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Abstract— Waterfilling problems subjected to peak powerAQ:1 1

constraints are solved, which are known as cave-filling2

problems (CFP). The proposed algorithm finds both the optimum3

number of positive powers and the number of resources that are4

assigned the peak power before finding the specific powers to be5

assigned. The proposed solution is non-iterative and results in a6

computational complexity, which is of the order of M, O(M),7

where M is the total number of resources, which is significantly8

lower than that of the existing algorithms given by an order of9

M
2, O(M

2), under the same memory requirement and sorted10

parameters. The algorithm is then generalized both to weighted11

CFP (WCFP) and WCFP requiring the minimum power. These12

extensions also result in a computational complexity of the13

order of M, O(M). Finally, simulation results corroborating the14

analysis are presented.15

Index Terms— Weighted waterfilling problem, Peak power16

constraint, less number of flops, sum-power constraint, cave17

waterfilling.18

I. INTRODUCTION19

W
ATERFILLING Problems (WFP) are encountered in

AQ:2

20

numerous communication systems, wherein specifi-21

cally selected powers are allotted to the resources of the22

transmitter by maximizing the throughput under a total sum23

power constraint. Explicitly, the classic WFP can be visualized24

as filling a water tank with water, where the bottom of the tank25

has stairs whose levels are proportional to the channel quality,26

as exemplified by the Signal-to-Interference Ratio (SIR) of27

the Orthogonal Frequency Division Multiplexing (OFDM)28

sub-carriers [1], [2].29

This paper deals with the WaterFilling Problem under Peak30

Power Constraints (WFPPPC) for the individual resources.31

In contrast to the classic WFP where the ‘tank’ has a ‘flat32

lid’, in WFPPPC the ‘tank’ has a ‘staircase shaped lid’,33

where the steps are proportional to the individual peak power34
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constraint. This scenario is also metaphorically associated with 35

a ‘cave’ where the stair-case shaped ceiling represents the peak 36

power that can be assigned, thus fulfilling all the require- 37

ments of WFPPPC. Thus WFPPPC is often referred to as 38

a ‘Cave-Filling Problem’ (CFP) [3], [4]. 39

In what follows, we will use the ‘cave-filling’ metaphor to 40

develop insights for solving the WFPPPC. Again, the user’s 41

resources can be the sub-carriers in OFDM or the tones in 42

a Digital Subscriber Loop (DSL) system, or alternatively the 43

same sub-carriers of distinct time slots [5]. 44

More broadly, the CFP occurs in various disciplines of 45

communication theory. A few instances of these are: 46

a) protecting the primary user (PU) in Cognitive 47

Radio (CR) networks [6]–[9]; 48

b) when reducing the Peak-to-Average-Power 49

Ratio (PAPR) in Multi-Input-Multi-Output (MIMO)- 50

OFDM systems [10], [11]; 51

c) when limiting the crosstalk in Discrete Multi- 52

Tone (DMT) based DSL systems [12]–[14]; 53

d) in energy harvesting aided sensors; and 54

e) when reducing the interference imposed on nearby 55

sensor nodes [15]–[17]. 56

Hence the efficient solution of CFP has received some atten- 57

tion in the literature, which can be classified into iterative and 58

exact direct computation based algorithms. 59

Iterative algorithms conceived for CFP have been consid- 60

ered in [18]–[20], which may exhibit poor accuracy, unless 61

the initial values are carefully selected. Furthermore, they 62

may require an extremely high number of iterations for their 63

accurate convergence. 64

Exact direct computation based algorithms like the Fast 65

WaterFilling (FWF) algorithm of [21], the Geometric 66

WaterFilling with Peak Power (GWFPP) constraint based algo- 67

rithm of [22] and the Cave-Filling Algorithm (CFA) obtained 68

by minimizing Minimum Mean-Square Error (MMSE) of 69

channel estimation in [3] solve CFPs within limited number 70

of steps, but impose a complexity on the order of O(M2). 71

All the existing algorithms solve the CFPs by evaluating 72

the required powers multiple times, whereas the proposed 73

algorithm directly finds the required powers in a single step. 74

Explicitly, the proposed algorithm reduces the number of 75

Floating point operations (flops) by first finding the number of 76

positive powers to be assigned, namely K , and the number of 77

powers set to the maximum possible value, which is denoted 78

by L. This is achieved in two (waterfilling) steps. First we use 79

‘coarse’ waterfilling to find the number of positive powers to 80
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be assigned and then we embark on step-by-step waterfilling81

to find the number of positive powers that have to be set to82

the affordable peak powers.83

In this paper we present an algorithm designed for the84

efficient solution of CFPs. The proposed solution is then85

generalized for conceiving both a Weighted CFP (WCFP)86

and a WCFP having both a Minimum and a Maximum87

Power (WCFP-MMP) constraint. It is demonstrated that the88

maximum throughput is achieved at a complexity order of89

O(M) by all the three algorithms proposed.90

The outline of the paper is as follows. Section II outlines91

our system model and develops the algorithms for solv-92

ing the CFP. In Section III we conceive the WCFP, while93

Section IV presents our WCFP-MMP. Our simulation results94

are provided in Section V, while Section VI concludes the95

paper.96

II. THE CAVE-FILLING PROBLEM97

In Subsection II-A, we introduce the CFP. The com-98

putation of the number of positive powers is presented99

in Subsection II-B, while that of the number of powers set100

to the maximum is presented in Subsection II-C. Finally, the101

computational complexity is evaluated in Subsection II-D.102

A. The CFP103

The CFP maximizes the attainable throughput, C , while104

satisfying the sum power constraint; Hence, the sum of powers105

allocated is within the prescribed power budget, Pt , while106

the power, Pi ,∀i assigned for the i th resource is less than107

the peak power, Pit , ∀i . Our optimization problem is then108

formulated as:109

max
{Pi }

M
i=1

C =

M
∑

i=1

log2

(

1 +
Pi

Ni

)

110

subject to :

M
∑

i=1

Pi ≤ Pt ;111

Pi ≤ Pit , i ≤ M,112

and Pi ≥ 0, i ≤ M, (1)113

where M is the total number of resources (such as OFDM114

sub-carriers) and {Ni }
M
i=1 is the sequence of interference plus115

noise samples. The above optimization problem occurs in the116

following scenarios:117

(a) In the downlink of a wireless communication sys-118

tem, where the base station (BS) assigns a resource119

(e.g. frequency band) to a user and allocates a certain120

power, Pi , to the i th resource while obeying the total121

power budget (Pt ). The BS ensures that Pi ≤ Pit for122

avoiding the near-far problem [23].123

(b) In an OFDM system, a transmitter assigns specific pow-124

ers to the resources (e.g. sub-carriers) for satisfying the125

total power budget, Pt . Furthermore, to reduce the PAPR126

problem, the maximum powers assigned are limited to127

be within the peak powers [24], [25].128

Theorem 1: The solution of the CFP (1) is of the ‘form’ 129

Pi =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

(
1

λ
− Ni

)

, 0 < Pi < Pit ;

Pit ,
1

λ
≥Hi � (Pit + Ni );

0,
1

λ
≤Ni

(2) 130

where “ 1
λ

is the water level of the CFP”. 131

Proof: The proof is in Appendix VI-A. � 132

Remark 1: Note that as in the case of conventional water- 133

filling, the solution of CFP is of the form (2). The actual 134

solution is obtained by solving the solution form along with 135

the primal feasibility constraints. Furthermore, for the set of 136

primal feasibility constraints of our CFP, the Peak Power 137

Constraint of Pi ≤ Pit ,∀i is incorporated in the solution form. 138

By contrast, the sum power constraint is considered along 139

with (2) to obtain the solution in Propositions 1 and 2. 140

Remark 2: Observe from (2) that for 0 < Pi < Pit , 141

Pi = ( 1
λ

− Ni ) which allows 1
λ

to be interpreted as the 142

‘water level’. However, in contrast to conventional water- 143

filling, the ‘water level’ is upper bounded by maxi Pit . Beyond 144

this value, no ‘extra’ power can be allocated and the ‘water 145

level’ cannot increase. The solution of this case is considered 146

in Proposition 1. 147

It follows that (2) has a nice physical interpretation, namely 148

that if the ‘water level’ is below the noise level Ni , no power 149

is allocated. When the ‘water level’ is between Ni and Pit , the 150

difference of the ‘water level’ and the noise level is allocated. 151

Finally, when the ‘water level’ is higher than the ‘peak level’, 152

Hi ; the peak power Pit is allocated. 153

The above solution ‘form’ can be rewritten as 154

Pi =

(
1

λ
− Ni

)+

, i = 1, · · · , M; and (3) 155

Pi ≤ Pit , i = 1, · · · , M (4) 156

where we have A+ � max(A, 0). The solution for (1) has a 157

simple form for the case the ‘implied’ power budget, PI t as 158

defined as PI t =
∑M

i=1 Pit is less than or equal to Pt and is 159

given in Proposition 1. 160

Proposition 1: If the ‘implied’ power budget is less than or 161

equal to the power budget (
∑M

i=1 Pit ≤ Pt ), then peak power 162

allocation to all the M resources gives optimal capacity. 163

Proof: Taking summation on both sides of Pi ≤ Pit ,∀i , 164

we obtain the ‘implied’ power constraint 165

M
∑

i=1

Pi ≤

M
∑

i=1

Pit

︸ ︷︷ ︸

PI T

. (5) 166

However from (1) we have 167

M
∑

i=1

Pi ≤ Pt . (6) 168

Consequently, if PI t ≤ Pt , then peak power allocation to all 169

the M resources (i.e. Pi = Pit , ∀i ) fulfils all the constraints 170

of (1). Consequently, the total power allocated to M resources 171

∑M
i=1 Pit . Since the maximum power that can be allocated to 172
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any resource is it’s peak power, peak power allocation to all173

the M resources produces optimal capacity. �174

Note that in this case the total power allocated is less than175

(or equal to) Pt . However, if Pt <
∑M

i=1 Pit , then all the M176

resources cannot be allocated peak powers since it violates the177

total sum power constraint in (1).178

In what follows, we pursue the solution of (1) for the case179

Pt <

M
∑

i=1

Pit . (7)180

We have,181

Proposition 2: The optimal powers and hence optimal182

capacities are achieved in (1) (under the assumption (7))183

only if184

M
∑

i=1

Pi = Pt . (8)185

Proof: The proof is in Appendix VI-B. �186

Since finding both the number of positive powers and the187

number of powers that are set to the maximum is crucial188

for solving the CFP, we formally introduce the following189

definitions.190

Definition 1 (The Number of Positive Powers, K ): Let I =191

{i ; such that Pi > 0} be the set of resource indices, where Pi192

is positive. Then the number of positive powers, K = |I|, is193

given by the cardinality, |I|, of the set.194

Definition 2 (The Number of Powers Set to the Peak195

Power, L): Let IP = {i ; such that Pi = Pit } be the set of196

resource indices, where Pi has the maximum affordable value197

of Pit . Then the number of powers set to the peak power,198

L = |IP |, is the cardinality, |IP | of the set.199

Without loss of generality, we assume that the interference200

plus noise samples Ni are sorted in ascending order, so that201

the first K powers are positive, while the remaining ones are202

set to zero. Then, (8) becomes203

K
∑

i=1

Pi = Pt . (9)204

Note that Hi and Pit are also arranged in the ascending order205

of Ni , in order to preserve the original relationship between206

Hi and Ni .207

B. Computation of the Number of Positive Powers208

The CFP can be visualized as shown in Fig. 1a. In a cave,209

the water is filled i.e. the power is apportioned between the210

floor of the cave and the ceiling of the cave. The levels of the211

i th ‘stair’ of the floor staircase and of the ceiling staircase are212

Ni and Hi � (Pit + Ni ), respectively. The widths of all stairs213

are assumed to be 1. Since the power gap between the floor214

stair and the ceiling stair is Pit , the allocated power has to215

satisfy Pi ≤ Pit .216

As the water is poured into the cave, observe from Fig. 1b217

that it obeys the classic waterfilling upto the point where the218

‘waterlevel’ ( 1
λ ) reaches the ceiling stair of the 1st resource.219

From this point onwards, water can only be stored above220

the second stair, as depicted in Fig. 1c upto a point where221

Fig. 1. Geometric Interpretation of CFP for K = 4. (a) Heights of i th stair
in cave floor staircase and cave roof staircase are Ni and Hi (= Pit + Ni ).
(b) Water is filled (Power is allotted) in between the cave roof stair and cave
floor stair, at this waterlevel the peak power constraint for P1 constraints
further allocation to P1. (c) A similar issue occurs to P2 also.Observe that the
variable Zm,4 represents the height of mth cave roof stair below the (4+1)th

cave floor stair. (d) Power allotted for i th resource is Pi = min{ 1
λ , Hi}− Ni .

Observe the waterlevel between 4th and 5th resource. (e) The area 1
λ K , shown

in this figure, is smaller than the area NK +1 K shown in (f).

the water has filled the gap between the floor stair and the 222

ceiling stair of both the first and the second stairs. In terms 223

of power, we have Pi = Pit for the resources i = 1 and 2. 224

Mathematically, we have Pi = Pit if Hi ≤ 1
λ

. 225

As more water is poured, observe from Fig. 1d that for the

AQ:3

226

third and the fourth stairs, we have Hi > 1
λ . It is clear from 227

the above observations (also from (2)) that the power assigned 228

to the i th resource becomes: 229

Pi = min

{
1

λ
, Hi

}

− Ni , i ≤ K . (10) 230

In Fig. 1d, the height of the fifth floor stair exceeds 1
λ

. 231

As water can only be filled below the level 1
λ , no water is 232
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Algorithm 1 ACF Algorithm for Obtaining K

Require: Inputs required are M , Pt , Ni & Hi (in ascending
order of Ni ).

Ensure: Output is K , IRK−1 ,IRK , dK .
1: i = 1. Denote d0 = Pt , U0 = 0 and IR0 = ∅

2: Calculate di = di−1 + Ni .
3: ⊲ Calculate the area Ui =

∑i
m=1 Z+

m,i as follows:
4: IRi = IRi−1 ∪ {m; such that Ni+1 > Hm & m � ∈IRi−1 };

Zm,i = N(i+1) − Hm, m ∈ (IRi − IRi−1 )

5: Ui = Ui−1 + |IRi−1 |(Ni+1 − Ni ) +
∑

m∈(IRi
−IRi−1 ) Z+

m,i

6: Calculate the area Qi = i N(i+1)

7: if Qi ≥ (di + Ui ) then

8: K ← i . Exit the algorithm.
9: else

10: i ← i+1, Go to 2
11: end if

filled above the fifth bottom stair. This results in K = 4, as233

shown in Fig. 1d. The area of the water-filled cave cross-234

section becomes equal to Pt .235

Fig. 1c also introduces the variable Z i,k as the depth of236

the i th ceiling stair below the (k + 1)st bottom stair; that is,237

we have:238

Z i,k = N(k+1) − Hi , i ≤ k. (11)239

The variable Z i,k allows us to have a reference, namely a240

constant roof ceiling of Ni+1 , while verifying whether K = i .241

Figure 1c depicts this dynamic for i = 4. The constant roof242

reference is given at Ni+1 . Observe that we have Z+
i,k > 0 for243

i = 1, 2 and Z+
i,k = 0 for i = 3, 4 with k = 4. This allows244

us to quantify the total cave cross-section area in Fig 1e, upto245

the i th step in three parts:246

• the area occupied by roof stairs below the constant roof247

reference, given by
∑i

k=1 Z+
k,i ;248

• the area occupied by the ‘water’, given by Pt ;249

• the area occupied by the floor stairs,
∑i

k=1 Nk .250

This is depicted in Fig. 1e. Observe from Fig. 1e that251

if the waterlevel of 1
λ is less than the (i + 1)st water level252

(i + 1 = 5 in this case), then the cave cross-section area253

given by
∑i

k=1 Z+
k,i + Pt +

∑i
k=1 Nk (shown in Fig. 1e) would254

be less than the total area of i Ni+1 , as shown in Fig. 1f.255

Furthermore, if the waterlevel 1
λ

is higher than the (i + 1)st
256

water level (i + 1 = 2, 3, 4 in this case), then the area given257

by
∑i

k=1 Z+
k,i + Pt +

∑i
k=1 Nk would be higher than the total258

area of i Ni+1 , as shown in Fig. 1f.259

Based on the insight gained from the above geometric260

interpretation of the CFP, we develop an algorithm for finding261

K for any arbitrary CFP, which we refer to as the Area based262

Cave-Filling (ACF) of Algorithm 1.263

Note that d0 in Algorithm 1 represents an initialization264

step that eliminates the need for the addition of Pt at every265

resource-index i and the set IRi contains the indices of the266

ceiling steps, whose ‘height’ is below Ni+1 . Furthermore, the267

additional outputs of Algorithm 1 are required for finding268

the number of roof stairs that are below the waterlevel in269

Algorithm 2. We now prove that Algorithm 1 indeed finds270

the optimal value of K .271

Algorithm 2 ‘Step-Based’ Waterfilling Algorithm for
Obtaining L

Require: Inputs required are K , dK , IRK−1 , IRK , Ni & Hi

(in ascending order of Ni )
Ensure: Output is L, IS .
1: Calculate PR = dK − K NK + |IRK−1 |NK −

∑

m∈IRK−1
Hm

2: Calculate IB = IRK − IRK−1 & D1 = K − |IRK−1 |.
3: If |IB | = 0, set L = 0, IS = ∅. Exit the algorithm.
4: Sort {Hm}m∈IB in ascending order and denote it as {Hm B}

and the sorting index as IS .
5: Initialize m = 1, Fm = (Hm B − NK )Dm .
6: while Fm < PR do

7: m = m + 1.
8: Dm = Dm−1 − 1
9: Fm = Fm−1 + (Hm B − H(m−1)B)Dm

10: end while

11: L = m − 1.

Theorem 2: The Algorithm 1 delivers the optimal value of 272

the number of positive powers, K , as defined in Definition 1. 273

Proof: We prove Theorem 2 by first proving that φ(i) = 274

di +Ui , is a monotonically increasing function of the resource- 275

index i . It then follows that Qi ≥ (di + Ui ) gives the first i , 276

for which the waterlevel is below the next step. Consider 277

φ(i) − φ(i − 1) 278

= di − di−1 + Ui − Ui−1 (12) 279

= Ni + |IRi−1 | (Ni+1 − Ni ) +

i
∑

m∈(IRi
−IRi−1 )

Z+
m,i (13) 280

> 0, (14) 281

where (13) follows from (12) by using the definitions of di 282

and Ui in Algorithm 1. Since the interference plus noise levels 283

Ni are positive, we have (Ni+1 − Ni ) ≥ 0, and since the Ni ’s 284

are in ascending order, (14) follows from (13). 285

Let us now consider the reference area, Qi = i Ni+1 . Within 286

this reference area; certain parts are occupied by the floor 287

stairs, others by the projections of the ceiling stairs and finally 288

by the space in between the floor and the ceiling; filled by 289

‘water’. This is given by Wi = Qi −
∑i

m Nm −Ui . Recall that 290

the total amount of water that can be stored is Pt . If we have 291

Pt > Wi , then there is more water than the space available, 292

hence the water will overflow to the next stair(s). Otherwise, 293

if we have Pt ≤ Wi , all the water can be contained within the 294

space above this stair and the lower stairs. Substituting the 295

value of Wi in this inequality, we have 296

Pt ≤ Qi −

i
∑

m

Nm − Ui (15) 297

⇒ Pt +

i
∑

m

Nm + Ui ≤ Qi (16) 298

di + Ui ≤ Qi (17) 299

where (16) is obtained from (15) by rearranging. Then using 300

the definition of di in Algorithm 1, we arrive at (17). 301
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Fig. 2. Peak power allocation for resources having their Hi ’s in between
NK and N(K +1) .

Since Algorithm 1 outputs the (first) smallest value of the302

resource-index i for which (17) is satisfied, it represents the303

optimal value of K .304

This completes the proof. �305

Once K is obtained, it might appear straightforward to306

obtain the values of Pi , i ∈ [1, K ]‡ as in [26] and [27]; but in307

reality it is not. This is because of the need to find the specific308

part of the cave roof, which is below the ‘current’ waterlevel.309

Note that IRK−1 ⊂ IP ⊂ IRK where IP is the set of roof310

stairs below the current waterlevel and IRK is the set of roof311

stairs below NK+1. This is because the waterlevel of 1
λ

is312

between NK and NK+1.313

C. Waterfilling for Finding the Number of314

Powers Having the Peak Allocation315

In order to develop an algorithm for finding L, we first316

consider the geometric interpretation of an example shown317

in Fig. 2. Note that the Hm’s below NK , (NK − Hm) > 0,318

belong to IRK−1 and the Hm values above NK+1 belong to319

IUK . This is clearly depicted in Fig. 2 for K = 6, where320

IRK−1 = {1, 2} and IUK = {5, 6}.321

The contentious Hm’s are those whose heights lie between322

NK and NK+1. The indices of these Hm’s are denoted by323

IB (in Fig. 2, IB = {3, 4}). Without loss of generality, we324

assume that B roof stairs, Hm’s, lie between NK and NK+1.325

We now have to find among these B stairs, those particular326

ones whose heights lie below the water level, 1
λ (for which327

peak powers are allotted). Note that B = |IRK | − |IRK−1 | and328

IB = [1, K ] − IRK−1 − IUK = IRK − IRK−1 .329

This is achieved by a ‘second’ waterfilling style technique330

as detailed below.331

Clearly, the resources that belong to the set IRK−1 are332

allotted with peak powers as (Hm − 1
λ
) < 0, m ∈ IRK−1 .333

The remaining ceiling stairs in IB will submerge one by334

one as the waterlevel increases from NK . For this reason;335

the heights {Hm}m∈IB are sorted in ascending order to obtain336

Hm B and IS is the sort index for Hm B .337

After allotting IRK−1 resources with peak powers,338

whose sum is equal to
∑

m∈IRK−1
Pmt , we can allocate339

(NK − Nm )+, m ∈ I c
RK−1

power to the remaining resources340

indexed by I c
RK−1

, where for a set A, Ac = [1, K ] − A341

‡[A,B] represents the interval in between A and B, including A and B.

represents its complement. That is we allot power to remaining 342

resources with the ‘present’ waterlevel being NK . The power 343

that remains to be allocated for I c
RK−1

resources is given by 344

PR = Pt −
∑

m∈IRK−1

Pmt −
∑

m∈I c
RK−1

(NK − Nm )+ (18) 345

= Pt +

K
∑

m=1

Nm − K NK + |IRK−1 |NK −
∑

m∈IRK−1

Hm. 346

(19) 347

Equation (19) is obtained using a geometric interpretation 348

as follows; the term dK = Pt +
∑K

m=1 Nm is the sum 349

of total water and K floor stairs. Subtracting from it the 350

reference area of K NK gives the excess water that is in 351

excess amount; without considering the ceiling stairs. Further 352

subtracting the specific part of the ceiling stairs that are below 353

NK namely
∑

m∈IRK−1
Hm − |IRK−1 |NK gives the residual 354

‘water’ amount, PR . 355

Note from Fig. 2 that once PR amount of ‘water’ has been 356

poured, and provided that PR < (K − |IRK−1 |)(H1B − NK ) 357

is satisfied, then we have L = |IRK−1 | and hence no more 358

‘water’ is left to be poured. Otherwise, F1 = (K − |IRK−1 |) 359

(H1B − NK ) amount of ‘water’ is used for completely sub- 360

merging the 1st ceiling stair (H1B) and the ‘present’ water- 361

level increases to H1B. Similarly, F2 = (K − |IRK−1 | − 1) 362

(H2B − H1B) amount of water is used for submerging the 363

second ceiling stair and hence the waterlevel increases to H2B . 364

This process continues until all the ‘water’ has been poured. 365

We refer to this process as ‘step-based’ waterfilling since the 366

waterlevel is changed in steps given by the size of the roof 367

stairs. 368

The formal algorithm, which follows the above geometric 369

interpretation but it aims for a low complexity, is given in 370

Algorithm 2. Let us now prove that Algorithm 2 delivers the 371

optimal value of L. 372

Theorem 3: Algorithm 2 finds the optimal value L of the 373

number of powers that are assigned peak powers, where L is 374

defined in Definition 2 . 375

Proof: First observe that the Fm values are monotonically 376

increasing functions of the index m. Since the Hm B values 377

are sorted in ascending order, the water filling commences 378

from m = 1. The condition Fm < PR is true, as long as the 379

total amount of water required to submerge the mth roof stair, 380

Fm , is less than the available water. It follows then that the 381

algorithm outputs the largest m, for which the inequality is 382

satisfied which hence represents the optimal value of L. � 383

The resources for which peak powers are allotted are 384

indexed by IP = IRK−1 ∪ IS(1 : L), where IS(1 : L) stands 385

for the first ‘L’ resources of IS . The remaining resources, 386

indexed by I c
P = [1, K ] − IP , are allotted specific powers 387

using waterfilling. 388

In Fig. 2, the I c
P resources are 5 and 6 with associated 389

‘L’ = 2 while PR − FL represents the darkened area in Fig. 2. 390

The waterlevel for I c
P resources is equal to the height, HL B , of 391

the last submerged roof stair plus the height of the darkened 392

area. Here, the height of the darkened area is obtained by 393

dividing the remaining water amount (= PR − FL ) with the 394
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TABLE I

COMPUTATIONAL COMPLEXITIES (IN FLOPS) OF KNOWN SOLUTIONS FOR SOLVING CFP

number of remaining resources (= |I c
P | ) since the width of395

all resources is 1. If we have L = 0, then the last level is NK .396

Therefore the waterlevel for I c
P resources is given by397

1

λ
=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

HL B +
PR − FL

|I c
P |

, L > 0;

NK +
PR

|I c
P |

, otherwise.
(20)398

The powers are then allotted as follows:399

Pi =

⎧

⎨

⎩

Pit , i ∈ IP ;
(

1

λ
− Ni

)

, i ∈ I c
P .

(21)400

D. Computational Complexity of the CFP401

Let us now calculate the computational complexity of both402

Algorithm 1 as well as of Algorithm 2 separately and then403

add the complexity of calculating the powers, as follows:404

• Calculating Hi requires M adds.405

• Observe that Algorithm 1 requires K + 1 adds for cal-406

culating di ’s; K multiplies to find Qi ’s; maximum of K407

subtractions for calculating Zm,i ’s and, in the worst case,408

4K additions as well as K multiplications for calculating409

UK : the proofs are given in Appendices C and D.410

So, algorithm 1 requires 6K + 1 additions and 2K411

multiplications for calculating K .412

• Note that in Algorithm 2: 2 multiplies and 3 + |IRK−1 |413

additions are needed for the calculation of PR ; 2 adds414

and 1 multiply for computing F1, D1; 4|IB | adds and IB415

multiples for evaluating the while loop. Since we have416

|IRK−1 |, |IB | < K , the worst case complexity of Algo-417

rithm 2 is given by 5K + 5 adds and K + 3 multiplies.418

• The computational complexity of calculating Pi using (3)419

is at-most K adds.420

• The total computational complexity of solving our CFP421

of this paper, is 12K +6+ M adds and 3K +3 multiplies.422

Since K is not known apriori, the worst case complexity423

is given by 13M + 6 adds and 3M + 3 multiplies. Hence424

we have a complexity order of O(M) floating point425

operations (flops).426

Table I gives the number of flops required for iterative algo-427

rithm of [18] and [19], FWF of [21], GWFPP algorithm of [22]428

and of the proposed ACF algorithm. Observe the order of429

magnitude improvement for ACF.430

Remark 3: Following the existing algorithms conceived for431

solving the CFP (like [2] and [22]), we do not consider the432

complexity of sorting Ni , as the channel gain sequences come433

from the eigenvalues of a matrix; and most of the algorithms434

compute the eigenvalues and eigenvectors in sorted order.435

Remark 4: Observe that we have not included the complex- 436

ity of sorting Hi at step 4 in Algorithm 2. This is because the 437

sorting is implementation dependent. For fixed-point imple- 438

mentations, sorting can be performed with a worst case 439

complexity of O(M) comparisons using algorithms like Count 440

Sort [28]. For floating point implementations, sorting can 441

be performed with a worst case complexity of O(M log(M)) 442

comparisons [29]. Since, almost all implementations are of 443

fixed-point representation: the overall complexity, including 444

sorting of Hi would still be of O(M). 445

III. WEIGHTED CFP 446

An interesting generalization for CFP is the scenario when 447

the rates and the sum power are weighted, hence resulting in 448

the Weighted CFP (WCFP), arising in the following context. 449

(a) In a CR network, a CR senses that some resources 450

are available for it’s use. Hence the CR allots powers 451

to the available resources for a predefined amount of 452

time while assuring that the peak power remains limited 453

in order to keep the interference imposed on the PU 454

remains within the limit. The weights wi and xi may be 455

adjusted based on the resource’s available time and on 456

the sensing probabilities [30]–[32]. 457

(b) In Sensor Network (SN) the resources have priorities 458

according to their capability to transfer data. These pri- 459

orities are reflected in the weights, wi . The weights xi ’s 460

allow the sensor nodes to save energy, while avoiding 461

interference with the other sensor nodes [33], [34]. 462

The optimization problem constituted by weighted CFP is 463

given by 464

max
{Pi }

M
i=1

C =

M
∑

i=1

wi log2

(

1 +
Pi

Ni

)

465

subject to :

M
∑

i=1

xi Pi ≤ Pt (22) 466

Pi ≤ Pit , i ≤ M 467

and Pi ≥ 0, i ≤ M, 468

where again wi and xi are the weights of the i th
469

resource’s capacity and allocated power, respectively. Similar 470

to Theorem 1, we have 471

Theorem 4: The solution of the WCFP (22) is of the ‘form’ 472

P̄i =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

(
1

λ
− N̄i

)

, 0 < P̄i < P̄it ;

P̄it ,
1

λ
≥ H̄i �

(

P̄it + N̄i

)

;

0,
1

λ
≤ N̄i

(23) 473
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where “ 1
λ

is the water level of the WCFP”, P̄i = Pi xi

wi
is the474

weighted power, P̄it = Pit xi

wi
is weighted peak power, N̄i = Ni xi

wi
475

is the weighted interference plus noise level and H̄i = N̄i + P̄it476

is the weighted height of i th cave ceiling stair.477

Proof: The proof is similar to Theorem 1 and has been478

omitted. �479

The above solution form can be rewritten as480

P̄i =

(
1

λ
− N̄i

)+

, i = 1, · · · , M; and (24)481

P̄i ≤ P̄it , i = 1, · · · , M (25)482

where we have A+ � max(A, 0). The solution for (22) has a483

simple form for the case the ‘implied’ weighted power budget,484

P̄I t as defined as P̄I t =
∑M

i=1 wi P̄it is less than or equal to485

Pt and is given in Proposition 3.486

Proposition 3: If the ‘implied’ power budget is less than487

or equal to the power budget (
∑M

i=1 wi P̄it ≤ Pt ), then peak488

power allocation to all the M resources gives optimal capacity.489

Note that in this case the total power allocated is less than490

(or equal to) Pt . However, if Pt <
∑M

i=1 wi P̄it , then all the491

M resources cannot be allocated peak powers since it violates492

the total sum power constraint in (22).493

In what follows, we pursue the solution of (22) for the case494

Pt <

M
∑

i=1

wi P̄it . (26)495

We have,496

Proposition 4: The optimal powers and hence optimal497

capacities are achieved in (22) (under the constraint (26))498

only if499

M
∑

i=1

wi P̄i = Pt . (27)500

It follows that the solution of (22) is given by501

P̄i =

(
1

λ
− N̄i

)+

, i = 1, · · · , M; (28)502

K
∑

i=1

wi P̄i = Pt ; (29)503

P̄i ≤ P̄it , i = 1, · · · , M. (30)504

Using the proposed area based approach, we can extend the505

ACF algorithm to the weighted case as shown in Fig. 3.506

Observe that the width of the stairs is now given by wi in507

contrast to CFP, and Z i,k is now scaled by a factor of xi

wi
.508

Also observe that the sorting order now depends on the N̄i509

values, since sorting the N̄i values in ascending order makes510

the first K of the P̄i values positive, while the remaining P̄i511

values are equal to zero as per (28).512

In what follows, we assume that the parameters like H̄i , P̄it ,513

wi and N̄i are sorted in the ascending order of N̄i values in514

order to conserve the original relationship among parameters.515

Comparing (28)-(30) to (3), (4) and (9); we can see that in516

addition to the scaling of the variables, (29) has a weighing517

factor of wi . Most importantly, since the widths of the stairs518

Fig. 3. Showing the effect of ‘weights’ in Weighted CFP.

Algorithm 3 ACF Algorithm for Obtaining K for WCFP

Require: Inputs required are M , Pt , N̄i , H̄i & wi (in ascend-
ing order of N̄i ).

Ensure: Output is K , ĪRK−1 , ĪRK , d̄K .
1: i = 1. Denote d̄0 = Pt , W0 = 0, Ū0 = 0 and ĪR0 = ∅

2: Calculate d̄i = d̄i−1 + wi N̄i .
3: Calculate Wi = Wi−1 + wi

4: ⊲ Calculate the area Ūi =
∑i

m=1 wm Z̄+
m,i as follows:

5: ĪRi = {m; such that N̄i+1 > H̄m}, WRi−1 =
∑

m∈ ĪRi−1
wm

Z̄m,i = N̄(i+1) − H̄m, m ∈ (IRi − IRi−1 )

6: Ūi = Ūi−1 + WRi−1 (N̄i+1 − N̄i ) +
∑

m∈( ĪRi
− ĪRi−1 ) wm Z̄+

m,i

7: Calculate the area Q̄i = Wi N̄(i+1)

8: if Q̄i ≥ (d̄i + Ūi ) then

9: K ← i . Exit the algorithm.
10: else

11: i ← i+1, Go to 2
12: end if

is not unity, they affect the area under consideration. As a 519

consequence, Algorithms 1 and 2 cannot be directly applied to 520

this case. However, the interpretations are similar. Algorithm 3 521

details the ACF for WCFP while Algorithm 4, defines the 522

corresponding ‘step-based’ waterfilling algorithm conceived 523

for finding the optimal values of K and L, respectively. 524

Let us now formulate Theorem 5. 525

Theorem 5: The output of Algorithm 3 gives the optimal 526

value K of the number of positive powers, as defined in 527

Definition 1, for WCFP. 528

The proof is similar to that of the CFP case, with slight 529

modifications concerning both the scaling and the width of 530

the stairs wi , hence it has been omitted. 531

Observe that the calculation of P̄R , D̄m and F̄m is affected 532

by the weights wi , since the areas depend on wi . 533

Let us now state without proof that Algorithm 4 outputs the 534

optimal value of L. 535

Theorem 6: Algorithm 4 delivers the optimal value L of the 536

number of powers that are assigned peak powers, as defined 537

in Definition 2, for WCFP. 538

Peak power allocated resources are ĪP = ĪRK−1 ∪ 539

IS(1 : L). Resources for which WFP allocates powers are 540

Ī c
P = [1, K ] − ĪP . 541
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Algorithm 4 ‘Step-Based’ Waterfilling Algorithm for
Obtaining L for WCFP

Require: Inputs required are K , d̄K , ĪRK−1 , ĪRK , WK , WRK−1 ,
N̄i , H̄i & wi (in ascending order of N̄i ).

Ensure: Output is L, IS .
1: Calculate P̄R = d̄K − WK N̄K + WRK−1 N̄K −

∑

m∈ ĪRK−1
wm H̄m

2: Calculate ĪB = ĪRK − ĪRK−1 . D̄1 = WK − WRK−1 .
3: If | ĪB | = 0, set L = 0. Otherwise, if | ĪB | > 0, then only

proceed with the following steps.
4: Sort {H̄m}m∈ ĪB

in ascending order and denote it as {H̄m B}

and the sorting index as IS .
5: Initialize m = 1, F̄m = (H̄m B − N̄K )D̄m .
6: while F̄m ≤ P̄R do

7: m = m + 1. If m > | ĪB |, exit the while loop.
8: D̄m = D̄m−1 − wIS (m−1)

9: F̄m = F̄m−1 + (H̄m B − H̄(m−1)B)D̄m

10: end while

11: L = m − 1.
12: calculate D̄L+1 = D̄L − wIS (L), only if L = | ĪB |.

The waterlevel for WCFP is given by542

1

λ
=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

H̄L B +
P̄R − F̄L

D̄L+1
, L > 0;

N̄K +
P̄R

D̄1
, L = 0.

(31)543

and the powers allocated are given by544

Pi =

⎧

⎨

⎩

Pit , i ∈ ĪP ;
wi

xi

(
1

λ
− N̄i

)

, i ∈ Ī c
P .

(32)545

A. Computational Complexity of the WCFP546

Let us now calculate the computational complexity of both547

Algorithm 3 and of Algorithm 4 and then add the complexity548

of calculating the powers, as follows:549

• Calculating N̄i , P̄it and H̄i requires 3M multiplies and550

M adds.551

• Observe that Algorithm 3 requires (K + 1) adds and552

K multiplies for calculating d̄i , K multiplies to find Q̄i553

and, in the worst case, 4K additions and 2K multipli-554

cations for calculating Z̄m,i ’s & ŪK , the corresponding555

proof is given in Appendix VI-E; K additions for calcu-556

lating WK and at-most K additions for calculating WRi−1 .557

Consequently Algorithm 3 requires (7K + 1) additions558

and 4K multiplications for calculating K .559

• Note that in Algorithm 4: 2 multiplies and 3 + | ĪRK−1 |560

additions are required for calculation of P̄R ; at-most561

(K + 1) adds and 1 multiply in computing F̄1, D̄1; 4| ĪB |562

adds and ĪB multiples for evaluating the while loop.563

Since | ĪRK−1 |, | ĪB | < K , the worst case complexity of564

Algorithm 4 can be given as (6K + 4) adds, (K + 3)565

multiplies.566

• The computational complexity of calculating Pi is 567

at-most K adds and K multiplies. 568

• Consequently, the total computational complexity of solv- 569

ing the WCFP, considered is (14K + 5 + M) adds and 570

(3M +6K +3) multiplies. Since K is not known apriori, 571

the worst case complexity is given by (15M + 5) adds 572

and (9M + 3) multiplies. i.e we have a complexity order 573

of O(M). 574

Explicitly, the proposed solution’s computational complexity 575

is of the order of M , whereas that of the GWFPP of [22] is 576

of the order of M2. 577

IV. WCFP REQUIRING MINIMUM POWER 578

In this section we further extend the WCFP to the case 579

where the resources/powers scenario of having both a Mini- 580

mum and a Maximum Power (MMP) constraint. The resultant 581

WCFP-MMP arises in the following context: 582

(a) In a CR network, CR senses that some resources are 583

available for it’s use and allocates powers to the available 584

resources for a predefined amount of time while ensuring 585

that the peak power constraint is satisfied, in order to 586

keep the interference imposed on the PU with in the 587

affordable limit. Again, the weights wi and xi represent 588

the resource’s available time and sensing probabilities. 589

The minimum power has to be sufficient to support 590

the required quality of service, such as the minimum 591

transmission rate of each resource [30]–[32]. 592

We show that solving WCFP-MMP can be reduced to solving 593

WCFP with the aid of an appropriate transformation. Hence, 594

Section III can be used for this case. Mathematically, the 595

problem can be formulated as 596

max
{Pi }

M
i=1

C =

M
∑

i=1

wi log2

(

1 +
Pi

Ni

)

597

subject to :

M
∑

i=1

xi Pi ≤ Pt (33) 598

Pib ≤ Pi ≤ Pit , i ≤ M 599

and Pi ≥ 0, i ≤ M, 600

where Pib ≤ Pit and Pib is the lower bound while Pit is 601

the upper bound of the i th power. wi and xi are weights of 602

the i th resource’s capacity and i th resource’s allotted power, 603

respectively. Using the KKT, the solution of this case can be 604

written as 605

P̄i =

(
1

λ
− N̄i

)+

, i = 1, · · · , M; (34) 606

K
∑

i=1

wi P̄i = Pt ; (35) 607

P̄ib ≤ P̄i ≤ P̄it , i = 1, · · · , M, (36) 608

where P̄i = Pi xi

wi
is the weighted power, P̄it = Pit xi

wi
is weighted 609

peak power, P̄ib = Pib xi

wi
is the weighted minimum power and 610

N̄i = Ni xi

wi
is the weighted noise. 611

Let us now formulate Theorem 7. 612

Theorem 7: For every WCFP-MMP given by (33), there 613

exists a WCFP, whose solution will result in a solution to 614

the WCFP-MMP. 615
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Proof: Consider the solution to WCFP-MMP given616

by (34)-(36). Defining P̂i = P̄i − P̄ib and substituting it617

into (34)-(36), we arrive at:618

P̂i =

(
1

λ
− N̄i

)+

− P̄ib, i = 1, · · · , M; (37)619

K
∑

i=1

wi (P̂i + P̄ib) = Pt ; (38)620

0 ≤ P̂i ≤
(

P̄it − P̄ib

)

, i = 1, · · · , M. (39)621

Using (37) and the definition of ()+, we can622

rewrite (37)–(39) as623

P̂i =

⎛

⎜
⎝

1

λ
− {N̄i + P̄ib}

︸ ︷︷ ︸

N̂i

⎞

⎟
⎠

+

, i = 1, · · · , M; (40)624

K
∑

i=1

wi P̂i =

(

Pt −

K
∑

i=1

wi P̄ib

)

︸ ︷︷ ︸

P̂t

; (41)625

0 ≤ P̂i ≤
(

P̄it − P̄ib

)

︸ ︷︷ ︸

P̂it

, i = 1, · · · , M. (42)626

Comparing (40)-(42) to (28)-(30), we can observe that this627

is a solution for a WCFP with variables P̂i , N̂i , P̂it and P̂t .628

It follows then that we can solve the WCFP-MMP by solving629

the WCFP, whose solution is given by (40)-(42). �630

Note that the effect of the lower bound is that of increasing631

the height of the floor stairs for the corresponding WCFP at632

a concomitant reduction of the total power constraint.633

A. Computaional Complexity of the WCFP-MMP634

Solving WCFP-MMP requires 4M additional adds, to com-635

pute P̂i , N̂i , P̂it as well as P̂t , and K adds to recover Pi636

from P̂i ; as compared to WCFP. Hence the the worst case637

complexity of solving the WCFP-MMP is given by (19M +6)638

adds and (8M + 3) multiplies. i.e we have a complexity639

of O(M).640

V. SIMULATION RESULTS641

Our simulations have been carried out in MATLAB R2010b642

software. To demonstrate the operation of the proposed algo-643

rithm, some numerical examples are provided in this section.644

Example 1: Illustration of the CFP is provided by the645

following simple example:646

max
{Pi }

2
i=1

C =

2
∑

i=1

log2

(

1 +
Pi

Ni

)

647

with constraints :

2
∑

i=1

Pi ≤ 0.45;648

Pi ≤ 0.7 − 0.3i, i ≤ 2649

and Pi ≥ 0, i ≤ 2. (43)650

Assuming Ni = {0.1, 0.3}, we have Hi = {0.5, 0.4}. For the651

example of (43), water is filled above the first floor stair,652

as shown in Fig. 4a. This quantity of water is less than Pt .653

Hence, we fill the water above the second floor stair until the654

Fig. 4. Illustration for Example 1: (a) Water filled above floor stairs 1 and 2,
without peak constraint. (b) Water filled above floor stairs 2 only.

water level reaches 0.45. At this point the peak constraint for 655

the second resource comes into force and the water can only 656

be filled above second floor stair, as shown in Fig. 4b. Now, 657

this amount of water becomes equal to Pt giving K = 2. 658

We can observe that the first resource has a power determined 659

by the ‘waterlevel’, while the second resource is assigned the 660

peak power. 661

In Algorithm 1, we have U1 = 0 as Z+
1,1 = 0 and IR1 = 0. 662

d1 = Pt + N1 = 0.55, while Q1 = 1 × N2 = 0.3. We can 663

check that Q1 � (d1+U1) which indicates that K > 1. Hence, 664

we get K = 2. 665

Let us now use Algorithm 2 to find the specific resources 666

that are to be allocated the peak powers. We have IRK−1 = 0 667

as NK < H1. The remaining power PR in Algorithm 2 is 0.25. 668

The resource indices to check for the peak power allocation are 669

IB = {1, 2}. From Hm|m∈IB , we get [H1B, H2B] = {0.4, 0.5} 670

and IS = {2, 1}. We can check that F1 = 0.2 < PR and 671

F2 = 0.3 > PR . This gives L = 1. Hence we allocate the 672

peak power to the IS(L) or second resource, i.e. we have P2 = 673

P2t = 0.1. The first resource can be assigned the remaining 674

power of P1 = Pt − P2t = 0.35. 675

Example 2: A slightly more involved example of the CFP, 676

with more resources is illustrated here: 677

max
{Pi }

8
i=1

C =

8
∑

i=1

log2

(

1 +
Pi

Ni

)

678

with constraints :

8
∑

i=1

Pi ≤ 6; 679

Pi ≤ Pit , i ≤ 8 680

and Pi ≥ 0, i ≤ 8. (44) 681

In (44); we have Ni = 2i − 1,∀i and Pit = 682

{8, 1, 3, 3, 6, 3, 4, 1}. The heights of the cave roof stairs are 683

Hi = {9, 4, 8, 10, 15, 14, 17, 16}. 684

In Fig. 5, when the water is filled below the third cave roof 685

stair, the amount of water is Pt = 6, which fills above the 686

three cave floor stairs, hence giving K = 3. The same can be 687

obtained from Algorithm 1. Using Algorithm 1, the (di + Ui ) 688

and the Qi values are obtained which are shown in Table II. 689

Since the (di + Ui ) values are {7, 11, 18}, while the Qi are 690

{3, 10, 21}, we have Q3 > (d3 + U3) and Qi < (di + Ui ), 691

i = 1, 2. This gives K = 3. 692

As we have NK = 5 > H2 = 4, IRK−1 = 2; 693

the second resource is to be assigned the peak power. 694
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Fig. 5. Illustration of Example 2: Water filled below the roof stair 3 gives
K = 3.

TABLE II

RESULTS FOR EXAMPLE 2:

Similarly, as NK+1(= 7) > Hi , i ∈ [1, K ] is satisfied for i = 2695

resource, we have IRK = 2. Since IB = IRK −IRK−1 = ∅, there696

are no resources that have Hi , i ∈ [1, K ] values in between697

NK and NK+1. Thus, there is no need to invoke the ‘step-based698

water filling’ of Algorithm 2, which gives L = 0.699

Now, peak power based resources are IP = IRK−1 = {2}.700

The water filling algorithm allocates powers for the701

I c
P = [1, K ] − IP = {1, 3} resources.702

The peak power based resources and water filling based703

resources are shown in Table II. For the remaining power,704

PR = 1, the water level obtained for the I c
P resources705

(with L = 0) is 5.5. The powers allocated to the resources706

{1, 3} using this water level are {4.5, 0.5}. The powers and707

corresponding throughputs are shown in Table II.708

Example 3: The weighted CFP is illustrated by the following709

simple example:710

max
{Pi }

5
i=1

C =

5
∑

i=1

wi log2

(

1 +
Pi

Ni

)

711

with constraints :

5
∑

i=1

xi Pi ≤ 5;712

Pi ≤ 2, i ≤ 5713

and Pi ≥ 0, i ≤ 5. (45)714

In (45); lets us consider Ni = [0.2, 0.1, 0.4, 0.3, 0.5],715

wi = 6 − i and xi = i , ∀i . The N̄i values are716

Fig. 6. Index of the peak power based resources (continuous lines) and
waterfilling allotted resources (dashed lines) for Example 4.

Fig. 7. Throughputs of the resources for Example 4.

[0.04, 0.05, 0.4, 0.6, 2.5], while the H̄i values are [0.44, 1.05, 717

2.40, 4.60, 12.5]. Applying the ACF algorithm, we arrive at 718

K = 4. 719

We have H̄i < N̄K , i ∈ [1, K ] for the 1st resource. The 720

‘step-based’ waterfilling algorithm confirms that 1st resource 721

is indeed the resource having the peak power. The remaining 722

2nd , 3rd and 4th resources are allocated their powers using the 723

water filling algorithm. For the water level of 0.62222, powers 724

allotted for {2,3,4} resources are [1.1444, 0.22222, 0.011111]. 725

Example 4: Another example for the weighted 726

CFP associated with random weights: 727

max
{Pi }

64
i=1

C =

64
∑

i=1

wi log2

(

1 +
Pi

Ni

)

728

with constraints :

64
∑

i=1

xi Pi ≤ 1; 729

Pi ≤ Pit , i ≤ 64 730

and Pi ≥ 0, i ≤ 64. (46) 731

In this example, we assume Ni = σ 2

hi
while hi , wi and xi 732

are exponentially distributed with a mean of 1. Furthermore 733

σ 2 = 10−2 and Pit , ∀i are random values in the range 734

[10−3, 5 × 10−2]. 735

Now applying the ACF algorithm, we get K = 51 for a 736

particular realization of hi , wi and xi . For this realization, 737

from the [1, K ] resources, 38 resources are to be allocated 738

with the peak powers and 13 resources get powers from the 739

waterfilling algorithm. These resources are shown in Fig. 6. 740

The achieved throughput of the resources is given in Fig. 7 741

for the proposed algorithm. The results match with the values 742

obtained for known algorithms. 743

Table III gives the actual number of flops required by 744

the proposed solution and the other existing algorithms for 745
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TABLE III

COMPUTATIONAL COMPLEXITIES OF EXISTING ALGORITHMS AND THE PROPOSED SOLUTION FOR wi = xi = 1, ∀i

Example 4 with different M values. Since some of the existing746

algorithms do not support wi �= 1 and xi �= 1,∀i ; we assume747

wi = xi = 1,∀i for Table III.748

It can be observed from Table III that the number of flops749

imposed by the sub-gradient algorithm of [18] and [19] is more750

than 104 times that of the proposed solution. The number of751

flops required for the FWF of [21] and for the GWFPP of [22]752

are more than 102 times that of the proposed solution. This is753

because the proposed solution’s computational complexity is754

O(M), whereas the best known existing algorithms have an755

O(M2) order of computational complexity; as listed in Table I.756

It has also been observed from the above examples that757

|IB | = |IRK − IRK−1 | values are very small as compared to M .758

As such L has been obtained from Algorithm 2 within two759

iterations of the while loop.760

VI. CONCLUSIONS761

In this paper, we have proposed algorithms for solving762

the CFP at a complexity order of O(M). The approach was763

then generalized to the WCFP and to the WCFP-MMP. Since764

the best known solutions solve these three problems at a765

complexity order of O(M2), the proposed solution results766

in a significant reduction of the complexity imposed. The767

complexity reduction attained is also verified by simulations.768

APPENDIX769

A. Proof of Theorem 1770

Proof: Lagrange’s equation for (1) is771

L(Pi , λ, ωi , γi ) =

M
∑

i=1

log2

(

1 +
Pi

Ni

)

− λ

(
M

∑

i=1

Pi − Pt

)

772

−

M
∑

i=1

ωi (Pi − Pit ) −

M
∑

i=1

γi (0 − Pi )773

(47)774

§λ is initialized to 5 × 10−1.
§,¶ Number of iterations is given in brackets.
‖|IRK−1 | and |IB | are given in brackets. Actual number of flops

is M + 9K + 5|IB | + |IRK−1 | + 9.

Karush-Kuhn-Tucker (KKT) conditions for (47) are [3], [35] 775

∂L

∂ Pi
= 0 ⇒

1

Ni + Pi
− λ − ωi + γi = 0, (48) 776

λ

(

Pt −

M
∑

i=1

Pi

)

= 0, (49) 777

ωi (Pit − Pi ) = 0, ∀i (50) 778

γi Pi = 0, ∀i (51) 779

λ,ωi & γi ≥ 0, ∀i (52) 780

Pi ≤ Pit , ∀i, (53) 781

M
∑

i=1

Pi ≤ Pt . (54) 782

In what follows we show that the KKT conditions result in 783

a simplified ‘form’ for the solution of CFP which is similar 784

to the conventional WFP. The proof is divided into three 785

parts corresponding to the three possibilities for Pi : that is 786

1) Equivalent constraint for Pi < 0 in terms of the ‘water 787

level’ 1
λ and the corresponding solution form, 2) Equivalent 788

constraint for Pi ≤ Pit in terms of the ‘water level’ and 789

and the corresponding solution form, and 3) Equivalent form 790

for Pi < Pi < Pit in terms of the ‘water level’ and the 791

corresponding solution form. 792

1) Simplification for Pi ≥ 0: Multiplying (48) with Pi and 793

substituting (51) in it, we obtain 794

Pi

(
1

Ni + Pi

− λ − ωi

)

= 0 (55) 795

In order to satisfy (55), either Pi or ( 1
Ni +Pi

− λ − ωi ) should 796

be zero. Having Pi = 0, ∀i does not solve the optimization 797

problem. Hence, we obtain 798

(
1

Ni + Pi

− λ − ωi

)

= 0, when Pi > 0. (56) 799

Since ωi ≥ 0, (56) can be re-written as ( 1
Ni +Pi

− λ) ≥ 0. 800

Furthermore, taking Pi > 0 in this, we attain 801

1

λ
> Ni , when Pi > 0. (57) 802
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The opposite of this is803

1

λ
≤Ni , when Pi ≤ 0. (58)804

We can observe that (57) and (58) are equations related to the805

conventional WFP.806

2) Simplification for Pi ≤ Pit : Multiplying (48) with807

Pit − Pi and substituting (50) in it, we attain808

(Pit − Pi )

(
1

Ni + Pi

− λ + γi

)

= 0 (59)809

In (59), two cases arise:810

(a) If Pit > Pi , then ( 1
Ni +Pi

− λ + γi ) = 0 becomes true.811

Since γi ≥ 0, ( 1
Ni +Pi

− λ + γi ) = 0 is taken as812

( 1
Ni +Pi

− λ) < 0. Further Simplifying this and813

substituting Pi < Pit , we get814

1

λ
< Hi � (Pit + Ni ) , i f Pi < Pit . (60)815

(b) If Pit = Pi , then ( 1
Ni +Pi

− λ + γi ) ≥ 0 becomes true816

in (59).817

As γi ≥ 0, ( 1
Ni +Pi

− λ + γi ) ≥ 0 is re-written818

as ( 1
Ni +Pi

− λ) ≥ 0. Substituting Pit = Pi and819

simplifying this further, we obtain820

1

λ
≥ Hi � (Pit + Ni ) , i f Pi = Pit . (61)821

3) Simplification for 0 < Pi < Pit :822

(a) In (51); if γi is equal to zero, then Pi > 0. Combining823

this relation with (57), we can conclude that824

1

λ
> Ni , i f γi = 0. (62)825

(b) Similarly, in (50), if ωi = 0, then Pit > Pi follows.826

Using this relation in (60), we acquire827

1

λ
< Hi , i f ωi = 0. (63)828

(c) Combining (62) and (63), we have829

Ni <
1

λ
< Hi , i f ωi = γi = 0. (64)830

Using (64) in (48) and then re-arranging it gives831

Pi =
1

λ
− Ni , i f Ni <

1

λ
< Hi . (65)832

Combining (57), (58), (60), (61) and (65), powers are833

obtained as834

Pi =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪
⎩

(
1

λ
− Ni

)

, Ni <
1

λ
< Hi or

0 < Pi < Pit ;

Pit ,
1

λ
≥Hi ;

0,
1

λ
≤Ni .

(66)835

�836

B. Proof of Proposition 2 837

Proof: The proof is by contradiction. Assume that P⋆
i , 838

i ≤ M is the optimal solution for (1) such that
∑M

i=1 P⋆
i < Pt . 839

We now prove that as P⋆
i powers fulfil

∑M
i=1 P⋆

i < Pt , there 840

exists P⋄
i that has greater capacity. Define 841

P⋄
i = P⋆

i + △P⋆
i , ∀i (67) 842

such that 843

M
∑

i=1

P⋄
i = Pt and P⋄

i ≤ Pit , ∀i (68) 844

where △P⋆
i ≥ 0,∀i . From (7) there exists atleast one i such 845

that P⋆
i < Pit . It follows that △P⋆

i > 0 for atleast one i . 846

The capacity of M resources for P⋄
i allotted powers is 847

C
(

P⋄
i

)

=

M
∑

i=1

log2

(

1 +
P⋄

i

Ni

)

(69) 848

Substituting (67) in (69), we get 849

C
(

P⋄
i

)

=

M
∑

i=1

log2

(

1 +
P⋆

i

Ni

+
△P⋆

i

Ni

)

(70) 850

Re-writing the above, we obtain 851

C
(

P⋄
i

)

=

M
∑

i=1

log2

⎡

⎣

(

1 +
P⋆

i

Ni

)
⎛

⎝1 +

△P⋆
i

Ni

1 +
P⋆

i

Ni

⎞

⎠

⎤

⎦ (71) 852

Following ‘log(ab) = log(a) + log(b)’ in the above, we acquire 853

C
(

P⋄
i

)

=

M
∑

i=1

log2

(

1 +
P⋆

i

Ni

)

+

M
∑

i=1

log2

⎛

⎝1 +

△P⋆
i

Ni

1 +
P⋆

i

Ni

⎞

⎠
854

(72) 855

As △P⋆
i > 0 for atleast one i , the second term on the R.H.S. 856

of (72) is always positive. We have 857

C
(

P⋄
i

)

> C
(

P⋆
i

)

(73) 858

In other words,
∑M

i=1 P⋄
i = Pt produces optimal capacity; 859

completing the proof. � 860

C. The Computational Complexity of 861

Calculating Zm,i for CFP 862

Below, it is shown that the worst case computational 863

complexity of calculating Zm,i ; m ≤ i and i ≤ K for CFP 864

is K subtractions. 865

• In Algorithm 1, we first check if Ni+1 > Hm. IRi is 866

taken as ‘m’ values for which Ni+1 > Hm . Note also that 867

IRi−1 ⊂ IRi . This is because if Zm,i = Ni+1 − Hm > 0, 868

then Zm, j ; j = i + 1, · · · , K is always positive since 869

N j > Ni , j > i . Hence, in the worst case, K log(K ) 870

comparisons are required. The cost of a comparison, is 871

typically lower than that of an addition [36]. Hence it 872

has not been included in the flop count. 873

• As per Algorithm 1, we calculate Zm,i ’s only for m ∈ 874

(IRi − IRi−1 ). Furthermore, if we have Zm,i = Ni+1 − 875

Hm > 0, then Zm, j ; j = i + 1, · · · , K is always positive 876
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since N j > Ni , j > i . In other words, if IRi−1 gets some877

‘x’ values, then the same ‘x’ values will also be there878

in IRi and the contribution of this part to the overall879

area, Ui is |IRi−1 |(N(i + 1) − Ni ); which is calculated880

in Step 5. This implies that if Zm,i is calculated for881

m ∈ IRi , then there is no need to calculate Zm,i for882

m ∈ IRi+1 , IRi+2 , . . . IRK . Hence, for a given m, Zm,i883

is calculated, in the worst case, once; for one ‘i ’ only.884

As such, the worst case complexity of calculating Zm,i is885

as low as that of K subtractions.886

D. The Computational Complexity of887

Calculating UK for CFP888

Here we show that the worst case computational complexity889

of calculating UK for CFP is 4K adds and K multiplies.890

Note that in each iteration of Algorithm 1 the following is891

calculated:892

Ui = Ui−1 + |IRi−1 | (Ni+1 − Ni ) +

i
∑

m∈(IRi
−IRi−1 )

Z+
m,i . (74)893

There are three terms in (74) and we calculate the complexity894

of each term separately, as follows:895

• The first term of (74), Ui−1, is already computed in the896

(i −1)-th iteration, hence involves no computation during897

the i -th iteration.898

• The second term, |IRi−1 |(Ni+1 − Ni ), is taking care of the899

increase in reference height from Ni to Ni+1 for those900

roof stairs, which are already below the reference level901

Ni . The computation of this term requires only a single902

multiplication and addition.903

• The third term gives the areas of the roof stairs which904

are below Ni+1 but not Ni . The number of additions in905

this is Ai = |IRi − IRi−1 |−1.906

• Taking into account the two adds per iteration required907

for adding all the three terms, the total computational908

complexity of calculating Ui , given Ui−1 is 1 multiply909

and 3 + Ai adds.910

Since K Ui ’s are calculated; the total computational complexity911

of calculating all Ui ’s will be
∑K

i=1 3+Ai = 3K +|IRK | ≤ 4K912

adds and K multiplies.913

E. The Computational Complexity of914

Calculating ŪK for WCFP915

Here we show that the worst case computational complexity916

of calculating ŪK for WCFP is 4K adds 2K multiplies.917

Note that in each iteration of Algorithm 3 the following is918

calculated:919

Ūi = Ūi−1 + WRi−1

(

N̄i+1 − N̄i

)

+

i
∑

m∈( ĪRi
−IRi−1 )

wm Z̄+
m,i .920

(75)921

There are three terms in (75) and we calculate the complexity922

of each term separately, as follows:923

• The first term of (75), Ūi−1, is already computed 924

in i−1-th iteration, hence involves no computation during 925

the i -th iteration. 926

• The computation of second term, WRi−1 (N̄i+1 − N̄i ), 927

requires only a single multiplication and addition. 928

• The third term gives the areas of the roof stairs which 929

are below N̄i+1 but not N̄i . The number of additions in 930

this is Ai = | ĪRi |− | ĪRi−1 |. The corresponding number of 931

multiplications is one. 932

• Taking into account the two adds per iteration required 933

for adding all the three terms, the total computational 934

complexity of calculating Ui , given Ui−1 is 2 multiply 935

and 3 + Ai adds. 936

Since KU i ’s are calculated; the total computational complexity 937

of calculating all Ui ’s will be
∑K

i=1 3+Ai = 3K +|IRK | ≤ 4K 938

adds and 2K multiplies. 939
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An Efficient Direct Solution of
Cave-Filling Problems

Kalpana Naidu, Student Member, IEEE, Mohammed Zafar Ali Khan, Senior Member, IEEE,
and Lajos Hanzo, Fellow, IEEE

Abstract— Waterfilling problems subjected to peak powerAQ:1 1

constraints are solved, which are known as cave-filling2

problems (CFP). The proposed algorithm finds both the optimum3

number of positive powers and the number of resources that are4

assigned the peak power before finding the specific powers to be5

assigned. The proposed solution is non-iterative and results in a6

computational complexity, which is of the order of M, O(M),7

where M is the total number of resources, which is significantly8

lower than that of the existing algorithms given by an order of9

M
2, O(M

2), under the same memory requirement and sorted10

parameters. The algorithm is then generalized both to weighted11

CFP (WCFP) and WCFP requiring the minimum power. These12

extensions also result in a computational complexity of the13

order of M, O(M). Finally, simulation results corroborating the14

analysis are presented.15

Index Terms— Weighted waterfilling problem, Peak power16

constraint, less number of flops, sum-power constraint, cave17

waterfilling.18

I. INTRODUCTION19

W
ATERFILLING Problems (WFP) are encountered in

AQ:2

20

numerous communication systems, wherein specifi-21

cally selected powers are allotted to the resources of the22

transmitter by maximizing the throughput under a total sum23

power constraint. Explicitly, the classic WFP can be visualized24

as filling a water tank with water, where the bottom of the tank25

has stairs whose levels are proportional to the channel quality,26

as exemplified by the Signal-to-Interference Ratio (SIR) of27

the Orthogonal Frequency Division Multiplexing (OFDM)28

sub-carriers [1], [2].29

This paper deals with the WaterFilling Problem under Peak30

Power Constraints (WFPPPC) for the individual resources.31

In contrast to the classic WFP where the ‘tank’ has a ‘flat32

lid’, in WFPPPC the ‘tank’ has a ‘staircase shaped lid’,33

where the steps are proportional to the individual peak power34
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constraint. This scenario is also metaphorically associated with 35

a ‘cave’ where the stair-case shaped ceiling represents the peak 36

power that can be assigned, thus fulfilling all the require- 37

ments of WFPPPC. Thus WFPPPC is often referred to as 38

a ‘Cave-Filling Problem’ (CFP) [3], [4]. 39

In what follows, we will use the ‘cave-filling’ metaphor to 40

develop insights for solving the WFPPPC. Again, the user’s 41

resources can be the sub-carriers in OFDM or the tones in 42

a Digital Subscriber Loop (DSL) system, or alternatively the 43

same sub-carriers of distinct time slots [5]. 44

More broadly, the CFP occurs in various disciplines of 45

communication theory. A few instances of these are: 46

a) protecting the primary user (PU) in Cognitive 47

Radio (CR) networks [6]–[9]; 48

b) when reducing the Peak-to-Average-Power 49

Ratio (PAPR) in Multi-Input-Multi-Output (MIMO)- 50

OFDM systems [10], [11]; 51

c) when limiting the crosstalk in Discrete Multi- 52

Tone (DMT) based DSL systems [12]–[14]; 53

d) in energy harvesting aided sensors; and 54

e) when reducing the interference imposed on nearby 55

sensor nodes [15]–[17]. 56

Hence the efficient solution of CFP has received some atten- 57

tion in the literature, which can be classified into iterative and 58

exact direct computation based algorithms. 59

Iterative algorithms conceived for CFP have been consid- 60

ered in [18]–[20], which may exhibit poor accuracy, unless 61

the initial values are carefully selected. Furthermore, they 62

may require an extremely high number of iterations for their 63

accurate convergence. 64

Exact direct computation based algorithms like the Fast 65

WaterFilling (FWF) algorithm of [21], the Geometric 66

WaterFilling with Peak Power (GWFPP) constraint based algo- 67

rithm of [22] and the Cave-Filling Algorithm (CFA) obtained 68

by minimizing Minimum Mean-Square Error (MMSE) of 69

channel estimation in [3] solve CFPs within limited number 70

of steps, but impose a complexity on the order of O(M2). 71

All the existing algorithms solve the CFPs by evaluating 72

the required powers multiple times, whereas the proposed 73

algorithm directly finds the required powers in a single step. 74

Explicitly, the proposed algorithm reduces the number of 75

Floating point operations (flops) by first finding the number of 76

positive powers to be assigned, namely K , and the number of 77

powers set to the maximum possible value, which is denoted 78

by L. This is achieved in two (waterfilling) steps. First we use 79

‘coarse’ waterfilling to find the number of positive powers to 80

0090-6778 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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be assigned and then we embark on step-by-step waterfilling81

to find the number of positive powers that have to be set to82

the affordable peak powers.83

In this paper we present an algorithm designed for the84

efficient solution of CFPs. The proposed solution is then85

generalized for conceiving both a Weighted CFP (WCFP)86

and a WCFP having both a Minimum and a Maximum87

Power (WCFP-MMP) constraint. It is demonstrated that the88

maximum throughput is achieved at a complexity order of89

O(M) by all the three algorithms proposed.90

The outline of the paper is as follows. Section II outlines91

our system model and develops the algorithms for solv-92

ing the CFP. In Section III we conceive the WCFP, while93

Section IV presents our WCFP-MMP. Our simulation results94

are provided in Section V, while Section VI concludes the95

paper.96

II. THE CAVE-FILLING PROBLEM97

In Subsection II-A, we introduce the CFP. The com-98

putation of the number of positive powers is presented99

in Subsection II-B, while that of the number of powers set100

to the maximum is presented in Subsection II-C. Finally, the101

computational complexity is evaluated in Subsection II-D.102

A. The CFP103

The CFP maximizes the attainable throughput, C , while104

satisfying the sum power constraint; Hence, the sum of powers105

allocated is within the prescribed power budget, Pt , while106

the power, Pi ,∀i assigned for the i th resource is less than107

the peak power, Pit , ∀i . Our optimization problem is then108

formulated as:109

max
{Pi }

M
i=1

C =

M
∑

i=1

log2

(

1 +
Pi

Ni

)

110

subject to :

M
∑

i=1

Pi ≤ Pt ;111

Pi ≤ Pit , i ≤ M,112

and Pi ≥ 0, i ≤ M, (1)113

where M is the total number of resources (such as OFDM114

sub-carriers) and {Ni }
M
i=1 is the sequence of interference plus115

noise samples. The above optimization problem occurs in the116

following scenarios:117

(a) In the downlink of a wireless communication sys-118

tem, where the base station (BS) assigns a resource119

(e.g. frequency band) to a user and allocates a certain120

power, Pi , to the i th resource while obeying the total121

power budget (Pt ). The BS ensures that Pi ≤ Pit for122

avoiding the near-far problem [23].123

(b) In an OFDM system, a transmitter assigns specific pow-124

ers to the resources (e.g. sub-carriers) for satisfying the125

total power budget, Pt . Furthermore, to reduce the PAPR126

problem, the maximum powers assigned are limited to127

be within the peak powers [24], [25].128

Theorem 1: The solution of the CFP (1) is of the ‘form’ 129

Pi =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

(
1

λ
− Ni

)

, 0 < Pi < Pit ;

Pit ,
1

λ
≥Hi � (Pit + Ni );

0,
1

λ
≤Ni

(2) 130

where “ 1
λ

is the water level of the CFP”. 131

Proof: The proof is in Appendix VI-A. � 132

Remark 1: Note that as in the case of conventional water- 133

filling, the solution of CFP is of the form (2). The actual 134

solution is obtained by solving the solution form along with 135

the primal feasibility constraints. Furthermore, for the set of 136

primal feasibility constraints of our CFP, the Peak Power 137

Constraint of Pi ≤ Pit ,∀i is incorporated in the solution form. 138

By contrast, the sum power constraint is considered along 139

with (2) to obtain the solution in Propositions 1 and 2. 140

Remark 2: Observe from (2) that for 0 < Pi < Pit , 141

Pi = ( 1
λ

− Ni ) which allows 1
λ

to be interpreted as the 142

‘water level’. However, in contrast to conventional water- 143

filling, the ‘water level’ is upper bounded by maxi Pit . Beyond 144

this value, no ‘extra’ power can be allocated and the ‘water 145

level’ cannot increase. The solution of this case is considered 146

in Proposition 1. 147

It follows that (2) has a nice physical interpretation, namely 148

that if the ‘water level’ is below the noise level Ni , no power 149

is allocated. When the ‘water level’ is between Ni and Pit , the 150

difference of the ‘water level’ and the noise level is allocated. 151

Finally, when the ‘water level’ is higher than the ‘peak level’, 152

Hi ; the peak power Pit is allocated. 153

The above solution ‘form’ can be rewritten as 154

Pi =

(
1

λ
− Ni

)+

, i = 1, · · · , M; and (3) 155

Pi ≤ Pit , i = 1, · · · , M (4) 156

where we have A+ � max(A, 0). The solution for (1) has a 157

simple form for the case the ‘implied’ power budget, PI t as 158

defined as PI t =
∑M

i=1 Pit is less than or equal to Pt and is 159

given in Proposition 1. 160

Proposition 1: If the ‘implied’ power budget is less than or 161

equal to the power budget (
∑M

i=1 Pit ≤ Pt ), then peak power 162

allocation to all the M resources gives optimal capacity. 163

Proof: Taking summation on both sides of Pi ≤ Pit ,∀i , 164

we obtain the ‘implied’ power constraint 165

M
∑

i=1

Pi ≤

M
∑

i=1

Pit

︸ ︷︷ ︸

PI T

. (5) 166

However from (1) we have 167

M
∑

i=1

Pi ≤ Pt . (6) 168

Consequently, if PI t ≤ Pt , then peak power allocation to all 169

the M resources (i.e. Pi = Pit , ∀i ) fulfils all the constraints 170

of (1). Consequently, the total power allocated to M resources 171

∑M
i=1 Pit . Since the maximum power that can be allocated to 172
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any resource is it’s peak power, peak power allocation to all173

the M resources produces optimal capacity. �174

Note that in this case the total power allocated is less than175

(or equal to) Pt . However, if Pt <
∑M

i=1 Pit , then all the M176

resources cannot be allocated peak powers since it violates the177

total sum power constraint in (1).178

In what follows, we pursue the solution of (1) for the case179

Pt <

M
∑

i=1

Pit . (7)180

We have,181

Proposition 2: The optimal powers and hence optimal182

capacities are achieved in (1) (under the assumption (7))183

only if184

M
∑

i=1

Pi = Pt . (8)185

Proof: The proof is in Appendix VI-B. �186

Since finding both the number of positive powers and the187

number of powers that are set to the maximum is crucial188

for solving the CFP, we formally introduce the following189

definitions.190

Definition 1 (The Number of Positive Powers, K ): Let I =191

{i ; such that Pi > 0} be the set of resource indices, where Pi192

is positive. Then the number of positive powers, K = |I|, is193

given by the cardinality, |I|, of the set.194

Definition 2 (The Number of Powers Set to the Peak195

Power, L): Let IP = {i ; such that Pi = Pit } be the set of196

resource indices, where Pi has the maximum affordable value197

of Pit . Then the number of powers set to the peak power,198

L = |IP |, is the cardinality, |IP | of the set.199

Without loss of generality, we assume that the interference200

plus noise samples Ni are sorted in ascending order, so that201

the first K powers are positive, while the remaining ones are202

set to zero. Then, (8) becomes203

K
∑

i=1

Pi = Pt . (9)204

Note that Hi and Pit are also arranged in the ascending order205

of Ni , in order to preserve the original relationship between206

Hi and Ni .207

B. Computation of the Number of Positive Powers208

The CFP can be visualized as shown in Fig. 1a. In a cave,209

the water is filled i.e. the power is apportioned between the210

floor of the cave and the ceiling of the cave. The levels of the211

i th ‘stair’ of the floor staircase and of the ceiling staircase are212

Ni and Hi � (Pit + Ni ), respectively. The widths of all stairs213

are assumed to be 1. Since the power gap between the floor214

stair and the ceiling stair is Pit , the allocated power has to215

satisfy Pi ≤ Pit .216

As the water is poured into the cave, observe from Fig. 1b217

that it obeys the classic waterfilling upto the point where the218

‘waterlevel’ ( 1
λ ) reaches the ceiling stair of the 1st resource.219

From this point onwards, water can only be stored above220

the second stair, as depicted in Fig. 1c upto a point where221

Fig. 1. Geometric Interpretation of CFP for K = 4. (a) Heights of i th stair
in cave floor staircase and cave roof staircase are Ni and Hi (= Pit + Ni ).
(b) Water is filled (Power is allotted) in between the cave roof stair and cave
floor stair, at this waterlevel the peak power constraint for P1 constraints
further allocation to P1. (c) A similar issue occurs to P2 also.Observe that the
variable Zm,4 represents the height of mth cave roof stair below the (4+1)th

cave floor stair. (d) Power allotted for i th resource is Pi = min{ 1
λ , Hi}− Ni .

Observe the waterlevel between 4th and 5th resource. (e) The area 1
λ K , shown

in this figure, is smaller than the area NK +1 K shown in (f).

the water has filled the gap between the floor stair and the 222

ceiling stair of both the first and the second stairs. In terms 223

of power, we have Pi = Pit for the resources i = 1 and 2. 224

Mathematically, we have Pi = Pit if Hi ≤ 1
λ

. 225

As more water is poured, observe from Fig. 1d that for the

AQ:3

226

third and the fourth stairs, we have Hi > 1
λ . It is clear from 227

the above observations (also from (2)) that the power assigned 228

to the i th resource becomes: 229

Pi = min

{
1

λ
, Hi

}

− Ni , i ≤ K . (10) 230

In Fig. 1d, the height of the fifth floor stair exceeds 1
λ

. 231

As water can only be filled below the level 1
λ , no water is 232
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Algorithm 1 ACF Algorithm for Obtaining K

Require: Inputs required are M , Pt , Ni & Hi (in ascending
order of Ni ).

Ensure: Output is K , IRK−1 ,IRK , dK .
1: i = 1. Denote d0 = Pt , U0 = 0 and IR0 = ∅

2: Calculate di = di−1 + Ni .
3: ⊲ Calculate the area Ui =

∑i
m=1 Z+

m,i as follows:
4: IRi = IRi−1 ∪ {m; such that Ni+1 > Hm & m � ∈IRi−1 };

Zm,i = N(i+1) − Hm, m ∈ (IRi − IRi−1 )

5: Ui = Ui−1 + |IRi−1 |(Ni+1 − Ni ) +
∑

m∈(IRi
−IRi−1 ) Z+

m,i

6: Calculate the area Qi = i N(i+1)

7: if Qi ≥ (di + Ui ) then

8: K ← i . Exit the algorithm.
9: else

10: i ← i+1, Go to 2
11: end if

filled above the fifth bottom stair. This results in K = 4, as233

shown in Fig. 1d. The area of the water-filled cave cross-234

section becomes equal to Pt .235

Fig. 1c also introduces the variable Z i,k as the depth of236

the i th ceiling stair below the (k + 1)st bottom stair; that is,237

we have:238

Z i,k = N(k+1) − Hi , i ≤ k. (11)239

The variable Z i,k allows us to have a reference, namely a240

constant roof ceiling of Ni+1 , while verifying whether K = i .241

Figure 1c depicts this dynamic for i = 4. The constant roof242

reference is given at Ni+1 . Observe that we have Z+
i,k > 0 for243

i = 1, 2 and Z+
i,k = 0 for i = 3, 4 with k = 4. This allows244

us to quantify the total cave cross-section area in Fig 1e, upto245

the i th step in three parts:246

• the area occupied by roof stairs below the constant roof247

reference, given by
∑i

k=1 Z+
k,i ;248

• the area occupied by the ‘water’, given by Pt ;249

• the area occupied by the floor stairs,
∑i

k=1 Nk .250

This is depicted in Fig. 1e. Observe from Fig. 1e that251

if the waterlevel of 1
λ is less than the (i + 1)st water level252

(i + 1 = 5 in this case), then the cave cross-section area253

given by
∑i

k=1 Z+
k,i + Pt +

∑i
k=1 Nk (shown in Fig. 1e) would254

be less than the total area of i Ni+1 , as shown in Fig. 1f.255

Furthermore, if the waterlevel 1
λ

is higher than the (i + 1)st
256

water level (i + 1 = 2, 3, 4 in this case), then the area given257

by
∑i

k=1 Z+
k,i + Pt +

∑i
k=1 Nk would be higher than the total258

area of i Ni+1 , as shown in Fig. 1f.259

Based on the insight gained from the above geometric260

interpretation of the CFP, we develop an algorithm for finding261

K for any arbitrary CFP, which we refer to as the Area based262

Cave-Filling (ACF) of Algorithm 1.263

Note that d0 in Algorithm 1 represents an initialization264

step that eliminates the need for the addition of Pt at every265

resource-index i and the set IRi contains the indices of the266

ceiling steps, whose ‘height’ is below Ni+1 . Furthermore, the267

additional outputs of Algorithm 1 are required for finding268

the number of roof stairs that are below the waterlevel in269

Algorithm 2. We now prove that Algorithm 1 indeed finds270

the optimal value of K .271

Algorithm 2 ‘Step-Based’ Waterfilling Algorithm for
Obtaining L

Require: Inputs required are K , dK , IRK−1 , IRK , Ni & Hi

(in ascending order of Ni )
Ensure: Output is L, IS .
1: Calculate PR = dK − K NK + |IRK−1 |NK −

∑

m∈IRK−1
Hm

2: Calculate IB = IRK − IRK−1 & D1 = K − |IRK−1 |.
3: If |IB | = 0, set L = 0, IS = ∅. Exit the algorithm.
4: Sort {Hm}m∈IB in ascending order and denote it as {Hm B}

and the sorting index as IS .
5: Initialize m = 1, Fm = (Hm B − NK )Dm .
6: while Fm < PR do

7: m = m + 1.
8: Dm = Dm−1 − 1
9: Fm = Fm−1 + (Hm B − H(m−1)B)Dm

10: end while

11: L = m − 1.

Theorem 2: The Algorithm 1 delivers the optimal value of 272

the number of positive powers, K , as defined in Definition 1. 273

Proof: We prove Theorem 2 by first proving that φ(i) = 274

di +Ui , is a monotonically increasing function of the resource- 275

index i . It then follows that Qi ≥ (di + Ui ) gives the first i , 276

for which the waterlevel is below the next step. Consider 277

φ(i) − φ(i − 1) 278

= di − di−1 + Ui − Ui−1 (12) 279

= Ni + |IRi−1 | (Ni+1 − Ni ) +

i
∑

m∈(IRi
−IRi−1 )

Z+
m,i (13) 280

> 0, (14) 281

where (13) follows from (12) by using the definitions of di 282

and Ui in Algorithm 1. Since the interference plus noise levels 283

Ni are positive, we have (Ni+1 − Ni ) ≥ 0, and since the Ni ’s 284

are in ascending order, (14) follows from (13). 285

Let us now consider the reference area, Qi = i Ni+1 . Within 286

this reference area; certain parts are occupied by the floor 287

stairs, others by the projections of the ceiling stairs and finally 288

by the space in between the floor and the ceiling; filled by 289

‘water’. This is given by Wi = Qi −
∑i

m Nm −Ui . Recall that 290

the total amount of water that can be stored is Pt . If we have 291

Pt > Wi , then there is more water than the space available, 292

hence the water will overflow to the next stair(s). Otherwise, 293

if we have Pt ≤ Wi , all the water can be contained within the 294

space above this stair and the lower stairs. Substituting the 295

value of Wi in this inequality, we have 296

Pt ≤ Qi −

i
∑

m

Nm − Ui (15) 297

⇒ Pt +

i
∑

m

Nm + Ui ≤ Qi (16) 298

di + Ui ≤ Qi (17) 299

where (16) is obtained from (15) by rearranging. Then using 300

the definition of di in Algorithm 1, we arrive at (17). 301
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Fig. 2. Peak power allocation for resources having their Hi ’s in between
NK and N(K +1) .

Since Algorithm 1 outputs the (first) smallest value of the302

resource-index i for which (17) is satisfied, it represents the303

optimal value of K .304

This completes the proof. �305

Once K is obtained, it might appear straightforward to306

obtain the values of Pi , i ∈ [1, K ]‡ as in [26] and [27]; but in307

reality it is not. This is because of the need to find the specific308

part of the cave roof, which is below the ‘current’ waterlevel.309

Note that IRK−1 ⊂ IP ⊂ IRK where IP is the set of roof310

stairs below the current waterlevel and IRK is the set of roof311

stairs below NK+1. This is because the waterlevel of 1
λ

is312

between NK and NK+1.313

C. Waterfilling for Finding the Number of314

Powers Having the Peak Allocation315

In order to develop an algorithm for finding L, we first316

consider the geometric interpretation of an example shown317

in Fig. 2. Note that the Hm’s below NK , (NK − Hm) > 0,318

belong to IRK−1 and the Hm values above NK+1 belong to319

IUK . This is clearly depicted in Fig. 2 for K = 6, where320

IRK−1 = {1, 2} and IUK = {5, 6}.321

The contentious Hm’s are those whose heights lie between322

NK and NK+1. The indices of these Hm’s are denoted by323

IB (in Fig. 2, IB = {3, 4}). Without loss of generality, we324

assume that B roof stairs, Hm’s, lie between NK and NK+1.325

We now have to find among these B stairs, those particular326

ones whose heights lie below the water level, 1
λ (for which327

peak powers are allotted). Note that B = |IRK | − |IRK−1 | and328

IB = [1, K ] − IRK−1 − IUK = IRK − IRK−1 .329

This is achieved by a ‘second’ waterfilling style technique330

as detailed below.331

Clearly, the resources that belong to the set IRK−1 are332

allotted with peak powers as (Hm − 1
λ
) < 0, m ∈ IRK−1 .333

The remaining ceiling stairs in IB will submerge one by334

one as the waterlevel increases from NK . For this reason;335

the heights {Hm}m∈IB are sorted in ascending order to obtain336

Hm B and IS is the sort index for Hm B .337

After allotting IRK−1 resources with peak powers,338

whose sum is equal to
∑

m∈IRK−1
Pmt , we can allocate339

(NK − Nm )+, m ∈ I c
RK−1

power to the remaining resources340

indexed by I c
RK−1

, where for a set A, Ac = [1, K ] − A341

‡[A,B] represents the interval in between A and B, including A and B.

represents its complement. That is we allot power to remaining 342

resources with the ‘present’ waterlevel being NK . The power 343

that remains to be allocated for I c
RK−1

resources is given by 344

PR = Pt −
∑

m∈IRK−1

Pmt −
∑

m∈I c
RK−1

(NK − Nm )+ (18) 345

= Pt +

K
∑

m=1

Nm − K NK + |IRK−1 |NK −
∑

m∈IRK−1

Hm. 346

(19) 347

Equation (19) is obtained using a geometric interpretation 348

as follows; the term dK = Pt +
∑K

m=1 Nm is the sum 349

of total water and K floor stairs. Subtracting from it the 350

reference area of K NK gives the excess water that is in 351

excess amount; without considering the ceiling stairs. Further 352

subtracting the specific part of the ceiling stairs that are below 353

NK namely
∑

m∈IRK−1
Hm − |IRK−1 |NK gives the residual 354

‘water’ amount, PR . 355

Note from Fig. 2 that once PR amount of ‘water’ has been 356

poured, and provided that PR < (K − |IRK−1 |)(H1B − NK ) 357

is satisfied, then we have L = |IRK−1 | and hence no more 358

‘water’ is left to be poured. Otherwise, F1 = (K − |IRK−1 |) 359

(H1B − NK ) amount of ‘water’ is used for completely sub- 360

merging the 1st ceiling stair (H1B) and the ‘present’ water- 361

level increases to H1B. Similarly, F2 = (K − |IRK−1 | − 1) 362

(H2B − H1B) amount of water is used for submerging the 363

second ceiling stair and hence the waterlevel increases to H2B . 364

This process continues until all the ‘water’ has been poured. 365

We refer to this process as ‘step-based’ waterfilling since the 366

waterlevel is changed in steps given by the size of the roof 367

stairs. 368

The formal algorithm, which follows the above geometric 369

interpretation but it aims for a low complexity, is given in 370

Algorithm 2. Let us now prove that Algorithm 2 delivers the 371

optimal value of L. 372

Theorem 3: Algorithm 2 finds the optimal value L of the 373

number of powers that are assigned peak powers, where L is 374

defined in Definition 2 . 375

Proof: First observe that the Fm values are monotonically 376

increasing functions of the index m. Since the Hm B values 377

are sorted in ascending order, the water filling commences 378

from m = 1. The condition Fm < PR is true, as long as the 379

total amount of water required to submerge the m th roof stair, 380

Fm , is less than the available water. It follows then that the 381

algorithm outputs the largest m, for which the inequality is 382

satisfied which hence represents the optimal value of L. � 383

The resources for which peak powers are allotted are 384

indexed by IP = IRK−1 ∪ IS(1 : L), where IS(1 : L) stands 385

for the first ‘L’ resources of IS . The remaining resources, 386

indexed by I c
P = [1, K ] − IP , are allotted specific powers 387

using waterfilling. 388

In Fig. 2, the I c
P resources are 5 and 6 with associated 389

‘L’ = 2 while PR − FL represents the darkened area in Fig. 2. 390

The waterlevel for I c
P resources is equal to the height, HL B , of 391

the last submerged roof stair plus the height of the darkened 392

area. Here, the height of the darkened area is obtained by 393

dividing the remaining water amount (= PR − FL ) with the 394



6 IEEE TRANSACTIONS ON COMMUNICATIONS

TABLE I

COMPUTATIONAL COMPLEXITIES (IN FLOPS) OF KNOWN SOLUTIONS FOR SOLVING CFP

number of remaining resources (= |I c
P | ) since the width of395

all resources is 1. If we have L = 0, then the last level is NK .396

Therefore the waterlevel for I c
P resources is given by397

1

λ
=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

HL B +
PR − FL

|I c
P |

, L > 0;

NK +
PR

|I c
P |

, otherwise.
(20)398

The powers are then allotted as follows:399

Pi =

⎧

⎨

⎩

Pit , i ∈ IP ;
(

1

λ
− Ni

)

, i ∈ I c
P .

(21)400

D. Computational Complexity of the CFP401

Let us now calculate the computational complexity of both402

Algorithm 1 as well as of Algorithm 2 separately and then403

add the complexity of calculating the powers, as follows:404

• Calculating Hi requires M adds.405

• Observe that Algorithm 1 requires K + 1 adds for cal-406

culating di ’s; K multiplies to find Qi ’s; maximum of K407

subtractions for calculating Zm,i ’s and, in the worst case,408

4K additions as well as K multiplications for calculating409

UK : the proofs are given in Appendices C and D.410

So, algorithm 1 requires 6K + 1 additions and 2K411

multiplications for calculating K .412

• Note that in Algorithm 2: 2 multiplies and 3 + |IRK−1 |413

additions are needed for the calculation of PR ; 2 adds414

and 1 multiply for computing F1, D1; 4|IB | adds and IB415

multiples for evaluating the while loop. Since we have416

|IRK−1 |, |IB | < K , the worst case complexity of Algo-417

rithm 2 is given by 5K + 5 adds and K + 3 multiplies.418

• The computational complexity of calculating Pi using (3)419

is at-most K adds.420

• The total computational complexity of solving our CFP421

of this paper, is 12K +6+ M adds and 3K +3 multiplies.422

Since K is not known apriori, the worst case complexity423

is given by 13M + 6 adds and 3M + 3 multiplies. Hence424

we have a complexity order of O(M) floating point425

operations (flops).426

Table I gives the number of flops required for iterative algo-427

rithm of [18] and [19], FWF of [21], GWFPP algorithm of [22]428

and of the proposed ACF algorithm. Observe the order of429

magnitude improvement for ACF.430

Remark 3: Following the existing algorithms conceived for431

solving the CFP (like [2] and [22]), we do not consider the432

complexity of sorting Ni , as the channel gain sequences come433

from the eigenvalues of a matrix; and most of the algorithms434

compute the eigenvalues and eigenvectors in sorted order.435

Remark 4: Observe that we have not included the complex- 436

ity of sorting Hi at step 4 in Algorithm 2. This is because the 437

sorting is implementation dependent. For fixed-point imple- 438

mentations, sorting can be performed with a worst case 439

complexity of O(M) comparisons using algorithms like Count 440

Sort [28]. For floating point implementations, sorting can 441

be performed with a worst case complexity of O(M log(M)) 442

comparisons [29]. Since, almost all implementations are of 443

fixed-point representation: the overall complexity, including 444

sorting of Hi would still be of O(M). 445

III. WEIGHTED CFP 446

An interesting generalization for CFP is the scenario when 447

the rates and the sum power are weighted, hence resulting in 448

the Weighted CFP (WCFP), arising in the following context. 449

(a) In a CR network, a CR senses that some resources 450

are available for it’s use. Hence the CR allots powers 451

to the available resources for a predefined amount of 452

time while assuring that the peak power remains limited 453

in order to keep the interference imposed on the PU 454

remains within the limit. The weights wi and xi may be 455

adjusted based on the resource’s available time and on 456

the sensing probabilities [30]–[32]. 457

(b) In Sensor Network (SN) the resources have priorities 458

according to their capability to transfer data. These pri- 459

orities are reflected in the weights, wi . The weights xi ’s 460

allow the sensor nodes to save energy, while avoiding 461

interference with the other sensor nodes [33], [34]. 462

The optimization problem constituted by weighted CFP is 463

given by 464

max
{Pi }

M
i=1

C =

M
∑

i=1

wi log2

(

1 +
Pi

Ni

)

465

subject to :

M
∑

i=1

xi Pi ≤ Pt (22) 466

Pi ≤ Pit , i ≤ M 467

and Pi ≥ 0, i ≤ M, 468

where again wi and xi are the weights of the i th
469

resource’s capacity and allocated power, respectively. Similar 470

to Theorem 1, we have 471

Theorem 4: The solution of the WCFP (22) is of the ‘form’ 472

P̄i =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

(
1

λ
− N̄i

)

, 0 < P̄i < P̄it ;

P̄it ,
1

λ
≥ H̄i �

(

P̄it + N̄i

)

;

0,
1

λ
≤ N̄i

(23) 473
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where “ 1
λ

is the water level of the WCFP”, P̄i = Pi xi

wi
is the474

weighted power, P̄it = Pit xi

wi
is weighted peak power, N̄i = Ni xi

wi
475

is the weighted interference plus noise level and H̄i = N̄i + P̄it476

is the weighted height of i th cave ceiling stair.477

Proof: The proof is similar to Theorem 1 and has been478

omitted. �479

The above solution form can be rewritten as480

P̄i =

(
1

λ
− N̄i

)+

, i = 1, · · · , M; and (24)481

P̄i ≤ P̄it , i = 1, · · · , M (25)482

where we have A+ � max(A, 0). The solution for (22) has a483

simple form for the case the ‘implied’ weighted power budget,484

P̄I t as defined as P̄I t =
∑M

i=1 wi P̄it is less than or equal to485

Pt and is given in Proposition 3.486

Proposition 3: If the ‘implied’ power budget is less than487

or equal to the power budget (
∑M

i=1 wi P̄it ≤ Pt ), then peak488

power allocation to all the M resources gives optimal capacity.489

Note that in this case the total power allocated is less than490

(or equal to) Pt . However, if Pt <
∑M

i=1 wi P̄it , then all the491

M resources cannot be allocated peak powers since it violates492

the total sum power constraint in (22).493

In what follows, we pursue the solution of (22) for the case494

Pt <

M
∑

i=1

wi P̄it . (26)495

We have,496

Proposition 4: The optimal powers and hence optimal497

capacities are achieved in (22) (under the constraint (26))498

only if499

M
∑

i=1

wi P̄i = Pt . (27)500

It follows that the solution of (22) is given by501

P̄i =

(
1

λ
− N̄i

)+

, i = 1, · · · , M; (28)502

K
∑

i=1

wi P̄i = Pt ; (29)503

P̄i ≤ P̄it , i = 1, · · · , M. (30)504

Using the proposed area based approach, we can extend the505

ACF algorithm to the weighted case as shown in Fig. 3.506

Observe that the width of the stairs is now given by wi in507

contrast to CFP, and Z i,k is now scaled by a factor of xi

wi
.508

Also observe that the sorting order now depends on the N̄i509

values, since sorting the N̄i values in ascending order makes510

the first K of the P̄i values positive, while the remaining P̄i511

values are equal to zero as per (28).512

In what follows, we assume that the parameters like H̄i , P̄it ,513

wi and N̄i are sorted in the ascending order of N̄i values in514

order to conserve the original relationship among parameters.515

Comparing (28)-(30) to (3), (4) and (9); we can see that in516

addition to the scaling of the variables, (29) has a weighing517

factor of wi . Most importantly, since the widths of the stairs518

Fig. 3. Showing the effect of ‘weights’ in Weighted CFP.

Algorithm 3 ACF Algorithm for Obtaining K for WCFP

Require: Inputs required are M , Pt , N̄i , H̄i & wi (in ascend-
ing order of N̄i ).

Ensure: Output is K , ĪRK−1 , ĪRK , d̄K .
1: i = 1. Denote d̄0 = Pt , W0 = 0, Ū0 = 0 and ĪR0 = ∅

2: Calculate d̄i = d̄i−1 + wi N̄i .
3: Calculate Wi = Wi−1 + wi

4: ⊲ Calculate the area Ūi =
∑i

m=1 wm Z̄+
m,i as follows:

5: ĪRi = {m; such that N̄i+1 > H̄m}, WRi−1 =
∑

m∈ ĪRi−1
wm

Z̄m,i = N̄(i+1) − H̄m, m ∈ (IRi − IRi−1 )

6: Ūi = Ūi−1 + WRi−1 (N̄i+1 − N̄i ) +
∑

m∈( ĪRi
− ĪRi−1 ) wm Z̄+

m,i

7: Calculate the area Q̄i = Wi N̄(i+1)

8: if Q̄i ≥ (d̄i + Ūi ) then

9: K ← i . Exit the algorithm.
10: else

11: i ← i+1, Go to 2
12: end if

is not unity, they affect the area under consideration. As a 519

consequence, Algorithms 1 and 2 cannot be directly applied to 520

this case. However, the interpretations are similar. Algorithm 3 521

details the ACF for WCFP while Algorithm 4, defines the 522

corresponding ‘step-based’ waterfilling algorithm conceived 523

for finding the optimal values of K and L, respectively. 524

Let us now formulate Theorem 5. 525

Theorem 5: The output of Algorithm 3 gives the optimal 526

value K of the number of positive powers, as defined in 527

Definition 1, for WCFP. 528

The proof is similar to that of the CFP case, with slight 529

modifications concerning both the scaling and the width of 530

the stairs wi , hence it has been omitted. 531

Observe that the calculation of P̄R , D̄m and F̄m is affected 532

by the weights wi , since the areas depend on wi . 533

Let us now state without proof that Algorithm 4 outputs the 534

optimal value of L. 535

Theorem 6: Algorithm 4 delivers the optimal value L of the 536

number of powers that are assigned peak powers, as defined 537

in Definition 2, for WCFP. 538

Peak power allocated resources are ĪP = ĪRK−1 ∪ 539

IS(1 : L). Resources for which WFP allocates powers are 540

Ī c
P = [1, K ] − ĪP . 541
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Algorithm 4 ‘Step-Based’ Waterfilling Algorithm for
Obtaining L for WCFP

Require: Inputs required are K , d̄K , ĪRK−1 , ĪRK , WK , WRK−1 ,
N̄i , H̄i & wi (in ascending order of N̄i ).

Ensure: Output is L, IS .
1: Calculate P̄R = d̄K − WK N̄K + WRK−1 N̄K −

∑

m∈ ĪRK−1
wm H̄m

2: Calculate ĪB = ĪRK − ĪRK−1 . D̄1 = WK − WRK−1 .
3: If | ĪB | = 0, set L = 0. Otherwise, if | ĪB | > 0, then only

proceed with the following steps.
4: Sort {H̄m}m∈ ĪB

in ascending order and denote it as {H̄m B}

and the sorting index as IS .
5: Initialize m = 1, F̄m = (H̄m B − N̄K )D̄m .
6: while F̄m ≤ P̄R do

7: m = m + 1. If m > | ĪB |, exit the while loop.
8: D̄m = D̄m−1 − wIS (m−1)

9: F̄m = F̄m−1 + (H̄m B − H̄(m−1)B)D̄m

10: end while

11: L = m − 1.
12: calculate D̄L+1 = D̄L − wIS (L), only if L = | ĪB |.

The waterlevel for WCFP is given by542

1

λ
=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

H̄L B +
P̄R − F̄L

D̄L+1
, L > 0;

N̄K +
P̄R

D̄1
, L = 0.

(31)543

and the powers allocated are given by544

Pi =

⎧

⎨

⎩

Pit , i ∈ ĪP ;
wi

xi

(
1

λ
− N̄i

)

, i ∈ Ī c
P .

(32)545

A. Computational Complexity of the WCFP546

Let us now calculate the computational complexity of both547

Algorithm 3 and of Algorithm 4 and then add the complexity548

of calculating the powers, as follows:549

• Calculating N̄i , P̄it and H̄i requires 3M multiplies and550

M adds.551

• Observe that Algorithm 3 requires (K + 1) adds and552

K multiplies for calculating d̄i , K multiplies to find Q̄i553

and, in the worst case, 4K additions and 2K multipli-554

cations for calculating Z̄m,i ’s & ŪK , the corresponding555

proof is given in Appendix VI-E; K additions for calcu-556

lating WK and at-most K additions for calculating WRi−1 .557

Consequently Algorithm 3 requires (7K + 1) additions558

and 4K multiplications for calculating K .559

• Note that in Algorithm 4: 2 multiplies and 3 + | ĪRK−1 |560

additions are required for calculation of P̄R ; at-most561

(K + 1) adds and 1 multiply in computing F̄1, D̄1; 4| ĪB |562

adds and ĪB multiples for evaluating the while loop.563

Since | ĪRK−1 |, | ĪB | < K , the worst case complexity of564

Algorithm 4 can be given as (6K + 4) adds, (K + 3)565

multiplies.566

• The computational complexity of calculating Pi is 567

at-most K adds and K multiplies. 568

• Consequently, the total computational complexity of solv- 569

ing the WCFP, considered is (14K + 5 + M) adds and 570

(3M +6K +3) multiplies. Since K is not known apriori, 571

the worst case complexity is given by (15M + 5) adds 572

and (9M + 3) multiplies. i.e we have a complexity order 573

of O(M). 574

Explicitly, the proposed solution’s computational complexity 575

is of the order of M , whereas that of the GWFPP of [22] is 576

of the order of M2. 577

IV. WCFP REQUIRING MINIMUM POWER 578

In this section we further extend the WCFP to the case 579

where the resources/powers scenario of having both a Mini- 580

mum and a Maximum Power (MMP) constraint. The resultant 581

WCFP-MMP arises in the following context: 582

(a) In a CR network, CR senses that some resources are 583

available for it’s use and allocates powers to the available 584

resources for a predefined amount of time while ensuring 585

that the peak power constraint is satisfied, in order to 586

keep the interference imposed on the PU with in the 587

affordable limit. Again, the weights wi and xi represent 588

the resource’s available time and sensing probabilities. 589

The minimum power has to be sufficient to support 590

the required quality of service, such as the minimum 591

transmission rate of each resource [30]–[32]. 592

We show that solving WCFP-MMP can be reduced to solving 593

WCFP with the aid of an appropriate transformation. Hence, 594

Section III can be used for this case. Mathematically, the 595

problem can be formulated as 596

max
{Pi }

M
i=1

C =

M
∑

i=1

wi log2

(

1 +
Pi

Ni

)

597

subject to :

M
∑

i=1

xi Pi ≤ Pt (33) 598

Pib ≤ Pi ≤ Pit , i ≤ M 599

and Pi ≥ 0, i ≤ M, 600

where Pib ≤ Pit and Pib is the lower bound while Pit is 601

the upper bound of the i th power. wi and xi are weights of 602

the i th resource’s capacity and i th resource’s allotted power, 603

respectively. Using the KKT, the solution of this case can be 604

written as 605

P̄i =

(
1

λ
− N̄i

)+

, i = 1, · · · , M; (34) 606

K
∑

i=1

wi P̄i = Pt ; (35) 607

P̄ib ≤ P̄i ≤ P̄it , i = 1, · · · , M, (36) 608

where P̄i = Pi xi

wi
is the weighted power, P̄it = Pit xi

wi
is weighted 609

peak power, P̄ib = Pib xi

wi
is the weighted minimum power and 610

N̄i = Ni xi

wi
is the weighted noise. 611

Let us now formulate Theorem 7. 612

Theorem 7: For every WCFP-MMP given by (33), there 613

exists a WCFP, whose solution will result in a solution to 614

the WCFP-MMP. 615
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Proof: Consider the solution to WCFP-MMP given616

by (34)-(36). Defining P̂i = P̄i − P̄ib and substituting it617

into (34)-(36), we arrive at:618

P̂i =

(
1

λ
− N̄i

)+

− P̄ib, i = 1, · · · , M; (37)619

K
∑

i=1

wi (P̂i + P̄ib) = Pt ; (38)620

0 ≤ P̂i ≤
(

P̄it − P̄ib

)

, i = 1, · · · , M. (39)621

Using (37) and the definition of ()+, we can622

rewrite (37)–(39) as623

P̂i =

⎛

⎜
⎝

1

λ
− {N̄i + P̄ib}

︸ ︷︷ ︸

N̂i

⎞

⎟
⎠

+

, i = 1, · · · , M; (40)624

K
∑

i=1

wi P̂i =

(

Pt −

K
∑

i=1

wi P̄ib

)

︸ ︷︷ ︸

P̂t

; (41)625

0 ≤ P̂i ≤
(

P̄it − P̄ib

)

︸ ︷︷ ︸

P̂it

, i = 1, · · · , M. (42)626

Comparing (40)-(42) to (28)-(30), we can observe that this627

is a solution for a WCFP with variables P̂i , N̂i , P̂it and P̂t .628

It follows then that we can solve the WCFP-MMP by solving629

the WCFP, whose solution is given by (40)-(42). �630

Note that the effect of the lower bound is that of increasing631

the height of the floor stairs for the corresponding WCFP at632

a concomitant reduction of the total power constraint.633

A. Computaional Complexity of the WCFP-MMP634

Solving WCFP-MMP requires 4M additional adds, to com-635

pute P̂i , N̂i , P̂it as well as P̂t , and K adds to recover Pi636

from P̂i ; as compared to WCFP. Hence the the worst case637

complexity of solving the WCFP-MMP is given by (19M +6)638

adds and (8M + 3) multiplies. i.e we have a complexity639

of O(M).640

V. SIMULATION RESULTS641

Our simulations have been carried out in MATLAB R2010b642

software. To demonstrate the operation of the proposed algo-643

rithm, some numerical examples are provided in this section.644

Example 1: Illustration of the CFP is provided by the645

following simple example:646

max
{Pi }

2
i=1

C =

2
∑

i=1

log2

(

1 +
Pi

Ni

)

647

with constraints :

2
∑

i=1

Pi ≤ 0.45;648

Pi ≤ 0.7 − 0.3i, i ≤ 2649

and Pi ≥ 0, i ≤ 2. (43)650

Assuming Ni = {0.1, 0.3}, we have Hi = {0.5, 0.4}. For the651

example of (43), water is filled above the first floor stair,652

as shown in Fig. 4a. This quantity of water is less than Pt .653

Hence, we fill the water above the second floor stair until the654

Fig. 4. Illustration for Example 1: (a) Water filled above floor stairs 1 and 2,
without peak constraint. (b) Water filled above floor stairs 2 only.

water level reaches 0.45. At this point the peak constraint for 655

the second resource comes into force and the water can only 656

be filled above second floor stair, as shown in Fig. 4b. Now, 657

this amount of water becomes equal to Pt giving K = 2. 658

We can observe that the first resource has a power determined 659

by the ‘waterlevel’, while the second resource is assigned the 660

peak power. 661

In Algorithm 1, we have U1 = 0 as Z+
1,1 = 0 and IR1 = 0. 662

d1 = Pt + N1 = 0.55, while Q1 = 1 × N2 = 0.3. We can 663

check that Q1 � (d1+U1) which indicates that K > 1. Hence, 664

we get K = 2. 665

Let us now use Algorithm 2 to find the specific resources 666

that are to be allocated the peak powers. We have IRK−1 = 0 667

as NK < H1. The remaining power PR in Algorithm 2 is 0.25. 668

The resource indices to check for the peak power allocation are 669

IB = {1, 2}. From Hm|m∈IB , we get [H1B, H2B] = {0.4, 0.5} 670

and IS = {2, 1}. We can check that F1 = 0.2 < PR and 671

F2 = 0.3 > PR . This gives L = 1. Hence we allocate the 672

peak power to the IS(L) or second resource, i.e. we have P2 = 673

P2t = 0.1. The first resource can be assigned the remaining 674

power of P1 = Pt − P2t = 0.35. 675

Example 2: A slightly more involved example of the CFP, 676

with more resources is illustrated here: 677

max
{Pi }

8
i=1

C =

8
∑

i=1

log2

(

1 +
Pi

Ni

)

678

with constraints :

8
∑

i=1

Pi ≤ 6; 679

Pi ≤ Pit , i ≤ 8 680

and Pi ≥ 0, i ≤ 8. (44) 681

In (44); we have Ni = 2i − 1,∀i and Pit = 682

{8, 1, 3, 3, 6, 3, 4, 1}. The heights of the cave roof stairs are 683

Hi = {9, 4, 8, 10, 15, 14, 17, 16}. 684

In Fig. 5, when the water is filled below the third cave roof 685

stair, the amount of water is Pt = 6, which fills above the 686

three cave floor stairs, hence giving K = 3. The same can be 687

obtained from Algorithm 1. Using Algorithm 1, the (di + Ui ) 688

and the Qi values are obtained which are shown in Table II. 689

Since the (di + Ui ) values are {7, 11, 18}, while the Qi are 690

{3, 10, 21}, we have Q3 > (d3 + U3) and Qi < (di + Ui ), 691

i = 1, 2. This gives K = 3. 692

As we have NK = 5 > H2 = 4, IRK−1 = 2; 693

the second resource is to be assigned the peak power. 694
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Fig. 5. Illustration of Example 2: Water filled below the roof stair 3 gives
K = 3.

TABLE II

RESULTS FOR EXAMPLE 2:

Similarly, as NK+1(= 7) > Hi , i ∈ [1, K ] is satisfied for i = 2695

resource, we have IRK = 2. Since IB = IRK −IRK−1 = ∅, there696

are no resources that have Hi , i ∈ [1, K ] values in between697

NK and NK+1. Thus, there is no need to invoke the ‘step-based698

water filling’ of Algorithm 2, which gives L = 0.699

Now, peak power based resources are IP = IRK−1 = {2}.700

The water filling algorithm allocates powers for the701

I c
P = [1, K ] − IP = {1, 3} resources.702

The peak power based resources and water filling based703

resources are shown in Table II. For the remaining power,704

PR = 1, the water level obtained for the I c
P resources705

(with L = 0) is 5.5. The powers allocated to the resources706

{1, 3} using this water level are {4.5, 0.5}. The powers and707

corresponding throughputs are shown in Table II.708

Example 3: The weighted CFP is illustrated by the following709

simple example:710

max
{Pi }

5
i=1

C =

5
∑

i=1

wi log2

(

1 +
Pi

Ni

)

711

with constraints :

5
∑

i=1

xi Pi ≤ 5;712

Pi ≤ 2, i ≤ 5713

and Pi ≥ 0, i ≤ 5. (45)714

In (45); lets us consider Ni = [0.2, 0.1, 0.4, 0.3, 0.5],715

wi = 6 − i and xi = i , ∀i . The N̄i values are716

Fig. 6. Index of the peak power based resources (continuous lines) and
waterfilling allotted resources (dashed lines) for Example 4.

Fig. 7. Throughputs of the resources for Example 4.

[0.04, 0.05, 0.4, 0.6, 2.5], while the H̄i values are [0.44, 1.05, 717

2.40, 4.60, 12.5]. Applying the ACF algorithm, we arrive at 718

K = 4. 719

We have H̄i < N̄K , i ∈ [1, K ] for the 1st resource. The 720

‘step-based’ waterfilling algorithm confirms that 1st resource 721

is indeed the resource having the peak power. The remaining 722

2nd , 3rd and 4th resources are allocated their powers using the 723

water filling algorithm. For the water level of 0.62222, powers 724

allotted for {2,3,4} resources are [1.1444, 0.22222, 0.011111]. 725

Example 4: Another example for the weighted 726

CFP associated with random weights: 727

max
{Pi }

64
i=1

C =

64
∑

i=1

wi log2

(

1 +
Pi

Ni

)

728

with constraints :

64
∑

i=1

xi Pi ≤ 1; 729

Pi ≤ Pit , i ≤ 64 730

and Pi ≥ 0, i ≤ 64. (46) 731

In this example, we assume Ni = σ 2

hi
while hi , wi and xi 732

are exponentially distributed with a mean of 1. Furthermore 733

σ 2 = 10−2 and Pit , ∀i are random values in the range 734

[10−3, 5 × 10−2]. 735

Now applying the ACF algorithm, we get K = 51 for a 736

particular realization of hi , wi and xi . For this realization, 737

from the [1, K ] resources, 38 resources are to be allocated 738

with the peak powers and 13 resources get powers from the 739

waterfilling algorithm. These resources are shown in Fig. 6. 740

The achieved throughput of the resources is given in Fig. 7 741

for the proposed algorithm. The results match with the values 742

obtained for known algorithms. 743

Table III gives the actual number of flops required by 744

the proposed solution and the other existing algorithms for 745
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TABLE III

COMPUTATIONAL COMPLEXITIES OF EXISTING ALGORITHMS AND THE PROPOSED SOLUTION FOR wi = xi = 1, ∀i

Example 4 with different M values. Since some of the existing746

algorithms do not support wi �= 1 and xi �= 1,∀i ; we assume747

wi = xi = 1,∀i for Table III.748

It can be observed from Table III that the number of flops749

imposed by the sub-gradient algorithm of [18] and [19] is more750

than 104 times that of the proposed solution. The number of751

flops required for the FWF of [21] and for the GWFPP of [22]752

are more than 102 times that of the proposed solution. This is753

because the proposed solution’s computational complexity is754

O(M), whereas the best known existing algorithms have an755

O(M2) order of computational complexity; as listed in Table I.756

It has also been observed from the above examples that757

|IB | = |IRK − IRK−1 | values are very small as compared to M .758

As such L has been obtained from Algorithm 2 within two759

iterations of the while loop.760

VI. CONCLUSIONS761

In this paper, we have proposed algorithms for solving762

the CFP at a complexity order of O(M). The approach was763

then generalized to the WCFP and to the WCFP-MMP. Since764

the best known solutions solve these three problems at a765

complexity order of O(M2), the proposed solution results766

in a significant reduction of the complexity imposed. The767

complexity reduction attained is also verified by simulations.768

APPENDIX769

A. Proof of Theorem 1770

Proof: Lagrange’s equation for (1) is771

L(Pi , λ, ωi , γi ) =

M
∑

i=1

log2

(

1 +
Pi

Ni

)

− λ

(
M

∑

i=1

Pi − Pt

)

772

−

M
∑

i=1

ωi (Pi − Pit ) −

M
∑

i=1

γi (0 − Pi )773

(47)774

§λ is initialized to 5 × 10−1.
§,¶ Number of iterations is given in brackets.
‖|IRK−1 | and |IB | are given in brackets. Actual number of flops

is M + 9K + 5|IB | + |IRK−1 | + 9.

Karush-Kuhn-Tucker (KKT) conditions for (47) are [3], [35] 775

∂L

∂ Pi
= 0 ⇒

1

Ni + Pi
− λ − ωi + γi = 0, (48) 776

λ

(

Pt −

M
∑

i=1

Pi

)

= 0, (49) 777

ωi (Pit − Pi ) = 0, ∀i (50) 778

γi Pi = 0, ∀i (51) 779

λ,ωi & γi ≥ 0, ∀i (52) 780

Pi ≤ Pit , ∀i, (53) 781

M
∑

i=1

Pi ≤ Pt . (54) 782

In what follows we show that the KKT conditions result in 783

a simplified ‘form’ for the solution of CFP which is similar 784

to the conventional WFP. The proof is divided into three 785

parts corresponding to the three possibilities for Pi : that is 786

1) Equivalent constraint for Pi < 0 in terms of the ‘water 787

level’ 1
λ and the corresponding solution form, 2) Equivalent 788

constraint for Pi ≤ Pit in terms of the ‘water level’ and 789

and the corresponding solution form, and 3) Equivalent form 790

for Pi < Pi < Pit in terms of the ‘water level’ and the 791

corresponding solution form. 792

1) Simplification for Pi ≥ 0: Multiplying (48) with Pi and 793

substituting (51) in it, we obtain 794

Pi

(
1

Ni + Pi

− λ − ωi

)

= 0 (55) 795

In order to satisfy (55), either Pi or ( 1
Ni +Pi

− λ − ωi ) should 796

be zero. Having Pi = 0, ∀i does not solve the optimization 797

problem. Hence, we obtain 798

(
1

Ni + Pi

− λ − ωi

)

= 0, when Pi > 0. (56) 799

Since ωi ≥ 0, (56) can be re-written as ( 1
Ni +Pi

− λ) ≥ 0. 800

Furthermore, taking Pi > 0 in this, we attain 801

1

λ
> Ni , when Pi > 0. (57) 802
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The opposite of this is803

1

λ
≤Ni , when Pi ≤ 0. (58)804

We can observe that (57) and (58) are equations related to the805

conventional WFP.806

2) Simplification for Pi ≤ Pit : Multiplying (48) with807

Pit − Pi and substituting (50) in it, we attain808

(Pit − Pi )

(
1

Ni + Pi

− λ + γi

)

= 0 (59)809

In (59), two cases arise:810

(a) If Pit > Pi , then ( 1
Ni +Pi

− λ + γi ) = 0 becomes true.811

Since γi ≥ 0, ( 1
Ni +Pi

− λ + γi ) = 0 is taken as812

( 1
Ni +Pi

− λ) < 0. Further Simplifying this and813

substituting Pi < Pit , we get814

1

λ
< Hi � (Pit + Ni ) , i f Pi < Pit . (60)815

(b) If Pit = Pi , then ( 1
Ni +Pi

− λ + γi ) ≥ 0 becomes true816

in (59).817

As γi ≥ 0, ( 1
Ni +Pi

− λ + γi ) ≥ 0 is re-written818

as ( 1
Ni +Pi

− λ) ≥ 0. Substituting Pit = Pi and819

simplifying this further, we obtain820

1

λ
≥ Hi � (Pit + Ni ) , i f Pi = Pit . (61)821

3) Simplification for 0 < Pi < Pit :822

(a) In (51); if γi is equal to zero, then Pi > 0. Combining823

this relation with (57), we can conclude that824

1

λ
> Ni , i f γi = 0. (62)825

(b) Similarly, in (50), if ωi = 0, then Pit > Pi follows.826

Using this relation in (60), we acquire827

1

λ
< Hi , i f ωi = 0. (63)828

(c) Combining (62) and (63), we have829

Ni <
1

λ
< Hi , i f ωi = γi = 0. (64)830

Using (64) in (48) and then re-arranging it gives831

Pi =
1

λ
− Ni , i f Ni <

1

λ
< Hi . (65)832

Combining (57), (58), (60), (61) and (65), powers are833

obtained as834

Pi =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪
⎩

(
1

λ
− Ni

)

, Ni <
1

λ
< Hi or

0 < Pi < Pit ;

Pit ,
1

λ
≥Hi ;

0,
1

λ
≤Ni .

(66)835

�836

B. Proof of Proposition 2 837

Proof: The proof is by contradiction. Assume that P⋆
i , 838

i ≤ M is the optimal solution for (1) such that
∑M

i=1 P⋆
i < Pt . 839

We now prove that as P⋆
i powers fulfil

∑M
i=1 P⋆

i < Pt , there 840

exists P⋄
i that has greater capacity. Define 841

P⋄
i = P⋆

i + △P⋆
i , ∀i (67) 842

such that 843

M
∑

i=1

P⋄
i = Pt and P⋄

i ≤ Pit , ∀i (68) 844

where △P⋆
i ≥ 0,∀i . From (7) there exists atleast one i such 845

that P⋆
i < Pit . It follows that △P⋆

i > 0 for atleast one i . 846

The capacity of M resources for P⋄
i allotted powers is 847

C
(

P⋄
i

)

=

M
∑

i=1

log2

(

1 +
P⋄

i

Ni

)

(69) 848

Substituting (67) in (69), we get 849

C
(

P⋄
i

)

=

M
∑

i=1

log2

(

1 +
P⋆

i

Ni

+
△P⋆

i

Ni

)

(70) 850

Re-writing the above, we obtain 851

C
(

P⋄
i

)

=

M
∑

i=1

log2

⎡

⎣

(

1 +
P⋆

i

Ni

)
⎛

⎝1 +

△P⋆
i

Ni

1 +
P⋆

i

Ni

⎞

⎠

⎤

⎦ (71) 852

Following ‘log(ab) = log(a) + log(b)’ in the above, we acquire 853

C
(

P⋄
i

)

=

M
∑

i=1

log2

(

1 +
P⋆

i

Ni

)

+

M
∑

i=1

log2

⎛

⎝1 +

△P⋆
i

Ni

1 +
P⋆

i

Ni

⎞

⎠
854

(72) 855

As △P⋆
i > 0 for atleast one i , the second term on the R.H.S. 856

of (72) is always positive. We have 857

C
(

P⋄
i

)

> C
(

P⋆
i

)

(73) 858

In other words,
∑M

i=1 P⋄
i = Pt produces optimal capacity; 859

completing the proof. � 860

C. The Computational Complexity of 861

Calculating Zm,i for CFP 862

Below, it is shown that the worst case computational 863

complexity of calculating Zm,i ; m ≤ i and i ≤ K for CFP 864

is K subtractions. 865

• In Algorithm 1, we first check if Ni+1 > Hm. IRi is 866

taken as ‘m’ values for which Ni+1 > Hm . Note also that 867

IRi−1 ⊂ IRi . This is because if Zm,i = Ni+1 − Hm > 0, 868

then Zm, j ; j = i + 1, · · · , K is always positive since 869

N j > Ni , j > i . Hence, in the worst case, K log(K ) 870

comparisons are required. The cost of a comparison, is 871

typically lower than that of an addition [36]. Hence it 872

has not been included in the flop count. 873

• As per Algorithm 1, we calculate Zm,i ’s only for m ∈ 874

(IRi − IRi−1 ). Furthermore, if we have Zm,i = Ni+1 − 875

Hm > 0, then Zm, j ; j = i + 1, · · · , K is always positive 876
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since N j > Ni , j > i . In other words, if IRi−1 gets some877

‘x’ values, then the same ‘x’ values will also be there878

in IRi and the contribution of this part to the overall879

area, Ui is |IRi−1 |(N(i + 1) − Ni ); which is calculated880

in Step 5. This implies that if Zm,i is calculated for881

m ∈ IRi , then there is no need to calculate Zm,i for882

m ∈ IRi+1 , IRi+2 , . . . IRK . Hence, for a given m, Zm,i883

is calculated, in the worst case, once; for one ‘i ’ only.884

As such, the worst case complexity of calculating Zm,i is885

as low as that of K subtractions.886

D. The Computational Complexity of887

Calculating UK for CFP888

Here we show that the worst case computational complexity889

of calculating UK for CFP is 4K adds and K multiplies.890

Note that in each iteration of Algorithm 1 the following is891

calculated:892

Ui = Ui−1 + |IRi−1 | (Ni+1 − Ni ) +

i
∑

m∈(IRi
−IRi−1 )

Z+
m,i . (74)893

There are three terms in (74) and we calculate the complexity894

of each term separately, as follows:895

• The first term of (74), Ui−1, is already computed in the896

(i −1)-th iteration, hence involves no computation during897

the i -th iteration.898

• The second term, |IRi−1 |(Ni+1 − Ni ), is taking care of the899

increase in reference height from Ni to Ni+1 for those900

roof stairs, which are already below the reference level901

Ni . The computation of this term requires only a single902

multiplication and addition.903

• The third term gives the areas of the roof stairs which904

are below Ni+1 but not Ni . The number of additions in905

this is Ai = |IRi − IRi−1 |−1.906

• Taking into account the two adds per iteration required907

for adding all the three terms, the total computational908

complexity of calculating Ui , given Ui−1 is 1 multiply909

and 3 + Ai adds.910

Since K Ui ’s are calculated; the total computational complexity911

of calculating all Ui ’s will be
∑K

i=1 3+Ai = 3K +|IRK | ≤ 4K912

adds and K multiplies.913

E. The Computational Complexity of914

Calculating ŪK for WCFP915

Here we show that the worst case computational complexity916

of calculating ŪK for WCFP is 4K adds 2K multiplies.917

Note that in each iteration of Algorithm 3 the following is918

calculated:919

Ūi = Ūi−1 + WRi−1

(

N̄i+1 − N̄i

)

+

i
∑

m∈( ĪRi
−IRi−1 )

wm Z̄+
m,i .920

(75)921

There are three terms in (75) and we calculate the complexity922

of each term separately, as follows:923

• The first term of (75), Ūi−1, is already computed 924

in i−1-th iteration, hence involves no computation during 925

the i -th iteration. 926

• The computation of second term, WRi−1 (N̄i+1 − N̄i ), 927

requires only a single multiplication and addition. 928

• The third term gives the areas of the roof stairs which 929

are below N̄i+1 but not N̄i . The number of additions in 930

this is Ai = | ĪRi |− | ĪRi−1 |. The corresponding number of 931

multiplications is one. 932

• Taking into account the two adds per iteration required 933

for adding all the three terms, the total computational 934

complexity of calculating Ui , given Ui−1 is 2 multiply 935

and 3 + Ai adds. 936

Since KU i ’s are calculated; the total computational complexity 937

of calculating all Ui ’s will be
∑K

i=1 3+Ai = 3K +|IRK | ≤ 4K 938

adds and 2K multiplies. 939
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