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Abstract

In the modern era of multi-core systems, the main aim is to utilize the cores properly.

This utilization can be done by concurrent programming. But developing a flawless

and well-organized concurrent program is difficult. Software Transactional Memory

Systems (STMs) are a convenient programming interface which assist the programmer

to access the shared memory concurrently without worrying about consistency issues

such as priority-inversion, deadlock, livelock, etc. Another important feature that STMs

facilitate is compositionality of concurrent programs with great ease. It composes

different concurrent operations in a single atomic unit by encapsulating them in a

transaction.

Many STMs available in the literature execute read/write primitive operations on

memory buffers. We represent them as Read-Write STMs or RWSTMs. Whereas, there

exist some STMs (transactional boosting and its variants) which work on higher level

operations such as insert, delete, lookup, etc. on a hash-table. We refer these STMs as

Object Based STMs or OSTMs.

The literature of databases and RWSTMs say that maintaining multiple versions
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ensures greater concurrency. This motivates us to maintain multiple version at higher

level with object semantics and achieves greater concurrency. So, this paper pro-

poses the notion of Optimized Multi-version Object Based STMs or OPT-MVOSTMs

which encapsulates the idea of multiple versions in OSTMs to harness the greater con-

currency efficiently. For efficient memory utilization, we develop two variations of

OPT-MVOSTMs. First, OPT-MVOSTM with garbage collection (or OPT-MVOSTM-GC)

which uses unbounded versions but performs garbage collection scheme to delete the

unwanted versions. Second, finite version OPT-MVOSTM (or OPT-KOSTM) which

maintains at most K versions by replacing the oldest version when (K + 1)th version

is created by the current transaction.

We propose the OPT-MVOSTMs for hash-table and list objects as OPT-HT-MVOSTM

and OPT-list-MVOSTM respectively. For memory utilization, we propose two vari-

ants of both the algorithms as OPT-HT-MVOSTM-GC, OPT-HT-KOSTM and OPT-list-

MVOSTM-GC, OPT-list-KOSTM respectively. OPT-HT-KOSTM performs best among

its variants and outperforms state-of-the-art hash-table based STMs (HT-OSTM, ESTM,

RWSTM, HT-MVTO, HT-KSTM) by a factor of 3.62, 3.95, 3.44, 2.75, 1.85 for work-

load W1 (90% lookup, 8% insert and 2% delete), 1.44, 2.36, 4.45, 9.84, 7.42 for

workload W2 (50% lookup, 25% insert and 25% delete), and 2.11, 4.05, 7.84, 12.94,

10.70 for workload W3 (10% lookup, 45% insert and 45% delete) respectively. Similarly,

OPT-list-KOSTM performs best among its variants and outperforms state-of-the-art list

based STMs (list-OSTM, Trans-list, Boosting-list, NOrec-list, list-MVTO, list-KSTM)

by a factor of 2.56, 25.38, 23.57, 27.44, 13.34, 5.99 for W1, 1.51, 20.54, 24.27, 29.45,

24.89, 19.78 for W2, and 2.91, 32.88, 28.45, 40.89, 173.92, 124.89 for W3 respectively.

OPT-MVOSTMs are generic for other data structures as well. We rigorously proved that

OPT-MVOSTMs satisfy opacity and ensure that transaction with lookup only methods

will never return abort while maintaining unbounded versions.

Keywords: Software Transactional Memory Systems, Optimized, Lazyrb-list,

Hash-Table, List, Object, Multi-version, Compositionality, Opacity, Keys

2



1. Introduction

Nowadays, multi-core systems are in trend which necessitated the need for concur-

rent programming to exploit the cores appropriately. Howbeit, developing the correct

and efficient concurrent programs is difficult. Software Transactional Memory Systems

(STMs) are a convenient programming interface which assist the programmer to access

the shared memory concurrently using multiple threads without worrying about con-

sistency issues such as deadlock, livelock, priority-inversion, etc. STMs facilitate one

more feature compositionality of concurrent programs with great ease which makes it

more approachable. Different concurrent operations that need to be composed to form a

single atomic unit is achieved by encapsulating them in a transaction. In this paper, we

discuss various STMs such as read-write STMs (or RWSTMs), object based STMs (or

OSTMs) available in the literature along with the benefits of OSTMs over RWSTMs.

After that, we motivated from multi-version RWSTMs and propose multi-version object

based STMs (or MVOSTMs) [1] which maintain multiple versions and improves the

concurrency further. Later, we made a couple of modifications (discussed in Section 4,

Section 5, and Section 7) to optimize the MVOSTMs and propose optimized MVOSTMs

(or OPT-MVOSTMs).

Read-Write STMs: There exists a lot of popular STMs in the literature such as ESTM

[2], NOrec [3] which executes read/write operations on transaction objects or t-objects.

We represent these STMs as Read-Write STMs or RWSTMs. RWSTMs typically export

following methods: (1) t begin: which begins a transaction with a unique identity, (2)

t read (or r): which reads the value of t-object from shared memory, (3) t write (or w):

which writes the new value to t-object in its local memory, (4) tryC: which validates

the values written to t-objects by the transaction and tries to commit. If all the updates

made by the transaction is consistent then updates reflect to the shared memory and

transaction returns commit, and (5) tryA: which returns abort on any inconsistency.

Object based STMs: There are few STMs available in the literature which executes

higher level operations such as insert, delete, lookup on hash-table. We represent these

STMs as Object based STMs or OSTMs. The concept of Boosting by Herlihy et al. [4],

the optimistic variant by Hassan et al. [5] and recently HT-OSTM system by Peri et al.
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Figure 1: Advantages of OSTMs over RWSTMs

[6] are some examples that demonstrate the performance benefits achieved by OSTMs.

Peri et al. [6] showed that OSTMs provide greater concurrency than RWSTMs while

reducing the number of aborts.

Benefits of OSTMs over RWSTMs: To show the benefits of OSTMs, We consider a

hash-table based STM system which invokes insert (or ins), lookup (or lu) and delete

(or del) method. Each hash-table consists of B buckets with the elements in each bucket

arranged in the form of a linked-list. Figure 1 (a) represents a hash-table with the

first bucket containing keys 〈k3, k6, k8〉. Figure 1 (b) shows the execution by two

transaction T1 and T2 represented in the form of a tree. T1 performs lookup operations

on keys k3 and k8 while T2 performs a delete on k6. The delete on key k6 generates

read on the keys k3, k6 and writes the keys k6, k3 assuming that delete is performed

similar to delete operation in lazy-list [7]. The lookup on k3 generates read on k3 while

the lookup on k8 generates read on k3, k8. Note that in this execution k6 has already

been deleted by the time lookup on k8 is performed.

In this execution, we denote the read-write operations (leaves) as layer-0 and lu, del

methods as layer-1. Consider the history (execution) at layer-0 (while ignoring higher-

level operations), denoted as H0. It can be verified this history is not opaque [8]. This

is because, between the two reads of k3 by T1, T2 writes to k3. It can be seen that if

history H0 is input to an RWSTMs one of the transactions between T1 or T2 would be

aborted to ensure opacity [8]. Figure 1 (c) shows the presence of a cycle in the conflict

graph of H0.

Now, consider the history H1 at layer-1 consists of lu, and del methods, while
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Figure 2: Advantages of optimized multi-version over single version OSTM

ignoring the read/write operations since they do not overlap (referred to as pruning in [9,

Chap 6]). These methods work on distinct keys (k3, k6, and k8). They do not overlap

and are not conflicting. So, they can be re-ordered in either way. Thus, H1 is opaque

[8] with equivalent serial history T1T2 (or T2T1) and the corresponding conflict graph

shown in Figure 1 (d). Hence, a hash-table based OSTM system does not abort any of

T1 or T2. This shows that OSTMs can reduce the number of aborts and provide greater

concurrency.

Multi-Version Object Based STMs: Some of the OSTMs such as [4], [5], [6] exploits

the advantages of it. In this paper, we propose and analyze Optimized Multi-version

Object Based STMs or OPT-MVOSTMs along with the rigorous correctness proof. This

work is motivated by the observation that databases and RWSTMs achieves greater con-

currency by storing multiple versions corresponding to each t-object [10]. Specifically,

maintaining multiple versions can ensure that more read operations succeed because the

reading operation will obtain an appropriate version to read. Our goal is to analyze the

benefit of OPT-MVOSTMs over both single version OSTMs and multi-version RWSTMs.

The potential benefit of OPT-MVOSTMs over OSTMs and multi-version RWSTMs:

We now illustrate the advantage of OPT-MVOSTMs as compared to single-version

OSTMs (SV-OSTMs) using the hash-table object with B buckets having the same

operations as discussed above: ins, lu, del. Figure 2 (a) represents a history H with

two concurrent transactions T1 and T2 operating on a hash-table ht. T1 first tries to

perform a lu on key k3. But due to the absence of key k3 in ht, it obtains a value of

null. Then T2 invokes ins method on the same key k3 and inserts the value v3 in ht.

Then T2 deletes the key k2 from ht and returns v0 implying that some other transaction

had previously inserted v0 into k2. The second method of T1 is lu on the key k2. With

this execution, any SV-OSTM system has to return abort for T1’s lu operation to ensure
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correctness, i.e., opacity. Otherwise, if T1 would have obtained a return value v0 for

k2, then the history would not be opaque anymore. This is reflected by a cycle in the

corresponding conflict graph between T1 and T2, as shown in Figure 2 (c). Thus to

ensure opacity, SV-OSTM system has to return abort for T1’s lookup on k2.

In an OPT-MVOSTMs based on hash-table, denoted as OPT-HT-MVOSTM, whenever

a transaction inserts or deletes a key k, a new version is created. Consider the above

example with an OPT-HT-MVOSTM, as shown in Figure 2 (b). Even after T2 deletes k2,

the previous value of v0 is still retained. Thus, when T1 invokes lu on k2 after the delete

on k2 by T2, OPT-HT-MVOSTM return v0 (as previous value). With this, the resulting

history is opaque with equivalent serial history being T1T2. The corresponding conflict

graph is shown in Figure 2 (d) does not have a cycle.

Thus, OPT-MVOSTM reduces the number of aborts and achieve greater concurrency

than SV-OSTMs while ensuring the compositionality. We believe that the benefit of

OPT-MVOSTM over multi-version RWSTM is similar to SV-OSTM over single-version

RWSTM as explained above. OPT-MVOSTM is a generic concept which can be applied

to any data structure. In this paper, we have considered the hash-table and list based

OPT-MVOSTMs as OPT-HT-MVOSTM and OPT-list-MVOSTM respectively. If the

bucket size B of hash-table becomes 1 then hash-table based OPT-MVOSTMs boils

down to the list based OPT-MVOSTMs.

OPT-HT-MVOSTM and OPT-list-MVOSTM use an unbounded number of versions

for each key. To address this issue, we develop two variants for both hash-table and list

data structures (or DS): (1) A garbage collection method in OPT-MVOSTMs to delete

the unwanted versions of a key, denoted as OPT-MVOSTM-GC. Garbage collection gave

an average performance gain of 16% over OPT-MVOSTM without garbage collection

in the best case. Thus, the overhead of garbage collection scheme is less than the

performance improvement due to improved memory usage. (2) Placing a limit of K on

the number versions in OPT-MVOSTM, resulting in OPT-KOSTM. This gave an average

performance gain of 24% over OPT-MVOSTM without garbage collection in the best

case.

Experimental results show that OPT-HT-KOSTM performs best among its variants

and outperforms state-of-the-art hash-table based STMs (HT-OSTM, ESTM, RWSTM,
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HT-MVTO, HT-KSTM) by a factor of 3.62, 3.95, 3.44, 2.75, 1.85 for workload W1

(90% lookup, 8% insert and 2% delete), 1.44, 2.36, 4.45, 9.84, 7.42 for workload

W2 (50% lookup, 25% insert and 25% delete), and 2.11, 4.05, 7.84, 12.94, 10.70

for workload W3 (10% lookup, 45% insert and 45% delete) respectively. Similarly,

OPT-list-KOSTM performs best among its variants and outperforms state-of-the-art list

based STMs (list-OSTM, Trans-list, Boosting-list, NOrec-list, list-MVTO, list-KSTM)

by a factor of 2.56, 25.38, 23.57, 27.44, 13.34, 5.99 for W1, 1.51, 20.54, 24.27, 29.45,

24.89, 19.78 for W2, and 2.91, 32.88, 28.45, 40.89, 173.92, 124.89 for W3 respectively.

To the best of our knowledge, this is the first work to explore the idea of using multiple

versions in OSTMs to achieve greater concurrency.

Contributions of the paper:

• We propose a new notion of optimized multi-version objects based STM system

as OPT-MVOSTM in Section 4. In this paper, we develop it for list and hash-

table objects as OPT-list-MVOSTM and OPT-HT-MVOSTM respectively. OPT-

MVOSTM is generic for other data structures as well.

• For efficient space utilization in OPT-MVOSTMs with unbounded versions, we

develop Garbage Collection for OPT-MVOSTM (i.e. OPT-MVOSTM-GC) and

bounded version OPT-MVOSTM (i.e. OPT-KOSTM).

• Section 6 shows that OPT-list-MVOSTM and OPT-HT-MVOSTM satisfy standard

correctness-criterion of STMs, opacity [8].

• Experimental analysis of both OPT-list-MVOSTM and OPT-HT-MVOSTM with

state-of-the-art STMs are present in Section 7. Proposed OPT-list-MVOSTM

and OPT-HT-MVOSTM provide greater concurrency and reduces the number

of aborts as compared to MVOSTMs, SV-OSTMs, single-version RWSTMs and,

multi-version RWSTMs while maintaining multiple versions corresponding to

each key.

Roadmap: The paper is organized as follows. We describe our building system model

in Section 2. In Section 3, we formally define the graph characterization of opacity.

Section 4 represents the OPT-MVOSTMs design and data structure. Section 5 shows the
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working of OPT-HT-MVOSTMs and its algorithms. We formally prove the correctness

of OPT-MVOSTMs in Section 6. In Section 7 we show the experimental evaluation of

OPT-MVOSTMs with state-of-art-STMs. Finally, we conclude in Section 8.

2. Building System Model

Our assumption follows [11, 6] in which the system consists of a finite set of

p processes, p1, . . . , pn, accessed by a finite number of n threads in a completely

asynchronous fashion and communicates each other using shared keys (or objects).

The threads invoke higher level methods on the shared objects and get corresponding

responses. Consequently, we make no assumption about the relative speeds of the

threads. We also assume that none of these processors and threads fail or crash abruptly.

Events and Methods: We assume that the threads execute atomic events and the events

by different threads are (1) read/write on shared/local memory objects, (2) method

invocations (or inv) event and responses (or rsp) event on higher level shared memory

objects.

Within a transaction, a process can invoke layer-1 methods (or operations) on a

hash-table t-object. A hash-table(ht) consists of multiple key-value pairs of the form

〈k, v〉. The keys and values are respectively from sets K and V . The methods that

a thread can invoke are: (1) t begini(): begins a transaction and returns a unique id

to the invoking thread. (2) t inserti(ht, k, v): transaction Ti inserts a value v onto key

k in ht. (3) t deletei(ht, k, v): transaction Ti deletes the key k from the hash-table

ht and returns the current value v for Ti. If key k does not exist, it returns null. (4)

t lookupi(ht, k, v): returns the current value v for key k in ht for Ti. Similar to t delete,

if the key k does not exist then t lookup returns null. (5) tryCi(): which tries to commit

all the operations of Ti and (6) tryAi(): aborts Ti. We assume that each method consists

of an inv and rsp event.

We denote t insert and t delete as update methods (or upd method or up) since

both of these change the underlying data structure. We denote t delete and t lookup as

return-value methods (or rv method or rvm) as these operations return values from ht.

A method may return ok if successful or A (abort) if it sees an inconsistent state of ht.
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Formally, we denote a method m by the tuple 〈evts(m), <m〉. Here, evts(m) are

all the events invoked by m and the <m a total order among these events.

Transactions: Following the notations used in database multi-level transactions[9], we

model a transaction as a two-level tree. The layer-0 consist of read/write events and

layer-1 of the tree consists of methods invoked by a transaction.

Having informally explained a transaction, we formally define a transaction T as

the tuple 〈evts(T ), <T 〉. Here evts(T ) are all the read/write events at layer-0 of the

transaction. <T is a total order among all the events of the transaction.

We denote the first and last events of a transaction Ti as Ti.firstEvt and Ti.lastEvt.

Given any other read/write event rw in Ti, we assume that Ti.firstEvt <Ti
rw <Ti

Ti.lastEvt. All the methods of Ti are denoted as methods(Ti). We assume that for

any method m in methods(Ti), evts(m) is a subset of evts(Ti) and <m is a subset of

<Ti
. We assume that if a transaction has invoked a method, then it does not invoke a

new method until it gets the response of the previous one. Thus all the methods of a

transaction can be ordered by <Ti
. Formally, (∀mp,mq ∈ methods(Ti) : (mp <Ti

mq) ∨ (mq <Ti
mp))〉, here mp and mq are pth and qth methods of Ti respectively.

Histories: A history is a sequence of events belonging to different transactions. The

collection of events is denoted as evts(H). Similar to a transaction, we denote a history

H as tuple 〈evts(H), <H〉 where all the events are totally ordered by <H . The set of

methods that are in H is denoted by methods(H). A method m is incomplete if inv(m)

is in evts(H) but not its corresponding response event. Otherwise, m is complete in H .

Coming to transactions in H , the set of transactions in H are denoted as txns(H).

The set of committed (resp., aborted) transactions in H is denoted by committed(H)

(resp., aborted(H)). The set of live transactions in H are those which are neither

committed nor aborted and denoted as live(H) = txns(H) − committed(H) −

aborted(H). On the other hand, the set of terminated transactions are those which

have either committed or aborted and is denoted by term(H) = committed(H) ∪

aborted(H).

The relation between the events of transactions & histories is analogous to the

relation between methods & transactions. We assume that for any transaction T in
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txns(H), evts(T ) is a subset of evts(H) and <T is a subset of <H . Formally, 〈∀T ∈

txns(H) : (evts(T ) ⊆ evts(H)) ∧ (<T⊆<H)〉.

We denote two histories H1, H2 as equivalent if their events are the same, i.e.,

evts(H1) = evts(H2). A history H is qualified to be well-formed if: (1) all the

methods of a transaction Ti in H are totally ordered, i.e. a transaction invokes a method

only after it receives a response of the previous method invoked by it (2) Ti does not

invoke any other method after it received an A response or after tryC(ok) method. We

only consider well-formed histories for OPT-MVOSTM.

A method mij (jth method of a transaction Ti) in a history H is said to be isolated

or atomic if for any other event epqr (rth event of method mpq) belonging to some other

method mpq of transaction Tp either epqr occurs before inv(mij) or after rsp(mij).

Sequential Histories: A history H is said to be sequential (term used in [12, 13]) if all

the methods in it are complete and isolated. From now onwards, most of our discussion

would relate to sequential histories.

Since in sequential histories all the methods are isolated, we treat each method as

a whole without referring to its inv and rsp events. For a sequential history H , we

construct the completion of H , denoted H , by inserting tryAk(A ) immediately after the

last method of every transaction Tk ∈ live(H). Since all the methods in a sequential

history are complete, this definition only has to take care of completed transactions.

Consider a sequential history H . Let mij(ht, k, v/nil) be the first method of Ti in

H operating on the key k as H.firstKeyMth(〈ht, k〉, Ti), where mij stands for jth

method of ith transaction. For a method mix(ht, k, v) which is not the first method

on 〈ht, k〉 of Ti in H , we denote its previous method on k of Ti as mij(ht, k, v) =

H.prevKeyMth(mix, Ti).

Real-time Order and Serial Histories: Given a history H , <H orders all the events

in H . For two complete methods mij ,mpq in methods(H), we denote mij ≺
MR
H mpq

if rsp(mij) <H inv(mpq). Here MR stands for method real-time order. It must be noted

that all the methods of the same transaction are ordered. Similarly, for two transactions

Ti, Tp in term(H), we denote (Ti ≺
TR
H Tp) if (Ti.lastEvt <H Tp.firstEvt). Here

TR stands for transactional real-time order.
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We define a history H as serial [14] or t-sequential [13] if all the transactions in H

have terminated and can be totally ordered w.r.t ≺TR, i.e. all the transactions execute

one after the other without any interleaving. Intuitively, a history H is serial if all its

transactions can be isolated. Formally, 〈(H is serial) =⇒ (∀Ti ∈ txns(H) : (Ti ∈

term(H)) ∧ (∀Ti, Tp ∈ txns(H) : (Ti ≺TR
H Tp) ∨ (Tp ≺TR

H Ti))〉. Since all the

methods within a transaction are ordered, a serial history is also sequential.

Valid Histories: A rv method (t delete and t lookup) rvmij on key k is valid if it

returns the value updated by any of the previously committed transaction that updated

key k. A history H is said to valid if all the rv methods of H are valid.

Legal Histories: We define the legality of rv methods on sequential histories which we

use to define correctness criterion as opacity [8]. Consider a sequential history H having

a rv method rvmij(ht, k, v) (with v 6= null) as jth method belonging to transaction Ti.

We define this rvm method to be legal if:

Rule 1 If the rvmij is not the first method of Ti to operate on 〈ht, k〉 and mix is the pre-

vious method of Ti on 〈ht, k〉. Formally, rvmij 6= H.firstKeyMth(〈ht, k〉, Ti)

∧(mix(ht, k, v
′) = H.prevKeyMth(〈ht, k〉, Ti)) (where v′ could be null).

Then,

(a) If mix(ht, k, v
′) is a t insert method then v = v′.

(b) If mix(ht, k, v
′) is a t lookup method then v = v′.

(c) If mix(ht, k, v
′) is a t delete method then v = null.

In this case, we denote mix as the last update method of rvmij , i.e.,

mix(ht, k, v
′) = H.lastUpdt(rvmij(ht, k, v)).

Rule 2 If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is not null. Formally,

rvmij(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti) ∧ (v 6= null). Then,

(a) There is a t insert method t insertpq(ht, k, v) in methods(H) such that Tp

committed before rvmij . Formally, 〈∃t insertpq(ht, k, v) ∈ methods(H) :

tryCp ≺MR
H rvmij〉.

(b) There is no other update method upxy of a transaction Tx operating on

〈ht, k〉 in methods(H) such that Tx committed after Tp but before rvmij .

Formally, 〈∄upxy(ht, k, v′′) ∈ methods(H) : tryCp ≺MR
H tryCx ≺MR

H

rvmij〉.
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In this case, we denote tryCp as the last update method of rvmij , i.e., tryCp(ht, k, v)=

H.lastUpdt(rvmij(ht, k, v)).

Rule 3 If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is null. Formally,

rvmij(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti) ∧ (v = null). Then,

(a) There is t delete method t deletepq(ht, k, v
′) in methods(H) such that Tp

committed before rvmij . Formally, 〈∃t deletepq

(ht, k, v′) ∈ methods(H) : tryCp ≺MR
H rvmij〉. Here v′ could be null.

(b) There is no other update method upxy of a transaction Tx operating on

〈ht, k〉 in methods(H) such that Tx committed after Tp but before rvmij .

Formally, 〈∄upxy(ht, k, v′′) ∈ methods(H) : tryCp ≺MR
H tryCx ≺MR

H

rvmij〉.

In this case, we denote tryCp as the last update method of rvmij , i.e., tryCp(ht, k, v)

= H.lastUpdt(rvmij(ht, k, v)).

We assume that when a transaction Ti operates on key k of a hash-table ht, the result of

this method is stored in local logs of Ti, txLogi for later methods to reuse. Thus, only

the first rv method operating on 〈ht, k〉 of Ti accesses the shared memory. The other

rv methods of Ti operating on 〈ht, k〉 do not access the shared memory and they see

the effect of the previous method from the local logs, txLogi. This idea is utilized in

Rule 1. With reference to Rule 2 and Rule 3, it is possible that Tx could have aborted

before rvmij .

Coming to t insert methods, since a t insert method always returns ok as they

overwrite the node if already present therefore they always take effect on the ht. Thus,

we denote all t insert methods as legal and only give legality definition for rv method.

We denote a sequential history H as legal or linearized if all its rvm methods are legal.

We formally prove the legality of the proposed OPT-MVOSTMs in Section 6.

Opacity: It is a correctness-criteria for STMs [8]. A sequential history H is said to

be opaque if there exists a serial history S such that: (1) S is equivalent to H , i.e.,

evts(H) = evts(S) (2) S is legal and (3) S respects the transactional real-time order

of H , i.e., ≺TR
H ⊆≺TR

S .

Finally, we show that history generated by OPT-MVOSTMs satisfy correctness
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criteria as opaque.

3. Graph Characterization of Opacity

To prove that an STM system satisfies opacity, it is useful to consider graph char-

acterization of histories. In this section, we describe the graph characterization of

Guerraoui and Kapalka [11] modified for sequential histories.

Consider a history H which consists of multiple version for each t-object. The graph

characterization uses the notion of version order. Given H and a t-object k, we define a

version order for k as any (non-reflexive) total order on all the versions of k ever created

by committed transactions in H . It must be noted that the version order may or may not

be the same as the actual order in which the versions of k are generated in H . A version

order of H , denoted as ≪H is the union of the version orders of all the t-objects in H .

Consider the history H3 as shown in Figure 3 : lu1(kx,0, null), lu2(kx,0, null), lu1

(ky,0, null), lu3(kz,0, null), ins1(kx,1, v11), ins3(ky,3, v31), ins2(ky,2, v21), ins1(kz,1,

v12), c1, c2, lu4(kx,1, v11), lu4(ky,2, v21), ins3(kz,3, v32), c3, lu4(kz,1, v12), lu5(kx,1,

v11), lu6(ky,2, v21), c4, c5, c6. Using the notation that a committed transaction Ti writ-

ing to kx creates a version kx,i, a possible version order for H3 ≪H3 is: 〈kx,0 ≪

kx,1〉, 〈ky,0 ≪ ky,2 ≪ ky,3〉, 〈kz,0 ≪ kz,1 ≪ kz,3〉.

T1

T2

T3

C1

T4

C3

C2

C4

T5

T6 C6

C5

lu2(kx,0, null) ins2(ky,2, v21)

lu3(kz,0, null) ins3(ky,3, v31) ins3(kz,3, v32)

lu4(kx,1, v11) lu4(ky,2, v21) lu4(kz,1, v12)

lu5(kx,1, v11)

lu6(ky,2, v21)

lu1(ky,0, null)lu1(kx,0, null) ins1(kz,1, v12)ins1(kx,1, v11)

Figure 3: History H3 in time line view

We define the graph characterization based on a given version order. Consider a

history H and a version order ≪. We then define a graph (called opacity graph) on H

using ≪, denoted as OPG(H,≪) = (V,E). The vertex set V consists of a vertex for
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each transaction Ti in H . The edges of the graph are of three kinds and are defined as

follows:

1. rt(real-time) edges: If the commit of Ti happens before beginning of Tj in H ,

then there exist a real-time edge from vi to vj . We denote set of such edges as

rt(H).

2. rvf (return value-from) edges: If Tj invokes rv method on key k1 from Ti which

has already been committed in H , then there exists a return value-from edge

from vi to vj . If Ti is having upd method as insert on the same key k1 then

insi(k1,i, vi1) <H ci <H rvmj(k1,i, vi1). If Ti is having upd method as delete

on the same key k1 then deli(k1,i, null) <H ci <H rvmj(k1,i, null). We denote

set of such edges as rvf(H).

3. mv(multi-version) edges: This is based on version order. Consider a triplet with

successful methods as upi(k1,i, u), rvmj(k1,i, u), upk(k1,k, v) , where u 6= v.

As we can observe it from rvmj(k1,i, u), ci <H rvmj(k1,i, u). if k1,i ≪ k1,k

then there exist a multi-version edge from vj to vk. Otherwise (k1,k ≪ k1,i),

there exist a multi-version edge from vk to vi. We denote set of such edges as

mv(H,≪).

We now show that if a version order ≪ exists for a history H such that it is acyclic, then

H is opaque.

mv

rt

rt, rvf
rvf

rvf

rt, rvf

rt, rvf

rt

rt

rt

rt

rt

rt, rvf

rt
rt, rvf

T1

T2

T3

T4

T5

T6

T0

Figure 4: OPG(H3,≪H3)
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Using this construction, the OPG(H3,≪H3) for history H3 and ≪H3 is given

above is shown in Figure 4. The edges are annotated. The only mv edge from T4 to

T3 is because of t-objects ky, kz . T4 lookups value v12 for kz from T1 whereas T3 also

inserts v32 to kz and commits before lu4(kz,1, v12).

Given a history H and a version order ≪, consider the graph OPG(H,≪). While

considering the rt edges in this graph, we only consider the real-time relation of H

and not H . It can be seen that ≺RT
H ⊆≺RT

H
but with this assumption, rt(H) = rt(H).

Hence, we get the following property,

Property 1. The graphs OPG(H,≪) and OPG(H,≪) are the same for any history

H and ≪.

Definition 1. For a t-sequential history S, we define a version order ≪S as follows:

For two version kx,i, kx,j created by committed transactions Ti, Tj in S, 〈kx,i ≪S

kx,j ⇔ Ti <S Tj〉.

Now we show the correctness of our graph characterization using the following lemmas

and theorem.

Lemma 2. Consider a legal t-sequential history S. Then the graph OPG(S,≪S ,) is

acyclic.

Proof: We numerically order all the transactions in S by their real-time order by using

a function ord. For two transactions Ti, Tj , we define ord(Ti) < ord(Tj) ⇔ Ti <S Tj .

Let us analyze the edges of OPG(S,≪S ,) one by one:

• rt edges: It can be seen that all the rt edges go from a lower ord transaction to a

higher ord transaction.

• rvf edges: If Tj lookups kx from Ti in S then Ti is a committed transaction with

ord(Ti) < ord(Tj). Thus, all the rvf edges from a lower ord transaction to a

higher ord transaction.

• mv edges: Consider a successful rv method rvmj(kx, u) and a committed trans-

action Tk writing v to kx where u 6= v. Let ci be rvmj(kx, u)’s lastWrite. Thus,
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upi(kx,i, u) ∈ evts(Ti). Thus, we have that ord(Ti) < ord(Tj). Now there are

two cases w.r.t Ti: (1) Suppose ord(Tk) < ord(Ti). We now have that Tk ≪ Ti.

In this case, the mv edge is from Tk to Ti. (2) Suppose ord(Ti) < ord(Tk) which

implies that Ti ≪ Tk. Since S is legal, we get that ord(Tj) < ord(Tk). This

case also implies that there is an edge from ord(Tj) to ord(Tk). Hence, in this

case as well the mv edges go from a transaction with lower ord to a transaction

with higher ord.

Thus, in all the three cases the edges go from a lower ord transaction to higher ord

transaction. This implies that the graph is acyclic.

Lemma 3. Consider two histories H,H ′ that are equivalent to each other. Consider a

version order ≪H on the t-objects created by H . The mv edges mv(H,≪H) induced

by ≪H are the same in H and H ′.

Proof: Since the histories are equivalent to each other, the version order ≪H is appli-

cable to both of them. It can be seen that the mv edges depend only on events of the

history and version order ≪. It does not depend on the ordering of the events in H .

Hence, the mv edges of H and H ′ are equivalent to each other.

Using these lemmas, we prove the following theorem.

Theorem 4. A valid history H is opaque iff there exists a version order ≪H such that

OPG(H,≪H) is acyclic.

Proof: (if part): Here we have a version order ≪H such that GH = OPG(H,≪) is

acyclic. Now we have to show that H is opaque. Since the GH is acyclic, a topological

sort can be obtained on all the vertices of GH . Using the topological sort, we can

generate a t-sequential history S. It can be seen that S is equivalent to H . Since S is

obtained by a topological sort on GH which maintains the real-time edges of H , it can

be seen that S respects the rt order of H , i.e ≺RT
H ⊆≺RT

S .

Similarly, since GH maintains return value-from (rvf) order of H , it can be seen

that if Tj lookups kx from Ti in H then Ti terminates before luj(kx) and Tj in S.

Thus, S is valid. Now it remains to be shown that S is legal. We prove this using
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contradiction. Assume that S is not legal. Thus, there is a successful rv method

rvmj(kx, u) such that its lastWrite in S is ck and Tk updates value v( 6= u) to kx, i.e

upk(kx,k, v) ∈ evts(Tk). Further, we also have that there is a transaction Ti that inserts

u to kx, i.e upi(kx,i, u) ∈ evts(Ti). Since S is valid, as shown above, we have that

Ti ≺
RT
S Tk ≺RT

S Tj .

Now in ≪H , if kx,k ≪H kx,i then there is an edge from Tk to Ti in GH . Otherwise

(kx,i ≪H kx,k), there is an edge from Tj to Tk. Thus, in either case, Tk can not be in

between Ti and Tj in S contradicting our assumption. This shows that S is legal.

(Only if part): Here we are given that H is opaque and we have to show that there

exists a version order ≪ such that GH = OPG(H,≪)(= OPG(H,≪), Property 1)

is acyclic. Since H is opaque there exists a legal t-sequential history S equivalent

to H such that it respects real-time order of H . Now, we define a version order for

S, ≪S as in Definition 1. Since the S is equivalent to H , ≪S is applicable to H

as well. From Lemma 2, we get that GS = OPG(S,≪S) is acyclic. Now consider

GH = OPG(H,≪S). The vertices of GH are the same as GS . Coming to the edges,

• rt edges: We have that S respects real-time order of H , i.e ≺RT
H ⊆≺RT

S . Hence,

all the rt edges of H are a subset of S.

• rvf edges: Since H and S are equivalent, the return value-from relation of H and

S are the same. Hence, the rvf edges are the same in GH and GS .

• mv edges: Since the version-order and the operations of the H and S are the

same, from Lemma 3 it can be seen that H and S have the same mv edges as

well.

Thus, the graph GH is a subgraph of GS . Since we already know that GS is acyclic

from Lemma 2, we get that GH is also acyclic.

4. OPT-MVOSTMs Design and Data Structure

This section describes the design and data structure of optimized MVOSTMs (or

OPT-MVOSTMs). Here, we propose hash-table and list based OPT-MVOSTMs as OPT-

HT-MVOSTM and OPT-list-MVOSTM respectively. OPT-MVOSTMs are generic for
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Figure 5: Optimized HT-MVOSTM design

other data structure as well. OPT-HT-MVOSTM is a hash-table based OPT-MVOSTM

that explores the idea of multiple versions in OSTMs for hash-table object to achieve

greater concurrency. The design of OPT-HT-MVOSTM is similar to HT-MVOSTM [1]

consisting of B buckets. All the keys of the hash-table in the range K are statically

allocated to one of these buckets.

Each bucket consists of linked-list of nodes along with two sentinel nodes head and

tail with values -∞ and +∞ respectively. The structure of each node is as 〈key, lock,

marked, vl, nnext〉. The key is a unique value from the set of all keys K . All the

nodes are stored in increasing order in each bucket as shown in Figure 5 (a), similar to

any linked-list based concurrent set implementation [7, 15]. In the rest of the document,

we use the terms key and node interchangeably. To perform any operation on a key, the

corresponding lock is acquired. marked is a boolean field which represents whether

the key is deleted or not. The deletion is performed in a lazy manner similar to the

concurrent linked-lists structure [7]. If the marked field is true then key corresponding

to the node has been logically deleted; otherwise, it is present. The vl field of the

node points to the version list (shown in Figure 5 (b)) which stores multiple versions

corresponding to the key. The last field of the node is nnext which stores the address

of the next node. It can be seen that the list of keys in a bucket is as an extension of

lazy-list [7]. Given a node n in the linked-list of bucket B with key k, we denote its

fields as n.key (or k.key), n.lock (or k.lock), n.marked (or k.marked), n.vl (or

k.vl), n.nnext (or k.nnext).

The structure of each version in the vl of a key k is 〈ts, val, rvl, maxrvl, vnext〉

as shown in Figure 5 (b). The field ts denotes the unique timestamp of the version. In
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our algorithm, every transaction is assigned a unique timestamp when it begins which is

also its id. Thus ts of this version is the timestamp of the transaction that created it. All

the versions in the vl of k are sorted by ts. Since the timestamps are unique, we denote

a version, ver of a node n with key k having ts j as n.vl[j].ver or k.vl[j].ver. The cor-

responding fields in the version as k.vl[j].ts, k.vl[j].val, k.vl[j].rvl, k.vl[j].maxrvl,

k.vl[j].vnext.

The field val contains the value updated by an update transaction. If this version is

created by an insert method t inserti(ht, k, v) by transaction Ti, then val will be v. On

the other hand, if the method is t deletei(ht, k, v) then val will be null. In this case, as

per the algorithm, the node of key k will also be marked. OPT-HT-MVOSTM algorithm

does not immediately physically remove deleted keys from the hash-table. The need for

this is explained below. Thus an rv method (t delete or t lookup) on key k can return

null when it does not find the key or encounters a null value for k.

The rvl field stands for return value list which is a list of all the transactions that

executed rv method on this version, i.e., those transactions which returned val. The first

optimization in OPT-HT-MVOSTM to reduce the traversal time of rvl, we have used

maxrvl which contains the maximum ts of the transaction that executed rv method on

this version. The field vnext points to the next available version of that key.

In order to increase the efficiency and utilize the memory properly, We propose two

variants of OPT-HT-MVOSTM as follows: First, we apply garbage collection (or GC) on

the versions and propose OPT-HT-MVOSTM-GC. It maintains unbounded versions in vl

(the length of the list) while deleting the unwanted versions using garbage collection

scheme. Second, we propose OPT-HT-KOSTM which maintains the bounded number

of versions such as K and improves the efficiency further. Whenever a new version

ver is created and is about to be added to vl, the length of vl is checked. If the length

becomes greater than K, the version with lowest ts (i.e., the oldest) is replaced with the

new version ver and thus maintaining the length back to K.

We propose OPT-list-MVOSTMs while considering the bucket size as 1 in OPT-HT-

MVOSTM. Along with this, we propose two variants of OPT-list-MVOSTM as OPT-list-

MVOSTM-GC and OPT-list-KOSTM which applies the garbage collection scheme in

unbounded versions and bounded K versions for list based object respectively similar
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Figure 7: Searching k11 over lazyrb-list

to OPT-HT-MVOSTM.

Marked Version Nodes: OPT-HT-MVOSTM stores keys even after they have been

deleted (the version of the nodes which have marked field as true). This is because

some other concurrent transactions could read from a different version of this key and not

the null value inserted by the deleting transaction. Consider for instance the transaction

T1 performing lu1(ht, k2, v0) as shown in Figure 2 (b). Due to the presence of previous

version v0, OPT-HT-MVOSTM returns this earlier version v0 for lu1(ht, k2, v0) method.

Whereas, it is not possible for HT-OSTM to return the version v0 because k1 has been

removed from the system by delete method of higher timestamp transaction T2 than

T1. In that case, T1 would have to be aborted. Thus as explained in Section 1, storing

multiple versions increases the concurrency.

To store deleted keys along with the live keys (or unmarked node) in a lazy-list

will increase the traversal time to access unmarked nodes. Consider Figure 6, in which

there are four keys 〈k2, k4, k8, k11〉 present in the list. Here 〈k2, k4, k8〉 are marked

(or deleted) nodes while k11 is unmarked. Now, consider accessing the key k11 by

OPT-HT-MVOSTM as a part of one of its methods. Then OPT-HT-MVOSTM would

have to unnecessarily traverse the marked nodes to reach key k11.

This motivated us to modify the lazy-list structure of nodes in each bucket to form a

skip list based on red and blue links. We denote it as red-blue lazy-list or lazyrb-list.

This idea was earlier explored by Peri et al. in developing OSTMs [6]. lazyrb-list

consists of nodes with two links, red link (or RL) and blue link (or BL). The node which

is not marked (or not deleted) are accessible from the head via BL. While all the nodes

including the marked ones can be accessed from the head via RL. With this modification,

let us consider the above example of accessing unmarked key k11. It can be seen that

k11 can be accessed much more quickly through BL as shown in Figure 7. Using the

idea of lazyrb-list, we have modified the structure of each node as 〈 key, lock, marked,
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vl, RL, BL 〉. Further, for a bucket B, we denote its linked-list as B.lazyrb-list.

5. Working of OPT-HT-MVOSTM

OPT-HT-MVOSTM exports t begin, t insert, t delete, t lookup, and tryC methods

as explained in Section 2. Among them t delete, t lookup are return-value methods (or

rv methods) while t insert, t delete are update methods (or upd methods). We treat

t delete as both rv method as well as upd method. The rv methods return the current

value of the key. The upd methods, update to the keys are first noted down in the local

log, txLog. Then in the tryC method after successful validations of these updates are

transferred to the shared memory. We now explain the working of each method as

follows:

t begin(): A thread invokes a new transaction Ti using this method. The transaction Ti

local log txLogi is initialized at Line 2. This method returns a unique id to the invoking

thread by incrementing an atomic counter at Line 3. This unique id is also the timestamp

of the transaction Ti. For convenience, we use the notation that i is the timestamp (or

id) of the transaction Ti.

Algorithm 1 t begin(): It provides the local log and unique id to each transaction.

1: procedure t begin()

2: txLog← new txLog(). ⊲ Initialize the local log of transaction

3: t id← get&inc(counter). ⊲ Get the unique transaction id (t id) while incrementing the counter atomically

4: return t id.

5: end procedure

rv methods: It can be either t delete(ht, k, v) or t lookup(ht, k, v). Both these methods

return the current value of key k. Algorithm 2 gives the high level overview of these

methods. First, the algorithm checks to see if the given key is already in the local log,

txLogi of Ti (Line 7). If the key is already there then the current rv method is not the

first method on k and is a subsequent method of Ti on k. So, we can return the value of

k from the txLogi.

If the key is not present in the txLogi, then OPT-HT-MVOSTM searches into shared

memory. Specifically, it searches the bucket to which k belongs to. Every key in the

range K is statically allocated to one of the B buckets. So the algorithms search
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for k in the corresponding bucket, say Bk to identify the appropriate location, i.e.,

identify the correct predecessor or pred and current or curr keys in the lazyrb-list

of Bk without acquiring any locks similar to the search in lazy-list [7]. Since each

key has two links, RL and BL, the algorithm identifies four node references: two

pred and two curr according to red and blue links. They are stored in the form of an

array with preds[0] and currs[1] corresponding to blue links; preds[1] and currs[0]

corresponding to red links. If both preds[1] and currs[0] nodes are unmarked then the

pred, curr nodes of both red and blue links will be the same, i.e., preds[0] = preds[1]

and currs[0] = currs[1]. Thus depending on the marking of pred, curr nodes, a total

of two, three or four different nodes will be identified. Here, the search ensures that

preds[0].key ≤ preds[1].key < k ≤ currs[0].key ≤ currs[1].key.

Next, the re-entrant locks on all the pred, curr keys are acquired in increasing

order to avoid the deadlock. Then all the pred and curr keys are validated by rv -

Validation() in Line 12 as follows: (1) If pred and curr nodes of blue links are not

marked, i.e, (¬preds[0].marked) && (¬currs[1].marked). (2) If the next links

of both blue and red pred nodes point to the correct curr nodes: (preds[0].BL =

currs[1]) && (preds[1].RL = currs[0]) at Line 74.

If any of these checks fail, then the algorithm retries to find the correct pred and curr

keys. It can be seen that the validation check is similar to the validation in concurrent

lazy-list [7].

Next, we check if k is in Bk.lazyrb-list. If k is not in Bk, then we create a new

node n for k as: 〈key = k, lock = false,marked = true, vl = ver, nnext = φ〉 and

insert it into Bk.lazyrb-list such that it is accessible only via RL. This node will have

a single version ver as 〈ts = 0, val = null, rvl = i,maxrvl = i, vnext = φ〉. Here

invoking transaction Ti is creating a version with timestamp 0 to ensure that rv methods

of other transactions will never abort. As we have explained in Figure 2 (b) of Section 1,

even after T2 deletes k2, the previous value of v0 is still retained. Thus, when T1 invokes

lu on k2 after the delete on k2 by T2, OPT-HT-MVOSTM will return v0 (as previous

value). Hence, each rv method will find a version to read while maintaining the infinite

version corresponding to each key k. marked field sets to true because it access by RL

only. In rvl and maxrvl, Ti adds the timestamp as i in it and vnext is initialized to
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empty value. Since val is null and the n, this version and the node are not technically

inserted into Bk.lazyrb-list.

If k is in Bk.lazyrb-list then, k is the same as currs[0] or currs[1] or both. Let

n be the node of k in Bk.lazyrb-list. We then find the version of n, verj which has

the timestamp j such that j has the largest timestamp smaller than i (timestamp of Ti).

Add i to verj’s rvl (Line 24). maxrvl maintains the maximum timestamp among all

rv methods read from this version at Line 26. Then release the locks, update the local

log txLogi in Line 29 and return the value stored in verj .val in Line 31.

Algorithm 2 rv method: It can be either t deletei(ht, k, v) or t lookupi(ht, k, v) on key

k that maps to bucket Bk of hash-table ht.

6: procedure rv methodi(ht, k, v)

7: if (k ∈ txLogi) then

8: Update the local log and return val.
9: else

10: Search in lazyrb-list to identify the preds[] and currs[] for k using BL and RL in bucket Bk .

11: Acquire the locks on preds[] and currs[] in increasing order.

12: if (! rv V alidation()) then

13: Release the locks and goto Line 10.

14: end if

15: if (k /∈ Bk.lazyrb-list) then

16: Create a new node n with key k as: 〈 key = k, lock = false, marked = true, vl = ver, nnext = φ〉.
17: /*The vl consists of a single element ver with ts as 0*/

18: Create the version ver as: 〈ts = 0, val = null, rvl = i,maxrvl = i, vnext = φ〉.
19: Insert n into Bk.lazyrb-list such that it is accessible only via RLs. ⊲ n is marked

20: Release the locks; update the txLogi with k.

21: return null.
22: end if

23: Identify the version verj with ts = j such that j is the largest timestamp smaller than i.
24: Add i into the rvl of verj .

25: if (verj .maxrvl < i) then

26: Set verj .maxrvl to i.
27: end if

28: retV al = verj .val.
29: Release the locks; update the txLogi with k and retV al.
30: end if

31: return retV al.
32: end procedure

t insert(): This is another optimization done in OPT-HT-MVOSTMs to identify the early

abort which prevents the work done by aborted transactions and saves time. The actual

effect of the t insert() comes after the successful tryC method. First, t insert() searches

the key k in the local log, txLogi of Ti at Line 34. If k does not exist in the txLogi

then it identifies the appropriate location (pred and curr) of key k using BL and RL

(Line 35) in the lazyrb-list of Bk without acquiring any locks similar to rv method

explained above.
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Figure 8: Advantage of early validation in t insert()

Next, it acquires the re-entrant locks on all the pred and curr keys in increasing

order. After that, all the pred and curr keys are validated by tryC Validation in Line 37

as follows: (1) It does the rv Validation() as explained above in the rv method. (2) If

key k exists in the Bk.lazyrb-list and let n as a node of k. Then algorithm identifies

the version of n, verj which has the timestamp j such that j has the largest timestamp

smaller than i (timestamp of Ti) at Line 85. If maxrvl of verj is greater than timestamp

i at Line 86 then it returns Abort in Line 38.

tryC Validation() in t insert() identifies the early abort of invalid transaction. The

advantage of doing the early validation to save the significant computation of long

running transaction which will abort in the future. Consider Figure 8 where two

transaction T1 and T2 working on key k5. In Figure 8 (a), T1 aborts in tryC (delayed

validation) because higher timestamp T2 committed. But in Figure 8 (b), T1 validates

the t insert() instantly by looking into the maxrvl of k5 as shown in Figure 8 (c) and

save its computation and returns abort.

Algorithm 3 t insert(): Actual insertion happens in the tryC.

33: procedure t insert()
34: if (k /∈ txLogi) then

35: Search in lazyrb-list to identify the preds[] and currs[] for k using BL and RL in bucket Bk .

36: Acquire the locks on preds[] and currs[] in increasing order.

37: if (! tryC V alidation()) then

38: return Abort. ⊲ Release the locks

39: end if

40: Release the locks.

41: else

42: Update the local log.

43: end if

44: end procedure

upd methods: It can be either t insert(ht, k, v) or t delete(ht, k, v). Both the methods

create a version corresponding to the key k. The actual effect of t insert and t delete in

shared memory will take place in tryC. Algorithm 4 represents the high level overview
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of tryC.

Initially, to avoid deadlocks, the algorithm sorts all the keys in increasing order

which are present in the local log, txLogi. In tryC, txLogi consists of upd methods

(t insert or t delete) only. For all the upd methods (opni) it searches the key k in the

shared memory corresponding to the bucket Bk. It identifies the appropriate location

(pred and curr) of key k using BL and RL (Line 50) in the lazyrb-list of Bk without

acquiring any locks similar to rv method explained above.

Next, it acquires the re-entrant locks on all the pred and curr keys in increasing

order. After that, all the pred and curr keys are validated by tryC Validation in Line 52

as explained in t insert().

Algorithm 4 tryC(Ti): Validate the upd methods of the transaction and then commit.

45: procedure tryC(Ti)
46: /*Operation name (opn) which could be either t insert or t delete */

47: /*Sort the keys of txLogi in increasing order.*/

48: for all (opni ∈ txLogi) do

49: if ((opni == t insert) || (opni == t delete)) then

50: Search in lazyrb-list to identify the preds[] and currs[] for k using BL and RL in bucket Bk .

51: Acquire the locks on preds[] and currs[] in increasing order.

52: if (! tryC V alidation()) then

53: return Abort. ⊲ Release the locks

54: end if

55: end if

56: end for

57: for all (opni ∈ txLogi) do

58: intraTransV alidation() modifies the preds[] and currs[] of current operation which would have been

updated by the previous operation of the same transaction.

59: if ((opni == t insert) && (k /∈ Bk.lazyrb-list)) then

60: Create new node n with k as: 〈 key = k, lock = false, marked = false, vl = ver, nnext = φ 〉.
61: Create two versions ver as: 〈 ts=0, val=null, rvl=φ, maxrvl = φ, vnext=i 〉 for T0 and 〈 ts=i, val=v,

rvl=φ, maxrvl = φ, vnext=φ 〉 for Ti.

62: Insert node n into Bk.lazyrb-list such that it is accessible via RL as well as BL ⊲ lock sets true.

63: else if (opni == t insert) then

64: Add the version ver as: 〈 ts=i, val=v, rvl=φ, maxrvl=φ, vnext=φ 〉 into Bk.lazyrb-list such that it is

accessible via RL as well as BL.

65: end if

66: if (opni == t delete) then

67: Add the version ver as: 〈 ts=i, val=null, rvl=φ, maxrvl=φ, vnext=φ 〉 into Bk.lazyrb-list such that

it is accessible only via RL.

68: end if

69: Update the preds[] and currs[] of opni in txLogi.

70: end for

71: Release the locks; return Commit.
72: end procedure

If tryC Validation is successful then each upd methods exist in txLogi will take

the effect in the shared memory after doing the intraTransValidation() in Line 58. If

two upd methods of the same transaction have at least one common shared node

among its recorded pred and curr keys, then the previous upd method effect may
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overwrite if the current upd method of pred and curr keys are not updated according

to the updates are done by the previous upd method. Thus to solve this we have

intraTransValidation() that modifies the pred and curr keys of current operation based

on the previous operation in Line 58.

Next, we check if upd method is t insert and k is in Bk.lazyrb-list. If k is not in

Bk, then create a new node n for k as 〈key = k, lock = false,marked = false, vl =

ver, nnext = φ〉. This node will have two versions ver as 〈ts = 0, val = null, rvl =

φ,maxrvl = φ, vnext = i〉 for T0 and 〈ts = i, val = v, rvl = φ,maxrvl =

φ, vnext = φ〉 for Ti. Ti is creating a version with timestamp 0 to ensure that rv meth-

ods of other transactions will never abort. For second version, i is the timestamp of

the transaction Ti invoking this method; marked field sets to false because the node

is inserted in the BL. rvl, maxrvl, and vnext are initialized to empty values. We set

the val as v and insert n into Bk.lazyrb-list such that it is accessible via RL as well as

BL and set the lock field to be true (Line 62). If k is in Bk.lazyrb-list then, k is the

same as currs[0] or currs[1] or both. Let n be the node of k in Bk.lazyrb-list. Then,

we create the version ver as: 〈ts = i, val = v, rvl = φ,maxrvl = φ, vnext = φ〉 and

insert the version into Bk.lazyrb-list such that it is accessible via RL as well as BL

(Line 64).

Subsequently, we check if upd method is t delete and k is in Bk.lazyrb-list. Let

n be the node of k in Bk.lazyrb-list. Then create the version ver as 〈ts = i, val =

null, rvl = φ,maxrvl = φ, vnext = φ〉 and insert the version into Bk.lazyrb-list

such that it is accessible only via RL (Line 67).

Finally, at Line 69 it updates the pred and curr of opni in local log, txLogi. At

Line 71 releases the locks on all the pred and curr in increasing order of keys to avoid

deadlocks and return Commit.

We illustrate the helping methods of rv method, t insert(), and upd method in detail

as follows:

rv Validation(): It is called by the rv method, t insert(), and upd method. It identifies

the conflicts among the concurrent methods of different transactions. Consider an

example shown in Figure 9, where two concurrent conflicting methods of different

transactions are working on the same key k4. Initially, at stage s1 in Figure 9 (c) both
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Figure 9: Illustration of rv Validation()

the conflicting method optimistically (without acquiring locks) identify the same pred

and curr keys for key k4 from Bk.lazyrb-list in Figure 9 (a). At stage s2 in Figure 9

(c), method ins1(ht, k4, v1) of transaction T1 acquired the lock on pred and curr keys

and inserted the node into Bk.lazyrb-list as shown in Figure 9 (b). After successful

insertion by T1, pred and curr have been changed for lu2(ht, k4) at stage s3 in Figure 9

(c). So, the above modified information is delivered by rv Validation method at Line 74

when (preds[0].BL 6= currs[1]) for lu2(ht, k4). After that again it will find the new

pred and curr for lu2(ht, k4, v1) and eventually it will commit.

Algorithm 5 rv Validation(): Validate against the conflicting method of different trans-

actions.
73: procedure rv validation()
74: if ((preds[0].marked)||(currs[1].marked)||(preds[0].BL) 6= currs[1]||(preds[1].RL) 6=

currs[0]) then

75: return false.

76: else

77: return true.

78: end if

79: end procedure

2

20 null
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lu1(ht, k4, null)

lu2(ht, k5, null)
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(a) Opaque history: T1 Abort

vnextval maxrvlts rvl

. . .

(b) Underlying Data structure(DS)

Figure 10: Illustration of tryC Validation()

tryC Validation(): It is called by t insert(), and upd method in tryC. First, it does the

rv Validation() in Line 81. If its successful and key k exists in the Bk.lazyrb-list and

let n as a node of k. Then algorithm identifies the version of n, verj which has the
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timestamp j such that j has the largest timestamp smaller than i (timestamp of Ti) at

Line 85. If maxrvl of verj is greater than the timestamp of i then the algorithm returns

false (in Line 87) and eventually, return Abort in Line 38 or Line 53. Consider an

example as shown in Figure 10 (a), where second method ins1(ht, k5) of transaction

T1 returns Abort because higher timestamp of transaction T2 is already present in the

maxrvl of version T0 identified by T1 in Figure 10 (b).

Algorithm 6 tryC Validation(): It maintains the order among the transactions.

80: procedure tryC validation()
81: if (! rv V alidation()) then

82: Release the locks and retry.

83: end if

84: if (k ∈Bk.lazyrb-list) then

85: Identify the version verj with ts = j such that j is the largest timestamp smaller than i.
86: if (verj .maxrvl > i) then

87: return false.

88: end if

89: end if

90: return true.

91: end procedure

Algorithm 7 intraTransValidation(): Help the upcoming method of the same transaction.

92: procedure intraTransV alidation()
93: if ((preds[0].marked)||(preds[0].BL 6= currs[1])) then

94: if (opnk == Insert) then

95: /*Modify the pred of current transaction Ti with the help of previous transaction Tk*/

96: preds[0]i = preds[0]k .BL. ⊲ Set the Ti preds[0] as Tk currs[1]

97: else

98: preds[0]i = preds[0]k . ⊲ Set the Ti preds[0] as Tk preds[0]

99: end if

100: end if

101: if (preds[1].RL 6= currs[0]) then

102: preds[1]i = preds[1]k.RL. ⊲ Set the Ti preds[1] as Tk currs[0]

103: end if

104: end procedure

intraTransValidation(): It is called by upd method in tryC. If two upd methods of

the same transaction have at least one common shared node among its recorded pred

and curr keys, then the previous upd method effect may overwrite if the current

upd method of pred and curr keys are not updated according to the updates done

by the previous upd method. Thus to solve this we have intraTransValidation() that

modifies the pred and curr keys of current operation based on the previous operation

from Line 93 to Line 103. Consider an example as shown in Figure 11, where two

upd methods of transaction T1 are ins11(ht, k4, v1) and ins12(ht, k6, v2) in Figure 11

(c). At stage s1 in Figure 11 (c) both the upd methods identify the same pred and curr
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from underlying DS as Bk.lazyrb-list shown in Figure 11 (a). After the successful

insertion done by first upd method at stage s2 in Figure 11 (c), key k4 is part of

Bk.lazyrb-list (Figure 11 (b)). At stage s3 in Figure 11 (c), ins12(ht, k6, v2) identified

(preds[0].BL 6= currs[1]) in intraTransValidation() at Line 93. So it updates the

preds[0] in Line 96 for correct updation in Bk.lazyrb-list.

−∞
s3

k4

(b) Successful insertion of k4 at stage s2(a) Underlying list at stage s1

k2 +∞k6 k2 +∞k6−∞ T1

(c) Two update methods of T1

C1

ins12(ht, k6, v2)ins11(ht, k4, v1)

s1 s2

Figure 11: Illustration of intraTransValidation()

6. Correctness of OPT-MVOSTM

In this section, we will prove that our implementation satisfies opacity. Consider

the history H generated by OPT-MVOSTM algorithm. Recall that only the t begin,

rv method, t insert(), upd method (or tryC) access shared memory.

Note that H is not necessarily sequential: the transactional methods can execute in

an overlapping manner. To reason about correctness, we have to prove H is opaque.

Since we defined opacity for histories which are sequential, we order all the overlapping

methods in H to get an equivalent sequential history. We then show that this resulting

sequential history satisfies method.

We order overlapping methods of H as follows: (1) two overlapping t begin methods

based on the order in which they obtain lock over the counter; (2) two rv methods ac-

cessing the same key k by their order of unlocking over 〈preds[0], preds[1], currs[0],

currs[1]〉 of k; (3) an rv method rvmi(k) and a t insertj(), of a transaction Tj access-

ing the same key k, are ordered by their order of unlocking over 〈preds[0], preds[1],

currs[0], currs[1]〉 of k; (4) an rv method rvmi(k) and a tryCj , of a transaction

Tj which has written to k, are similarly ordered by their order of unlocking over

〈preds[0], preds[1], currs[0], currs[1]〉 of k; (5) two t insert() methods accessing the

same key k by their order of unlocking over 〈preds[0], preds[1], currs[0], currs[1]〉
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of k; (6) a t inserti() and a tryCj , of a transaction Tj which has written to k, are simi-

larly ordered by their order of unlocking over 〈preds[0], preds[1], currs[0], currs[1]〉

of k; (7) similarly, two tryC methods based on the order in which they unlock over

〈preds[0], preds[1], currs[0], currs[1]〉 of same key k.

Combining the real-time order of events with above-mentioned order, we obtain a

partial order which we denote as lockOrderH . (It is a partial order since it does not

order overlapping rv methods on different keys or an overlapping rv method and a tryC

which do not access any common key).

In order for H to be sequential, all its methods must be ordered. Let α be a total

order or linearization of methods of H such that when this order is applied to H , it is

sequential. We denote the resulting history as Hα = linearize(H,α). We now argue

about the validity of histories generated by the algorithm.

Lemma 5. Consider a history H generated by the OPT-MVOSTM algorithm. Let α

be a linearization of H which respects lockOrderH , i.e. lockOrderH ⊆ α. Then

Hα = linearize(H,α) is valid.

Proof: Consider a successful rv method rvmi(k) that returns value v. The rv method

first obtains the lock on 〈preds[0], preds[1], currs[0], currs[1]〉 of key k. Thus the

value v returned by the rv method must have already been stored in k’s version list by a

transaction, say Tj when it successfully returned OK from its tryC method. For this to

have occurred, Tj must have successfully locked and released 〈preds[0], preds[1], currs[0],

currs[1]〉 of k prior to Ti’s locking method. Thus from the definition of lockOrderH ,

we get that tryCj(ok) occurs before rvmi(k, v) which also holds in α.

It can be seen that for proving correctness, any linearization of a history H is

sufficient as long as the linearization respects lockOrderH . The following lemma

formalizes this intuition,

Lemma 6. Consider a history H . Let α and β be two linearizations of H such that

both of them respect lockOrderH , i.e. lockOrderH ⊆ α and lockOrderH ⊆ β. Then,

Hα = linearize(H,α) is opaque if Hβ = linearize(H,β) is opaque.

Proof: From Lemma 5, we get that both Hα and Hβ are valid histories. Now let us

consider each case
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If: Assume that Hα is opaque. Then, we get that there exists a legal t-sequential history

S that is equivalent to Hα. From the definition of Hβ , we get that Hα is equivalent to

Hβ . Hence, S is equivalent to Hβ as well. We also have that, ≺RT
Hα⊆≺RT

S . From the

definition of lockOrderH , we get that ≺RT
Hα=≺RT

lockOrderH
=≺RT

Hβ . This automatically

implies that ≺RT
Hβ⊆≺RT

S . Thus Hβ is opaque as well.

Only if: This proof comes from symmetry since Hα and Hβ are not distinguishable.

This lemma shows that, given a history H , it is enough to consider one sequential

history Hα that respects lockOrderH for proving correctness. If this history is opaque,

then any other sequential history that respects lockOrderH is also opaque.

Consider a history H generated by OPT-MVOSTM algorithm. We then generate a

sequential history that respects lockOrderH . For simplicity, we denote the resulting

sequential history of OPT-MVOSTM as Hto. Let Ti be a committed transaction in Hto

that writes to k (i.e. it creates a new version of k).

To prove the correctness, we now introduce some more notations. We define

Hto.stl(Ti, k) as a committed transaction Tj such that Tj has the smallest timestamp

larger (or stl) than Ti in Hto that writes to k in Hto. Similarly, we define Hto.lts(Ti, k)

as a committed transaction Tk such that Tk has the largest timestamp smaller (or lts) than

Ti that writes to k in Hto. Using these notations, we describe the following properties

and lemmas on Hto,

Property 7. Every transaction Ti is assigned a unique numeric timestamp i.

Property 8. If a transaction Ti begins after another transaction Tj then j < i.

Lemma 9. If a transaction Tk looks up key kx from (a committed transaction) Tj then

Tj is a committed transaction updating to kx with j being the largest timestamp smaller

than k. Formally, Tj = Hto.lts(Tk, kx).

Proof: We prove it by contradiction. So, assume that transaction Tk looks up key kx

from Ti that has committed before Tj so, from Property 8, i < k and k < j i.e. i is not

largest timestamp smaller than k. But given statement in this lemma is i < j < k which
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contradicts our assumption. Hence, Tk looks up key kx from Tj which is the largest

timestamp smaller than k.

Lemma 10. Suppose a transaction Tk looks up kx from (a committed transaction) Tj in

Hto, i.e. {upj(kx,j , v), rvmk(kx,i, v)} ∈ evts(Hto). Let Ti be a committed transaction

that updates to kx, i.e. upi(kx,i, u) ∈ evts(Ti). Then, the timestamp of Ti is either less

than Tj’s timestamp or greater than Tk’s timestamp, i.e. i < j ⊕ k < i (where ⊕ is

XOR operator).

Proof: We will prove this by contradiction. Assume that i < j ⊕ k < i is not true. This

implies that, j < i < k. But from the implementation of rv method and tryC methods,

we get that either transaction Ti is aborted or Tk looks up k from Ti in H . Since neither

of them are true, we get that j < i < k is not possible. Hence, i < j ⊕ k < i.

To show that Hto satisfies opacity, we use the graph characterization developed

above in Section 3. For the graph characterization, we use the version order defined

using timestamps. Consider two committed transactions Ti, Tj such that i < j. Suppose

both the transactions write to key k. Then the versions created are ordered as ki ≪ kj .

We denote this version order on all the keys created as ≪to. Now consider the opacity

graph of Hto with version order as defined by ≪to, Gto = OPG(Hto,≪to). In the

following lemmas, we will prove that Gto is acyclic.

Lemma 11. All the edges in Gto = OPG(Hto,≪to) are in timestamp order, i.e. if

there is an edge from Tj to Ti then the j < i.

Proof: To prove this, let us analyze the edges one by one,

• rt edges: If there is an rt edge from Tj to Ti, then Tj terminated before Ti started.

Hence, from Property 8 we get that j < i.

• rvf edges: This follows directly from Lemma 9.

• mv edges: The mv edges relate a committed transaction Tk updates to a key

k, upk(k, v); a successful rv method rvmj(k, u) belonging to a transaction Tj

looks up k updated by a committed transaction Ti, upi(k, u). Transactions Ti, Tk
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create new versions ki, kk respectively. According to ≪to, if kk ≪to ki, then

there is an edge from Tk to Ti. From the definition of ≪to this automatically

implies that k < i.

On the other hand, if ki ≪to kk then there is an edge from Tj to Tk. Thus, in this

case, we get that i < k. Combining this with Lemma 10, we get that j < k.

Thus in all the cases, we have shown that if there is an edge from Tj to Ti then the

j < i.

Theorem 12. Any history Hto generated by OPT-MVOSTM is opaque.

Proof: From the definition of Hto and Lemma 5, we get that Hto is valid. We show

that Gto = OPG(Hto,≪to) is acyclic. We prove this by contradiction. Assume that

Gto contains a cycle of the form, Tc1 → Tc2 → ..Tcm → Tc1. From Lemma 11 we get

that, c1 < c2 < ... < cm < c1 which implies that c1 < c1. Hence, a contradiction.

This implies that Gto is acyclic. Thus from Theorem 4, we get that Hto is opaque.

Now, it is left to show that our algorithm is live, i.e., under certain conditions, every

operation eventually completes. We have to show that the transactions do not deadlock.

This is because all the transactions lock all 〈preds[0], preds[1], currs[0], currs[1]〉

of keys in a predefined order. As discussed earlier, the STM system orders all

〈preds[0], preds[1], currs[0], currs[1]〉 of keys. We denote this order as accessOr-

derand denote it as ≺ao. Thus k1 ≺ao k2 ≺ao ... ≺ao kn.

From accessOrder, we get the following property

Property 13. Suppose transaction Ti accesses shared objects p and q in H . If p is

ordered before q in accessOrder, then lock(p) by transaction Ti occurs before lock(q).

Formally, (p ≺ao q) ⇔ (lock(p) <H lock(q)).

Theorem 14. OPT-MVOSTM with unbounded versions ensures that rv methods do not

abort.

Proof: This is self-explanatory with the help of OPT-MVOSTM algorithm because each

key is maintaining multiple versions in the case of unbounded versions. So rv method

always finds a correct version to read it from. Thus, rv methods do not abort.
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7. Experimental Evaluation

This section describes the experimental analysis of proposed OPT-MVOSTMs with

state-of-the-art STMs. We have three main goals in this section: (1) Analyze the

performance benefits of the optimized multi-version object based STMs (or OPT-

MVOSTMs) over multi-version object based STMs (or MVOSTMs). (2) Evaluate the

benefit of OPT-MVOSTMs over the single-version object based STMs (or OSTMs),

and (3) Analyze the benefit of OPT-MVOSTMs over multi-version read-write STMs.

We implement hash-table object and list object as OPT-HT-MVOSTM and OPT-list-

MVOSTM described in Section 5. We also consider the extension of this optimized

multi-version object STMs to reduce memory usage. Specifically, we consider a variant

that implements garbage collection with unbounded versions and another variant where

the number of versions never exceeds a given threshold K for both OPT-HT-MVOSTMs

and OPT-list-MVOSTMs.

Experimental system: The Experimental system is a large-scale 2-socket Intel(R)

Xeon(R) CPU E5-2690 v4 @ 2.60GHz with 14 cores per socket and two hyper-threads

(HTs) per core, for a total of 56 threads. Each core has a private 32KB L1 cache and

256 KB L2 cache (which is shared among HTs on that core). All cores on a socket

share a 35MB L3 cache. The machine has 32GB of RAM and runs Ubuntu 16.04.2 LTS.

All code was compiled with the GNU C++ compiler (G++) 5.4.0 with the build target

x86 64-Linux-gnu and compilation option -std=c++1x -O3.

STM implementations: We have taken the implementation of NOrec-list [3], Boosting-

list [4], Trans-list [16], ESTM [2], and RWSTM directly from the TLDS framework3.

And the implementation of MVOSTM [1], OSTM [6] and MVTO [10] from our PDCRL

library4. We implemented our algorithms in C++. Each STM algorithm first creates

N-threads, each thread, in turn, spawns a transaction. Each transaction exports t begin,

t insert, t lookup, t delete and tryC methods as described in Section 2.

Methodology:5 We have considered three types of workloads: (W1) Li - Lookup

3https://ucf-cs.github.io/tlds/
4https://github.com/PDCRL/
5Code is available here: https://github.com/PDCRL/MVOSTM/OPT-MVOSTM
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intensive (90% lookup, 8% insert, and 2% delete), (W2) Mi - Mid intensive (50%

lookup, 25% insert, and 25% delete), and (W3) Ui - Update intensive (10% lookup,

45% insert, and 45% delete). The experiments are conducted by varying number of

threads from 2 to 64 in power of 2, with 1000 keys randomly chosen. We assume that

the hash-table of OPT-HT-MVOSTM has five buckets and each of the bucket (or list in

case of OPT-list-MVOSTM) can have a maximum size of 1000 keys. Each transaction,

in turn, executes 10 operations which include t lookup, t delete, and t insert operations.

We take an average over 10 results as the final result for each experiment.

Results: Figure 12 represents the performance benefit of all the variants of proposed

optimized MVOSTM with all variants of MVOSTM for hash-table objects. It shows

OPT-HT-KOSTM performs best among all the algorithms (OPT-HT-MVOSTM-GC,

OPT-HT-MVOSTM, HT-KOSTM, HT-MVOSTM-GC, HT-MVOSTM) by a factor of

1.02, 1.11, 1.05, 1.07, 1.22 for workload W1, 1.06, 1.09, 1.07, 1.08, 1.15 for workload

W2, and 1.01, 1.03, 1.02, 1.03, 1.08 for workload W3 respectively. Along with this,

Figure 13 shows the abort count respective algorithms on workload W1, W2, and W3.

This represents for less number of threads, the number of aborts are almost same for all

the algorithms. But while increasing the number of threads, the number of aborts are

least in OPT-HT-KOSTM as compare to others. So, we compare the performance of OPT-

HT-KOSTM with the state-of-the-art STMs as shown in Figure 14. OPT-HT-KOSTM

outperforms all the algorithms (HT-OSTM, ESTM, RWSTM, HT-MVTO, HT-KSTM)

by a factor of 3.62, 3.95, 3.44, 2.75, 1.85 for W1, 1.44, 2.36, 4.45, 9.84, 7.42 for W2,

and 2.11, 4.05, 7.84, 12.94, 10.70 for W3 respectively. The corresponding number

of aborts are represented in Figure 15. Number of aborts are minimum for OPT-HT-

KOSTM as compare to other state-of-the-art STMs. Especially, the number of aborts for

OPT-HT-KOSTM is almost negligible as compared to HT-OSTM on lookup-intensive

workload (W1) because OPT-HT-KOSTM finds a correct version to looks up as shown

in Figure 15 (a).

The observation of optimized list based MVOSTM is similar as optimized hash-table

based MVOSTM. Figure 16 represents the performance benefit of all the variants of

proposed optimized MVOSTM with all variants of MVOSTM for list objects. It shows
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OPT-list-KOSTM performs best among all the algorithms (OPT-list-MVOSTM-GC,

OPT-list-MVOSTM, list-KOSTM, list-MVOSTM-GC, list-MVOSTM) by a factor of

1.14, 1.24, 1.21, 1.20, 1.35 for W1, 1.06, 1.07, 1.12, 1.13, 1.20 for W2, and 1.09, 1.19,

1.11, 1.17, 1.31 for W3 respectively. Along with this, Figure 17 shows the minimum

abort count by OPT-list-KOSTM as compare to other algorithms on workload W1, W2,

and W3. Hence, we choose the best-proposed algorithm OPT-list-KOSTM and compare

with the state-of-the-art list based STMs.
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Figure 13: Abort count among variants of OPT-HT-MVOSTMs and HT-MVOSTMs on hash-table

Figure 18 represents OPT-list-KOSTM outperforms all the algorithms (list-OSTM,

Trans-list, Boosting-list, NOrec-list, list-MVTO, list-KSTM) by a factor of 2.56, 25.38,

23.57, 27.44, 13.34, 5.99 for W1, 1.51, 20.54, 24.27, 29.45, 24.89, 19.78 for W2, and

2.91, 32.88, 28.45, 40.89, 173.92, 124.89 for W3 respectively. Similarly, Figure 19

depicts that OPT-list-KOSTM obtained the least number of aborts as compare to others
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on the respective workloads.
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As explained in Section 5, for efficient memory utilization, we develop two variations of

OPT-MVOSTM. The first, OPT-MVOSTM-GC, uses unbounded versions but performs

garbage collection. This is achieved by deleting non-latest versions whose times-

tamp is less than the timestamp of the least live transaction. OPT-MVOSTM-GC

gave a performance gain of 16% over OPT-MVOSTM without garbage collection in

the best case which is on workload W1 with 64 number of threads. We did one more

optimization in OPT-MVOSTM-GC on the marked node exist in the RL to make it search

efficiently. This is achieved by deleting a marked node from RL whose maxrvl of

the last version is less than the timestamp of the least live transaction. The second,

OPT-KOSTM, keeps at most K versions by replacing the oldest version when (K+1)th

version is created by a current transaction as explained in Section 5. OPT-KOSTM shows

a performance gain of 24% over OPT-MVOSTM without garbage collection in the best

case which is on workload W1 with 64 number of threads. As OPT-KOSTM has a limited

number of versions while OPT-MVOSTM-GC can have infinite versions, the memory

consumed by OPT-KOSTM is also less than OPT-MVOSTM-GC. We have integrated

these variations in both hash-table based (OPT-HT-MVOSTM-GC and OPT-HT-KOSTM)

and linked-list based MVOSTMs (OPT-list-MVOSTM-GC and OPT-list-KOSTM), we

observed that these two variations increase the performance, concurrency and reduce

the number of aborts as compared to OPT-MVOSTM which does not perform garbage

collection.

Memory Consumption by OPT-MVOSTM-GC and OPT-KOSTM: As depicted

above OPT-KOSTM performs better than OPT-MVOSTM-GC. Continuing the compar-

ison between the two variations of OPT-MVOSTM we chose another parameter as

memory consumption. Here we test for the memory consumed by each variation al-

gorithms in creating a version of a key. We count the total versions created, where

creating a version increases the counter value by 1 and deleting a version decreases

the counter value by 1. Figure 20 depicts the comparison of memory consumption

by all the variants of proposed optimized MVOSTM with all variants of MVOSTM for

hash-table objects. OPT-HT-KOSTM consumes minimum memory among all the algo-

rithms (OPT-HT-MVOSTM-GC, OPT-HT-MVOSTM, HT-KOSTM, HT-MVOSTM-GC,

HT-MVOSTM) by a factor of 1.07, 1.16, 1.15, 1.15, 1.21 for W1 , 1.01, 1.08, 1.06,
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1.07, 1.19 for W2, and 1.01, 1.03, 1.02, 1.03, 1.08 for W3 respectively. Similarly, Fig-

ure 21 depicts the comparison of memory consumption by all the variants of proposed

optimized MVOSTM with all variants of MVOSTM for list objects. OPT-list-KOSTM

consumes minimum memory among all the algorithms (OPT-list-MVOSTM-GC, OPT-

list-MVOSTM, list-KOSTM, list-MVOSTM-GC, list-MVOSTM) by a factor of 1.01,

1.05, 1.05, 1.04, 1.11 for W1, 1.02, 1.1, 1.1, 1.11 1.19 for W2, and 1.01, 1.03, 1.05,

1.08, 1.13 for W3 respectively.

Finite version OPT-MVOSTM (OPT-KOSTM): To find the ideal value of K such

that performance as compared to OPT-MVOSTM-GC does not degrade or can be in-

creased, we perform experiments on all the workloads (W1, W2, and W3) for both

(OPT-HT-KOSTM and OPT-list-KOSTM). Figure 22 (a) and (b) shows the best value

of K as 5 for OPT-HT-KOSTM and OPT-list-KOSTM on all the workloads for both

hash-table and list objects.

8. Conclusion

With the rise of multi-core systems, concurrent programming becomes popular.

Concurrent programming using multiple threads has become necessary to utilize all

the cores present in the system effectively. But concurrent programming is usually

challenging due to synchronization issues between the threads.

In the past few years, several STMs have been proposed which address these

synchronization issues and provide greater concurrency. STMs hide the synchronization

and communication difficulties among the multiple threads from the programmer while

ensuring correctness and hence making programming easy. Another advantage of STMs

is that they facilitate compositionality of concurrent programs with great ease. Different

concurrent operations that need to be composed to form a single atomic unit is achieved

by encapsulating them in a single transaction.

In literature, most of the STMs are RWSTMs which export read and write operations.

To improve the performance, a few researchers have proposed OSTMs [4, 5, 6] which

export higher level objects operation such as hash-table insert, delete, and lookup etc. By

leveraging the semantics of these higher level operations, these STMs provide greater
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concurrency. On the other hand, it has been observed in STMs and databases that

by storing multiple versions for each t-object in case of RWSTMs provides greater

concurrency [17, 10].

This paper proposed the notion of the optimized multi-version object based STMs

(OPT-MVOSTMs) and compares their effectiveness with multi-version object based

STMs (MVOSTMs), single-version object based STMs and multi-version read-write

STMs. We find that OPT-MVOSTM provides a significant benefit over above-mentioned

state-of-the-art STMs for different types of workloads. Specifically, we have evaluated

the effectiveness of OPT-MVOSTM for the hash-table and list data structure as OPT-

HT-MVOSTM and OPT-list-MVOSTM respectively.

OPT-HT-MVOSTM and OPT-list-MVOSTM use the unbounded number of versions

for each key. To utilize the memory efficiently, we limit the number of versions

and develop two variants for both hash-table and list data structures: (1) A garbage

collection method in OPT-MVOSTM to delete the unwanted versions of a key, denoted

as OPT-MVOSTM-GC. (2) Placing a limit of K on the number of versions in OPT-

MVOSTM, resulting in OPT-KOSTM. Both these variants (OPT-MVOSTM-GC and

OPT-KOSTM) gave a performance gain of over 16% and 24% over OPT-MVOSTM in

the best case. OPT-KOSTM consumes minimum memory among all the variants of it.

We represent OPT-MVOSTM-GC in hash-table and list as OPT-HT-MVOSTM-GC and

OPT-list-MVOSTM-GC respectively. Similarly, We represent OPT-KOSTM in hash-table

and list as OPT-HT-KOSTM and OPT-list-KOSTM respectively.

OPT-HT-KOSTM performs best among its variants and outperforms state-of-the-art

hash-table based STMs (HT-OSTM, ESTM, RWSTM, HT-MVTO, HT-KSTM) by a

factor of 3.62, 3.95, 3.44, 2.75, 1.85 for workload W1, 1.44, 2.36, 4.45, 9.84, 7.42

for workload W2, and 2.11, 4.05, 7.84, 12.94, 10.70 for workload W3 respectively.

Similarly, OPT-list-KOSTM performs best among its variants and outperforms state-of-

the-art list based STMs (list-OSTM, Trans-list, Boosting-list, NOrec-list, list-MVTO,

list-KSTM) by a factor of 2.56, 25.38, 23.57, 27.44, 13.34, 5.99 for W1, 1.51, 20.54,

24.27, 29.45, 24.89, 19.78 for W2, and 2.91, 32.88, 28.45, 40.89, 173.92, 124.89 for W3

respectively. We rigorously proved that OPT-MVOSTMs satisfy the correctness criteria

as opacity.
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