs, others by the projections of the ceiling stairs and finally 288 by the space in between the floor and the ceiling; filled by 289 'water'. This is given by $W_i = Q_i - \sum_{m=1}^{i} N_m - U_i$. Recall that 290 the total amount of water that can be stored is P_t . If we have 291 $P_t > W_i$, then there is more water than the space available, 292 hence the water will overflow to the next stair(s). Otherwise, 293 if we have $P_t \leq W_i$, all the water can be contained within the 294 space above this stair and the lower stairs. Substituting the 295 value of W_i in this inequality, we have 296

$$
P_t \le Q_i - \sum_m^i N_m - U_i \qquad (15) \quad \text{297}
$$

$$
\Rightarrow P_t + \sum_{m}^{i} N_m + U_i \le Q_i \tag{16} \tag{16}
$$

$$
d_i + U_i \le Q_i \tag{17} \tag{17}
$$

where (16) is obtained from (15) by rearranging. Then using $\frac{300}{200}$ the definition of d_i in Algorithm 1, we arrive at (17). $\frac{301}{200}$

Fig. 2. Peak power allocation for resources having their H_i 's in between N_K and $N_{(K+1)}$.

³⁰² Since Algorithm 1 outputs the (first) smallest value of the ³⁰³ resource-index *i* for which (17) is satisfied, it represents the ³⁰⁴ optimal value of *K*.

³⁰⁵ This completes the proof.

³⁰⁶ Once *K* is obtained, it might appear straightforward to sor obtain the values of P_i , $i \in [1, K]^{\ddagger}$ as in [26] and [27]; but in ³⁰⁸ reality it is not. This is because of the need to find the specific ³⁰⁹ part of the cave roof, which is below the 'current' waterlevel. 310 Note that $I_{R_{K-1}} \subset I_P \subset I_{R_K}$ where I_P is the set of roof s_{311} stairs below the current waterlevel and I_{R_K} is the set of roof stairs below N_{K+1} . This is because the waterlevel of $\frac{1}{\lambda}$ is 313 between N_K and N_{K+1} .

³¹⁴ *C. Waterfilling for Finding the Number of*

³¹⁵ *Powers Having the Peak Allocation*

³¹⁶ In order to develop an algorithm for finding *L*, we first 317 consider the geometric interpretation of an example shown 318 in Fig. 2. Note that the H_m 's below N_K , $(N_K - H_m) > 0$, 319 belong to $I_{R_{K-1}}$ and the H_m values above N_{K+1} belong to I_{U_K} . This is clearly depicted in Fig. 2 for $K = 6$, where 321 $I_{R_{K-1}} = \{1, 2\}$ and $I_{U_K} = \{5, 6\}.$

 322 The contentious H_m 's are those whose heights lie between N_K and N_{K+1} . The indices of these H_m 's are denoted by I_B (in Fig. 2, $I_B = \{3, 4\}$). Without loss of generality, we 325 assume that *B* roof stairs, H_m 's, lie between N_K and N_{K+1} . ³²⁶ We now have to find among these *B* stairs, those particular 327 ones whose heights lie below the water level, $\frac{1}{\lambda}$ (for which $_{328}$ peak powers are allotted). Note that $B = |I_{R_K}| - |I_{R_{K-1}}|$ and $I_B = [1, K] - I_{R_{K-1}} - I_{U_K} = I_{R_K} - I_{R_{K-1}}.$

³³⁰ This is achieved by a 'second' waterfilling style technique ³³¹ as detailed below.

Clearly, the resources that belong to the set $I_{R_{K-1}}$ are ass allotted with peak powers as $(H_m - \frac{1}{\lambda}) < 0, m \in I_{R_{K-1}}$. ³³⁴ The remaining ceiling stairs in *I^B* will submerge one by 335 one as the waterlevel increases from N_K . For this reason; the heights ${H_m}_{m \in I_B}$ are sorted in ascending order to obtain $H_{m, B}$ and I_S is the sort index for $H_{m, B}$.

338 After allotting *I*_{R_{K-1}} resources with peak powers, whose sum is equal to $\sum_{m \in I_{R_{K-1}}} P_{mt}$, we can allocate $(N_K - N_m)^+$, $m \in I_{R_{K-1}}^c$ power to the remaining resources $I_{R_{K-1}}^c$, where for a set *A*, $A^c = [1, K] - A$

‡ [A,B] represents the interval in between A and B, including A and B.

represents its complement. That is we allot power to remaining $_{342}$ resources with the 'present' waterlevel being N_K . The power $\frac{343}{2}$ that remains to be allocated for $I_{R_{K-1}}^c$ resources is given by 344

$$
P_R = P_t - \sum_{m \in I_{R_{K-1}}} P_{mt} - \sum_{m \in I_{R_{K-1}}^c} (N_K - N_m)^+ \tag{18}
$$

$$
= P_t + \sum_{m=1}^{K} N_m - KN_K + |I_{R_{K-1}}|N_K - \sum_{m \in I_{R_{K-1}}} H_m.
$$

Equation (19) is obtained using a geometric interpretation 348 as follows; the term $d_K = P_t + \sum_{m=1}^K N_m$ is the sum 349 of total water and K floor stairs. Subtracting from it the 350 reference area of KN_K gives the excess water that is in 351 excess amount; without considering the ceiling stairs. Further 352 subtracting the specific part of the ceiling stairs that are below 353

 N_K namely $\sum_{m \in I_{R_{K-1}}} H_m - |I_{R_{K-1}}| N_K$ gives the residual 354 'water' amount, P_R . $\qquad \qquad$ 355 Note from Fig. 2 that once P_R amount of 'water' has been 356 poured, and provided that $P_R < (K - |I_{R_{K-1}}|)(H_{1B} - N_K)$ 357 is satisfied, then we have $L = |I_{R_{K-1}}|$ and hence no more 358 'water' is left to be poured. Otherwise, $F_1 = (K - |I_{R_{K-1}}|)$ 359 $(H_{1B} - N_K)$ amount of 'water' is used for completely sub- 360 merging the 1^{st} ceiling stair (H_{1B}) and the 'present' waterlevel increases to H_{1B} . Similarly, $F_2 = (K - |I_{R_{K-1}}| - 1)$ 362 $(H_{2B} - H_{1B})$ amount of water is used for submerging the 363 second ceiling stair and hence the waterlevel increases to H_{2B} . 364 This process continues until all the 'water' has been poured. ³⁶⁵ We refer to this process as 'step-based' waterfilling since the 366 waterlevel is changed in steps given by the size of the roof 367 stairs. 368

The formal algorithm, which follows the above geometric 369 interpretation but it aims for a low complexity, is given in ³⁷⁰ Algorithm 2. Let us now prove that Algorithm 2 delivers the 371 optimal value of *L*. 372

Theorem 3: Algorithm 2 finds the optimal value L of the 373 number of powers that are assigned peak powers, where L is 374 *defined in Definition 2.*

Proof: First observe that the F_m values are monotonically ∞ increasing functions of the index *m*. Since the $H_{m, B}$ values $\frac{377}{2}$ are sorted in ascending order, the water filling commences 378 from $m = 1$. The condition $F_m < P_R$ is true, as long as the 379 total amount of water required to submerge the m^{th} roof stair, 380 F_m , is less than the available water. It follows then that the 381 algorithm outputs the largest m , for which the inequality is 382 satisfied which hence represents the optimal value of L . \square 383

The resources for which peak powers are allotted are ³⁸⁴ indexed by $I_P = I_{R_{K-1}} \cup I_S(1 : L)$, where $I_S(1 : L)$ stands 385 for the first '*L*' resources of *IS*. The remaining resources, ³⁸⁶ indexed by $I_P^c = [1, K] - I_P$, are allotted specific powers 387 using waterfilling.

In Fig. 2, the I_P^c resources are 5 and 6 with associated 389 $L' = 2$ while $P_R - F_L$ represents the darkened area in Fig. 2. 390 The waterlevel for I_P^c resources is equal to the height, H_{LB} , of ³⁹¹ the last submerged roof stair plus the height of the darkened 392 area. Here, the height of the darkened area is obtained by ³⁹³ dividing the remaining water amount $(= P_R - F_L)$ with the 394

TABLE I COMPUTATIONAL COMPLEXITIES (IN FLOPS) OF KNOWN SOLUTIONS FOR SOLVING CFP

Iterative Algorithms [18], [19] FWF [21]		GWFPP [22]	ACF
iterations \times (6 <i>M</i>)	\pm iterations $\times (5M+6)$ $\pm 4M^2+7M$		$16M+9$

³⁹⁵ number of remaining resources $(= |I_P^c|)$ since the width of 396 all resources is 1. If we have $L = 0$, then the last level is N_K .

Therefore the waterlevel for I_P^c resources is given by

$$
\frac{1}{\lambda} = \begin{cases} H_{LB} + \frac{P_R - F_L}{|I_P^c|}, & L > 0; \\ N_K + \frac{P_R}{|I_P^c|}, & \text{otherwise.} \end{cases}
$$
(20)

³⁹⁹ The powers are then allotted as follows:

$$
P_i = \begin{cases} P_{it}, & i \in I_P; \\ \left(\frac{1}{\lambda} - N_i\right), & i \in I_P^c. \end{cases}
$$
 (21)

⁴⁰¹ *D. Computational Complexity of the CFP*

⁴⁰² Let us now calculate the computational complexity of both ⁴⁰³ Algorithm 1 as well as of Algorithm 2 separately and then ⁴⁰⁴ add the complexity of calculating the powers, as follows:

- ⁴⁰⁵ Calculating *Hⁱ* requires *M* adds.
- 406 Observe that Algorithm 1 requires $K + 1$ adds for cal-⁴⁰⁷ culating *di*'s; *K* multiplies to find *Qi*'s; *maximum of K* $subtractions for calculating Z_{m,i}$ ^{*'s*} and, in the worst case, ⁴⁰⁹ 4*K* additions as well as *K* multiplications for calculating U_K : the proofs are given in Appendices C and D. ⁴¹¹ So, algorithm 1 requires *6K* + 1 additions and 2*K* ⁴¹² multiplications for calculating *K*.
- Note that in Algorithm 2: 2 multiplies and $3 + |I_{R_{K-1}}|$ 414 additions are needed for the calculation of P_R ; 2 adds 415 and 1 multiply for computing F_1 , D_1 ; $4|I_B|$ adds and I_B ⁴¹⁶ multiples for evaluating the while loop. Since we have $|I_{R_{K-1}}|, |I_B| < K$, the worst case complexity of Algo-⁴¹⁸ rithm 2 is given by $5K + 5$ adds and $K + 3$ multiplies.
- \bullet The computational complexity of calculating P_i using (3) ⁴²⁰ is at-most *K* adds.

⁴²¹ • The total computational complexity of solving our CFP ₄₂₂ of this paper, is $12K + 6 + M$ adds and $3K + 3$ multiplies. 423 Since *K* is not known apriori, the worst case complexity ⁴²⁴ is given by $13M + 6$ adds and $3M + 3$ multiplies. Hence ⁴²⁵ we have a complexity order of $O(M)$ floating point ⁴²⁶ operations (flops).

 Table I gives the number of flops required for iterative algo- rithm of [18] and [19], FWF of [21], GWFPP algorithm of [22] and of the proposed ACF algorithm. Observe the order of magnitude improvement for ACF.

 Remark 3: Following the existing algorithms conceived for solving the CFP (like [2] and [22]), we do not consider the ⁴³³ *complexity of sorting N_i, as the channel gain sequences come from the eigenvalues of a matrix; and most of the algorithms compute the eigenvalues and eigenvectors in sorted order.*

Remark 4: Observe that we have not included the complex- ⁴³⁶ *ity of sorting H_i at step 4 in Algorithm 2. This is because the* 437 *sorting is implementation dependent. For fixed-point imple-* ⁴³⁸ *mentations, sorting can be performed with a worst case* ⁴³⁹ *complexity of O*(*M*) *comparisons using algorithms like Count* ⁴⁴⁰ *Sort [28]. For floating point implementations, sorting can* ⁴⁴¹ *be performed with a worst case complexity of* $O(M \log(M))$ *comparisons [29]. Since, almost all implementations are of* ⁴⁴³ *fixed-point representation: the overall complexity, including* ⁴⁴⁴ *sorting of H_i would still be of* $O(M)$ *.* 445

III. WEIGHTED CFP ⁴⁴⁶

An interesting generalization for CFP is the scenario when 447 the rates and the sum power are weighted, hence resulting in 448 the Weighted CFP (WCFP), arising in the following context. ⁴⁴⁹

- (a) In a CR network, a CR senses that some resources ⁴⁵⁰ are available for it's use. Hence the CR allots powers ⁴⁵¹ to the available resources for a predefined amount of 452 time while assuring that the peak power remains limited 453 in order to keep the interference imposed on the PU ⁴⁵⁴ remains within the limit. The weights w_i and x_i may be 455 adjusted based on the resource's available time and on ⁴⁵⁶ the sensing probabilities $[30]$ – $[32]$.
- (b) In Sensor Network (SN) the resources have priorities ⁴⁵⁸ according to their capability to transfer data. These pri- ⁴⁵⁹ orities are reflected in the weights, w_i . The weights x_i 's 460 allow the sensor nodes to save energy, while avoiding 461 interference with the other sensor nodes [33], [34]. 462

The optimization problem constituted by weighted CFP is 463 given by 464

$$
\max_{\{P_i\}_{i=1}^M} C = \sum_{i=1}^M w_i \log_2 \left(1 + \frac{P_i}{N_i} \right)
$$

subject to:
$$
\sum_{i=1}^{M} x_i P_i \le P_t
$$
 (22)

$$
P_i \leq P_{it}, \quad i \leq M \tag{467}
$$

and
$$
P_i \geq 0
$$
, $i \leq M$,

where again w_i and x_i are the weights of the i^{th} 469 resource's capacity and allocated power, respectively. Similar 470 to Theorem 1, we have 471

Theorem 4: The solution of the WCFP (22) *is of the 'form'* ⁴⁷²

$$
\bar{P}_i = \begin{cases}\n\left(\frac{1}{\lambda} - \bar{N}_i\right), & 0 < \bar{P}_i < \bar{P}_{i}, \\
\bar{P}_{i}, & \frac{1}{\lambda} \ge \bar{H}_i \triangleq (\bar{P}_{i}, + \bar{N}_i); \\
0, & \frac{1}{\lambda} \le \bar{N}_i\n\end{cases} \tag{23}
$$

where $\frac{a_1}{\lambda}$ *is the water level of the WCFP",* $\bar{P}_i = \frac{P_i x_i}{w_i}$ ⁴⁷⁴ where $\frac{d}{\lambda}$ is the water level of the WCFP", $P_i = \frac{P_i x_i}{w_i}$ is the *weighted power,* $\bar{P}_{it} = \frac{P_{it}x_i}{w_i}$ $\frac{N_{it}x_i}{w_i}$ is weighted peak power, $\bar{N}_i = \frac{N_i x_i}{w_i}$ w*i* 475 \bar{a} *is the weighted interference plus noise level and* $\bar{H}_i = \bar{N}_i + \bar{P}_{it}$ *is the weighted height of it h* ⁴⁷⁷ *cave ceiling stair.*

⁴⁷⁸ *Proof:* The proof is similar to Theorem 1 and has been 479 omitted.

⁴⁸⁰ The above solution *form* can be rewritten as

$$
\bar{P}_i = \left(\frac{1}{\lambda} - \bar{N}_i\right)^+, \quad i = 1, \cdots, M; \quad and \qquad (24)
$$

$$
\bar{P}_i \le \bar{P}_{it}, \quad i = 1, \cdots, M \tag{25}
$$

483 where we have $A^+ \triangleq \max(A, 0)$. The solution for (22) has a ⁴⁸⁴ simple form for the case the 'implied' weighted power budget, ⁴⁸⁵ \overline{P}_{It} as defined as $\overline{P}_{It} = \sum_{i=1}^{M} w_i \overline{P}_{it}$ is less than or equal to P_t and is given in Proposition 3.

 Proposition 3: If the 'implied' power budget is less than ⁴⁸⁸ or equal to the power budget $(\sum_{i=1}^{M} w_i \overline{P}_{it} \leq P_t)$, then peak *power allocation to all the M resources gives optimal capacity.* Note that in this case the total power allocated is less than

491 (or equal to) P_t . However, if $P_t \le \sum_{i=1}^{M} w_i \overline{P}_{it}$, then all the ⁴⁹² *M* resources cannot be allocated peak powers since it violates ⁴⁹³ the total sum power constraint in (22).

⁴⁹⁴ In what follows, we pursue the solution of (22) for the case

$$
P_t < \sum_{i=1}^M w_i \bar{P}_{it}.\tag{26}
$$

⁴⁹⁶ We have,

⁴⁹⁷ *Proposition 4: The optimal powers and hence optimal* ⁴⁹⁸ *capacities are achieved in* (22) *(under the constraint* (26)*)* ⁴⁹⁹ *only if*

$$
\sum_{i=1}^{M} w_i \bar{P}_i = P_t.
$$
 (27)

⁵⁰¹ It follows that the solution of (22) is given by

$$
\bar{P}_i = \left(\frac{1}{\lambda} - \bar{N}_i\right)^+, \quad i = 1, \cdots, M; \tag{28}
$$

$$
\frac{1}{2}
$$

503
$$
\sum_{i=1} w_i \bar{P}_i = P_t; \qquad (29)
$$

$$
504 \\
$$

 $\bar{P}_i \leq \bar{P}_{it}, \quad i = 1, \cdots, M.$ (30)

⁵⁰⁵ Using the proposed area based approach, we can extend the ⁵⁰⁶ ACF algorithm to the weighted case as shown in Fig. 3.

 507 Observe that the width of the stairs is now given by w_i in source contrast to CFP, and $Z_{i,k}$ is now scaled by a factor of $\frac{x_i}{w_i}$.

Also observe that the sorting order now depends on the \bar{N}_i 509 $\frac{1}{510}$ values, since sorting the \overline{N}_i values in ascending order makes the first *K* of the \overline{P}_i values positive, while the remaining \overline{P}_i 511 ⁵¹² values are equal to zero as per (28).

 $\overline{\bf{F}}$ In what follows, we assume that the parameters like \overline{H}_i , \overline{P}_{it} , w_i and \bar{N}_i are sorted in the ascending order of \bar{N}_i values in ⁵¹⁵ order to conserve the original relationship among parameters.

⁵¹⁶ Comparing (28)-(30) to (3), (4) and (9); we can see that in ⁵¹⁷ addition to the scaling of the variables, (29) has a weighing 518 factor of w_i . Most importantly, since the widths of the stairs

Fig. 3. Showing the effect of 'weights' in Weighted CFP.

Algorithm 3 ACF Algorithm for Obtaining *K* for WCFP

Require: Inputs required are *M*, P_t , \bar{N}_i , \bar{H}_i & w_i (in ascending order of \bar{N}_i).

Ensure: Output is *K*, $\bar{I}_{R_{K-1}}, \bar{I}_{R_K}, \bar{d}_{K}$. 1: $i = 1$. Denote $\bar{d}_0 = P_t^T$, $W_0 = 0$, $\bar{U}_0 = 0$ and $\bar{I}_{R_0} = \emptyset$ 2: Calculate $\bar{d}_i = \bar{d}_{i-1} + w_i \bar{N}_i$. 3: Calculate $W_i = W_{i-1} + w_i$ 4: $\sum_{i=1}^{n} \sum_{m=1}^{i} w_m \overline{Z}_{m,i}^{+}$ as follows: 5: $\bar{I}_{R_i} = \{m; \text{ such that } \bar{N}_{i+1} > \bar{H}_m\}, W_{R_{i-1}} = \sum_{m \in \bar{I}_{R_{i-1}}} w_m$ $\bar{Z}_{m,i} = \bar{N}_{(i+1)} - \bar{H}_m, m \in (I_{R_i} - I_{R_{i-1}})$ 6: $\bar{U}_i = \bar{U}_{i-1} + W_{R_{i-1}}(\bar{N}_{i+1} - \bar{N}_i) + \sum_{m \in (\bar{I}_{R_i} - \bar{I}_{R_{i-1}})} w_m \bar{Z}_{m,i}^+$ 7: Calculate the area $\overline{Q}_i = W_i \overline{N}_{(i+1)}$ 8: **if** $\bar{Q}_i \geq (\bar{d}_i + \bar{U}_i)$ **then** 9: $K \leftarrow i$. Exit the algorithm. 10: **else** 11: $i \leftarrow i+1$, Go to 2 12: **end if**

is not unity, they affect the area under consideration. As a 519 consequence, Algorithms 1 and 2 cannot be directly applied to $\frac{520}{20}$ this case. However, the interpretations are similar. Algorithm 3 ϵ_{21} details the ACF for WCFP while Algorithm 4, defines the 522 corresponding 'step-based' waterfilling algorithm conceived 523 for finding the optimal values of K and L , respectively. 524

Let us now formulate Theorem 5. 525

Theorem 5: The output of Algorithm 3 gives the optimal 526 *value* K of the number of positive powers, as defined in 527 *Definition 1, for WCFP.* 528

The proof is similar to that of the CFP case, with slight 529 modifications concerning both the scaling and the width of 530 the stairs w_i , hence it has been omitted. 531

Observe that the calculation of \bar{P}_R , \bar{D}_m and \bar{F}_m is affected s₃₂ by the weights w_i , since the areas depend on w_i **.** 533

Let us now state without proof that Algorithm 4 outputs the 534 optimal value of *L*.

Theorem 6: Algorithm 4 delivers the optimal value L of the 536 *number of powers that are assigned peak powers, as defined* 537 *in Definition 2, for WCFP.* 538

Peak power allocated resources are $I_P = I_{R_{K-1}} \cup$ 539 $I_S(1 : L)$. Resources for which WFP allocates powers are 540 $\bar{I}_P^c = [1, K] - \bar{I}_P.$ 541 **Algorithm 4** 'Step-Based' Waterfilling Algorithm for Obtaining *L* for WCFP

Require: Inputs required are *K*, \bar{d}_K , \bar{I}_{R_K-1} , \bar{I}_{R_K} , W_K , $W_{R_{K-1}}$, \overline{N}_i , \overline{H}_i & w_i (in ascending order of \overline{N}_i).

- **Ensure:** Output is *L*, *I^S* .
- 1: Calculate $\bar{P}_R = \bar{d}_K W_K \bar{N}_K + W_{R_{K-1}} \bar{N}_K \sum_{m \in \bar{I}_R} w_m \bar{H}_m$ $m \in \overline{I}_{R_{K-1}} \cup \ldots \cup \overline{H}_{m}$
- 2: Calculate $\bar{I}_B = \bar{I}_{R_K} \bar{I}_{R_{K-1}}$. $\bar{D}_1 = W_{K} W_{R_{K-1}}$.
- 3: If $|\bar{I}_B| = 0$, set $\bar{L} = 0$. Otherwise, if $|\bar{I}_B| > 0$, then only proceed with the following steps.
- 4: Sort ${\{\bar{H}_m\}}_{m \in \bar{I}_B}$ in ascending order and denote it as ${\{\bar{H}_{mB}\}}$ and the sorting index as *IS*.
- 5: Initialize $m = 1$, $\bar{F}_m = (\bar{H}_{mB} \bar{N}_K)\bar{D}_m$.
- 6: **while** $\bar{F}_m \leq \bar{P}_R$ **do**
- 7: $m = m + 1$. If $m > |\bar{I}_B|$, exit the while loop.
- 8: $\bar{D}_m = \bar{D}_{m-1} w_{I_S(m-1)}$
- 9: $\bar{F}_m = \bar{F}_{m-1} + (\bar{H}_{mB} \bar{H}_{(m-1)B})\bar{D}_m$
- 10: **end while**
- 11: $L = m 1$.
- 12: calculate $\bar{D}_{L+1} = \bar{D}_L w_{I_S(L)}$, only if $L = |\bar{I}_B|$.
- ⁵⁴² The waterlevel for WCFP is given by

$$
\frac{1}{\lambda} = \begin{cases} \bar{H}_{LB} + \frac{\bar{P}_R - \bar{F}_L}{\bar{D}_{L+1}}, & L > 0; \\ \bar{N}_K + \frac{\bar{P}_R}{\bar{D}_1}, & L = 0. \end{cases}
$$
(31)

⁵⁴⁴ and the powers allocated are given by

$$
P_i = \begin{cases} P_{it}, & i \in \bar{I}_P; \\ \frac{w_i}{x_i} \left(\frac{1}{\lambda} - \bar{N}_i\right), & i \in \bar{I}_P^c. \end{cases}
$$
(32)

⁵⁴⁶ *A. Computational Complexity of the WCFP*

⁵⁴⁷ Let us now calculate the computational complexity of both ⁵⁴⁸ Algorithm 3 and of Algorithm 4 and then add the complexity ⁵⁴⁹ of calculating the powers, as follows:

- \bullet Calculating \bar{N}_i , \bar{P}_{it} and \bar{H}_i requires 3*M* multiplies and ⁵⁵¹ *M* adds.
- 552 Observe that Algorithm 3 requires $(K + 1)$ adds and *K* multiplies for calculating \overline{d}_i , *K* multiplies to find \overline{Q}_i 553 ⁵⁵⁴ and, in the worst case, 4*K* additions and 2*K* multiplications for calculating $\bar{Z}_{m,i}$'s & \bar{U}_K , the corresponding ⁵⁵⁶ proof is given in Appendix VI-E; *K* additions for calculating *W_K* and at-most *K* additions for calculating $W_{R_{i-1}}$. 558 Consequently Algorithm 3 requires $(7K + 1)$ additions ⁵⁵⁹ and 4*K* multiplications for calculating *K*.
- Note that in Algorithm 4: 2 multiplies and $\frac{3}{2} + |\bar{I}_{R_{K-1}}|$ $_{561}$ additions are required for calculation of \bar{P}_R ; at-most $(K+1)$ adds and 1 multiply in computing \bar{F}_1 , \bar{D}_1 ; $4|\bar{I}_B|$ $_{563}$ adds and I_B multiples for evaluating the while loop. Since $|\bar{I}_{R_{K-1}}|,|\bar{I}_B| < K$, the worst case complexity of 565 Algorithm 4 can be given as $(6K + 4)$ adds, $(K + 3)$ ⁵⁶⁶ multiplies.
- The computational complexity of calculating P_i is 567 at-most K adds and K multiplies.
- Consequently, the total computational complexity of solv- ⁵⁶⁹ ing the WCFP, considered is $(14K + 5 + M)$ adds and 570 $(3M + 6K + 3)$ multiplies. Since *K* is not known apriori, $\frac{571}{2}$ the worst case complexity is given by $(15M + 5)$ adds 572 and $(9M + 3)$ multiplies. i.e we have a complexity order $\frac{573}{2}$ of $O(M)$. 574

Explicitly, the proposed solution's computational complexity 575 is of the order of M , whereas that of the GWFPP of $[22]$ is 576 of the order of M^2 . $\overline{}$.

IV. WCFP REQUIRING MINIMUM POWER 578

In this section we further extend the WCFP to the case 579 where the resources/powers scenario of having both a Minimum and a Maximum Power (MMP) constraint. The resultant 581 WCFP-MMP arises in the following context: 582

(a) In a CR network, CR senses that some resources are 583 available for it's use and allocates powers to the available ₅₈₄ resources for a predefined amount of time while ensuring 585 that the peak power constraint is satisfied, in order to 586 keep the interference imposed on the PU with in the 587 affordable limit. Again, the weights w_i and x_i represent \sim 588 the resource's available time and sensing probabilities. $\frac{589}{200}$ The minimum power has to be sufficient to support 590 the required quality of service, such as the minimum 591 transmission rate of each resource [30]–[32]. 592

We show that solving WCFP-MMP can be reduced to solving 593 WCFP with the aid of an appropriate transformation. Hence, $_{594}$ Section III can be used for this case. Mathematically, the 595 problem can be formulated as 596

$$
\max_{\{P_i\}_{i=1}^M} C = \sum_{i=1}^M w_i \log_2 \left(1 + \frac{P_i}{N_i} \right)
$$

subject to : $\sum_{n=1}^{M}$ *i*=1 $x_i P_i \leq P_t$ (33) 598

$$
P_{ib} \le P_i \le P_{it}, \quad i \le M \tag{599}
$$

and
$$
P_i \geq 0
$$
, $i \leq M$,

where $P_{ib} \leq P_{it}$ and P_{ib} is the lower bound while P_{it} is 601 the upper bound of the i^{th} power. w_i and x_i are weights of ∞ the i^{th} resource's capacity and i^{th} resource's allotted power, $\frac{1}{100}$ respectively. Using the KKT, the solution of this case can be 604 written as $\frac{605}{200}$

$$
\bar{P}_i = \left(\frac{1}{\lambda} - \bar{N}_i\right)^+, \quad i = 1, \cdots, M; \quad (34) \quad \text{606}
$$

$$
\sum_{i=1}^{K} w_i \overline{P}_i = P_t; \tag{35} \tag{35}
$$

$$
\bar{P}_{ib} \le \bar{P}_i \le \bar{P}_{it}, \quad i = 1, \cdots, M, \tag{36}
$$

where $\bar{P}_i = \frac{P_i x_i}{w_i}$ $\frac{p_i x_i}{w_i}$ is the weighted power, $\bar{P}_{it} = \frac{P_{it} x_i}{w_i}$ $\frac{\partial u}{\partial u_i}$ is weighted 609 peak power, $\overline{P}_{ib} = \frac{P_{ib}x_i}{w_i}$ $\frac{i_b x_i}{w_i}$ is the weighted minimum power and ϵ_{00} $\bar{N}_i = \frac{N_i x_i}{w_i}$ $\frac{w_i x_i}{w_i}$ is the weighted noise. 611

Let us now formulate Theorem 7. 612

Theorem 7: For every WCFP-MMP given by (33), there 613 *exists a WCFP, whose solution will result in a solution to* ⁶¹⁴ *the WCFP-MMP.* 615 ⁶¹⁶ *Proof:* Consider the solution to WCFP-MMP given $_{617}$ by (34)-(36). Defining $\hat{P}_i = \bar{P}_i - \bar{P}_{ib}$ and substituting it 618 into (34)-(36), we arrive at:

$$
\hat{P}_i = \left(\frac{1}{\lambda} - \bar{N}_i\right)^+ - \bar{P}_{ib}, \quad i = 1, \cdots, M; \quad (37)
$$

$$
\sum_{i=1}^{620} w_i (\hat{P}_i + \bar{P}_{ib}) = P_t; \tag{38}
$$

$$
0 \leq \hat{P}_i \leq (\bar{P}_{it} - \bar{P}_{ib}), \quad i = 1, \cdots, M. \tag{39}
$$

 ϵ_{22} Using (37) and the definition of $()^+$, we can ⁶²³ rewrite (37)–(39) as

$$
\hat{P}_i = \left(\frac{1}{\lambda} - \underbrace{\{\bar{N}_i + \bar{P}_{ib}\}}_{\hat{N}_i}\right)^+, \quad i = 1, \cdots, M; \quad (40)
$$

$$
E_{25} \qquad \sum_{i=1}^{K} w_i \hat{P}_i = \underbrace{\left(P_t - \sum_{i=1}^{K} w_i \bar{P}_{ib}\right)}_{\hat{P}_t};\tag{41}
$$

$$
0 \leq \hat{P}_i \leq \underbrace{(\bar{P}_{it} - \bar{P}_{ib})}_{\hat{P}_{it}}, \quad i = 1, \cdots, M. \tag{42}
$$

 627 Comparing (40)-(42) to (28)-(30), we can observe that this \hat{P}_i , \hat{N}_i , \hat{P}_{it} and \hat{P}_t . 629 It follows then that we can solve the WCFP-MMP by solving 630 the WCFP, whose solution is given by $(40)-(42)$.

⁶³¹ Note that the effect of the lower bound is that of increasing ⁶³² the height of the floor stairs for the corresponding WCFP at ⁶³³ a concomitant reduction of the total power constraint.

⁶³⁴ *A. Computaional Complexity of the WCFP-MMP*

⁶³⁵ Solving WCFP-MMP requires 4*M* additional adds, to compute \hat{P}_i , \hat{N}_i , \hat{P}_{it} as well as \hat{P}_t , and *K* adds to recover P_i 636 \sin from \hat{P}_i ; as compared to WCFP. Hence the the worst case 638 complexity of solving the WCFP-MMP is given by $(19M + 6)$ 639 adds and $(8M + 3)$ multiplies. i.e we have a complexity 640 of $O(M)$.

⁶⁴¹ V. SIMULATION RESULTS

 Our simulations have been carried out in MATLAB R2010b software. To demonstrate the operation of the proposed algo- rithm, some numerical examples are provided in this section. *Example 1:* Illustration of the CFP is provided by the following simple example:

 $\log_2\left(1+\frac{P_i}{N}\right)$

Ni λ

 $P_i < 0.7 - 0.3i, \quad i < 2$

and $P_i > 0$, $i < 2$. (43)

 $C = \sum_{i=1}^{n}$

i=1

max $\{P_i\}_{i=1}^2$ 647

$$
with constraints: \sum_{i=1}^{2} P_i \leq 0.45;
$$

$$
\frac{1}{2}
$$

$$
65(
$$

Assuming
$$
N_i = \{0.1, 0.3\}
$$
, we have $H_i = \{0.5, 0.4\}$. For the example of (43), water is filled above the first floor stair, as shown in Fig. 4a. This quantity of water is less than P_t . Hence, we fill the water above the second floor stair until the

i=1

Fig. 4. Illustration for Example 1: (a) Water filled above floor stairs 1 and 2, without peak constraint. (b) Water filled above floor stairs 2 only.

water level reaches 0.45 . At this point the peak constraint for 655 the second resource comes into force and the water can only 656 be filled above second floor stair, as shown in Fig. 4b. Now, 657 this amount of water becomes equal to P_t giving $K = 2$. 658 We can observe that the first resource has a power determined 659 by the 'waterlevel', while the second resource is assigned the 660 peak power. 661

In Algorithm 1, we have $U_1 = 0$ as $Z_{1,1}^+ = 0$ and $I_{R_1} = 0$. 662 $d_1 = P_t + N_1 = 0.55$, while $Q_1 = 1 \times N_2 = 0.3$. We can 663 check that $Q_1 \ngeq (d_1 + U_1)$ which indicates that $K > 1$. Hence, 664 we get $K = 2$.

Let us now use Algorithm 2 to find the specific resources $\frac{666}{666}$ that are to be allocated the peak powers. We have $I_{R_{K-1}} = 0$ 667 as $N_K < H_1$. The remaining power P_R in Algorithm 2 is 0.25. 668 The resource indices to check for the peak power allocation are 669 $I_B = \{1, 2\}$. From $H_m|_{m \in I_B}$, we get $[H_{1B}, H_{2B}] = \{0.4, 0.5\}$ 670 and $I_S = \{2, 1\}$. We can check that $F_1 = 0.2 < P_R$ and 671 $F_2 = 0.3 > P_R$. This gives $L = 1$. Hence we allocate the 672 peak power to the $I_S(L)$ or second resource, i.e. we have $P_2 = \sigma_{0.5}$ $P_{2t} = 0.1$. The first resource can be assigned the remaining 674 power of $P_1 = P_t - P_{2t} = 0.35$. ⁶⁷⁵

Example 2: A slightly more involved example of the CFP, $\frac{676}{677}$ with more resources is illustrated here:

$$
\max_{\{P_i\}_{i=1}^8} C = \sum_{i=1}^8 \log_2 \left(1 + \frac{P_i}{N_i}\right)
$$

with constraints:
$$
\sum_{i=1}^{8} P_i \leq 6;
$$

$$
P_i \leq P_{it}, \quad i \leq 8 \tag{8}
$$

and
$$
P_i \ge 0
$$
, $i \le 8$. (44) 681

In (44); we have $N_i = 2i - 1$, $\forall i$ and $P_{it} =$ 682 $\{8, 1, 3, 3, 6, 3, 4, 1\}$. The heights of the cave roof stairs are 683 $H_i = \{9, 4, 8, 10, 15, 14, 17, 16\}.$

In Fig. 5, when the water is filled below the third cave roof $\frac{685}{685}$ stair, the amount of water is $P_t = 6$, which fills above the 686 three cave floor stairs, hence giving $K = 3$. The same can be 687 obtained from Algorithm 1. Using Algorithm 1, the $(d_i + U_i)$ 688 and the Q_i values are obtained which are shown in Table II. 689 Since the $(d_i + U_i)$ values are $\{7, 11, 18\}$, while the Q_i are 690 $\{3, 10, 21\}$, we have $Q_3 > (d_3 + U_3)$ and $Q_i < (d_i + U_i)$, 691 $i = 1, 2$. This gives $K = 3$.

As we have $N_K = 5 > H_2 = 4, I_{R_{K-1}} = 2$; 693 the second resource is to be assigned the peak power. ⁶⁹⁴

Fig. 5. Illustration of Example 2: Water filled below the roof stair 3 gives $K = 3$ TABLE II

 S_{695} Similarly, as $N_{K+1} (= 7) > H_i, i \in [1, K]$ is satisfied for $i = 2$ 696 resource, we have $I_{R_K} = 2$. Since $I_B = I_{R_K} - I_{R_{K-1}} = \emptyset$, there 697 are no resources that have H_i , $i \in [1, K]$ values in between 698 *N_K* and N_{K+1} . Thus, there is no need to invoke the 'step-based 699 water filling' of Algorithm 2, which gives $L = 0$.

700 Now, peak power based resources are $I_P = I_{R_{K-1}} = \{2\}.$ ⁷⁰¹ The water filling algorithm allocates powers for the $I_P^c = [1, K] - I_P = \{1, 3\}$ resources.

 The peak power based resources and water filling based resources are shown in Table II. For the remaining power, $P_R = 1$, the water level obtained for the I_P^c resources (with $L = 0$) is 5.5. The powers allocated to the resources $707 \{1, 3\}$ using this water level are $\{4.5, 0.5\}$. The powers and corresponding throughputs are shown in Table II.

⁷⁰⁹ *Example 3:* The weighted CFP is illustrated by the following ⁷¹⁰ simple example:

$$
\max_{\{P_i\}_{i=1}^5} C = \sum_{i=1}^5 w_i \log_2 \left(1 + \frac{P_i}{N_i} \right)
$$

with constraints : $\sum_{n=1}^{\infty}$ x_i ^{*z*₁₂ *with constraints :* $\sum x_i P_i \leq 5;$}

$$
P_i \leq 2, \quad i \leq 5
$$

and
$$
P_i \ge 0
$$
, $i \le 5$. (45)

 T_{715} In (45); lets us consider $N_i = [0.2, 0.1, 0.4, 0.3, 0.5]$, $w_i = 6 - i$ and $x_i = i$, $\forall i$. The \bar{N}_i values are

i=1

Fig. 6. Index of the peak power based resources (continuous lines) and waterfilling allotted resources (dashed lines) for Example 4.

Fig. 7. Throughputs of the resources for Example 4.

[0.04, 0.05, 0.4, 0.6, 2.5], while the \bar{H}_i values are [0.44, 1.05, πi 2.40, 4.60, 12.5]. Applying the ACF algorithm, we arrive at 718 $K = 4$. 719

We have $\overline{H}_i < \overline{N}_K$, $i \in [1, K]$ for the 1st resource. The 720 'step-based' waterfilling algorithm confirms that $1st$ resource $72¹$ is indeed the resource having the peak power. The remaining 722 2^{nd} , 3^{rd} and 4^{th} resources are allocated their powers using the $\frac{723}{6}$ water filling algorithm. For the water level of 0.62222 , powers 724 allotted for {2,3,4} resources are [1.1444, 0.22222, 0.011111]. ⁷²⁵

Example 4: Another example for the weighted 726 CFP associated with random weights: 727

$$
\max_{\{P_i\}_{i=1}^{64}} C = \sum_{i=1}^{64} w_i \log_2 \left(1 + \frac{P_i}{N_i} \right)
$$

with constraints :
$$
\sum_{i=1}^{64} x_i P_i \le 1;
$$

 $P_i \leq P_{it}, \quad i \leq 64$ 730

and
$$
P_i \ge 0
$$
, $i \le 64$. (46) 731

In this example, we assume $N_i = \frac{\sigma^2}{h_i}$ $\frac{\sigma^2}{h_i}$ while h_i , w_i and x_i 732 are exponentially distributed with a mean of 1. Furthermore $\frac{733}{100}$ $\sigma^2 = 10^{-2}$ and P_{it} , $\forall i$ are random values in the range τ_{34} $[10^{-3}, 5 \times 10^{-2}]$ $\Big]$. 735

Now applying the ACF algorithm, we get $K = 51$ for a π 36 particular realization of h_i , w_i and x_i . For this realization, τ_{37} from the $[1, K]$ resources, 38 resources are to be allocated 738 with the peak powers and 13 resources get powers from the $\frac{739}{2}$ waterfilling algorithm. These resources are shown in Fig. 6. 740 The achieved throughput of the resources is given in Fig. $7₇₄₁$ for the proposed algorithm. The results match with the values $_{742}$ obtained for known algorithms.

Table III gives the actual number of flops required by $_{744}$ the proposed solution and the other existing algorithms for $\frac{745}{600}$

$\mathbf{M} \to \mathbf{K}$	Number of flops in algorithms	Number of flops in FWF	Number of flops in GWFPP	Number of flops in in proposed
	of [18], [19] [§]	of $[21]$ [¶]	of $[22]$	solution
$64 \rightarrow 46$	14985216	7824	16832	541
	(39024)	(24)		(24,6)
$128 \rightarrow 87$	70563072	33592	66432	956
	(91879)	(52)		(31,1)
$256 \rightarrow 135$	291746304	96450	263936	1513
	(189939)	(75)		(13,4)
$512 \rightarrow 210$	$1.5115 \times 10^{+09}$	156526	1052160	2432
	$(4.9203 \times 10^{+05})$	(61)		(21,0)
$1024 \rightarrow 334$	$1.6165 \times 10^{+10}$	271678	4201472	4059
	$(2.6311 \times 10^{+06})$	(53)		(15,1)

TABLE III COMPUTATIONAL COMPLEXITIES OF EXISTING ALGORITHMS AND THE PROPOSED SOLUTION FOR $w_i = x_i = 1$, $\forall i$

⁷⁴⁶ Example 4 with different *M* values. Since some of the existing 747 algorithms do not support $w_i \neq 1$ and $x_i \neq 1$, $\forall i$; we assume $w_i = x_i = 1$, $\forall i$ for Table III.

 It can be observed from Table III that the number of flops imposed by the sub-gradient algorithm of [18] and [19] is more than $10⁴$ times that of the proposed solution. The number of flops required for the FWF of [21] and for the GWFPP of [22] are more than 10^2 times that of the proposed solution. This is because the proposed solution's computational complexity is *O(M)*, whereas the best known existing algorithms have an $O(M^2)$ order of computational complexity; as listed in Table I. It has also been observed from the above examples that $|I_B| = |I_{R_K} - I_{R_{K-1}}|$ values are very small as compared to *M*. As such *L* has been obtained from Algorithm 2 within two iterations of the while loop.

⁷⁶¹ VI. CONCLUSIONS

 In this paper, we have proposed algorithms for solving the CFP at a complexity order of $O(M)$. The approach was then generalized to the WCFP and to the WCFP-MMP. Since the best known solutions solve these three problems at a τ ⁶⁶ complexity order of $O(M^2)$, the proposed solution results in a significant reduction of the complexity imposed. The complexity reduction attained is also verified by simulations.

⁷⁶⁹ APPENDIX

⁷⁷⁰ *A. Proof of Theorem 1*

⁷⁷¹ *Proof:* Lagrange's equation for (1) is

$$
L(P_i, \lambda, \omega_i, \gamma_i) = \sum_{i=1}^{M} \log_2 \left(1 + \frac{P_i}{N_i} \right) - \lambda \left(\sum_{i=1}^{M} P_i - P_t \right)
$$

$$
- \sum_{i=1}^{M} \omega_i (P_i - P_{it}) - \sum_{i=1}^{M} \gamma_i (0 - P_i)
$$

$$
\tau^{74}
$$
 (47)

§ λ is initialized to 5×10^{-1} .

§,¶ Number of iterations is given in brackets.

 $\|I_{R_{K-1}}\|$ and $|I_B\|$ are given in brackets. Actual number of flops is $M + 9K + 5|I_B| + |I_{R_{K-1}}| + 9$.

Karush-Kuhn-Tucker (KKT) conditions for (47) are [3], [35] 775

$$
\frac{\partial L}{\partial P_i} = 0 \Rightarrow \frac{1}{N_i + P_i} - \lambda - \omega_i + \gamma_i = 0, \quad (48) \quad \text{776}
$$

$$
\lambda \left(P_t - \sum_{i=1}^{M} P_i \right) = 0, \tag{49}
$$

$$
\omega_i (P_{it} - P_i) = 0, \quad \forall i \tag{50} \tag{50}
$$

$$
\gamma_i P_i = 0, \quad \forall i \tag{51} \tag{51} \tag{52}
$$

$$
\lambda, \omega_i \& \gamma_i \geq 0, \quad \forall i \tag{52}
$$

$$
P_i \le P_{it}, \quad \forall i,
$$
\n⁽⁵³⁾

$$
\sum_{i=1}^{n} P_i \le P_t. \tag{54}
$$

In what follows we show that the KKT conditions result in 783 a simplified 'form' for the solution of CFP which is similar 784 to the conventional WFP. *The proof is divided into three* ⁷⁸⁵ *parts corresponding to the three possibilities for* P_i *<i>: that is* τ_{86} *1)* Equivalent constraint for $P_i < 0$ in terms of the 'water τ_{BZ} level⁷ $\frac{1}{\lambda}$ and the corresponding solution form, 2) Equivalent τ ⁸⁸ *constraint for* $P_i \leq P_{it}$ *in terms of the 'water level' and* τ_{res} *and the corresponding solution form, and 3) Equivalent form* ⁷⁹⁰ *for* $P_i \leq P_i \leq P_{it}$ *in terms of the 'water level' and the* τ_{91} *corresponding solution form.* The same of the state of $\frac{792}{200}$

1) Simplification for $P_i \geq 0$: Multiplying (48) with P_i and 793 substituting (51) in it, we obtain

$$
P_i\left(\frac{1}{N_i+P_i}-\lambda-\omega_i\right)=0\tag{55}
$$

In order to satisfy (55), either P_i or $\left(\frac{1}{N_i+P_i}-\lambda-\omega_i\right)$ should 796 be zero. Having $P_i = 0$, $\forall i$ does not solve the optimization τ_{37} problem. Hence, we obtain $\frac{798}{200}$

$$
\left(\frac{1}{N_i+P_i}-\lambda-\omega_i\right)=0, \text{ when } P_i>0. \qquad (56) \quad \text{799}
$$

Since $\omega_i \geq 0$, (56) can be re-written as $\left(\frac{1}{N_i + P_i} - \lambda\right) \geq 0$. soo Furthermore, taking $P_i > 0$ in this, we attain $\frac{P_i - P_i}{\epsilon}$

$$
\frac{1}{\lambda} > N_i, \quad when \ P_i > 0. \tag{57}
$$

⁸⁰³ The opposite of this is

$$
\frac{1}{\lambda} \le N_i, \quad when \ P_i \le 0. \tag{58}
$$

- 805 We can observe that (57) and (58) are equations related to the ⁸⁰⁶ conventional WFP.
- 807 2) Simplification for $P_i \leq P_{it}$: Multiplying (48) with 808 $P_{it} - P_i$ and substituting (50) in it, we attain

$$
P_{ii} - P_i \left(\frac{1}{N_i + P_i} - \lambda + \gamma_i \right) = 0 \tag{59}
$$

⁸¹⁰ In (59), two cases arise:

 P_{i} (a) If $P_{it} > P_i$, then $\left(\frac{1}{N_i + P_i} - \lambda + \gamma_i\right) = 0$ becomes true.

Since $\gamma_i \geq 0$, $\left(\frac{1}{N_i + P_i} - \lambda + \gamma_i\right) = 0$ is taken as $\left(\frac{1}{N_i+P_i}-\lambda\right) < 0$. Further Simplifying this and $\text{substituting } P_i < P_{it}, \text{ we get}$

$$
\frac{1}{\lambda} < H_i \triangleq (P_{it} + N_i), \quad \text{if } P_i < P_{it}. \tag{60}
$$

 $\begin{array}{lll} \text{Rilb} & \text{(b) If } P_{it} = P_i \text{, then } (\frac{1}{N_i + P_i} - \lambda + \gamma_i) \geq 0 \text{ becomes true} \end{array}$ ⁸¹⁷ in (59).

 $\text{As } \gamma_i \geq 0, \left(\frac{1}{N_i + P_i} - \lambda + \gamma_i \right) \geq 0 \text{ is re-written}$ as $\left(\frac{1}{N_i+P_i}-\lambda\right) \geq 0$. Substituting $P_{it} = P_i$ and ⁸²⁰ simplifying this further, we obtain

$$
\frac{1}{\lambda} \ge H_i \triangleq (P_{it} + N_i), \quad if \ P_i = P_{it}. \tag{61}
$$

- 822 3) Simplification for $0 < P_i < P_{it}$:
- (a) In (51); if γ_i is equal to zero, then $P_i > 0$. Combining 824 this relation with (57) , we can conclude that

$$
\frac{1}{\lambda} > N_i, \quad if \quad \gamma_i = 0. \tag{62}
$$

826 (b) Similarly, in (50), if $\omega_i = 0$, then $P_{it} > P_i$ follows. 827 Using this relation in (60), we acquire

$$
\frac{1}{\lambda} < H_i, \quad \text{if } \omega_i = 0. \tag{63}
$$

 829 (c) Combining (62) and (63), we have

$$
N_i < \frac{1}{\lambda} < H_i, \quad \text{if} \quad \omega_i = \gamma_i = 0. \tag{64}
$$

 831 Using (64) in (48) and then re-arranging it gives

832
$$
P_i = \frac{1}{\lambda} - N_i, \text{ if } N_i < \frac{1}{\lambda} < H_i.
$$
 (65)

⁸³³ Combining (57), (58), (60), (61) and (65), powers are ⁸³⁴ obtained as

$$
P_{i} = \begin{cases} \left(\frac{1}{\lambda} - N_{i}\right), & N_{i} < \frac{1}{\lambda} < H_{i} \text{ or} \\ & 0 < P_{i} < P_{ii}; \\ P_{it}, & \frac{1}{\lambda} \ge H_{i}; \\ 0, & \frac{1}{\lambda} \le N_{i}. \end{cases}
$$
(66)

B. Proof of Proposition 2 837

Proof: The proof is by contradiction. Assume that P_i^* , ⁸³⁸ *i* ≤ *M* is the optimal solution for (1) such that $\sum_{i=1}^{M} P_i^* < P_t$. ⁸³⁹ We now prove that as P_i^* powers fulfil $\sum_{i=1}^M P_i^* < P_t$, there 840 exists P_i° that has greater capacity. Define 841

$$
P_i^{\diamond} = P_i^{\star} + \triangle P_i^{\star}, \quad \forall i \tag{67}
$$

such that 843

$$
\sum_{i=1}^{M} P_i^{\diamond} = P_t \quad \text{and} \quad P_i^{\diamond} \le P_{it}, \quad \forall i \tag{68}
$$

where $\Delta P_i^* \geq 0$, $\forall i$. From (7) there exists at least one *i* such s45 that $P_i^* \leq P_{it}$. It follows that $\Delta P_i^* > 0$ for at least one *i*. 846 The capacity of *M* resources for P_i^{δ} allotted powers is $\frac{847}{2}$

$$
C(P_i^{\circ}) = \sum_{i=1}^{M} \log_2 \left(1 + \frac{P_i^{\circ}}{N_i}\right) \tag{69}
$$

Substituting (67) in (69) , we get 849

$$
C(P_i^{\circ}) = \sum_{i=1}^{M} \log_2 \left(1 + \frac{P_i^{\star}}{N_i} + \frac{\Delta P_i^{\star}}{N_i} \right) \tag{70} \text{ sso}
$$

Re-writing the above, we obtain 851

$$
C\left(P_i^{\circ}\right) = \sum_{i=1}^{M} \log_2 \left[\left(1 + \frac{P_i^{\star}}{N_i} \right) \left(1 + \frac{\frac{\Delta P_i^{\star}}{N_i}}{1 + \frac{P_i^{\star}}{N_i}} \right) \right] \quad (71) \quad \text{ss2}
$$

Following ' $log(ab) = log(a) + log(b)$ ' in the above, we acquire

$$
C(P_i^{\circ}) = \sum_{i=1}^{M} \log_2 \left(1 + \frac{P_i^{\star}}{N_i} \right) + \sum_{i=1}^{M} \log_2 \left(1 + \frac{\frac{\Delta P_i^{\star}}{N_i}}{1 + \frac{P_i^{\star}}{N_i}} \right) \qquad \text{as}
$$

As $\Delta P_i^* > 0$ for at least one *i*, the second term on the R.H.S. 856 of (72) is always positive. We have

$$
C(P_i^{\diamond}) > C(P_i^{\star}) \tag{73}
$$

In other words, $\sum_{i=1}^{M} P_i^{\diamond} = P_t$ produces optimal capacity; 859 completing the proof. \Box 860

C. The Computational Complexity of 861

 $Calculateing Z_{m,i}$ *for CFP* 862

Below, it is shown that the worst case computational 863 *complexity of calculating* $Z_{m,i}$; $m \leq i$ and $i \leq K$ for CFP 864 *is K subtractions.* 865

- In Algorithm 1, we first check if $N_{i+1} > H_m$. I_{R_i} is see *taken as 'm' values for which* $N_{i+1} > H_m$ *. Note also that* 867 $I_{R_{i-1}} \subset I_{R_i}$. This is because if $Z_{m,i} = N_{i+1} - H_m > 0$, 868 *then* $Z_{m,j}$; $j = i + 1, \dots, K$ *is always positive since* 869 $N_j > N_i$, $j > i$. Hence, in the worst case, $K \log(K)$ 870 *comparisons are required. The cost of a comparison, is* $\frac{871}{27}$ *typically lower than that of an addition [36]. Hence it* 872 *has not been included in the flop count.* 873
- As per Algorithm 1, we calculate $Z_{m,i}$'s only for $m \in \mathbb{R}^{3}$ $(I_{R_i} - I_{R_{i-1}})$ *. Furthermore, if we have* $Z_{m,i} = N_{i+1} - \cdots$ 875 $H_m > 0$, then $Z_{m,j}$; $j = i+1, \cdots, K$ is always positive 876

⁸³⁶

since $N_j > N_i$, $j > i$. In other words, if $I_{R_{i-1}}$ gets some ⁸⁷⁸ *'x' values, then the same 'x' values will also be there in IRⁱ* ⁸⁷⁹ *and the contribution of this part to the overall* a ^{*area, U_i* is $|I_{R_{i-1}}|(N(i+1) - N_i)$; which is calculated} *in Step 5. This implies that if Zm*,*ⁱ* ⁸⁸¹ *is calculated for* $m \in I_{R_i}$, then there is no need to calculate $Z_{m,i}$ for $m \in I_{R_{i+1}}, I_{R_{i+2}}, \ldots I_{R_K}$. Hence, for a given $m, Z_{m,i}$ 883 is calculated, in the worst case, once; for one 'i' only. *As such, the worst case complexity of calculating Zm*,*ⁱ* ⁸⁸⁵ *is* ⁸⁸⁶ *as low as that of K subtractions.*

⁸⁸⁷ *D. The Computational Complexity of*

⁸⁸⁸ *Calculating U^K for CFP*

889 Here we show that the worst case computational complexity 890 of calculating U_K for CFP is $4K$ adds and K multiplies. 891 Note that in each iteration of Algorithm 1 the following is ⁸⁹² calculated:

$$
U_i = U_{i-1} + |I_{R_{i-1}}| (N_{i+1} - N_i) + \sum_{m \in (I_{R_i} - I_{R_{i-1}})}^{i} Z_{m,i}^+.
$$
 (74)

⁸⁹⁴ There are three terms in (74) and we calculate the complexity ⁸⁹⁵ of each term separately, as follows:

- 896 The first term of (74), U_{i-1} , is already computed in the 697 (*i* −1)-th iteration, hence involves no computation during 898 the *i*-th iteration.
- The second term, $|I_{R_{i-1}}|(N_{i+1}-N_i)$, is taking care of the $\frac{1}{200}$ increase in reference height from N_i to N_{i+1} for those ⁹⁰¹ roof stairs, which are already below the reference level N_i . The computation of this term requires only a single ⁹⁰³ multiplication and addition.
- ⁹⁰⁴ The third term gives the areas of the roof stairs which are below N_{i+1} but not N_i . The number of additions in 906 this is $A_i = |I_{R_i} - I_{R_{i-1}}| - 1$.
- ⁹⁰⁷ Taking into account the two adds per iteration required ⁹⁰⁸ for adding all the three terms, the total computational complexity of calculating U_i , given U_{i-1} is 1 multiply 910 and $3 + A_i$ adds.

 911 Since KU_i 's are calculated; the total computational complexity of calculating all U_i 's will be $\sum_{i=1}^{K} 3 + A_i = 3K + |I_{R_K}| \le 4K$ ⁹¹³ adds and *K* multiplies.

⁹¹⁴ *E. The Computational Complexity of* 915 *Calculating* \bar{U}_K for WCFP

916 Here we show that the worst case computational complexity $_{917}$ of calculating U_K for WCFP is $4K$ adds $2K$ multiplies. ⁹¹⁸ Note that in each iteration of Algorithm 3 the following is ⁹¹⁹ calculated:

920
$$
\bar{U}_i = \bar{U}_{i-1} + W_{R_{i-1}} (\bar{N}_{i+1} - \bar{N}_i) + \sum_{m \in (\bar{I}_{R_i} - I_{R_{i-1}})}^{i} w_m \bar{Z}_{m,i}^+.
$$
 (75)

⁹²² There are three terms in (75) and we calculate the complexity ⁹²³ of each term separately, as follows:

- The first term of (75), \overline{U}_{i-1} , is already computed 924 in *i*−1-th iteration, hence involves no computation during 925
- the *i*-th iteration. • The computation of second term, $W_{R_{i-1}}(\bar{N}_{i+1} - \bar{N}_i)$, 927 requires only a single multiplication and addition. 928
- The third term gives the areas of the roof stairs which 929 are below \bar{N}_{i+1} but not \bar{N}_i . The number of additions in 930 this is $A_i = |\bar{I}_{R_i}| - |\bar{I}_{R_{i-1}}|$. The corresponding number of 931 multiplications is one.
- Taking into account the two adds per iteration required 933 for adding all the three terms, the total computational 934 complexity of calculating U_i , given U_{i-1} is 2 multiply 935 and $3 + A_i$ adds.

Since KU_i 's are calculated; the total computational complexity 937 of calculating all U_i 's will be $\sum_{i=1}^K 3 + A_i = 3K + |I_{R_K}| \le 4K$ 938 adds and $2K$ multiplies. 939

REFERENCES 940

- [1] D. Tse and P. Viswanath, *Fundamentals of Wireless Communication*. ⁹⁴¹ Cambridge, U.K.: Cambridge Univ. Press, May 2005. ⁹⁴²
- [2] D. P. Palomar and J. R. Fonollosa, "Practical algorithms for a family 943 of waterfilling solutions," *IEEE Trans. Signal Process.*, vol. 53, no. 2, ⁹⁴⁴ pp. 686–695, Feb. 2005. 945
- [3] F. Gao, T. Cui, and A. Nallanathan, "Optimal training design for channel 946 estimation in decode-and-forward relay networks with individual and 947 total power constraints," *IEEE Trans. Signal Process.*, vol. 56, no. 12, ⁹⁴⁸ pp. 5937–5949, Dec. 2008. 949
- A. A. D'Amico, L. Sanguinetti, and D. P. Palomar, "Convex separable 950 problems with linear constraints in signal processing and communica- ⁹⁵¹ tions," *IEEE Trans. Signal Process.*, vol. 62, no. 22, pp. 6045–6058, ⁹⁵² Nov. 2014. 953
- [5] E. Altman, K. Avrachenkov, and A. Garnaev, "Closed form solutions 954 for water-filling problems in optimization and game frameworks," ⁹⁵⁵ *Telecommun. Syst.*, vol. 47, nos. 1–2, pp. 153–164, 2011. ⁹⁵⁶
- [6] R. Zhang, "On peak versus average interference power constraints for ⁹⁵⁷ protecting primary users in cognitive radio networks," *IEEE Trans.* ⁹⁵⁸ *Wireless Commun.*, vol. 8, no. 4, pp. 2112–2120, Apr. 2009. 959
- [7] X. Kang, R. Zhang, Y.-C. Liang, and H. K. Garg, "Optimal power 960 allocation strategies for fading cognitive radio channels with primary 961 user outage constraint," *IEEE J. Sel. Areas Commun.*, vol. 29, no. 2, ⁹⁶² pp. 374–383, Feb. 2011. 963
- [8] G. Bansal, M. J. Hossain, and V. K. Bhargava, "Optimal and ⁹⁶⁴ suboptimal power allocation schemes for OFDM-based cognitive 965 radio systems," *IEEE Trans. Wireless Commun.*, vol. 7, no. 11, ⁹⁶⁶ pp. 4710–4718, Nov. 2008. 967
- [9] N. Kalpana, M. Z. A. Khan, and U. B. Desai, "Optimal power allo- ⁹⁶⁸ cation for secondary users in CR networks," in *Proc. IEEE Adv. Netw.* ⁹⁶⁹ *Telecommun. Syst. Conf. (ANTS)*, Bengaluru, India, Dec. 2011, pp. 1–6. ⁹⁷⁰
- [10] H. Zhang and D. L. Goeckel, "Peak power reduction in closed-loop 971 MIMO-OFDM systems via mode reservation," *IEEE Commun. Lett.*, ⁹⁷² vol. 11, no. 7, pp. 583–585, Jul. 2007.
- [11] C. Studer and E. G. Larsson, "PAR-aware large-scale multi-user ⁹⁷⁴ MIMO-OFDM downlink," *IEEE J. Sel. Areas Commun.*, vol. 31, no. 2, 975 pp. 303–313, Feb. 2013. 976
- [12] N. Andgart, B. S. Krongold, P. Ödling, A. Johansson, and ⁹⁷⁷ P. O. Börjesson, "PSD-constrained PAR reduction for DMT/OFDM," 978 *EURASIP J. Adv. Signal Process.*, vol. 2004, no. 10, pp. 1498–1507, ⁹⁷⁹ 2004. ⁹⁸⁰ AQ:4
- [13] A. Amirkhany, A. Abbasfar, V. Stojanović, and M. A. Horowitz, "Prac- 981 tical limits of multi-tone signaling over high-speed backplane electrical 982 links," in *Proc. ICC*, Jun. 2007, pp. 2693-2698.
- [14] V. M. K. Chan and W. Yu, "Multiuser spectrum optimization for discrete 984 multitone systems with asynchronous crosstalk," *IEEE Trans. Signal* ⁹⁸⁵ *Process.*, vol. 55, no. 11, pp. 5425–5435, Nov. 2007. 986
- [15] L. Fang and R. J. P. de Figueiredo, "Energy-efficient scheduling 987 optimization in wireless sensor networks with delay constraints," in ⁹⁸⁸ *Proc. ICC*, Jun. 2007, pp. 3734–3739. 989
- [16] A. Roumy and D. Gesbert, "Optimal matching in wireless sen- 990 sor networks," *IEEE J. Sel. Topics Signal Process.*, vol. 1, no. 4, ⁹⁹¹ pp. 725–735, Dec. 2007. ⁹⁹²

- ⁹⁹³ [17] G. Zhou, T. He, J. A. Stankovic, and T. Abdelzaher, "RID: Radio ⁹⁹⁴ interference detection in wireless sensor networks," in *Proc. IEEE Adv.* AQ:5 ⁹⁹⁵ *Netw. Telecommun. Syst. Conf. (ANTS)*, Bangalore, India, Dec. 2011.
	- ⁹⁹⁶ [18] M. Arulraj and T. S. Jeyaraman, "MIMO radar waveform design with ⁹⁹⁷ peak and sum power constraints," *EURASIP J. Adv. Signal Process.*,
	- ⁹⁹⁸ vol. 2013, no. 1, p. 127, 2013. ⁹⁹⁹ [19] L. Zhang, Y. Xin, Y.-C. Liang, and H. V. Poor, "Cognitive multiple ¹⁰⁰⁰ access channels: Optimal power allocation for weighted sum rate ¹⁰⁰¹ maximization," *IEEE Trans. Commun.*, vol. 57, no. 9, pp. 2754–2762, ¹⁰⁰² Sep. 2009.
	- ¹⁰⁰³ [20] E. Yaacoub and Z. Dawy, *Resource Allocation in Uplink OFDMA* ¹⁰⁰⁴ *Wireless Systems: Optimal Solutions and Practical Implementations*. ¹⁰⁰⁵ New York, NY, USA: Wiley, 2012.
	- ¹⁰⁰⁶ [21] X. Ling, B. Wu, P.-H. Ho, F. Luo, and L. Pan, "Fast water-filling for ¹⁰⁰⁷ agile power allocation in multi-channel wireless communications," *IEEE* ¹⁰⁰⁸ *Commun. Lett.*, vol. 16, no. 8, pp. 1212–1215, Aug. 2012.
	- ¹⁰⁰⁹ [22] P. He, L. Zhao, S. Zhou, and Z. Niu, "Water-filling: A geometric ¹⁰¹⁰ approach and its application to solve generalized radio resource allo-¹⁰¹¹ cation problems," *IEEE Trans. Wireless Commun.*, vol. 12, no. 7,
	- 1012 pp. 3637-3647, Jul. 2013.
1013 [23] R.-R. Chen and Y. Lin, ¹⁰¹³ [23] R.-R. Chen and Y. Lin, "Optimal power control for multiple access ¹⁰¹⁴ channel with peak and average power constraints," in *Proc. Int.* ¹⁰¹⁵ *Conf. Wireless Netw., Commun. Mobile Comput.*, vol. 2. Jun. 2005, 1016 pp. 1407-1411.

	1017 [24] N. Papandreou
	- ¹⁰¹⁷ [24] N. Papandreou and T. Antonakopoulos, "Bit and power allocation ¹⁰¹⁸ in constrained multicarrier systems: The single-user case," *EURASIP* ¹⁰¹⁹ *J. Adv. Signal Process.*, vol. 2008, Jan. 2008, Art no. 11.
	- ¹⁰²⁰ [25] X. Zhou, R. Zhang, and C. K. Ho, "Wireless information and power ¹⁰²¹ transfer in multiuser OFDM systems," in *Proc. IEEE Global Commun.* ¹⁰²² *Conf. (GLOBECOM)*, Dec. 2013, pp. 4092–4097.
	- ¹⁰²³ [26] N. Kalpana and M. Z. A. Khan, "Fast Computation of Generalized ¹⁰²⁴ Waterfilling Problems," *IEEE Signal Process. Lett.*, vol. 22, no. 11, ¹⁰²⁵ pp. 1884–1887, Nov. 2015.
- ¹⁰²⁶ [27] N. Kalpana and M. Z. A. Khan, "Weighted water-filling algorithm with AQ:6 1027 reduced computational complexity," in *Proc. ICCIT Conf.*, May 2015.
1028 1281 T. H. Cormen. C. E. Leiserson, R. L. Rivest, and C. Stein. *Introductio*.
	- ¹⁰²⁸ [28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, *Introduction* ¹⁰²⁹ *to Algorithms*, 2nd ed. Cambridge, MA, USA: MIT Press, 2001.
	- ¹⁰³⁰ [29] D. E. Knuth, *The Art of Computer Programming: Sorting Searching*, ¹⁰³¹ vol. 3, 2nd ed. Boston, MA, USA: Addison-Wesley, 1998.
	- ¹⁰³² [30] L. Zhang, Y.-C. Liang, and Y. Xin, "Joint beamforming and power ¹⁰³³ allocation for multiple access channels in cognitive radio networks," ¹⁰³⁴ *IEEE J. Sel. Areas Commun.*, vol. 26, no. 1, pp. 38–51, Jan. 2008.
	- ¹⁰³⁵ [31] S. Stotas and A. Nallanathan, "Optimal sensing time and power allo-¹⁰³⁶ cation in multiband cognitive radio networks," *IEEE Trans. Commun.*, ¹⁰³⁷ vol. 59, no. 1, pp. 226–235, Jan. 2011.
	- ¹⁰³⁸ [32] Z. Tang, G. Wei, and Y. Zhu, "Weighted sum rate maximization for ¹⁰³⁹ OFDM-based cognitive radio systems," *Telecommun. Syst.*, vol. 42, ¹⁰⁴⁰ nos. 1–2, pp. 77–84, Oct. 2009.
	- ¹⁰⁴¹ [33] M. J. Neely, "Energy optimal control for time-varying wireless net-¹⁰⁴² works," *IEEE Trans. Inf. Theory*, vol. 52, no. 7, pp. 2915–2934, ¹⁰⁴³ Jul. 2006.
	- ¹⁰⁴⁴ [34] R. Rajesh, V. Sharma, and P. Viswanath. (2012). "Information capacity ¹⁰⁴⁵ of energy harvesting sensor nodes." [Online]. Available: http://arxiv. ¹⁰⁴⁶ org/abs/1009.5158
	- ¹⁰⁴⁷ [35] S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge, U.K.: ¹⁰⁴⁸ Cambridge Univ. Press, 2004.
	- ¹⁰⁴⁹ [36] A. Bellaouar and M. Elmasry, *Low-Power Digital VLSI Design: Circuits* ¹⁰⁵⁰ *and Systems*. New York, NY, USA: Springer, 1995.

 Kalpana Naidu received the Ph.D. degree from IIT Hyderabad, in 2016. Since 2016, she has been an Associate Professor with the VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad. **The focus of her research is on resource allocation** in wireless communication, HetNets, cognitive radio **1057 networking, and signal processing applied to wire-**

Mohammed Zafar Ali Khan received the ¹⁰⁵⁹ B.E. degree in electronics and communications from ¹⁰⁶⁰ Osmania University, Hyderabad, India, in 1996, the ¹⁰⁶¹ M.Tech. degree in electrical engineering from IIT 1062 Delhi, Delhi, India, in 1998, and the Ph.D. degree 1063 in electrical and communication engineering from ¹⁰⁶⁴ the Indian Institute of Science, Bangalore, India, ¹⁰⁶⁵ in 2003. In 1999, he was a Design Engineer with ¹⁰⁶⁶ Sasken Communication Technologies, Ltd., Banga- ¹⁰⁶⁷ lore. From 2003 to 2005, he was a Senior Design 1068 Engineer with Silica Labs Semiconductors India Pvt. ¹⁰⁶⁹

Ltd., Bangalore. In 2005, he was a Senior Member of the Technical Staff 1070 with Hellosoft, India. From 2006 to 2009, he was an Assistant Professor ¹⁰⁷¹ with IIIT Hyderabad. Since 2009, he has been with the Department of ¹⁰⁷² Electrical Engineering, IIT Hyderabad, where he is currently a Professor. ¹⁰⁷³ He has more than ten years of experience in teaching and research and the ¹⁰⁷⁴ space-time block codes that he designed have been adopted by the WiMAX 1075 Standard. He has been a Chief Investigator for a number of sponsored and 1076 consultancy projects. He has authored the book entitled *Single and Double* ¹⁰⁷⁷ *Symbol Decodable Space-Time Block Codes* (Germany: Lambert Academic). ¹⁰⁷⁸ His research interests include coded modulation, space-time coding, and signal 1079 processing for wireless communications. He serves as a Reviewer for many ¹⁰⁸⁰ international and national journals and conferences. He received the INAE ¹⁰⁸¹ Young Engineer Award in 2006.

Lajos Hanzo $(F'$ –) received the degree in electronics in 1976, the Ph.D. degree in 1983, and the Honorary Doctorate degree from the Technical University of ¹⁰⁸⁵ Budapest, in 2009, while by the University of ¹⁰⁸⁶ Edinburgh, in 2015. During his 38-year career in ¹⁰⁸⁷ telecommunications, he has held various research ¹⁰⁸⁸ and academic positions in Hungary, Germany, and ¹⁰⁸⁹ the U.K. Since 1986, he has been with the School ¹⁰⁹⁰ of Electronics and Computer Science, University of ¹⁰⁹¹ Southampton, U.K., where he holds the Chair in ¹⁰⁹² Telecommunications. He has successfully supervised 1093 1083 AQ:8 ¹⁰⁸⁴ AQ:9

about 100 Ph.D. students, co-authored 20 John Wiley/IEEE Press books on ¹⁰⁹⁴ mobile radio communications totaling in excess of 10000 pages, published 1095 over 1500 research entries at the IEEE Xplore, acted both as a TPC and ¹⁰⁹⁶ General Chair of the IEEE conferences, presented keynote lectures, and has ¹⁰⁹⁷ received a number of distinctions. He directs a 60-strong academic research ¹⁰⁹⁸ team, working on a range of research projects in the field of wireless ¹⁰⁹⁹ multimedia communications sponsored by the industry, the Engineering and ¹¹⁰⁰ Physical Sciences Research Council, U.K., the European Research Council's 1101 Advanced Fellow Grant, and the Royal Society's Wolfson Research Merit 1102 Award. He is an Enthusiastic Supporter of industrial and academic liaison ¹¹⁰³ and he offers a range of industrial courses. He is a fellow of REng, IET, ¹¹⁰⁴ and EURASIP. He is also a Governor of the IEEE VTS. From 2008 to 2012, ¹¹⁰⁵ he was the Editor-in-Chief of the IEEE PRESS and a Chaired Professor with ¹¹⁰⁶ Tsinghua University, Beijing. His research is funded by the European Research ¹¹⁰⁷ Council's Senior Research Fellow Grant. He has 24 000 citations. 1108

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

- AQ:1 = Please be advised that per instructions from the Communications Society this proof was formatted in Times Roman font and therefore some of the fonts will appear different from the fonts in your originally submitted manuscript. For instance, the math calligraphy font may appear different due to usage of the usepackage[mathcal]euscript. We are no longer permitted to use Computer Modern fonts.
- AQ:2 = Please confirm whether the financial section retained as in the metadata is OK.
- AQ:3 = Note that if you require corrections/changes to tables or figures, you must supply the revised files, as these items are not edited for you.
- $AQ:4 = Please confirm the volume no. for refs. [12], [18], and [24].$
- AQ:5 = Please confirm the conference title, month, and year for ref. [17]. Also provide the page range.
- AQ:6 = Please confirm the author names, article title, conference title, month, and year for ref. [27]. Also provide the page range.
- AQ:7 = Current affiliation in biography of Kalpana Naidu does not match First Footnote. Please check.
- AQ:8 = Please confirm whether the edits made in the sentence "Lajos Hanzo received ... Edinburgh in 2015" are OK.
- AQ:9 = Please provide the membership year for the author "Lajos Hanzo."

An Efficient Direct Solution of Cave-Filling Problems

Kalpana Naidu, *Student Member, IEEE*, Mohammed Zafar Ali Khan, *Senior Member, IEEE*, and Lajos Hanzo, *Fellow, IEEE*

AQ:2

AQ:1 ¹ *Abstract***—Waterfilling problems subjected to peak power constraints are solved, which are known as cave-filling problems (CFP). The proposed algorithm finds both the optimum number of positive powers and the number of resources that are assigned the peak power before finding the specific powers to be assigned. The proposed solution is non-iterative and results in a** computational complexity, which is of the order of M , $O(M)$, **where** *M* **is the total number of resources, which is significantly lower than that of the existing algorithms given by an order of** M^2 , $O(M^2)$, under the same memory requirement and sorted **parameters. The algorithm is then generalized both to weighted CFP (WCFP) and WCFP requiring the minimum power. These extensions also result in a computational complexity of the order of** *M***,** *O*(*M*)**. Finally, simulation results corroborating the analysis are presented.**

¹⁶ *Index Terms***—Weighted waterfilling problem, Peak power** ¹⁷ **constraint, less number of flops, sum-power constraint, cave** ¹⁸ **waterfilling.**

19 I. INTRODUCTION

T ATERFILLING Problems (WFP) are encountered in 20 **VV** numerous communication systems, wherein specifi- cally selected powers are allotted to the resources of the transmitter by maximizing the throughput under a total sum power constraint. Explicitly, the classic WFP can be visualized as filling a water tank with water, where the bottom of the tank has stairs whose levels are proportional to the channel quality, as exemplified by the Signal-to-Interference Ratio (SIR) of the Orthogonal Frequency Division Multiplexing (OFDM) sub-carriers [1], [2].

 This paper deals with the WaterFilling Problem under Peak Power Constraints (WFPPPC) for the individual resources. In contrast to the classic WFP where the 'tank' has a 'flat lid', in WFPPPC the 'tank' has a 'staircase shaped lid',

³⁴ where the steps are proportional to the individual peak power

L. Hanzo is with the Department of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail: lh@ecs.soton.ac.uk).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2016.2560813

constraint. This scenario is also metaphorically associated with 35 a 'cave' where the stair-case shaped ceiling represents the peak $\frac{36}{2}$ power that can be assigned, thus fulfilling all the require- 37 ments of WFPPPC. Thus WFPPPC is often referred to as 38 a 'Cave-Filling Problem' (CFP) [3], [4].

In what follows, we will use the 'cave-filling' metaphor to 40 develop insights for solving the WFPPPC. Again, the user's 41 resources can be the sub-carriers in OFDM or the tones in ⁴² a Digital Subscriber Loop (DSL) system, or alternatively the 43 same sub-carriers of distinct time slots [5].

More broadly, the CFP occurs in various disciplines of 45 communication theory. A few instances of these are: ⁴⁶

- a) protecting the primary user (PU) in Cognitive 47 Radio (CR) networks [6]–[9]; 48
- b) when reducing the Peak-to-Average-Power 49 Ratio (PAPR) in Multi-Input-Multi-Output (MIMO)- 50 OFDM systems [10], [11]; 51
- c) when limiting the crosstalk in Discrete Multi- ⁵² Tone (DMT) based DSL systems $[12]$ – $[14]$; $\frac{53}{2}$
- d) in energy harvesting aided sensors; and $_{54}$
- e) when reducing the interference imposed on nearby 55 sensor nodes $[15]$ – $[17]$. 56

Hence the efficient solution of CFP has received some attention in the literature, which can be classified into iterative and $_{58}$ exact direct computation based algorithms.

Iterative algorithms conceived for CFP have been consid- 60 ered in $[18]$ – $[20]$, which may exhibit poor accuracy, unless 61 the initial values are carefully selected. Furthermore, they 62 may require an extremely high number of iterations for their ϵ ₆₃ accurate convergence. $\frac{64}{64}$

Exact direct computation based algorithms like the Fast 65 WaterFilling (FWF) algorithm of [21], the Geometric 66 WaterFilling with Peak Power (GWFPP) constraint based algo- 67 rithm of $[22]$ and the Cave-Filling Algorithm (CFA) obtained 68 by minimizing Minimum Mean-Square Error (MMSE) of 69 channel estimation in [3] solve CFPs within limited number $\frac{1}{70}$ of steps, but impose a complexity on the order of $O(M^2)$. $\frac{71}{24}$

All the existing algorithms solve the CFPs by evaluating 72 the required powers multiple times, whereas the proposed $\frac{73}{2}$ algorithm directly finds the required powers in a single step. ⁷⁴ Explicitly, the proposed algorithm reduces the number of π Floating point operations (flops) by first finding the number of τ ⁶ positive powers to be assigned, namely K , and the number of π powers set to the maximum possible value, which is denoted 78 by *L*. This is achieved in two (waterfilling) steps. First we use $\frac{79}{6}$ 'coarse' waterfilling to find the number of positive powers to so

0090-6778 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Manuscript received November 30, 2015; revised March 14, 2016; accepted April 24, 2016. This work was supported in part by the Engineering and Physical Sciences Research Council EP/Noo4558/1 and EP/L018659/1, in part by the European Research Council advanced fellow grant under Beam-me-up, and in part by the Royal Society under Wolfson research merit award. The associate editor coordinating the review of this paper and approving it for publication was M. Tao.

K. Naidu and M. Z. Ali Khan are with the Department of Electrical Engineering, IIT Hyderabad, Hyderabad 502205, India (e-mail: ee10p002@iith.ac.in; zafar@iith.ac.in).

81 be assigned and then we embark on step-by-step waterfilling ⁸² to find the number of positive powers that have to be set to ⁸³ the affordable peak powers.

84 In this paper we present an algorithm designed for the 85 efficient solution of CFPs. The proposed solution is then ⁸⁶ generalized for **conceiving** both a Weighted CFP (WCFP) ⁸⁷ and a WCFP having both a Minimum and a Maximum ⁸⁸ Power (WCFP-MMP) constraint. It is demonstrated that the ⁸⁹ maximum throughput is achieved at a complexity order of $\mathfrak{O}(M)$ by all the three algorithms proposed.

 The outline of the paper is as follows. Section II outlines our system model and develops the algorithms for solv- ing the CFP. In Section III we conceive the WCFP, while 94 Section IV presents our WCFP-MMP. Our simulation results are provided in Section V, while Section VI concludes the ⁹⁶ paper.

97 **II. THE CAVE-FILLING PROBLEM**

 In Subsection II-A, we introduce the CFP. The com- putation of the number of positive powers is presented in Subsection II-B, while that of the number of powers set to the maximum is presented in Subsection II-C. Finally, the computational complexity is evaluated in Subsection II-D.

¹⁰³ *A. The CFP*

 The CFP maximizes the attainable throughput, *C*, while satisfying the sum power constraint; Hence, the sum of powers allocated is within the prescribed power budget, P_t , while the power, P_i , $\forall i$ assigned for the i^{th} resource is less than to the peak power, P_{it} , $\forall i$. Our optimization problem is then formulated as:

$$
\max_{\{P_i\}_{i=1}^M} C = \sum_{i=1}^M \log_2 \left(1 + \frac{P_i}{N_i}\right)
$$

\n
$$
\text{subject to: } \sum_{i=1}^M P_i \le P_i;
$$

\n
$$
P_i \le P_{it}, \quad i \le M,
$$

$$
\text{and } P_i \ge 0, \quad i \le M,\tag{1}
$$

 where *M* is the total number of resources (such as OFDM sub-carriers) and $\{N_i\}_{i=1}^M$ is the sequence of interference plus noise samples. The above optimization problem occurs in the following scenarios:

- ¹¹⁸ (a) In the downlink of a wireless communication sys-¹¹⁹ tem, where the base station (BS) assigns a resource ¹²⁰ (e.g. frequency band) to a user and allocates a certain power, P_i , to the i^{th} resource while obeying the total 122 power budget (P_t) . The BS ensures that $P_i \leq P_{it}$ for ¹²³ avoiding the near-far problem [23].
- ¹²⁴ (b) In an OFDM system, a transmitter assigns specific pow-¹²⁵ ers to the resources (e.g. sub-carriers) for satisfying the total power budget, P_t . Furthermore, to reduce the PAPR ¹²⁷ problem, the maximum powers assigned are limited to $_{128}$ be within the peak powers [24], [25].

Theorem 1: The solution of the CFP (1) *is of the 'form'* ¹²⁹

$$
P_i = \begin{cases} \left(\frac{1}{\lambda} - N_i\right), & 0 < P_i < P_{ii};\\ P_{ii}, & \frac{1}{\lambda} \ge H_i \triangleq (P_{ii} + N_i);\\ 0, & \frac{1}{\lambda} \le N_i \end{cases} \tag{2}
$$

where $\frac{1}{\lambda}$ *is the water level of the CFP*".

Proof: The proof is in Appendix VI-A. \Box 132

Remark 1: Note that as in the case of conventional water- ¹³³ *filling, the solution of CFP is of the form* (2)*. The actual* ¹³⁴ *solution is obtained by solving the solution form along with* ¹³⁵ *the primal feasibility constraints. Furthermore, for the set of* ¹³⁶ *primal feasibility constraints of our CFP, the Peak Power* ¹³⁷ *Constraint of* $P_i \leq P_{it}$ *,* $\forall i$ *is incorporated in the solution form.* 138 *By contrast, the sum power constraint is considered along* ¹³⁹ *with* (2) *to obtain the solution in Propositions 1 and 2.* 140

Remark 2: Observe from (2) *that for* $0 < P_i < P_{it}$, 141 $P_i = \left(\frac{1}{\lambda} - N_i\right)$ *which allows* $\frac{1}{\lambda}$ *to be interpreted as the* 142 *'water level'. However, in contrast to conventional water-* ¹⁴³ *filling, the 'water level' is upper bounded by* $max_i P_{it}$ *. Beyond* 144 *this value, no 'extra' power can be allocated and the 'water* ¹⁴⁵ *level' cannot increase. The solution of this case is considered* ¹⁴⁶ *in Proposition 1.* 147

It follows that (2) *has a nice physical interpretation, namely* ¹⁴⁸ *that if the 'water level' is below the noise level Nⁱ , no power* ¹⁴⁹ *is allocated. When the 'water level' is between* N_i *and* P_{it} *, the* 150 *difference of the 'water level' and the noise level is allocated.* ¹⁵¹ *Finally, when the 'water level' is higher than the 'peak level',* ¹⁵² H_i *; the peak power* P_{it} *is allocated.* 153

The above solution 'form' can be rewritten as 154

$$
P_i = \left(\frac{1}{\lambda} - N_i\right)^+, \quad i = 1, \cdots, M; \quad and \tag{3}
$$

$$
P_i < P_i, \quad i = 1, \cdots, M \tag{4}
$$

$$
P_i \leq P_{it}, \quad i = 1, \cdots, M \tag{4}
$$

where we have $A^+ \triangleq \max(A, 0)$. The solution for (1) has a 157 simple form for the case the 'implied' power budget, P_{It} as $\frac{158}{2}$ defined as $P_{It} = \sum_{i=1}^{M} P_{it}$ is less than or equal to P_t and is 159 given in Proposition 1.

Proposition 1: If the 'implied' power budget is less than or 161 *equal to the power budget* $(\sum_{i=1}^{M} P_{it} \leq P_t)$, then peak power 162 *allocation to all the M resources gives optimal capacity.* ¹⁶³

Proof: Taking summation on both sides of $P_i \n\t\leq P_{it}$, $\forall i$, 164 we obtain the 'implied' power constraint

$$
\sum_{i=1}^{M} P_i \le \underbrace{\sum_{i=1}^{M} P_{it}}_{P_{IT}}.
$$
 (5) 166

However from (1) we have 167

$$
\sum_{i=1}^{M} P_i \le P_t. \tag{6}
$$

Consequently, if $P_{It} \leq P_t$, then peak power allocation to all 169 the *M* resources (i.e. $P_i = P_{it}$, $\forall i$) fulfils all the constraints 170 of (1). Consequently, the total power allocated to M resources 171 $\sum_{i=1}^{M} P_{it}$. Since the maximum power that can be allocated to 172 ¹⁷³ any resource is it's peak power, peak power allocation to all 174 the *M* resources produces optimal capacity.

 Note that in this case the total power allocated is less than ¹⁷⁶ (or equal to) P_t . However, if $P_t \le \sum_{i=1}^{M} P_{it}$, then all the *M* resources cannot be allocated peak powers since it violates the total sum power constraint in (1).

¹⁷⁹ In what follows, we pursue the solution of (1) for the case

 $P_t < \sum^{M}$

i=1 180 $P_t < \sum P_{it}$. (7)

¹⁸¹ We have,

¹⁸² *Proposition 2: The optimal powers and hence optimal* ¹⁸³ *capacities are achieved in* (1) *(under the assumption* (7)*)* ¹⁸⁴ *only if*

$$
\sum_{i=1}^{M} P_i = P_t.
$$
 (8)

Proof: The proof is in Appendix VI-B. 187 Since finding both the number of positive powers and the number of powers that are set to the maximum is crucial for solving the CFP, we formally introduce the following definitions.

191 *Definition 1 (The Number of Positive Powers, K): Let* $\mathcal{I} =$ $\{i$; such that $P_i > 0\}$ be the set of resource indices, where P_i 192 193 *is positive. Then the number of positive powers,* $K = |\mathcal{I}|$ *, is* 194 *given by the cardinality,* $|\mathcal{I}|$ *, of the set.*

 Definition 2 (The Number of Powers Set to the Peak Power, L): Let $\mathcal{I}_{\mathcal{P}} = \{i$; such that $P_i = P_{i}$ be the set of *resource indices, where Pⁱ has the maximum affordable value of Pit* ¹⁹⁸ *. Then the number of powers set to the peak power,* $L = |\mathcal{I}_{\mathcal{P}}|$ *, is the cardinality,* $|\mathcal{I}_{\mathcal{P}}|$ *of the set.*

 Without loss of generality, we assume that the interference plus noise samples N_i are sorted in ascending order, so that the first *K* powers are positive, while the remaining ones are set to zero. Then, (8) becomes

 $\sum_{k=1}^{K}$ *i*=1 $\sum_{i=1}^{n} P_i = P_t.$ (9)

205 Note that H_i and P_{it} are also arranged in the ascending order 206 of N_i , in order to preserve the original relationship between H_i and N_i .

²⁰⁸ *B. Computation of the Number of Positive Powers*

²⁰⁹ The CFP can be visualized as shown in Fig. 1a. In a cave, ²¹⁰ the water is filled i.e. the power is apportioned between the ²¹¹ floor of the cave and the ceiling of the cave. The levels of the ith 'stair' of the floor staircase and of the ceiling staircase are P_i ²¹³ *N_i* and $H_i \triangleq (P_{it} + N_i)$, respectively. The widths of all stairs ²¹⁴ are assumed to be 1. Since the power gap between the floor $s₁₅$ stair and the ceiling stair is P_{it} , the allocated power has to 216 satisfy $P_i \leq P_{it}$.

217 As the water is poured into the cave, observe from Fig. 1b ²¹⁸ that it obeys the classic waterfilling upto the point where the ²¹⁹ 'waterlevel' $(\frac{1}{\lambda})$ reaches the ceiling stair of the 1st resource. ²²⁰ From this point onwards, water can only be stored above ²²¹ the second stair, as depicted in Fig. 1c upto a point where

Fig. 1. Geometric Interpretation of CFP for $K = 4$. (a) Heights of *i*th stair in cave floor staircase and cave roof staircase are N_i and $H_i (= P_{it} + N_i)$. (b) Water is filled (Power is allotted) in between the cave roof stair and cave floor stair, at this waterlevel the peak power constraint for P_1 constraints further allocation to P_1 . (c) A similar issue occurs to P_2 also. Observe that the variable $Z_{m,4}$ represents the height of m^{th} cave roof stair below the $(4+1)^{th}$ cave floor stair. (d) Power allotted for i^{th} resource is $P_i = min\{\frac{1}{\lambda}, H_i\} - N_i$. Observe the waterlevel between 4^{th} and 5^{th} resource. (e) The area $\frac{1}{\lambda}K$, shown in this figure, is smaller than the area $N_{K+1}K$ shown in (f).

the water has filled the gap between the floor stair and the 222 ceiling stair of both the first and the second stairs. In terms 223 of power, we have $P_i = P_{it}$ for the resources $i = 1$ and 2. 224 Mathematically, we have $P_i = P_{it}$ if $H_i \leq \frac{1}{\lambda}$ **.** 225

As more water is poured, observe from Fig. 1d that for the 226 third and the fourth stairs, we have $H_i > \frac{1}{\lambda}$. It is clear from 227 the above observations (also from (2)) that the power assigned $_{228}$ to the i^{th} resource becomes: 229

$$
P_i = \min\left\{\frac{1}{\lambda}, H_i\right\} - N_i, \quad i \leq K. \tag{10} \tag{10}
$$

In Fig. 1d, the height of the fifth floor stair exceeds $\frac{1}{\lambda}$. ²³¹ As water can only be filled below the level $\frac{1}{\lambda}$, no water is 232

Algorithm 1 ACF Algorithm for Obtaining *K*

Require: Inputs required are *M*, P_t , N_i & H_i (in ascending order of *Ni*). **Ensure:** Output is K , $I_{R_{K-1}}$, I_{R_K} , d_K . 1: $i = 1$. Denote $d_0 = P_t$, $U_0 = 0$ and $I_{R_0} = \emptyset$ 2: Calculate $d_i = d_{i-1} + N_i$. 3: \triangleright Calculate the area $U_i = \sum_{m=1}^{i} Z_{m,i}^+$ as follows: 4: $I_{R_i} = I_{R_{i-1}} \cup \{m; \text{ such that } N_{i+1} > H_m \& m \neq I_{R_{i-1}}\};$ $Z_{m,i} = N_{(i+1)} - H_m, m \in (I_{R_i} - I_{R_{i-1}})$ 5: $U_i = U_{i-1} + |I_{R_{i-1}}|(N_{i+1} - N_i) + \sum_{m \in (I_{R_i} - I_{R_{i-1}})} Z^+_{m,i}$ 6: Calculate the area $Q_i = i N_{(i+1)}$ 7: **if** $Q_i \geq (d_i + U_i)$ then 8: $K \leftarrow i$. Exit the algorithm. 9: **else** 10: $i \leftarrow i+1$, Go to 2 11: **end if**

233 filled above the fifth bottom stair. This results in $K = 4$, as ²³⁴ shown in Fig. 1d. The area of the water-filled cave crosssection becomes equal to P_t .

 236 Fig. 1c also introduces the variable $Z_{i,k}$ as the depth of ²³⁷ the *i*th ceiling stair below the $(k + 1)^{st}$ bottom stair; that is, ²³⁸ we have:

$$
Z_{i,k} = N_{(k+1)} - H_i, \quad i \le k. \tag{11}
$$

240 The variable $Z_{i,k}$ allows us to have a reference, namely a 241 constant roof ceiling of N_{i+1} , while verifying whether $K = i$. $_{242}$ Figure 1c depicts this dynamic for $i = 4$. The constant roof reference is given at N_{i+1} . Observe that we have $Z_{i,k}^{+} > 0$ for $i = 1, 2$ and $Z_{i,k}^{+} = 0$ for $i = 3, 4$ with $k = 4$. This allows ²⁴⁵ us to quantify the total cave cross-section area in Fig 1e, upto $_{246}$ the i^{th} step in three parts:

²⁴⁷ • the area occupied by roof stairs below the constant roof reference, given by $\sum_{k=1}^{i} Z_{k,i}^{+}$;

- \bullet the area occupied by the 'water', given by P_t ;
- the area occupied by the floor stairs, $\sum_{k=1}^{i} N_k$.

²⁵¹ This is depicted in Fig. 1e. Observe from Fig. 1e that ²⁵² if the waterlevel of $\frac{1}{\lambda}$ is less than the $(i + 1)^{st}$ water level 253 $(i + 1 = 5$ in this case), then the cave cross-section area given by $\sum_{k=1}^{i} Z_{k,i}^{+} + P_t + \sum_{k=1}^{i} N_k$ (shown in Fig. 1e) would 255 be less than the total area of $i N_{i+1}$, as shown in Fig. 1f. Furthermore, if the waterlevel $\frac{1}{\lambda}$ is higher than the $(i + 1)^{st}$ 256 ²⁵⁷ water level $(i + 1 = 2, 3, 4$ in this case), then the area given ²⁵⁸ by $\sum_{k=1}^{i} Z_{k,i}^{+} + P_t + \sum_{k=1}^{i} N_k$ would be higher than the total 259 area of $i N_{i+1}$, as shown in Fig. 1f.

 Based on the insight gained from the above geometric interpretation of the CFP, we develop an algorithm for finding *K* for any arbitrary CFP, which we refer to as the **Area based Cave-Filling (ACF)** of Algorithm 1.

 Note that d_0 in Algorithm 1 represents an initialization 265 step that eliminates the need for the addition of P_t at every resource-index *i* and the set I_{R_i} contains the indices of the $_{267}$ ceiling steps, whose 'height' is below N_{i+1} . Furthermore, the additional outputs of Algorithm 1 are required for finding the number of roof stairs that are below the waterlevel in Algorithm 2. We now prove that Algorithm 1 indeed finds the optimal value of K.

Algorithm 2 'Step-Based' Waterfilling Algorithm for Obtaining *L*

Require: Inputs required are K , d_K , I_{R_K-1} , I_{R_K} , N_i & H_i (in ascending order of *Ni*)

Ensure: Output is *L*, *IS*.

- 1: Calculate $P_R = d_K K N_K + |I_{R_{K-1}}| N_K \sum_{m \in I_{R_{K-1}}} H_m$
	- 2: Calculate $I_B = I_{R_K} I_{R_{K-1}}$ & $D_1 = K |I_{R_{K-1}}|$.
- 3: If $|I_B| = 0$, set $L = 0$, $I_S = \emptyset$. Exit the algorithm.
- 4: Sort ${H_m}_{m \in I_B}$ in ascending order and denote it as ${H_{m}}$ and the sorting index as *I^S* .
- 5: Initialize $m = 1$, $F_m = (H_{mB} N_K)D_m$.
	- 6: **while** $F_m < P_R$ **do**
	- 7: $m = m + 1$.
	- 8: $D_m = D_{m-1} 1$
	- 9: $F_m = F_{m-1} + (H_{mB} H_{(m-1)B})D_m$

10: **end while**

11: $L = m - 1$.

Theorem 2: The Algorithm 1 delivers the optimal value of ²⁷² *the number of positive powers, K, as defined in Definition 1.* 273

Proof: We prove Theorem 2 by first proving that $\phi(i) = 274$ $d_i + U_i$, is a monotonically increasing function of the resourceindex *i*. It then follows that $Q_i \geq (d_i + U_i)$ gives the first *i*, 276 for which the waterlevel is below the next step. Consider 277

$$
\phi(i) - \phi(i-1) \tag{278}
$$

$$
= d_i - d_{i-1} + U_i - U_{i-1} \tag{12}
$$

$$
= N_i + |I_{R_{i-1}}| (N_{i+1} - N_i) + \sum_{m \in (I_{R_i} - I_{R_{i-1}})}^{i} Z_{m,i}^{+}
$$
 (13) 280

 $> 0,$ (14) 281

where (13) follows from (12) by using the definitions of d_i 282 and U_i in Algorithm 1. Since the interference plus noise levels $_{283}$ *N_i* are positive, we have $(N_{i+1} - N_i) \geq 0$, and since the N_i 's 284 are in ascending order, (14) follows from (13). ²⁸⁵

Let us now consider the reference area, $Q_i = i N_{i+1}$. Within 286 this reference area; certain parts are occupied by the floor 287 stairs, others by the projections of the ceiling stairs and finally 288 by the space in between the floor and the ceiling; filled by 289 'water'. This is given by $W_i = Q_i - \sum_{m=1}^{i} N_m - U_i$. Recall that 290 the total amount of water that can be stored is P_t . If we have 291 $P_t > W_i$, then there is more water than the space available, 292 hence the water will overflow to the next stair(s). Otherwise, 293 if we have $P_t \leq W_i$, all the water can be contained within the 294 space above this stair and the lower stairs. Substituting the 295 value of W_i in this inequality, we have 296

$$
P_t \le Q_i - \sum_m^i N_m - U_i \qquad (15) \quad \text{297}
$$

$$
\Rightarrow P_t + \sum_{m}^{i} N_m + U_i \le Q_i \tag{16}
$$

$$
d_i + U_i \le Q_i \tag{17} \tag{17}
$$

where (16) is obtained from (15) by rearranging. Then using $\frac{300}{200}$ the definition of d_i in Algorithm 1, we arrive at (17). $\frac{301}{200}$

Fig. 2. Peak power allocation for resources having their H_i 's in between N_K and $N_{(K+1)}$.

³⁰² Since Algorithm 1 outputs the (first) smallest value of the ³⁰³ resource-index *i* for which (17) is satisfied, it represents the ³⁰⁴ optimal value of *K*.

³⁰⁵ This completes the proof.

³⁰⁶ Once *K* is obtained, it might appear straightforward to sor obtain the values of P_i , $i \in [1, K]^{\ddagger}$ as in [26] and [27]; but in ³⁰⁸ reality it is not. This is because of the need to find the specific ³⁰⁹ part of the cave roof, which is below the 'current' waterlevel. 310 Note that $I_{R_{K-1}} \subset I_P \subset I_{R_K}$ where I_P is the set of roof s_{311} stairs below the current waterlevel and I_{R_K} is the set of roof stairs below N_{K+1} . This is because the waterlevel of $\frac{1}{\lambda}$ is 313 between N_K and N_{K+1} .

³¹⁴ *C. Waterfilling for Finding the Number of*

³¹⁵ *Powers Having the Peak Allocation*

³¹⁶ In order to develop an algorithm for finding *L*, we first 317 consider the geometric interpretation of an example shown 318 in Fig. 2. Note that the H_m 's below N_K , $(N_K - H_m) > 0$, 319 belong to $I_{R_{K-1}}$ and the H_m values above N_{K+1} belong to I_{U_K} . This is clearly depicted in Fig. 2 for $K = 6$, where 321 $I_{R_{K-1}} = \{1, 2\}$ and $I_{U_K} = \{5, 6\}.$

 322 The contentious H_m 's are those whose heights lie between N_K and N_{K+1} . The indices of these H_m 's are denoted by I_B (in Fig. 2, $I_B = \{3, 4\}$). Without loss of generality, we 325 assume that *B* roof stairs, H_m 's, lie between N_K and N_{K+1} . ³²⁶ We now have to find among these *B* stairs, those particular 327 ones whose heights lie below the water level, $\frac{1}{\lambda}$ (for which $_{328}$ peak powers are allotted). Note that $B = |I_{R_K}| - |I_{R_{K-1}}|$ and $I_B = [1, K] - I_{R_{K-1}} - I_{U_K} = I_{R_K} - I_{R_{K-1}}.$

³³⁰ This is achieved by a 'second' waterfilling style technique ³³¹ as detailed below.

Clearly, the resources that belong to the set $I_{R_{K-1}}$ are ass allotted with peak powers as $(H_m - \frac{1}{\lambda}) < 0, m \in I_{R_{K-1}}$. ³³⁴ The remaining ceiling stairs in *I^B* will submerge one by 335 one as the waterlevel increases from N_K . For this reason; the heights ${H_m}_{m \in I_B}$ are sorted in ascending order to obtain $H_{m, B}$ and I_S is the sort index for $H_{m, B}$.

338 After allotting *I*_{R_{K-1}} resources with peak powers, whose sum is equal to $\sum_{m \in I_{R_{K-1}}} P_{mt}$, we can allocate $(N_K - N_m)^+$, $m \in I_{R_{K-1}}^c$ power to the remaining resources $I_{R_{K-1}}^c$, where for a set *A*, $A^c = [1, K] - A$

‡ [A,B] represents the interval in between A and B, including A and B.

represents its complement. That is we allot power to remaining $_{342}$ resources with the 'present' waterlevel being N_K . The power $\frac{343}{2}$ that remains to be allocated for $I_{R_{K-1}}^c$ resources is given by 344

$$
P_R = P_t - \sum_{m \in I_{R_{K-1}}} P_{mt} - \sum_{m \in I_{R_{K-1}}^c} (N_K - N_m)^+ \tag{18}
$$

$$
= P_{t} + \sum_{m=1}^{K} N_{m} - KN_{K} + |I_{R_{K-1}}|N_{K} - \sum_{m \in I_{R_{K-1}}} H_{m}.
$$

Equation (19) is obtained using a geometric interpretation 348 as follows; the term $d_K = P_t + \sum_{m=1}^K N_m$ is the sum 349 of total water and K floor stairs. Subtracting from it the 350 reference area of KN_K gives the excess water that is in 351 excess amount; without considering the ceiling stairs. Further 352 subtracting the specific part of the ceiling stairs that are below 353 N_K namely $\sum_{m \in I_{R_{K-1}}} H_m - |I_{R_{K-1}}| N_K$ gives the residual 354 'water' amount, P_R . $\qquad \qquad$ 355

Note from Fig. 2 that once P_R amount of 'water' has been 356 poured, and provided that $P_R < (K - |I_{R_{K-1}}|)(H_{1B} - N_K)$ 357 is satisfied, then we have $L = |I_{R_{K-1}}|$ and hence no more 358 'water' is left to be poured. Otherwise, $F_1 = (K - |I_{R_{K-1}}|)$ 359 $(H_{1B} - N_K)$ amount of 'water' is used for completely sub- 360 merging the 1^{st} ceiling stair (H_{1B}) and the 'present' waterlevel increases to H_{1B} . Similarly, $F_2 = (K - |I_{R_{K-1}}| - 1)$ 362 $(H_{2B} - H_{1B})$ amount of water is used for submerging the 363 second ceiling stair and hence the waterlevel increases to H_{2B} . 364 This process continues until all the 'water' has been poured. ³⁶⁵ We refer to this process as 'step-based' waterfilling since the 366 waterlevel is changed in steps given by the size of the roof 367 stairs. 368

The formal algorithm, which follows the above geometric 369 interpretation but it aims for a low complexity, is given in ³⁷⁰ Algorithm 2. Let us now prove that Algorithm 2 delivers the 371 optimal value of *L*. 372

Theorem 3: Algorithm 2 finds the optimal value L of the 373 *number of powers that are assigned peak powers, where L is* 374 *defined in Definition 2.*

Proof: First observe that the F_m values are monotonically $\frac{376}{276}$ increasing functions of the index m . Since the H_{m} values 377 are sorted in ascending order, the water filling commences ³⁷⁸ from $m = 1$. The condition $F_m < P_R$ is true, as long as the 379 total amount of water required to submerge the mth roof stair, $\frac{380}{2}$ F_m , is less than the available water. It follows then that the 381 algorithm outputs the largest m , for which the inequality is 382 satisfied which hence represents the optimal value of L . \square 383

The resources for which peak powers are allotted are ³⁸⁴ indexed by $I_P = I_{R_{K-1}} \cup I_S(1 : L)$, where $I_S(1 : L)$ stands 385 for the first '*L*' resources of *IS*. The remaining resources, ³⁸⁶ indexed by $I_P^c = [1, K] - I_P$, are allotted specific powers 387 using waterfilling.

In Fig. 2, the I_P^c resources are 5 and 6 with associated 389 $L' = 2$ while $P_R - F_L$ represents the darkened area in Fig. 2. 390 The waterlevel for I_P^c resources is equal to the height, H_{LB} , of ³⁹¹ the last submerged roof stair plus the height of the darkened 392 area. Here, the height of the darkened area is obtained by ³⁹³ dividing the remaining water amount (= $P_R - F_L$) with the 394

TABLE I COMPUTATIONAL COMPLEXITIES (IN FLOPS) OF KNOWN SOLUTIONS FOR SOLVING CFP

Iterative Algorithms [18], [19]	FWF [21]	" GWFPP [22]	ACF
iterations \times (6 <i>M</i>)	iterations $\times (5M+6)$ $4M^2+7M$		$16M+9$

³⁹⁵ number of remaining resources $(= |I_P^c|)$ since the width of 396 all resources is 1. If we have $L = 0$, then the last level is N_K .

Therefore the waterlevel for I_P^c resources is given by

$$
\frac{1}{\lambda} = \begin{cases} H_{LB} + \frac{P_R - F_L}{|I_P^c|}, & L > 0; \\ N_K + \frac{P_R}{|I_P^c|}, & \text{otherwise.} \end{cases}
$$
(20)

³⁹⁹ The powers are then allotted as follows:

$$
P_i = \begin{cases} P_{it}, & i \in I_P; \\ \left(\frac{1}{\lambda} - N_i\right), & i \in I_P^c. \end{cases}
$$
 (21)

⁴⁰¹ *D. Computational Complexity of the CFP*

⁴⁰² Let us now calculate the computational complexity of both ⁴⁰³ Algorithm 1 as well as of Algorithm 2 separately and then ⁴⁰⁴ add the complexity of calculating the powers, as follows:

- ⁴⁰⁵ Calculating *Hⁱ* requires *M* adds.
- 406 Observe that Algorithm 1 requires $K + 1$ adds for cal-⁴⁰⁷ culating *di*'s; *K* multiplies to find *Qi*'s; *maximum of K* 408 *subtractions for calculating* $Z_{m,i}$ *'s* and, in the worst case, ⁴⁰⁹ 4*K* additions as well as *K* multiplications for calculating U_K : the proofs are given in Appendices C and D. ⁴¹¹ So, algorithm 1 requires *6K* + 1 additions and 2*K* ⁴¹² multiplications for calculating *K*.
- Note that in Algorithm 2: 2 multiplies and $3 + |I_{R_{K-1}}|$ 414 additions are needed for the calculation of P_R ; 2 adds 415 and 1 multiply for computing F_1 , D_1 ; $4|I_B|$ adds and I_B ⁴¹⁶ multiples for evaluating the while loop. Since we have $|I_{R_{K-1}}|, |I_B| < K$, the worst case complexity of Algo-⁴¹⁸ rithm 2 is given by $5K + 5$ adds and $K + 3$ multiplies.
- \bullet The computational complexity of calculating P_i using (3) ⁴²⁰ is at-most *K* adds.

⁴²¹ • The total computational complexity of solving our CFP ₄₂₂ of this paper, is $12K + 6 + M$ adds and $3K + 3$ multiplies. 423 Since *K* is not known apriori, the worst case complexity ⁴²⁴ is given by $13M + 6$ adds and $3M + 3$ multiplies. Hence we have a complexity order of $O(M)$ floating point ⁴²⁶ operations (flops).

 Table I gives the number of flops required for iterative algo- $_{428}$ rithm of [18] and [19], FWF of [21], GWFPP algorithm of [22] and of the proposed ACF algorithm. Observe the order of magnitude improvement for ACF.

 Remark 3: Following the existing algorithms conceived for solving the CFP (like [2] and [22]), we do not consider the ⁴³³ *complexity of sorting N_i, as the channel gain sequences come from the eigenvalues of a matrix; and most of the algorithms compute the eigenvalues and eigenvectors in sorted order.*

Remark 4: Observe that we have not included the complex- ⁴³⁶ *ity of sorting H_i at step 4 in Algorithm 2. This is because the* 437 *sorting is implementation dependent. For fixed-point imple-* ⁴³⁸ *mentations, sorting can be performed with a worst case* ⁴³⁹ *complexity of O*(*M*) *comparisons using algorithms like Count* ⁴⁴⁰ *Sort [28]. For floating point implementations, sorting can* ⁴⁴¹ *be performed with a worst case complexity of* $O(M \log(M))$ *comparisons [29]. Since, almost all implementations are of* ⁴⁴³ *fixed-point representation: the overall complexity, including* ⁴⁴⁴ *sorting of H_i would still be of* $O(M)$ *.* 445

III. WEIGHTED CFP ⁴⁴⁶

An interesting generalization for CFP is the scenario when 447 the rates and the sum power are weighted, hence resulting in 448 the Weighted CFP (WCFP), arising in the following context. ⁴⁴⁹

- (a) In a CR network, a CR senses that some resources ⁴⁵⁰ are available for it's use. Hence the CR allots powers ⁴⁵¹ to the available resources for a predefined amount of 452 time while assuring that the peak power remains limited 453 in order to keep the interference imposed on the PU ⁴⁵⁴ remains within the limit. The weights w_i and x_i may be 455 adjusted based on the resource's available time and on ⁴⁵⁶ the sensing probabilities $[30]$ – $[32]$.
- (b) In Sensor Network (SN) the resources have priorities ⁴⁵⁸ according to their capability to transfer data. These pri- ⁴⁵⁹ orities are reflected in the weights, w_i . The weights x_i 's 460 allow the sensor nodes to save energy, while avoiding 461 interference with the other sensor nodes [33], [34]. 462

The optimization problem constituted by weighted CFP is 463 given by 464

$$
\max_{\{P_i\}_{i=1}^M} C = \sum_{i=1}^M w_i \log_2 \left(1 + \frac{P_i}{N_i} \right)
$$

subject to:
$$
\sum_{i=1}^{M} x_i P_i \le P_t
$$
 (22)

$$
P_i \leq P_{it}, \quad i \leq M \tag{467}
$$

and
$$
P_i \geq 0
$$
, $i \leq M$,

where again w_i and x_i are the weights of the i^{th} 469 resource's capacity and allocated power, respectively. Similar 470 to Theorem 1, we have 471

Theorem 4: The solution of the WCFP (22) *is of the 'form'* ⁴⁷²

$$
\bar{P}_i = \begin{cases}\n\left(\frac{1}{\lambda} - \bar{N}_i\right), & 0 < \bar{P}_i < \bar{P}_{i}, \\
\bar{P}_{i}, & \frac{1}{\lambda} \ge \bar{H}_i \triangleq (\bar{P}_{i}, + \bar{N}_i); \\
0, & \frac{1}{\lambda} \le \bar{N}_i\n\end{cases} \tag{23}
$$

where $\frac{a_1}{\lambda}$ *is the water level of the WCFP",* $\bar{P}_i = \frac{P_i x_i}{w_i}$ ⁴⁷⁴ where $\frac{d}{\lambda}$ is the water level of the WCFP", $P_i = \frac{P_i x_i}{w_i}$ is the *weighted power,* $\bar{P}_{it} = \frac{P_{it}x_i}{w_i}$ $\frac{N_{it}x_i}{w_i}$ is weighted peak power, $\bar{N}_i = \frac{N_i x_i}{w_i}$ w*i* 475 \bar{a} *is the weighted interference plus noise level and* $\bar{H}_i = \bar{N}_i + \bar{P}_{it}$ *is the weighted height of it h* ⁴⁷⁷ *cave ceiling stair.*

⁴⁷⁸ *Proof:* The proof is similar to Theorem 1 and has been 479 omitted.

⁴⁸⁰ The above solution *form* can be rewritten as

$$
\bar{P}_i = \left(\frac{1}{\lambda} - \bar{N}_i\right)^+, \quad i = 1, \cdots, M; \quad and \qquad (24)
$$

$$
\bar{P}_i \le \bar{P}_{it}, \quad i = 1, \cdots, M \tag{25}
$$

483 where we have $A^+ \triangleq \max(A, 0)$. The solution for (22) has a ⁴⁸⁴ simple form for the case the 'implied' weighted power budget, ⁴⁸⁵ \overline{P}_{It} as defined as $\overline{P}_{It} = \sum_{i=1}^{M} w_i \overline{P}_{it}$ is less than or equal to P_t and is given in Proposition 3.

 Proposition 3: If the 'implied' power budget is less than ⁴⁸⁸ or equal to the power budget $(\sum_{i=1}^{M} w_i \overline{P}_{it} \leq P_t)$, then peak *power allocation to all the M resources gives optimal capacity.* Note that in this case the total power allocated is less than

(or equal to) P_t . However, if $P_t \le \sum_{i=1}^{M} w_i \overline{P}_{it}$, then all the ⁴⁹² *M* resources cannot be allocated peak powers since it violates ⁴⁹³ the total sum power constraint in (22).

⁴⁹⁴ In what follows, we pursue the solution of (22) for the case

$$
P_t < \sum_{i=1}^M w_i \,\bar{P}_{it}.\tag{26}
$$

⁴⁹⁶ We have,

⁴⁹⁷ *Proposition 4: The optimal powers and hence optimal* ⁴⁹⁸ *capacities are achieved in* (22) *(under the constraint* (26)*)* ⁴⁹⁹ *only if*

$$
\sum_{i=1}^{M} w_i \bar{P}_i = P_t.
$$
 (27)

⁵⁰¹ It follows that the solution of (22) is given by

$$
\bar{P}_i = \left(\frac{1}{\lambda} - \bar{N}_i\right)^+, \quad i = 1, \cdots, M; \tag{28}
$$

$$
\frac{503}{}
$$

503
$$
\sum_{i=1} w_i \bar{P}_i = P_i;
$$
 (29)

$$
\bar{P}_i \le \bar{P}_{it}, \quad i = 1, \cdots, M. \tag{30}
$$

⁵⁰⁵ Using the proposed area based approach, we can extend the ⁵⁰⁶ ACF algorithm to the weighted case as shown in Fig. 3.

 507 Observe that the width of the stairs is now given by w_i in source contrast to CFP, and $Z_{i,k}$ is now scaled by a factor of $\frac{x_i}{w_i}$.

Also observe that the sorting order now depends on the \bar{N}_i 509 $\frac{1}{510}$ values, since sorting the \overline{N}_i values in ascending order makes the first *K* of the \overline{P}_i values positive, while the remaining \overline{P}_i 511 ⁵¹² values are equal to zero as per (28).

 $\overline{\bf{F}}$ In what follows, we assume that the parameters like \overline{H}_i , \overline{P}_{it} , w_i and \bar{N}_i are sorted in the ascending order of \bar{N}_i values in ⁵¹⁵ order to conserve the original relationship among parameters.

⁵¹⁶ Comparing (28)-(30) to (3), (4) and (9); we can see that in ⁵¹⁷ addition to the scaling of the variables, (29) has a weighing 518 factor of w_i . Most importantly, since the widths of the stairs

Fig. 3. Showing the effect of 'weights' in Weighted CFP.

Algorithm 3 ACF Algorithm for Obtaining *K* for WCFP

Require: Inputs required are *M*, P_t , \bar{N}_i , \bar{H}_i & w_i (in ascending order of \bar{N}_i).

Ensure: Output is K , $\bar{I}_{R_{K-1}}, \bar{I}_{R_K}, \bar{d}_{K}$. 1: $i = 1$. Denote $\bar{d}_0 = P_t^T$, $W_0 = 0$, $\bar{U}_0 = 0$ and $\bar{I}_{R_0} = \emptyset$ 2: Calculate $\bar{d}_i = \bar{d}_{i-1} + w_i \bar{N}_i$. 3: Calculate $W_i = W_{i-1} + w_i$ 4: $\sum_{i=1}^{\infty}$ Calculate the area $\bar{U}_i = \sum_{m=1}^{i} w_m \bar{Z}_{m,i}^+$ as follows: 5: $\bar{I}_{R_i} = \{m; \text{ such that } \bar{N}_{i+1} > \bar{H}_m\}, W_{R_{i-1}} = \sum_{m=1}^\infty m \epsilon_{R_{i-1}} w_m$ $\bar{Z}_{m,i} = \bar{N}_{(i+1)} - \bar{H}_m, m \in (I_{R_i} - I_{R_{i-1}})$ 6: $\bar{U}_i = \bar{U}_{i-1} + W_{R_{i-1}}(\bar{N}_{i+1} - \bar{N}_i) + \sum_{m \in (\bar{I}_{R_i} - \bar{I}_{R_{i-1}})} w_m \bar{Z}_{m,i}^+$ 7: Calculate the area $\overline{Q}_i = W_i \overline{N}_{(i+1)}$ 8: **if** $\bar{Q}_i \geq (\bar{d}_i + \bar{U}_i)$ **then** 9: $K \leftarrow i$. Exit the algorithm. 10: **else** 11: $i \leftarrow i+1$, Go to 2 12: **end if**

is not unity, they affect the area under consideration. As a 519 consequence, Algorithms 1 and 2 cannot be directly applied to $\frac{520}{20}$ this case. However, the interpretations are similar. Algorithm 3 ϵ_{21} details the ACF for WCFP while Algorithm 4, defines the 522 corresponding 'step-based' waterfilling algorithm conceived 523 for finding the optimal values of K and L , respectively. 524

Let us now formulate Theorem 5. 525

Theorem 5: The output of Algorithm 3 gives the optimal 526 *value K of the number of positive powers, as defined in* 527 *Definition 1, for WCFP.* 528

The proof is similar to that of the CFP case, with slight 529 modifications concerning both the scaling and the width of 530 the stairs w_i , hence it has been omitted. 531

Observe that the calculation of \bar{P}_R , \bar{D}_m and \bar{F}_m is affected s₃₂ by the weights w_i , since the areas depend on w_i **.** 533

Let us now state without proof that Algorithm 4 outputs the 534 optimal value of *L*.

Theorem 6: Algorithm 4 delivers the optimal value L of the 536 *number of powers that are assigned peak powers, as defined* 537 *in Definition 2, for WCFP.* 538

Peak power allocated resources are $I_P = I_{R_{K-1}} \cup$ 539 $I_S(1 : L)$. Resources for which WFP allocates powers are 540 $\bar{I}_P^c = [1, K] - \bar{I}_P.$ 541 **Algorithm 4** 'Step-Based' Waterfilling Algorithm for Obtaining *L* for WCFP

- **Require:** Inputs required are *K*, \bar{d}_K , \bar{I}_{R_K-1} , \bar{I}_{R_K} , W_K , $W_{R_{K-1}}$, \overline{N}_i , \overline{H}_i & w_i (in ascending order of \overline{N}_i).
- **Ensure:** Output is *L*, *I^S* .
- 1: Calculate $\bar{P}_R = \bar{d}_K W_K \bar{N}_K + W_{R_{K-1}} \bar{N}_K \sum_{m \in \bar{I}_R} w_m \bar{H}_m$ $m \in \overline{I}_{R_{K-1}} \cup \ldots \cup \overline{H}_{m}$
- 2: Calculate $\bar{I}_B = \bar{I}_{R_K} \bar{I}_{R_{K-1}}$. $\bar{D}_1 = W_{K} W_{R_{K-1}}$.
- 3: If $|\bar{I}_B| = 0$, set $\bar{L} = 0$. Otherwise, if $|\bar{I}_B| > 0$, then only proceed with the following steps.
- 4: Sort ${\{\bar{H}_m\}}_{m \in \bar{I}_B}$ in ascending order and denote it as ${\{\bar{H}_{mB}\}}$ and the sorting index as *IS*.
- 5: Initialize $m = 1$, $\bar{F}_m = (\bar{H}_{mB} \bar{N}_K)\bar{D}_m$.
- 6: **while** $\bar{F}_m \leq \bar{P}_R$ **do**
- 7: $m = m + 1$. If $m > |\bar{I}_B|$, exit the while loop.
- 8: $\bar{D}_m = \bar{D}_{m-1} w_{I_S(m-1)}$
- 9: $\bar{F}_m = \bar{F}_{m-1} + (\bar{H}_{mB} \bar{H}_{(m-1)B})\bar{D}_m$
- 10: **end while**
- 11: $L = m 1$. 12: calculate $\bar{D}_{L+1} = \bar{D}_L - w_{I_S(L)}$, only if $L = |\bar{I}_B|$.
- ⁵⁴² The waterlevel for WCFP is given by

$$
\frac{1}{\lambda} = \begin{cases} \bar{H}_{LB} + \frac{\bar{P}_R - \bar{F}_L}{\bar{D}_{L+1}}, & L > 0; \\ \bar{N}_K + \frac{\bar{P}_R}{\bar{D}_1}, & L = 0. \end{cases}
$$
(31)

⁵⁴⁴ and the powers allocated are given by

$$
P_i = \begin{cases} P_{it}, & i \in \bar{I}_P; \\ \frac{w_i}{x_i} \left(\frac{1}{\lambda} - \bar{N}_i\right), & i \in \bar{I}_P^c. \end{cases}
$$
(32)

⁵⁴⁶ *A. Computational Complexity of the WCFP*

⁵⁴⁷ Let us now calculate the computational complexity of both ⁵⁴⁸ Algorithm 3 and of Algorithm 4 and then add the complexity ⁵⁴⁹ of calculating the powers, as follows:

- \bullet Calculating \bar{N}_i , \bar{P}_{it} and \bar{H}_i requires 3*M* multiplies and ⁵⁵¹ *M* adds.
- 552 Observe that Algorithm 3 requires $(K + 1)$ adds and *K* multiplies for calculating \overline{d}_i , *K* multiplies to find \overline{Q}_i 553 ⁵⁵⁴ and, in the worst case, 4*K* additions and 2*K* multiplications for calculating $\bar{Z}_{m,i}$'s & \bar{U}_K , the corresponding ⁵⁵⁶ proof is given in Appendix VI-E; *K* additions for calculating *W_K* and at-most *K* additions for calculating $W_{R_{i-1}}$. 558 Consequently Algorithm 3 requires $(7K + 1)$ additions ⁵⁵⁹ and 4*K* multiplications for calculating *K*.
- Note that in Algorithm 4: 2 multiplies and $3 + |\bar{I}_{R_{K-1}}|$ $_{561}$ additions are required for calculation of \bar{P}_R ; at-most $(K+1)$ adds and 1 multiply in computing \bar{F}_1 , \bar{D}_1 ; $4|\bar{I}_B|$ ϵ ₅₆₃ adds and \bar{I}_B multiples for evaluating the while loop. Since $|\bar{I}_{R_{K-1}}|,|\bar{I}_B| < K$, the worst case complexity of 565 Algorithm 4 can be given as $(6K + 4)$ adds, $(K + 3)$ ⁵⁶⁶ multiplies.
- The computational complexity of calculating P_i is 567 at-most K adds and K multiplies.
- Consequently, the total computational complexity of solving the WCFP, considered is $(14K + 5 + M)$ adds and 570 $(3M + 6K + 3)$ multiplies. Since *K* is not known apriori, $\frac{571}{2}$ the worst case complexity is given by $(15M + 5)$ adds 572 and $(9M + 3)$ multiplies. i.e we have a complexity order $\frac{573}{2}$ of $O(M)$. 574

Explicitly, the proposed solution's computational complexity 575 is of the order of M , whereas that of the GWFPP of $[22]$ is 576 of the order of M^2 . $\overline{}$.

IV. WCFP REQUIRING MINIMUM POWER 578

In this section we further extend the WCFP to the case 579 where the resources/powers scenario of having both a Minimum and a Maximum Power (MMP) constraint. The resultant 581 WCFP-MMP arises in the following context: 582

(a) In a CR network, CR senses that some resources are 583 available for it's use and allocates powers to the available ₅₈₄ resources for a predefined amount of time while ensuring 585 that the peak power constraint is satisfied, in order to 586 keep the interference imposed on the PU with in the 587 affordable limit. Again, the weights w_i and x_i represent \sim 588 the resource's available time and sensing probabilities. $\frac{589}{200}$ The minimum power has to be sufficient to support 590 the required quality of service, such as the minimum 591 transmission rate of each resource [30]–[32]. ⁵⁹²

We show that solving WCFP-MMP can be reduced to solving 593 WCFP with the aid of an appropriate transformation. Hence, $_{594}$ Section III can be used for this case. Mathematically, the 595 problem can be formulated as 596

$$
\max_{\{P_i\}_{i=1}^M} C = \sum_{i=1}^M w_i \log_2 \left(1 + \frac{P_i}{N_i} \right)
$$
\n⁵⁹⁷

subject to:
$$
\sum_{i=1}^{m} x_i P_i \le P_t
$$
 (33)

$$
P_{ib} \le P_i \le P_{it}, \quad i \le M \tag{599}
$$

and
$$
P_i \geq 0
$$
, $i \leq M$,

where $P_{ib} \leq P_{it}$ and P_{ib} is the lower bound while P_{it} is 601 the upper bound of the i^{th} power. w_i and x_i are weights of ∞ the i^{th} resource's capacity and i^{th} resource's allotted power, $\frac{1}{100}$ respectively. Using the KKT, the solution of this case can be $_{604}$ written as $\frac{605}{200}$

$$
\bar{P}_i = \left(\frac{1}{\lambda} - \bar{N}_i\right)^+, \quad i = 1, \cdots, M; \quad (34) \quad \text{606}
$$

$$
\sum_{i=1}^{K} w_i \bar{P}_i = P_t; \tag{35} \tag{35}
$$

$$
\bar{P}_{ib} \le \bar{P}_i \le \bar{P}_{it}, \quad i = 1, \cdots, M, \tag{36}
$$

where $\bar{P}_i = \frac{P_i x_i}{w_i}$ $\frac{p_i x_i}{w_i}$ is the weighted power, $\bar{P}_{it} = \frac{P_{it} x_i}{w_i}$ $\frac{\partial^2 i}{\partial u_i}$ is weighted 609 peak power, $\overrightarrow{P}_{ib} = \frac{P_{ib}x_i}{w_i}$ $\frac{i_b x_i}{w_i}$ is the weighted minimum power and ϵ_{00} $\bar{N}_i = \frac{N_i x_i}{w_i}$ $\frac{w_i x_i}{w_i}$ is the weighted noise. 611

Let us now formulate Theorem 7. 612

Theorem 7: For every WCFP-MMP given by (33), there 613 *exists a WCFP, whose solution will result in a solution to* ⁶¹⁴ *the WCFP-MMP.* 615 ⁶¹⁶ *Proof:* Consider the solution to WCFP-MMP given $_{617}$ by (34)-(36). Defining $\hat{P}_i = \bar{P}_i - \bar{P}_{ib}$ and substituting it 518 into (34)-(36), we arrive at:

$$
\hat{P}_i = \left(\frac{1}{\lambda} - \bar{N}_i\right)^+ - \bar{P}_{ib}, \quad i = 1, \cdots, M; \quad (37)
$$

$$
\sum_{i=1}^{620} w_i (\hat{P}_i + \bar{P}_{ib}) = P_t; \tag{38}
$$

$$
621 \t 0 \leq \hat{P}_i \leq (\bar{P}_{it} - \bar{P}_{ib}), \quad i = 1, \cdots, M. \t (39)
$$

 $_{622}$ Using (37) and the definition of $()^+$, we can ⁶²³ rewrite (37)–(39) as

$$
\hat{P}_i = \left(\frac{1}{\lambda} - \underbrace{\{\bar{N}_i + \bar{P}_{ib}\}}_{\hat{N}_i}\right)^+, \quad i = 1, \cdots, M; \quad (40)
$$

$$
E_{\text{eq}} \qquad \sum_{i=1}^{K} w_i \,\hat{P}_i = \underbrace{\left(P_t - \sum_{i=1}^{K} w_i \,\bar{P}_{ib}\right)}_{\hat{P}_t};\tag{41}
$$

$$
0 \leq \hat{P}_i \leq \underbrace{(\bar{P}_{it} - \bar{P}_{ib})}_{\hat{P}_{it}}, \quad i = 1, \cdots, M. \tag{42}
$$

627 Comparing (40) - (42) to (28) - (30) , we can observe that this \hat{P}_i , \hat{N}_i , \hat{P}_{it} and \hat{P}_t . ⁶²⁹ It follows then that we can solve the WCFP-MMP by solving 630 the WCFP, whose solution is given by $(40)-(42)$.

it

⁶³¹ Note that the effect of the lower bound is that of increasing ⁶³² the height of the floor stairs for the corresponding WCFP at ⁶³³ a concomitant reduction of the total power constraint.

⁶³⁴ *A. Computaional Complexity of the WCFP-MMP*

⁶³⁵ Solving WCFP-MMP requires 4*M* additional adds, to compute \hat{P}_i , \hat{N}_i , \hat{P}_{it} as well as \hat{P}_t , and *K* adds to recover P_i 636 \hat{P}_i ; as compared to WCFP. Hence the the worst case 638 complexity of solving the WCFP-MMP is given by $(19M + 6)$ 639 adds and $(8M + 3)$ multiplies. i.e we have a complexity 640 of $O(M)$.

⁶⁴¹ V. SIMULATION RESULTS

 Our simulations have been carried out in MATLAB R2010b software. To demonstrate the operation of the proposed algo- rithm, some numerical examples are provided in this section. *Example 1:* Illustration of the CFP is provided by the following simple example:

 $\log_2\left(1+\frac{P_i}{N}\right)$

i=1

Ni λ

 $P_i < 0.7 - 0.3i, \quad i < 2$

max $\{P_i\}_{i=1}^2$ $C = \sum_{i=1}^{n}$ *i*=1 647

with constraints:
$$
\sum_{i=1}^{2} P_i \leq 0.45;
$$

$$
649
$$

$$
and P_i \ge 0, \quad i \le 2. \tag{43}
$$

651 Assuming $N_i = \{0.1, 0.3\}$, we have $H_i = \{0.5, 0.4\}$. For the ⁶⁵² example of (43), water is filled above the first floor stair, as shown in Fig. 4a. This quantity of water is less than *P^t* ⁶⁵³ . ⁶⁵⁴ Hence, we fill the water above the second floor stair until the

Fig. 4. Illustration for Example 1: (a) Water filled above floor stairs 1 and 2, without peak constraint. (b) Water filled above floor stairs 2 only.

water level reaches 0.45 . At this point the peak constraint for 655 the second resource comes into force and the water can only 656 be filled above second floor stair, as shown in Fig. 4b. Now, 657 this amount of water becomes equal to P_t giving $K = 2$. 658 We can observe that the first resource has a power determined 659 by the 'waterlevel', while the second resource is assigned the 660 peak power. 661

In Algorithm 1, we have $U_1 = 0$ as $Z_{1,1}^+ = 0$ and $I_{R_1} = 0$. 662 $d_1 = P_t + N_1 = 0.55$, while $Q_1 = 1 \times N_2 = 0.3$. We can 663 check that $Q_1 \ngeq (d_1 + U_1)$ which indicates that $K > 1$. Hence, 664 we get $K = 2$.

Let us now use Algorithm 2 to find the specific resources $\frac{666}{666}$ that are to be allocated the peak powers. We have $I_{R_{K-1}} = 0$ 667 as $N_K < H_1$. The remaining power P_R in Algorithm 2 is 0.25. 668 The resource indices to check for the peak power allocation are 669 $I_B = \{1, 2\}$. From $H_m|_{m \in I_B}$, we get $[H_{1B}, H_{2B}] = \{0.4, 0.5\}$ 670 and $I_S = \{2, 1\}$. We can check that $F_1 = 0.2 < P_R$ and 671 $F_2 = 0.3 > P_R$. This gives $L = 1$. Hence we allocate the 672 peak power to the $I_S(L)$ or second resource, i.e. we have $P_2 = \sigma_{0.5}$ $P_{2t} = 0.1$. The first resource can be assigned the remaining 674 power of $P_1 = P_t - P_{2t} = 0.35$. ⁶⁷⁵

Example 2: A slightly more involved example of the CFP, $\frac{676}{677}$ with more resources is illustrated here:

$$
\max_{\{P_i\}_{i=1}^8} C = \sum_{i=1}^8 \log_2 \left(1 + \frac{P_i}{N_i}\right)
$$

with constraints:
$$
\sum_{i=1}^{8} P_i \leq 6;
$$

$$
P_i \leq P_{it}, \quad i \leq 8 \tag{8}
$$

and
$$
P_i \ge 0
$$
, $i \le 8$. (44)

In (44); we have $N_i = 2i - 1$, $\forall i$ and $P_{it} =$ 682 $\{8, 1, 3, 3, 6, 3, 4, 1\}$. The heights of the cave roof stairs are 683 $H_i = \{9, 4, 8, 10, 15, 14, 17, 16\}.$

In Fig. 5, when the water is filled below the third cave roof $\overline{685}$ stair, the amount of water is $P_t = 6$, which fills above the 686 three cave floor stairs, hence giving $K = 3$. The same can be 687 obtained from Algorithm 1. Using Algorithm 1, the $(d_i + U_i)$ 688 and the Q_i values are obtained which are shown in Table II. 689 Since the $(d_i + U_i)$ values are $\{7, 11, 18\}$, while the Q_i are 690 $\{3, 10, 21\}$, we have $Q_3 > (d_3 + U_3)$ and $Q_i < (d_i + U_i)$, 691 $i = 1, 2$. This gives $K = 3$.

As we have $N_K = 5 > H_2 = 4, I_{R_{K-1}} = 2$; 693 the second resource is to be assigned the peak power. ⁶⁹⁴

Fig. 5. Illustration of Example 2: Water filled below the roof stair 3 gives $K = 3$

 S_{695} Similarly, as $N_{K+1} (= 7) > H_i, i \in [1, K]$ is satisfied for $i = 2$ 696 resource, we have $I_{R_K} = 2$. Since $I_B = I_{R_K} - I_{R_{K-1}} = \emptyset$, there 697 are no resources that have H_i , $i \in [1, K]$ values in between 698 *N_K* and N_{K+1} . Thus, there is no need to invoke the 'step-based 699 water filling' of Algorithm 2, which gives $L = 0$.

700 Now, peak power based resources are $I_P = I_{R_{K-1}} = \{2\}.$ ⁷⁰¹ The water filling algorithm allocates powers for the $I_P^c = [1, K] - I_P = \{1, 3\}$ resources.

 The peak power based resources and water filling based resources are shown in Table II. For the remaining power, $P_R = 1$, the water level obtained for the I_P^c resources (with $L = 0$) is 5.5. The powers allocated to the resources $707 \{1, 3\}$ using this water level are $\{4.5, 0.5\}$. The powers and corresponding throughputs are shown in Table II.

⁷⁰⁹ *Example 3:* The weighted CFP is illustrated by the following ⁷¹⁰ simple example:

$$
\max_{\{P_i\}_{i=1}^5} C = \sum_{i=1}^5 w_i \log_2 \left(1 + \frac{P_i}{N_i} \right)
$$

with constraints : $\sum_{n=1}^{\infty}$ *i*=1 x_i ^{*n*} \leq 5; with constraints : $\sum x_i P_i \leq 5$;

$$
P_i \leq 2, \quad i \leq 5
$$

and
$$
P_i \ge 0
$$
, $i \le 5$. (45)

 T_{715} In (45); lets us consider $N_i = [0.2, 0.1, 0.4, 0.3, 0.5]$, $w_i = 6 - i$ and $x_i = i$, $\forall i$. The \overline{N}_i values are

Fig. 6. Index of the peak power based resources (continuous lines) and waterfilling allotted resources (dashed lines) for Example 4.

Fig. 7. Throughputs of the resources for Example 4.

[0.04, 0.05, 0.4, 0.6, 2.5], while the \bar{H}_i values are [0.44, 1.05, πi 2.40, 4.60, 12.5]. Applying the ACF algorithm, we arrive at 718 $K = 4.$

We have $\overline{H}_i < \overline{N}_K$, $i \in [1, K]$ for the 1st resource. The 720 'step-based' waterfilling algorithm confirms that $1st$ resource $72st$ is indeed the resource having the peak power. The remaining 722 2^{nd} , 3^{rd} and 4^{th} resources are allocated their powers using the $\frac{723}{6}$ water filling algorithm. For the water level of 0.62222 , powers 724 allotted for {2,3,4} resources are [1.1444, 0.22222, 0.011111]. ⁷²⁵

Example 4: Another example for the weighted 726 CFP associated with random weights: 727

$$
\max_{\{P_i\}_{i=1}^{64}} C = \sum_{i=1}^{64} w_i \log_2 \left(1 + \frac{P_i}{N_i} \right)
$$

with constraints :
$$
\sum_{i=1}^{64} x_i P_i \le 1;
$$

 $P_i \leq P_{it}, \quad i \leq 64$ 730

and
$$
P_i \ge 0
$$
, $i \le 64$. (46) 731

In this example, we assume $N_i = \frac{\sigma^2}{h_i}$ $\frac{\sigma^2}{h_i}$ while h_i , w_i and x_i 732 are exponentially distributed with a mean of 1. Furthermore $\frac{1}{733}$ $\sigma^2 = 10^{-2}$ and P_{it} , $\forall i$ are random values in the range τ_{34} $[10^{-3}, 5 \times 10^{-2}]$ $\Big]$. 735

Now applying the ACF algorithm, we get $K = 51$ for a π 36 particular realization of h_i , w_i and x_i . For this realization, τ_{37} from the $[1, K]$ resources, 38 resources are to be allocated 738 with the peak powers and 13 resources get powers from the $\frac{739}{2}$ waterfilling algorithm. These resources are shown in Fig. 6. 740 The achieved throughput of the resources is given in Fig. $7₇₄₁$ for the proposed algorithm. The results match with the values $_{742}$ obtained for known algorithms.

Table III gives the actual number of flops required by $_{744}$ the proposed solution and the other existing algorithms for ⁷⁴⁵

$\mathbf{M} \to \mathbf{K}$	Number of flops in algorithms	Number of flops in FWF	Number of flops in GWFPP	Number of flops in in proposed
	of [18], [19] [§]	of $[21]$ ⁹	of $[22]$	solution
$64 \rightarrow 46$	14985216	7824	16832	541
	(39024)	(24)		(24,6)
$128 \rightarrow 87$	70563072	33592	66432	956
	(91879)	(52)		(31,1)
$256 \rightarrow 135$	291746304	96450	263936	1513
	(189939)	(75)		(13,4)
$512 \rightarrow 210$	$1.5115 \times 10^{+09}$	156526	1052160	2432
	$(4.9203 \times 10^{+05})$	(61)		(21,0)
$1024 \rightarrow 334$	$1.61\overline{65 \times 10^{+10}}$	271678	4201472	4059
	$(2.6311 \times 10^{+06})$	(53)		(15,1)

TABLE III COMPUTATIONAL COMPLEXITIES OF EXISTING ALGORITHMS AND THE PROPOSED SOLUTION FOR $w_i = x_i = 1$, $\forall i$

⁷⁴⁶ Example 4 with different *M* values. Since some of the existing 747 algorithms do not support $w_i \neq 1$ and $x_i \neq 1$, $\forall i$; we assume $w_i = x_i = 1$, $\forall i$ for Table III.

 It can be observed from Table III that the number of flops imposed by the sub-gradient algorithm of [18] and [19] is more than $10⁴$ times that of the proposed solution. The number of flops required for the FWF of [21] and for the GWFPP of [22] are more than 10^2 times that of the proposed solution. This is because the proposed solution's computational complexity is *O(M)*, whereas the best known existing algorithms have an $O(M^2)$ order of computational complexity; as listed in Table I. It has also been observed from the above examples that $|I_B| = |I_{R_K} - I_{R_{K-1}}|$ values are very small as compared to *M*. As such *L* has been obtained from Algorithm 2 within two iterations of the while loop.

⁷⁶¹ VI. CONCLUSIONS

 In this paper, we have proposed algorithms for solving the CFP at a complexity order of $O(M)$. The approach was then generalized to the WCFP and to the WCFP-MMP. Since the best known solutions solve these three problems at a τ ⁶⁶ complexity order of $O(M^2)$, the proposed solution results in a significant reduction of the complexity imposed. The complexity reduction attained is also verified by simulations.

⁷⁶⁹ APPENDIX

⁷⁷⁰ *A. Proof of Theorem 1*

⁷⁷¹ *Proof:* Lagrange's equation for (1) is

$$
L(P_i, \lambda, \omega_i, \gamma_i) = \sum_{i=1}^{M} \log_2 \left(1 + \frac{P_i}{N_i} \right) - \lambda \left(\sum_{i=1}^{M} P_i - P_t \right)
$$

$$
- \sum_{i=1}^{M} \omega_i (P_i - P_{it}) - \sum_{i=1}^{M} \gamma_i (0 - P_i)
$$

$$
\gamma_i
$$
(47)

§ λ is initialized to 5 × 10⁻¹.

§,¶ Number of iterations is given in brackets.

 $\|I_{R_{K-1}}\|$ and $|I_B\|$ are given in brackets. Actual number of flops is $M + 9K + 5|I_B| + |I_{R_{K-1}}| + 9$.

Karush-Kuhn-Tucker (KKT) conditions for (47) are [3], [35] 775

$$
\frac{\partial L}{\partial P_i} = 0 \Rightarrow \frac{1}{N_i + P_i} - \lambda - \omega_i + \gamma_i = 0, \quad (48) \quad \text{776}
$$

$$
\lambda \left(P_t - \sum_{i=1}^M P_i \right) = 0, \tag{49}
$$

$$
\omega_i (P_{it} - P_i) = 0, \quad \forall i \tag{50} \tag{50}
$$

$$
\gamma_i P_i = 0, \quad \forall i \tag{51} \tag{51} \tag{52}
$$

$$
\lambda, \omega_i \& \gamma_i \geq 0, \quad \forall i \tag{52}
$$

$$
P_i \le P_{it}, \quad \forall i,
$$
\n⁽⁵³⁾

$$
\sum_{i=1}^{M} P_i \le P_t. \tag{54}
$$

In what follows we show that the KKT conditions result in 783 a simplified 'form' for the solution of CFP which is similar 784 to the conventional WFP. *The proof is divided into three* ⁷⁸⁵ *parts corresponding to the three possibilities for* P_i *<i>: that is* τ_{36} *1)* Equivalent constraint for $P_i < 0$ in terms of the 'water τ_{BZ} level^{$\frac{1}{\lambda}$ and the corresponding solution form, 2) Equivalent $\frac{1}{\lambda}$} *constraint for* $P_i \leq P_{it}$ *in terms of the 'water level' and* τ_{res} *and the corresponding solution form, and 3) Equivalent form* ⁷⁹⁰ *for* $P_i \leq P_i \leq P_{it}$ *in terms of the 'water level' and the* τ_{91} *corresponding solution form.* The same of the state of $\frac{792}{200}$

1) Simplification for $P_i \geq 0$: Multiplying (48) with P_i and 793 substituting (51) in it, we obtain

$$
P_i\left(\frac{1}{N_i+P_i}-\lambda-\omega_i\right)=0\tag{55}
$$

In order to satisfy (55), either P_i or $\left(\frac{1}{N_i+P_i}-\lambda-\omega_i\right)$ should 796 be zero. Having $P_i = 0$, $\forall i$ does not solve the optimization τ_{37} problem. Hence, we obtain $\frac{798}{200}$

$$
\left(\frac{1}{N_i+P_i}-\lambda-\omega_i\right)=0, \text{ when } P_i>0. \qquad (56) \quad \text{799}
$$

Since $\omega_i \geq 0$, (56) can be re-written as $\left(\frac{1}{N_i + P_i} - \lambda\right) \geq 0$. soo Furthermore, taking $P_i > 0$ in this, we attain $\frac{801}{200}$

$$
\frac{1}{\lambda} > N_i, \quad when \ P_i > 0. \tag{57}
$$

⁸⁰³ The opposite of this is

$$
\frac{1}{\lambda} \le N_i, \quad when \ P_i \le 0. \tag{58}
$$

- 805 We can observe that (57) and (58) are equations related to the ⁸⁰⁶ conventional WFP.
- 807 2) Simplification for $P_i \leq P_{it}$: Multiplying (48) with 808 $P_{it} - P_i$ and substituting (50) in it, we attain

$$
P_{ii} - P_i \left(\frac{1}{N_i + P_i} - \lambda + \gamma_i \right) = 0 \tag{59}
$$

⁸¹⁰ In (59), two cases arise:

 P_{i1} (a) If $P_{it} > P_i$, then $\left(\frac{1}{N_i + P_i} - \lambda + \gamma_i\right) = 0$ becomes true.

Since $\gamma_i \geq 0$, $\left(\frac{1}{N_i + P_i} - \lambda + \gamma_i\right) = 0$ is taken as ⁸¹³ $(\frac{1}{N_i+P_i}-\lambda) < 0$. Further Simplifying this and $\text{substituting } P_i < P_{it}, \text{ we get}$

$$
\frac{1}{\lambda} < H_i \triangleq (P_{it} + N_i), \quad \text{if } P_i < P_{it}. \tag{60}
$$

 $\begin{array}{lll} \text{RHS} & \text{(b) If } P_{it} = P_i \text{, then } \left(\frac{1}{N_i + P_i} - \lambda + \gamma_i \right) \geq 0 \text{ becomes true} \end{array}$ ⁸¹⁷ in (59).

 $\text{As } \gamma_i \geq 0, \left(\frac{1}{N_i + P_i} - \lambda + \gamma_i \right) \geq 0 \text{ is re-written}$ as $\left(\frac{1}{N_i+P_i}-\lambda\right) \geq 0$. Substituting $P_{it} = P_i$ and ⁸²⁰ simplifying this further, we obtain

$$
\frac{1}{\lambda} \ge H_i \triangleq (P_{it} + N_i), \quad if \ P_i = P_{it}. \tag{61}
$$

- 822 3) Simplification for $0 < P_i < P_{it}$:
- (a) In (51); if γ_i is equal to zero, then $P_i > 0$. Combining 824 this relation with (57) , we can conclude that

$$
\frac{1}{\lambda} > N_i, \quad if \quad \gamma_i = 0. \tag{62}
$$

826 (b) Similarly, in (50), if $\omega_i = 0$, then $P_{it} > P_i$ follows. 827 Using this relation in (60) , we acquire

$$
\frac{1}{\lambda} < H_i, \quad \text{if } \omega_i = 0. \tag{63}
$$

 829 (c) Combining (62) and (63), we have

$$
N_i < \frac{1}{\lambda} < H_i, \quad \text{if} \quad \omega_i = \gamma_i = 0. \tag{64}
$$

 831 Using (64) in (48) and then re-arranging it gives

832
$$
P_i = \frac{1}{\lambda} - N_i, \text{ if } N_i < \frac{1}{\lambda} < H_i.
$$
 (65)

⁸³³ Combining (57), (58), (60), (61) and (65), powers are ⁸³⁴ obtained as

$$
P_{i} = \begin{cases} \left(\frac{1}{\lambda} - N_{i}\right), & N_{i} < \frac{1}{\lambda} < H_{i} \text{ or} \\ & 0 < P_{i} < P_{it}; \\ P_{it}, & \frac{1}{\lambda} \geq H_{i}; \\ 0, & \frac{1}{\lambda} \leq N_{i}. \end{cases}
$$
(66)

B. Proof of Proposition 2 837

Proof: The proof is by contradiction. Assume that P_i^* , ⁸³⁸ *i* ≤ *M* is the optimal solution for (1) such that $\sum_{i=1}^{M} P_i^* < P_t$. ⁸³⁹ We now prove that as P_i^* powers fulfil $\sum_{i=1}^{M} P_i^* \leq P_t$, there 840 exists P_i° that has greater capacity. Define 841

$$
P_i^{\diamond} = P_i^{\star} + \triangle P_i^{\star}, \quad \forall i \tag{67}
$$

such that 843

$$
\sum_{i=1}^{M} P_i^{\diamond} = P_t \quad \text{and} \quad P_i^{\diamond} \le P_{it}, \quad \forall i \tag{68}
$$

where $\Delta P_i^* \geq 0$, $\forall i$. From (7) there exists at least one *i* such 845 that $P_i^* \leq P_{it}$. It follows that $\Delta P_i^* > 0$ for at least one *i*. 846 The capacity of *M* resources for P_i° allotted powers is $\frac{847}{2}$

$$
C(P_i^{\circ}) = \sum_{i=1}^{M} \log_2 \left(1 + \frac{P_i^{\circ}}{N_i} \right) \tag{69}
$$

Substituting (67) in (69) , we get 849

$$
C(P_i^{\circ}) = \sum_{i=1}^{M} \log_2 \left(1 + \frac{P_i^{\star}}{N_i} + \frac{\Delta P_i^{\star}}{N_i} \right) \tag{70} \text{ sso}
$$

 $Re\text{-}writing the above, we obtain $851$$

$$
C\left(P_i^{\diamond}\right) = \sum_{i=1}^{M} \log_2 \left[\left(1 + \frac{P_i^{\star}}{N_i} \right) \left(1 + \frac{\frac{\Delta P_i^{\star}}{N_i}}{1 + \frac{P_i^{\star}}{N_i}} \right) \right] \quad (71) \quad \text{ss2}
$$

Following ' $log(ab) = log(a) + log(b)$ ' in the above, we acquire

$$
C(P_i^{\circ}) = \sum_{i=1}^{M} \log_2 \left(1 + \frac{P_i^{\star}}{N_i} \right) + \sum_{i=1}^{M} \log_2 \left(1 + \frac{\frac{\Delta P_i^{\star}}{N_i}}{1 + \frac{P_i^{\star}}{N_i}} \right) \qquad \text{as a}
$$
\n(72)

As $\Delta P_i^* > 0$ for at least one *i*, the second term on the R.H.S. 856 of (72) is always positive. We have

$$
C(P_i^{\diamond}) > C(P_i^{\star}) \tag{73}
$$

In other words, $\sum_{i=1}^{M} P_i^{\diamond} = P_t$ produces optimal capacity; ⁸⁵⁹ completing the proof. \Box 860

C. The Computational Complexity of 861 $Calculating Z_{m,i}$ *for CFP* 862

Below, it is shown that the worst case computational 863 *complexity of calculating* $Z_{m,i}$; $m \leq i$ and $i \leq K$ for CFP 864 *is K subtractions.* 865

- In Algorithm 1, we first check if $N_{i+1} > H_m$. I_{R_i} is see *taken as 'm' values for which* $N_{i+1} > H_m$ *. Note also that* 867 *I*^{*R*_{*i*−1}} ⊂ *IR*_{*i*}. *This is because if* $Z_{m,i} = N_{i+1} - H_m > 0$, 868 *then* $Z_{m,j}$; $j = i + 1, \dots, K$ *is always positive since* 869 $N_j > N_i$, $j > i$. Hence, in the worst case, $K \log(K)$ 870 *comparisons are required. The cost of a comparison, is* 871 *typically lower than that of an addition [36]. Hence it* $\frac{872}{2}$ *has not been included in the flop count.* 873
- As per Algorithm 1, we calculate $Z_{m,i}$'s only for $m \in \mathbb{R}^{3}$ $(I_{R_i} - I_{R_{i-1}})$ *. Furthermore, if we have* $Z_{m,i} = N_{i+1} - \cdots$ 875 $H_m > 0$, then $Z_{m,j}$; $j = i+1, \cdots, K$ is always positive 876

 836

since $N_j > N_i$, $j > i$. In other words, if $I_{R_{i-1}}$ gets some ⁸⁷⁸ *'x' values, then the same 'x' values will also be there in IRⁱ* ⁸⁷⁹ *and the contribution of this part to the overall* a ^{*area, U_i* is $|I_{R_{i-1}}|(N(i+1) - N_i)$; which is calculated} *in Step 5. This implies that if Zm*,*ⁱ* ⁸⁸¹ *is calculated for* $m \in I_{R_i}$, then there is no need to calculate $Z_{m,i}$ for $m \in I_{R_{i+1}}, I_{R_{i+2}}, \ldots I_{R_K}$. Hence, for a given $m, Z_{m,i}$ 883 is calculated, in the worst case, once; for one 'i' only. *As such, the worst case complexity of calculating Zm*,*ⁱ* ⁸⁸⁵ *is* ⁸⁸⁶ *as low as that of K subtractions.*

⁸⁸⁷ *D. The Computational Complexity of*

⁸⁸⁸ *Calculating U^K for CFP*

889 Here we show that the worst case computational complexity 890 of calculating U_K for CFP is $4K$ adds and K multiplies. 891 Note that in each iteration of Algorithm 1 the following is ⁸⁹² calculated:

$$
U_i = U_{i-1} + |I_{R_{i-1}}| (N_{i+1} - N_i) + \sum_{m \in (I_{R_i} - I_{R_{i-1}})}^{i} Z_{m,i}^+.
$$
 (74)

⁸⁹⁴ There are three terms in (74) and we calculate the complexity ⁸⁹⁵ of each term separately, as follows:

- 896 The first term of (74), U_{i-1} , is already computed in the 697 (*i* −1)-th iteration, hence involves no computation during 898 the *i*-th iteration.
- The second term, $|I_{R_{i-1}}|(N_{i+1}-N_i)$, is taking care of the $\frac{1}{200}$ increase in reference height from N_i to N_{i+1} for those ⁹⁰¹ roof stairs, which are already below the reference level N_i . The computation of this term requires only a single ⁹⁰³ multiplication and addition.
- ⁹⁰⁴ The third term gives the areas of the roof stairs which are below N_{i+1} but not N_i . The number of additions in 906 this is $A_i = |I_{R_i} - I_{R_{i-1}}| - 1$.
- ⁹⁰⁷ Taking into account the two adds per iteration required ⁹⁰⁸ for adding all the three terms, the total computational complexity of calculating U_i , given U_{i-1} is 1 multiply 910 and $3 + A_i$ adds.

 911 Since KU_i 's are calculated; the total computational complexity of calculating all U_i 's will be $\sum_{i=1}^{K} 3 + A_i = 3K + |I_{R_K}| \le 4K$ ⁹¹³ adds and *K* multiplies.

⁹¹⁴ *E. The Computational Complexity of* 915 *Calculating* \bar{U}_K for WCFP

916 Here we show that the worst case computational complexity $_{917}$ of calculating U_K for WCFP is 4*K* adds 2*K* multiplies. ⁹¹⁸ Note that in each iteration of Algorithm 3 the following is ⁹¹⁹ calculated:

$$
\bar{U}_{i} = \bar{U}_{i-1} + W_{R_{i-1}} \left(\bar{N}_{i+1} - \bar{N}_{i} \right) + \sum_{m \in (\bar{I}_{R_{i}} - I_{R_{i-1}})}^{i} w_{m} \bar{Z}_{m,i}^{+}.
$$
\n(75)

⁹²² There are three terms in (75) and we calculate the complexity ⁹²³ of each term separately, as follows:

- The first term of (75), \overline{U}_{i-1} , is already computed $\frac{1}{2}$ in *i*−1-th iteration, hence involves no computation during 925 the *i*-th iteration.
- The computation of second term, $W_{R_{i-1}}(\bar{N}_{i+1} \bar{N}_i)$, 927 requires only a single multiplication and addition. 928
- The third term gives the areas of the roof stairs which 929 are below \bar{N}_{i+1} but not \bar{N}_i . The number of additions in 930 this is $A_i = |\bar{I}_{R_i}| - |\bar{I}_{R_{i-1}}|$. The corresponding number of 931 multiplications is one.
- Taking into account the two adds per iteration required 933 for adding all the three terms, the total computational 934 complexity of calculating U_i , given U_{i-1} is 2 multiply 935 and $3 + A_i$ adds. 936

Since KU_i 's are calculated; the total computational complexity $\frac{937}{2}$ of calculating all U_i 's will be $\sum_{i=1}^K 3 + A_i = 3K + |I_{R_K}| \le 4K$ 938 adds and $2K$ multiplies. 939

REFERENCES 940

- [1] D. Tse and P. Viswanath, *Fundamentals of Wireless Communication*. ⁹⁴¹ Cambridge, U.K.: Cambridge Univ. Press, May 2005. ⁹⁴²
- [2] D. P. Palomar and J. R. Fonollosa, "Practical algorithms for a family 943 of waterfilling solutions," *IEEE Trans. Signal Process.*, vol. 53, no. 2, ⁹⁴⁴ pp. 686–695, Feb. 2005. 945
- [3] F. Gao, T. Cui, and A. Nallanathan, "Optimal training design for channel 946 estimation in decode-and-forward relay networks with individual and 947 total power constraints," *IEEE Trans. Signal Process.*, vol. 56, no. 12, ⁹⁴⁸ pp. 5937–5949, Dec. 2008. 949
- A. A. D'Amico, L. Sanguinetti, and D. P. Palomar, "Convex separable 950 problems with linear constraints in signal processing and communica- ⁹⁵¹ tions," *IEEE Trans. Signal Process.*, vol. 62, no. 22, pp. 6045–6058, ⁹⁵² Nov. 2014. 953
- [5] E. Altman, K. Avrachenkov, and A. Garnaev, "Closed form solutions ⁹⁵⁴ for water-filling problems in optimization and game frameworks," ⁹⁵⁵ *Telecommun. Syst.*, vol. 47, nos. 1–2, pp. 153–164, 2011. ⁹⁵⁶
- [6] R. Zhang, "On peak versus average interference power constraints for ⁹⁵⁷ protecting primary users in cognitive radio networks," *IEEE Trans.* ⁹⁵⁸ *Wireless Commun.*, vol. 8, no. 4, pp. 2112–2120, Apr. 2009. 959
- [7] X. Kang, R. Zhang, Y.-C. Liang, and H. K. Garg, "Optimal power 960 allocation strategies for fading cognitive radio channels with primary 961 user outage constraint," *IEEE J. Sel. Areas Commun.*, vol. 29, no. 2, ⁹⁶² pp. 374–383, Feb. 2011. 963
- [8] G. Bansal, M. J. Hossain, and V. K. Bhargava, "Optimal and ⁹⁶⁴ suboptimal power allocation schemes for OFDM-based cognitive ⁹⁶⁵ radio systems," *IEEE Trans. Wireless Commun.*, vol. 7, no. 11, ⁹⁶⁶ pp. 4710–4718, Nov. 2008. 967
- [9] N. Kalpana, M. Z. A. Khan, and U. B. Desai, "Optimal power allo- ⁹⁶⁸ cation for secondary users in CR networks," in *Proc. IEEE Adv. Netw.* ⁹⁶⁹ *Telecommun. Syst. Conf. (ANTS)*, Bengaluru, India, Dec. 2011, pp. 1–6. ⁹⁷⁰
- [10] H. Zhang and D. L. Goeckel, "Peak power reduction in closed-loop 971 MIMO-OFDM systems via mode reservation," *IEEE Commun. Lett.*, ⁹⁷² vol. 11, no. 7, pp. 583–585, Jul. 2007.
- [11] C. Studer and E. G. Larsson, "PAR-aware large-scale multi-user ⁹⁷⁴ MIMO-OFDM downlink," *IEEE J. Sel. Areas Commun.*, vol. 31, no. 2, 975 pp. 303–313, Feb. 2013. 976
- [12] N. Andgart, B. S. Krongold, P. Ödling, A. Johansson, and ⁹⁷⁷ P. O. Börjesson, "PSD-constrained PAR reduction for DMT/OFDM," 978 *EURASIP J. Adv. Signal Process.*, vol. 2004, no. 10, pp. 1498–1507, ⁹⁷⁹ 2004. ⁹⁸⁰ AQ:4
- [13] A. Amirkhany, A. Abbasfar, V. Stojanović, and M. A. Horowitz, "Prac- 981 tical limits of multi-tone signaling over high-speed backplane electrical 982 links," in *Proc. ICC*, Jun. 2007, pp. 2693–2698. 983
- [14] V. M. K. Chan and W. Yu, "Multiuser spectrum optimization for discrete 984 multitone systems with asynchronous crosstalk," *IEEE Trans. Signal* ⁹⁸⁵ *Process.*, vol. 55, no. 11, pp. 5425–5435, Nov. 2007. 986
- [15] L. Fang and R. J. P. de Figueiredo, "Energy-efficient scheduling ⁹⁸⁷ optimization in wireless sensor networks with delay constraints," in ⁹⁸⁸ *Proc. ICC*, Jun. 2007, pp. 3734–3739. 989
- [16] A. Roumy and D. Gesbert, "Optimal matching in wireless sen- ⁹⁹⁰ sor networks," *IEEE J. Sel. Topics Signal Process.*, vol. 1, no. 4, ⁹⁹¹ pp. 725–735, Dec. 2007.

-
-

- ⁹⁹³ [17] G. Zhou, T. He, J. A. Stankovic, and T. Abdelzaher, "RID: Radio ⁹⁹⁴ interference detection in wireless sensor networks," in *Proc. IEEE Adv.* AQ:5 ⁹⁹⁵ *Netw. Telecommun. Syst. Conf. (ANTS)*, Bangalore, India, Dec. 2011.
	- ⁹⁹⁶ [18] M. Arulraj and T. S. Jeyaraman, "MIMO radar waveform design with ⁹⁹⁷ peak and sum power constraints," *EURASIP J. Adv. Signal Process.*, ⁹⁹⁸ vol. 2013, no. 1, p. 127, 2013.
	- ⁹⁹⁹ [19] L. Zhang, Y. Xin, Y.-C. Liang, and H. V. Poor, "Cognitive multiple ¹⁰⁰⁰ access channels: Optimal power allocation for weighted sum rate ¹⁰⁰¹ maximization," *IEEE Trans. Commun.*, vol. 57, no. 9, pp. 2754–2762, ¹⁰⁰² Sep. 2009.
	- ¹⁰⁰³ [20] E. Yaacoub and Z. Dawy, *Resource Allocation in Uplink OFDMA* ¹⁰⁰⁴ *Wireless Systems: Optimal Solutions and Practical Implementations*. ¹⁰⁰⁵ New York, NY, USA: Wiley, 2012.
	- ¹⁰⁰⁶ [21] X. Ling, B. Wu, P.-H. Ho, F. Luo, and L. Pan, "Fast water-filling for ¹⁰⁰⁷ agile power allocation in multi-channel wireless communications," *IEEE* ¹⁰⁰⁸ *Commun. Lett.*, vol. 16, no. 8, pp. 1212–1215, Aug. 2012.
	- ¹⁰⁰⁹ [22] P. He, L. Zhao, S. Zhou, and Z. Niu, "Water-filling: A geometric ¹⁰¹⁰ approach and its application to solve generalized radio resource allo-¹⁰¹¹ cation problems," *IEEE Trans. Wireless Commun.*, vol. 12, no. 7,
	- 1012 pp. 3637-3647, Jul. 2013.

	1013 [23] R.-R. Chen and Y. Lin, ¹⁰¹³ [23] R.-R. Chen and Y. Lin, "Optimal power control for multiple access ¹⁰¹⁴ channel with peak and average power constraints," in *Proc. Int.* ¹⁰¹⁵ *Conf. Wireless Netw., Commun. Mobile Comput.*, vol. 2. Jun. 2005, 1016 pp. 1407-1411.

	1017 [24] N. Papandreou
	- ¹⁰¹⁷ [24] N. Papandreou and T. Antonakopoulos, "Bit and power allocation ¹⁰¹⁸ in constrained multicarrier systems: The single-user case," *EURASIP* ¹⁰¹⁹ *J. Adv. Signal Process.*, vol. 2008, Jan. 2008, Art no. 11.
	- ¹⁰²⁰ [25] X. Zhou, R. Zhang, and C. K. Ho, "Wireless information and power ¹⁰²¹ transfer in multiuser OFDM systems," in *Proc. IEEE Global Commun.* ¹⁰²² *Conf. (GLOBECOM)*, Dec. 2013, pp. 4092–4097.
	- ¹⁰²³ [26] N. Kalpana and M. Z. A. Khan, "Fast Computation of Generalized ¹⁰²⁴ Waterfilling Problems," *IEEE Signal Process. Lett.*, vol. 22, no. 11, ¹⁰²⁵ pp. 1884–1887, Nov. 2015.
- ¹⁰²⁶ [27] N. Kalpana and M. Z. A. Khan, "Weighted water-filling algorithm with AQ:6 ¹⁰²⁷ reduced computational complexity," in *Proc. ICCIT Conf.*, May 2015.
	- ¹⁰²⁸ [28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, *Introduction*
	- ¹⁰²⁹ *to Algorithms*, 2nd ed. Cambridge, MA, USA: MIT Press, 2001. ¹⁰³⁰ [29] D. E. Knuth, *The Art of Computer Programming: Sorting Searching*, ¹⁰³¹ vol. 3, 2nd ed. Boston, MA, USA: Addison-Wesley, 1998.
	- ¹⁰³² [30] L. Zhang, Y.-C. Liang, and Y. Xin, "Joint beamforming and power ¹⁰³³ allocation for multiple access channels in cognitive radio networks," ¹⁰³⁴ *IEEE J. Sel. Areas Commun.*, vol. 26, no. 1, pp. 38–51, Jan. 2008.
	- ¹⁰³⁵ [31] S. Stotas and A. Nallanathan, "Optimal sensing time and power allo-¹⁰³⁶ cation in multiband cognitive radio networks," *IEEE Trans. Commun.*, ¹⁰³⁷ vol. 59, no. 1, pp. 226–235, Jan. 2011.
	- ¹⁰³⁸ [32] Z. Tang, G. Wei, and Y. Zhu, "Weighted sum rate maximization for ¹⁰³⁹ OFDM-based cognitive radio systems," *Telecommun. Syst.*, vol. 42, ¹⁰⁴⁰ nos. 1–2, pp. 77–84, Oct. 2009.
	- ¹⁰⁴¹ [33] M. J. Neely, "Energy optimal control for time-varying wireless net-¹⁰⁴² works," *IEEE Trans. Inf. Theory*, vol. 52, no. 7, pp. 2915–2934, ¹⁰⁴³ Jul. 2006.
	- ¹⁰⁴⁴ [34] R. Rajesh, V. Sharma, and P. Viswanath. (2012). "Information capacity ¹⁰⁴⁵ of energy harvesting sensor nodes." [Online]. Available: http://arxiv. ¹⁰⁴⁶ org/abs/1009.5158
	- ¹⁰⁴⁷ [35] S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge, U.K.: ¹⁰⁴⁸ Cambridge Univ. Press, 2004.
	- ¹⁰⁴⁹ [36] A. Bellaouar and M. Elmasry, *Low-Power Digital VLSI Design: Circuits* ¹⁰⁵⁰ *and Systems*. New York, NY, USA: Springer, 1995.

 Kalpana Naidu received the Ph.D. degree from IIT Hyderabad, in 2016. Since 2016, she has been an Associate Professor with the VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad. The focus of her research is on resource allocation in wireless communication, HetNets, cognitive radio **networking**, and signal processing applied to wire-

Mohammed Zafar Ali Khan received the ¹⁰⁵⁹ B.E. degree in electronics and communications from ¹⁰⁶⁰ Osmania University, Hyderabad, India, in 1996, the ¹⁰⁶¹ M.Tech. degree in electrical engineering from IIT 1062 Delhi, Delhi, India, in 1998, and the Ph.D. degree 1063 in electrical and communication engineering from ¹⁰⁶⁴ the Indian Institute of Science, Bangalore, India, ¹⁰⁶⁵ in 2003. In 1999, he was a Design Engineer with ¹⁰⁶⁶ Sasken Communication Technologies, Ltd., Banga- ¹⁰⁶⁷ lore. From 2003 to 2005, he was a Senior Design 1068 Engineer with Silica Labs Semiconductors India Pvt. ¹⁰⁶⁹

Ltd., Bangalore. In 2005, he was a Senior Member of the Technical Staff 1070 with Hellosoft, India. From 2006 to 2009, he was an Assistant Professor ¹⁰⁷¹ with IIIT Hyderabad. Since 2009, he has been with the Department of 1072 Electrical Engineering, IIT Hyderabad, where he is currently a Professor. ¹⁰⁷³ He has more than ten years of experience in teaching and research and the ¹⁰⁷⁴ space-time block codes that he designed have been adopted by the WiMAX 1075 Standard. He has been a Chief Investigator for a number of sponsored and ¹⁰⁷⁶ consultancy projects. He has authored the book entitled *Single and Double* ¹⁰⁷⁷ *Symbol Decodable Space-Time Block Codes* (Germany: Lambert Academic). ¹⁰⁷⁸ His research interests include coded modulation, space-time coding, and signal 1079 processing for wireless communications. He serves as a Reviewer for many ¹⁰⁸⁰ international and national journals and conferences. He received the INAE ¹⁰⁸¹ Young Engineer Award in 2006.

Lajos Hanzo $(F'$ –) received the degree in electronics in 1976, the Ph.D. degree in 1983, and the Honorary Doctorate degree from the Technical University of ¹⁰⁸⁵ Budapest, in 2009, while by the University of ¹⁰⁸⁶ Edinburgh, in 2015. During his 38-year career in ¹⁰⁸⁷ telecommunications, he has held various research ¹⁰⁸⁸ and academic positions in Hungary, Germany, and ¹⁰⁸⁹ the U.K. Since 1986, he has been with the School ¹⁰⁹⁰ of Electronics and Computer Science, University of ¹⁰⁹¹ Southampton, U.K., where he holds the Chair in 1092 Telecommunications. He has successfully supervised 1093 ¹⁰⁸³ AQ:8 ¹⁰⁸⁴ AQ:9

about 100 Ph.D. students, co-authored 20 John Wiley/IEEE Press books on ¹⁰⁹⁴ mobile radio communications totaling in excess of 10000 pages, published 1095 over 1500 research entries at the IEEE Xplore, acted both as a TPC and ¹⁰⁹⁶ General Chair of the IEEE conferences, presented keynote lectures, and has ¹⁰⁹⁷ received a number of distinctions. He directs a 60-strong academic research ¹⁰⁹⁸ team, working on a range of research projects in the field of wireless ¹⁰⁹⁹ multimedia communications sponsored by the industry, the Engineering and ¹¹⁰⁰ Physical Sciences Research Council, U.K., the European Research Council's 1101 Advanced Fellow Grant, and the Royal Society's Wolfson Research Merit 1102 Award. He is an Enthusiastic Supporter of industrial and academic liaison ¹¹⁰³ and he offers a range of industrial courses. He is a fellow of REng, IET, ¹¹⁰⁴ and EURASIP. He is also a Governor of the IEEE VTS. From 2008 to 2012, ¹¹⁰⁵ he was the Editor-in-Chief of the IEEE PRESS and a Chaired Professor with ¹¹⁰⁶ Tsinghua University, Beijing. His research is funded by the European Research ¹¹⁰⁷ Council's Senior Research Fellow Grant. He has 24 000 citations. 1108

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

- AQ:1 = Please be advised that per instructions from the Communications Society this proof was formatted in Times Roman font and therefore some of the fonts will appear different from the fonts in your originally submitted manuscript. For instance, the math calligraphy font may appear different due to usage of the usepackage[mathcal]euscript. We are no longer permitted to use Computer Modern fonts.
- $AQ:2$ = Please confirm whether the financial section retained as in the metadata is OK.
- AQ:3 = Note that if you require corrections/changes to tables or figures, you must supply the revised files, as these items are not edited for you.
- $AQ:4 = Please confirm the volume no. for refs. [12], [18], and [24].$
- AQ:5 = Please confirm the conference title, month, and year for ref. [17]. Also provide the page range.
- AQ:6 = Please confirm the author names, article title, conference title, month, and year for ref. [27]. Also provide the page range.
- AQ:7 = Current affiliation in biography of Kalpana Naidu does not match First Footnote. Please check.
- AQ:8 = Please confirm whether the edits made in the sentence "Lajos Hanzo received ... Edinburgh in 2015" are OK.
- AQ:9 = Please provide the membership year for the author "Lajos Hanzo."