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Abstract—A low complexity, essentially-ML decoding tech-
nique for the Golden code and the 3 antenna Perfect code was
introduced by Sirianunpiboon, Howard & Calderbank. Though
no theoretical analysis of the decoder was given, the simulations
showed that this decoding technique has almost maximum-
likelihood (ML) performance. Inspired by this technique, in this
paper we introduce two new low complexity decoders for Space-
Time Block Codes (STBCs) - the Adaptive Conditional Zero-
Forcing (ACZF) decoder and the ACZF decoder with successive
interference cancellation (ACZF-SIC), which include as a special
case the decoding technique of Sirianunpiboon et al. We show
that both ACZF and ACZF-SIC decoders are capable of achieving
full-diversity, and we give sufficient conditions for an STBC to
give full-diversity with these decoders. We then show that the
Golden code, the 3 and 4 antenna Perfect codes, the 3 antenna
Threaded Algebraic Space-Time code and the 4 antenna rate 2
code of Srinath & Rajan are all full- diversity ACZF/ACZF-SIC
decodable with complexity strictly less than that of their ML
decoders. Simulations show that the proposed decoding method
performs identical to ML decoding for all these five codes. These
STBCs along with the proposed decoding algorithm outperform
all known codes in terms of decoding complexity and error
performance for Nt ≤ 4 transmit antennas. We further provide a
lower bound on the complexity of full-diversity ACZF/ACZF-SIC
decoding. All the five codes listed above achieve this lower bound
and hence are optimal in terms of minimizing the ACZF/ACZF-
SIC decoding complexity. Both ACZF and ACZF-SIC decoders
are amenable to sphere decoding implementation.

I. INTRODUCTION

The problem of constructing Space-Time Block Codes

(STBCs) that provide good error performance with low com-

plexity decoding has drawn much attention in the literature.

Low complexity decoding techniques such as zero-forcing

(ZF), Minimum Mean Squared Error (MMSE) [1] and Partial

Interference Cancellation [2] are capable of achieving full-

diversity, but their error performance is considerably inferior

to that of maximum-likelihood (ML) decoding. Consequently

much work has been directed towards designing full-diversity

codes that admit low complexity decoding with ML perfor-

mance [3]–[16].

We now briefly review the best known full-diversity, low

ML decoding complexity, high-rate STBCs for Nt ≤ 4 trans-

mit antennas. The Silver code [10], [11] has the least known

ML decoding complexity of M2 (where M is the size of

the complex constellation used) among known full-rate full-

diversity codes for 2 transmit antennas. This is followed by

the Golden code [17], [18] that has a higher ML decoding

complexity M2.5 [12], [13], but has superior coding gain

and error performance than the Silver code. For 3 antenna

systems the full-rate, full-diversity code with least ML de-

coding complexity is the Threaded Algebraic Space-Time

(TAST) code [19] with a complexity of M7 [14], whereas

the code with the best known coding gain is the 3× 3 Perfect

code [20] that has a complexity of M9. For 4 antenna systems,

the 4× 4 Perfect code has the best coding gain and an

ML decoding complexity of M13.5 [21]. Among the rate 2
codes for asymmetric MIMO systems with 4 transmit and 2
receive antennas the Srinath-Rajan code [12] has the least ML

decoding complexity M4.5 and best error performance.

It is possible to reduce the decoding complexity further by

using a non-ML decoder without trading off the error perfor-

mance, unlike ZF, MMSE or Partial Interference Cancellation

receivers where the decoding comfort is achieved at the cost

of higher probability of error. Such a decoding technique was

proposed by Sirianunpiboon, Howard & Calderbank in [15],

[16] for the Golden code and the 3 antenna Perfect code.

Though no theoretical analysis of the achievable diversity or

coding gain was provided, the simulations showed that these

decoders have essentially the same performance as an ML

decoder for the Golden and the three antenna Perfect code,

but with complexity less than that of ML decoding.

The contributions and organization of this paper are as

follows.

• Inspired by [15], [16], we introduce two new low com-

plexity decoding algorithms for STBCs - the Adaptive

Conditional Zero-Forcing (ACZF) decoder and the ACZF

decoder with successive interference cancellation (ACZF-

SIC) (Sections II-B). We show that these decoders are

capable of achieving full-diversity in wireless Rayleigh

faded channels and give sufficient conditions for an STBC

to give full-diversity with ACZF/ACZF-SIC decoding

(Sections III). The proposed decoders include as special

case the decoding technique of [15], [16] for the Golden

and 3 antenna Perfect code.

• We show that the best known codes for 2, 3, 4 antennas:

the Perfect codes for 2, 3, 4 antennas, the 3 antenna TAST

code and the Srinath-Rajan code, are all full-diversity

ACZF/ACZF-SIC decodable with complexity strictly less

than their ML decoding complexity (Section IV). See



TABLE I
DELAY-OPTIMAL CODES WITH LOW COMPLEXITY, FULL-DIVERSITY DECODING ALGORITHMS

Code Transmit Rate ML Decoding ACZF/ACZF-SIC Full-diversity codes with least known ML decoding complexity

Antennas Complexity Decoding ML Decoding Complexity Code

Nt R Complexity

Golden 2 2 M
2.5

M
2

M
2 Silver [10], [11]

Perfect 3 3 M9
M

7 M7 TAST

TAST 3 3 M7
M

6 M7 TAST

Perfect 4 4 M
13.5

M
12

M
13.5 Perfect

Srinath-Rajan 4 2 M
4.5

M
4

M
4.5 Srinath-Rajan

M is the size of the underlying complex constellation.

Table I for comparison of ACZF/ACZF-SIC and ML

decoding complexities of these codes.

• Simulation results (Section VI) show that the proposed

decoder performs identical to the ML decoder for all

these five codes, i.e., reduction in decoding complexity

is achieved without trading off error performance. Thus

these STBCs along with the proposed decoding algorithm

outperform all known codes in terms of decoding com-

plexity and error performance for Nt ≤ 4. In particular,

the Golden code outperforms the Silver code in both

decoding complexity and error performance. See Table I

for a comparison of the complexities of known full-

diversity low decoding complexity codes.

• We derive a lower bound on the complexity of full-

diversity ACZF/ACZF-SIC decoding (Section III-B). All

the five codes mentioned above achieve this lower bound

and hence are optimal in terms of minimizing the

ACZF/ACZF-SIC decoding complexity.

• Both ACZF and ACZF-SIC algorithms are amenable to

sphere decoding [22] implementation. We show that the

ACZF-SIC decoder can be implemented with only a

few minor modifications to the original sphere decoding

algorithm (Section V).

The channel model is discussed in Section II-A and the

paper is concluded in Section VII.

Notation: Matrices (vectors) are denoted by bold, uppercase

(lowercase) letters. The Hermitian, transpose and Frobenius

norm of a matrix X are denoted by XH , XT and ||X||
respectively. The determinant of a square matrix X is denoted

by det(X). For any vector u the diagonal matrix with the

elements of u on the main diagonal is denoted by diag(u).
Unless used as a subscript or to denote indices, j represents√
−1. For any set I, its complement in the corresponding

universal set is denoted by Ic. The expectation operator is

denoted by E(·) and the probability of an event E is denoted by

P(E). For any vector u, its ℓth component is denoted by u(ℓ).
The nearest integer operator is denoted by rnd(·). The notation

0 represents the all zero matrix of the appropriate dimension.

For any matrix A let vec(A) denote the vectorization of A,

i.e., the vector obtained by stacking the columns of A one

below another.

II. ADAPTIVE CONDITIONAL ZERO-FORCING DECODER

We first explain the MIMO channel model used in this paper

and then introduce the ACZF/ACZF-SIC decoding of STBCs.

A. Channel Model

We consider a quasi-static Rayleigh flat-fading channel

Y =
√
SNRXH+N (1)

with Nt transmit antennas, Nr receive antennas and delay

T . The transmit matrix X takes values from a Space-Time

Block Code (STBC) C which is a finite subset of CT×N .

The Nt ×Nr channel matrix H is known at the receiver but

not at the transmitter. The entries of H and the noise matrix

N are assumed to be independent and identically distributed,

zero mean circularly symmetric complex Gaussian random

variables with unit variance. The transmit matrix X satisfies

E
(
||X||2

)
= T , so that the average signal to noise ratio at

each receive antenna is equal to SNR. It is assumed that the

STBC C is obtained via a design [23] S =
∑K

i=1 siAi, where

Ai ∈ CT×N , i = 1, . . . ,K , are the linear dispersion or weight
matrices, and s1, . . . , sK are complex symbols that assume

values from a finite constellation A ⊂ C, i.e.,

C =

{
K∑

i=1

siAi

∣∣∣∣ si ∈ A, i = 1, . . . ,K

}
.

The signal set A is usually (but not always) a QAM, HEX

or PSK constellation. The rate of C is R = K
T

in terms of

complex symbols per channel use, and
K log

2
|A|

T
in terms of

bits per channel use.

Vectorizing the receive matrix Y in (1) we obtain

y =
√
SNRGs+ n,

where y and n are vectorizations of Y and N respec-

tively, s = [s1 s2 · · · sK ]T , and the equivalent channel matrix
G ∈ CNrT×K is a function of the channel H and the design

S and is given by [vec(A1H) vec(A2H) · · · vec(AKH)].
Example G.1: The Golden Code [20] is a rate R = 2 code

for Nt = 2 antennas. It encodes K = 4 symbols from a QAM

alphabet over T = 2 time slots. The design is
[
s1 js2
s2 s1

] [
α 0
0 ᾱ

]
+

[
s3 js4
s4 s3

] [
ατ 0
0 ᾱµ

]
,



where τ = 1+
√
5

2 , µ = − 1
τ

, α = 1 + jµ and ᾱ = 1 + jτ . The

four weight matrices are

A1 =

[
α 0
0 ᾱ

]
, A2 =

[
0 jᾱ
α 0

]
,

A3 =

[
ατ 0
0 ᾱµ

]
and A4 =

[
0 jᾱµ
ατ 0

]
.

Consider the case Nr = 2 and let the channel

matrix H =

[
h1 h2

h3 h4

]
. Then the equivalent channel

G = [vec(A1H) vec(A2H) · · · vec(A4H)] is given by



αh1 jᾱh3 ατh1 jᾱµh3

ᾱh3 αh1 ᾱµh3 ατh1

αh2 jᾱh4 ατh2 jᾱµh4

ᾱh4 αh2 ᾱµh4 ατh2


 . (2)

B. Adaptive Conditional Zero-Forcing Decoder

We will introduce some notations before explaining the

ACZF decoder. Let I1, . . . , IL be any L subsets of {1, . . . ,K}
each of cardinality λ. The subsets I1, . . . , IL need not be

a partition of {1, . . . ,K}, and they may have non-trivial

intersections also. For any I ⊆ {1, . . . ,K} denote by sI the

vector comprising of those symbols si whose indices belong to

I, i.e., if I = {i1, i2, . . . , i|I|} with i1 < i2 < · · · < i|I| then

sI = [si1si2 · · · si|I|
]T . Similarly let GI be the submatrix of

G comprising of those columns whose indices belong to I,

i.e., [vec(Ai1H) vec(Ai2H) · · · vec(Ai|I|
H)]. Further, let the

operator (·)† denote the left pseudo-inverse of a matrix, and

u(j) denote the jth entry of a vector u.

The ACZF decoder, given in Algorithm 1, functions as

follows. Given y and G, from among I1, . . . , IL the subset

Im with the maximum value of det(GH
Im

GIm
) is chosen.

For each of the possible |A|K−λ values of the vector sIc
m

, the

interference in y from sIc
m

is first removed and the remaining

symbols sIm
for this instantiation of sIc

m
are decoded by zero-

forcing resulting in the decoded vector ŝIm
(sIc

m
). At the end

of this step we have a set of |A|K−λ tuples
{(

sIc
m
, ŝIm

(sIc
m
)
)
| sIc

m
∈ A|Ic

m|
}
. (3)

From among these vectors the decoder chooses the tuple ŝ that

minimizes ||y −Gs||2.

After the interference from sIc
m

is removed from y the

symbols in sIm
are decoded by a ZF receiver. The post-

processing signal to noise ratio for decoding sIm
is cap-

tured by det(GH
Im

GIm
) [15], [16]. To optimize the error

performance the decoder therefore chooses the subset whose

equivalent channel matrix has the largest determinant.

Example G.2: Continuing Example G.1, consider

the ACZF decoder for the Golden code with param-

eters L = 2, I1 = {1, 2} and I2 = {3, 4}. In this case

λ = 2, sI1
= [s1 s2]

T , sI2
= [s3 s4]

T , GI1
comprises of

the first two columns of G in (2) and GI2
comprises

of the last two columns. The decoder first determines

m = argmaxℓ∈{1,2} det(G
H
Iℓ
GIℓ

). Note that in this case

Input: Received signal y, equivalent channel matrix G,

subsets I1, . . . , IL
Output: Decoded symbol vector ŝ

Set m := 0, maxdet := 0;

foreach ℓ = 1, . . . , L do

if maxdet < det(GH
Iℓ
GIℓ

) then

maxdet := det(GH
Iℓ
GIℓ

);
m := ℓ;

end

end

Set u as the all zero vector of length λ;

foreach aIc
m
∈ AK−λ do

Calculate v := 1√
SNR

G
†
Im

(y −
√
SNRGIc

m
aIc

m
);

foreach j = 1, . . . , λ do

Find u(j) := argmina∈A ||v(j) − a||;
end

Set ŝIm
(aIc

m
) := u;

end

Set mindis := ∞ and ŝIc
m
:= 0;

foreach aIc
m
∈ AK−λ do

if

mindis > ||y−
√
SNR(GIc

m
aIc

m
−GIm

ŝIm
(aIc

m
))||2

then
mindis :=
||y −

√
SNR(GIc

m
aIc

m
−GIm

ŝIm
(aIc

m
))||2;

ŝIc
m
:= aIc

m
;

end

end

Set ŝ as the concatenation of ŝIc
m

and ŝIm
(ŝIc

m
);

Algorithm 1: The ACZF Decoder.

Ic
m = I2−m. Conditioned on sI2−m

the receiver decodes

ŝIm
(sI2−m

) by zero-forcing. Then from among the M2 tuples{(
sI2−m

, ŝIm
(sI2−m

)
)}

the one that minimizes ||y −Gs||2
is chosen to be the output. This decoder for the Golden

Code was first proposed in [16], but no theoretical analysis

regarding diversity or minimum achievable complexity was

provided.

It is well known [26] that at high values of SNR the ZF

receiver aided with successive interference cancellation (ZF-

SIC) performs better than mere ZF decoding. The ACZF

decoder can be integrated with SIC (ACZF-SIC) as well. The

ACZF-SIC decoder detects the symbols in sIm
one by one,

and removes the effect of the already detected symbols in the

received vector by interference cancellation.

Complexity Analysis: Consider the step

u(j) = argmina∈A ||v(j) − a|| in Algorithm 1. If the

size of the complex constellation A is M this step requires

M computations of ||v(j) − a||. However if A is a regular M -

ary QAM constellation then this step can be implemented with

constant complexity independent of M by hard limiting [8],

[12], [13] as shown in (4) and (5) at the top of the next

page, where (·)Re and (·)Im denote the real and imaginary



(u(j))Re = min

{
max

{
rnd

(√
M − 1

2
− (v(j))Re

)
, 0

}
,
√
M − 1

}
−

√
M − 1

2
. (4)

(u(j))Im = min

{
max

{
rnd

(√
M − 1

2
− (v(j))Im

)
, 0

}
,
√
M − 1

}
−

√
M − 1

2
. (5)

parts respectively. This step is performed |λ|MK−λ times

throughout the decoding process. Thus the complexity order

of the ACZF decoder is MK−λ and MK−λ+1 for QAM and

general constellations respectively. Identical results hold true

for the complexity of ACZF-SIC decoding also. For example,

for the ACZF decoder for the Golden Code in Example G.2

K = 4, λ = 2 and A is a regular QAM constellation. Hence

this decoder has a complexity of MK−λ = M2. On the other

hand the least known ML decoding complexity of the Golden

Code is M2.5 [12], [13].

III. FULL-DIVERSITY CRITERION

In this section we give two equivalent full-diversity criteria

for ACZF/ACZF-SIC decoders. We then give a lower bound on

the complexity of full-diversity ACZF/ACZF-SIC decoding.

A. Full-diversity Criterion

The vector v in Algorithm 1 is obtained by multiplying

another vector by the left pseudo-inverse of GIm
. Thus it

is implicitly assumed that GIm
has full column rank. Note

that this matrix is the choice from among GI1
, · · · ,GIL

with the largest determinant. The ACZF decoding algorithm

thus assumes that for every channel realization H 6= 0 at

least one of the L matrices GI1
, · · · ,GIL

has full column

rank. The same is true in the case of ACZF-SIC decoding

also. In the following theorem we show that this condition,

which is necessary for the implementation of ACZF/ACZF-

SIC decoder, is also a sufficient condition for ACZF to achieve

the same diversity as the ML decoder.

Theorem 1: The ACZF decoder achieves the same diversity

order as the ML decoder if for every channel realization

H 6= 0 at least one of the L matrices GI1
, · · · ,GIL

has full

column rank.

Proof: Proof is given in Appendix A

Both zero-forcing and conditional zero-forcing

decoders [24] are special cases of ACZF decoding. In both

these cases L = 1 and hence the decoder is not ‘adaptive’

any more, i.e., for every channel H we have m = 1. When

the number of subsets L = 1 and I1 = {1, . . . ,K} the

ACZF decoder reduces to the zero-forcing receiver. The

criterion of Theorem 1 in this case reduces to the full-

diversity criterion for ZF decoding given in [1], [2]. If L = 1
and I1 ( {1, . . . ,K} then the ACZF decoder reduces to

conditional ZF decoder [24]. In this case Theorem 1 implies

that GI1
be of full column rank for every H 6= 0 and the

difference of any two codewords in C be of rank Nt for the

conditional ZF decoder to achieve a diversity order of NtNr.

This coincides with the full-diversity criterion for conditional

ZF decoders given in [24].

Theorem 1 imposes a criterion on the equivalent channel

matrix G which is a function of the linear dispersion matrices

and the number of receive antennas. In the following theorem

we give an equivalent full-diversity criterion in terms of the

linear dispersion matrices alone. This criterion shows that

the sufficient condition in Theorem 1 is independent of the

number of receive antennas, i.e., either the STBC C satisfies

the criterion for all Nr ≥ 1 or it does not satisfy the criterion

for any Nr. We now introduce some notations towards stating

the equivalent criterion. For any I = {i1, . . . , i|I|} and any

vector u = [u1 u2 · · · u|I|] ∈ C|I| let XI(u) =
∑|I|

j=1 ujAij ,

i.e., XI(u) is the complex linear combination of the weight

matrices with indices in I with the elements of vector u

defining the corresponding complex coefficients.

Theorem 2: The ACZF decoder achieves the same diversity

order as the ML decoder if for every choice of u1 ∈ Cλ \{0},

u2 ∈ Cλ \ {0}, . . . , uL ∈ Cλ \ {0}, the LT ×Nt matrix

X̃(u1, . . . ,uL) =




XI1
(u1)

XI2
(u2)
...

XIL
(uL)


 (6)

has full column rank.

Proof: Proof is given in Appendix B.

The criteria of Theorems 1 and 2 ensure full-diversity with

ACZF-SIC decoders also.

Lemma 1: The ACZF-SIC decoder achieves the same diver-

sity order as the ML decoder if the STBC satisfies the criteria

of Theorems 1 or 2.

Proof: Proof is given in Appendix C.

The sufficient condition of Theorem 2 is independent of

the number of receive antennas Nr and the choice of the

constellation A, and depends only on the weight matrices

A1, . . . ,AK . The signal set A can be chosen such that the

STBC gives full diversity with ML decoding.

Corollary 1: If the difference of any two codewords of C
is of rank Nt, and if C satisfies the criterion of Theorem 1

or 2, then C achieves a diversity of NtNr with ACZF and

ACZF-SIC decoding.

B. Lower Bound on Decoding Complexity

Consider any code for Nt antennas with delay T that

satisfies the criteria of Theorems 1 and 2 for certain number

of receive antennas Nr. Then the code satisfies the criterion

of Theorem 1 for Nr = 1 as well. For such a code with

Nr = 1, for every channel H 6= 0 the T × λ matrix GIm
has



full column rank. This implies that λ ≤ T and that the order

of decoding complexity is at least MK−T and MK−T+1 for

QAM and arbitrary signal sets respectively. If we restrict our

attention to minimum-delay codes that provide full diversity

we have T = Nt, and the lower bound on decoding complexity

is MK−Nt and MK−Nt+1 for QAM and arbitrary constella-

tions respectively.

IV. FULL-DIVERSITY ACZF/ACZF-SIC DECODABLE

CODES WITH OPTIMAL DECODING COMPLEXITY

In this section we show that some of the best codes known

for Nt = 2, 3 and 4 antennas are full-diversity ACZF/ACZF-

SIC decodable. These include the Perfect Codes [20] for

2, 3 and 4 antennas (the two antenna Perfect Code being the

Golden Code [17], [18]), the 3× 3 Threaded Algebraic Space-

Time Code (TAST) [19] and the Srinath-Rajan Code [12]

which is the best known rate 2 code for 4 transmit and

2 receive antenna MIMO systems. All these codes achieve

the lower bound on the decoding complexity given in Sec-

tion III-B. The ACZF decoding algorithm for the 3 antenna

Perfect Code given in this section was first proposed in [15],

but without the proof for full-diversity. The results of this

section are summarized in Table I. The table includes the ML

and ACZF/ACZF-SIC decoding complexity of these codes,

and the details of the full-diversity codes for same values

of (Nt, R) that have the previously least known decoding

complexity. In all the cases, the proposed decoders have

the least complexity among all known full-diversity decoding

methods.

A. The Golden Code

In this subsection we show that the ACZF/ACZF-SIC de-

coder for the Golden Code given in Example G.2 achieves full

diversity. From Theorem 2 we need to show that the matrix

X̃ =




αs1 jᾱs2
αs2 ᾱs1

ατs3 jᾱµs4
ατs4 ᾱµs3




has linearly independent columns whenever

[s1 s2]
T , [s3 s4]

T ∈ C2 \ {0}.

Proof of full-diversity: Proof is by contradiction. Suppose

[s1 s2]
T and [s3 s4]

T are non-zero and the columns of X̃ are

linearly dependent. We will first argue that none of s1, . . . , s4
is equal to zero. If s2 = 0 then s1 can not be zero, as this

would make the vector [s1 s2]
T = 0. Thus, if s2 = 0 the

upper 2 submatrix of X̃ is a diagonal full-ranked matrix, and

thus X̃ is of rank 2. This negates our initial assumption, and

hence s2 6= 0. Using similar argument we have s1, s3, s4 6= 0
as well.

Let [a b]T be a non-zero vector in the nullspace of X̃.

Since neither columns of X̃ are zero we have a, b 6= 0. Now

consider the first row of X̃. We have αs1a+ jᾱs2b = 0. This

implies that |αs1a| = |ᾱs2b|, i.e.,
|s1|
|s2| =

|αa|
|ᾱb| . Similarly from

the second row we obtain
|s1|
|s2| =

|ᾱb|
|αa| . These two relations

imply that
|α|
|ᾱ| =

|b|
|a| . (7)

Using similar argument with the last two rows of X̃ we obtain

|ατ |
|ᾱµ| =

|b|
|a| . (8)

However (7) and (8) together imply that |τ | = |µ|
which is not true. Thus, by contradiction, we have

shown that X̃ has linearly independent columns when-

ever [s1 s2]
T and [s3 s4]

T are non-zero. Since the

Golden Code achieves full-diversity with the ML decoder, it

achieves full-diversity with the ACZF/ACZF-SIC decoder as

well.

Thus the Golden code is full-diversity decodable with

complexity M2. Note that this meets the lower bound on the

decoding complexity given in Section III-B. Further, this is a

reduction by M0.5 from the ML decoding complexity.

B. The 3× 3 Perfect Code

This full-diversity ML decodable STBC encodes K = 9
information symbols that assume values from a HEX constel-

lation. The delay T = 3, and the ACZF/ACZF-SIC decoder

employs L = 3 subsets I1 = {1, 2, 3}, I2 = {4, 5, 6} and

I3 = {7, 8, 9}. Let γ = ej
2π
3 and

U =




0 0 γ
1 0 0
0 1 0



 .

The weight matrix of the kth symbol in ℓth group

i.e. the weight matrix of the symbol s3(ℓ−1)+k is

A3(ℓ−1)+k = Uk−1Dℓ, where D1,D2,D3 are diagonal ma-

trices that are specified in [20].

Proof of full-diversity: For any choice of complex vectors

sI1
, sI2

, sI3
∈ C3 \ {0} we need to show that the matrix

X̃ =




∑3
k=1 skU

k−1D1∑3
k=1 s3+kU

k−1D2∑3
k=1 s6+kU

k−1D3




is of rank 3. Since U is unitary it has an orthonormal

set of eigenvectors and can be decomposed as VΛVH ,

where the columns v1,v2,v3 of V are the eigenvectors and

Λ = diag(σ1, σ2, σ3) is the diagonal matrix comprising of the

eigenvalues. Therefore, Uk−1 = VΛk−1VH , k = 1, 2, 3, and

the rank of X̃ and



∑3
k=1 skΛ

k−1VHD1∑3
k=1 s3+kΛ

k−1VHD2∑3
k=1 s6+kΛ

k−1VHD3


 (9)

are same. For ℓ = 1, 2, 3 the matrix
∑3

k=1 s3(ℓ−1)+kΛ
k−1 =

diag(z3(ℓ−1)+1, z3(ℓ−1)+2, z3(ℓ−1)+3) is a diagonal matrix,

where the vectors [s3(ℓ−1)+1 s3(ℓ−1)+2 s3(ℓ−1)+3]
T and

[z3(ℓ−1)+1 z3(ℓ−1)+2 z3(ℓ−1)+3]
T are related as



z3(ℓ−1)+1

z3(ℓ−1)+2

z3(ℓ−1)+3


 =



1 σ1 σ2

1

1 σ2 σ2
2

1 σ3 σ2
3





s3(ℓ−1)+1

s3(ℓ−1)+2

s3(ℓ−1)+3


 .



The three eigenvalues of U are all distinct and hence

the above transformation matrix is Vandermonde and

thus is invertible. Since sIℓ
is non-zero, the vector

[z3(ℓ−1)+1 z3(ℓ−1)+2 z3(ℓ−1)+3]
T is also non-zero, and hence

at least one of its components is of non-zero value. For each

ℓ = 1, 2, 3 let iℓ ∈ Iℓ be such that ziℓ 6= 0. The 3 × 3
submatrix of (9) comprising of the three rows corresponding

to zi1 , zi2 , zi3 is


zi1 0 0
0 zi2 0
0 0 zi3






vH
i1
D1

vH
i2−3D2

vH
i3−6D3


 ,

and this matrix is full ranked whenever the matrix on the

right hand side of the factorization above is full-ranked. By

direct computation we have verified that for every choice of

i1 ∈ I1, i2 ∈ I2 and i3 ∈ I3 this matrix is indeed full-ranked.

Thus, for every choice of sI1
, sI2

, sI3
∈ C3 \ {0} there exists

a 3 × 3 submatrix of X̃ that is full-ranked and hence the

columns of X̃ are linearly independent. This completes the

proof.

For the proposed ACZF/ACZF-SIC decoder for the 3× 3
Perfect Code λ = 3. Since the constellation A is a HEX signal

set the decoder complexity is MK−λ+1 = M7.

C. The 4× 4 Perfect Code

This is a full-diversity ML decodable STBC with pa-

rameters Nt = 4, T = 4 and K = 16. The complex sym-

bols are encoded using a regular QAM constellation. The

proposed ACZF/ACZF-SIC decoder for this code employs

L = 4 subsets I1 = {1, 2, 3, 4}, I2 = {5, 6, 7, 8}, . . . ,

I4 = {13, 14, 15, 16}. Let

U =




0 0 0 j
1 0 0 0
0 1 0 0
0 0 1 0


 .

For 1 ≤ k, ℓ ≤ 4, the weight matrix of the kth symbol in

ℓth group i.e. the weight matrix of the symbol s4(ℓ−1)+k is

A4(ℓ−1)+k = Uk−1Dℓ, where D1,D2,D3,D4, are diagonal

matrices that are specified in [20].

The proof of full-diversity for ACZF/ACZF-SIC decoding

for this code is similar to that of the 3× 3 Perfect Code given

in the previous subsection, and hence we avoid producing it

here. The complexity of this decoder is M12 and this achieves

the lower bound of Section III-B. The complexity of ML

decoding is however M13.5 [21].

D. The 3× 3 TAST Code

The 3 antenna TAST code gives full-diversity with ML de-

coding and has parameters T = 3 and K = 9. The information

symbols are encoded using QAM constellation. The design is

given in (10) at the top of the next page, where γ = e
jπ
15

and the 3 × 3 matrix M = [mi,j ] is the real rotation matrix

from [25].

This code can be full-diversity ACZF/ACZF-SIC decoded

using L = 3 subsets with I1 = {1, 2, 3}, I2 = {4, 5, 6}, I3 =

{7, 8, 9}. The weight matrix of the kth symbol in the ℓth subset

i.e., that of the symbol s3(ℓ−1)+k is Uk−1Dℓ, where

U =




0 0 γ
γ 0 0
0 γ 0



 ,

and Dℓ is the matrix obtained by diagonalizing the ℓth column

of M. The proof of full-diversity is similar to that of the 3× 3
Perfect code and hence is omitted. This code achieves the

minimum ACZF/ACZF-SIC decoding complexity of M6. On

the other hand, the ML decoding complexity of this code is

M7 [14].

E. The Srinath-Rajan Code

Among all known rate 2 codes that enable reduced complex-

ity ML decoding (complexity less than MK) for 4 transmit

antenna, 2 receive antenna asymmetric MIMO systems, the

Srinath-Rajan code has the best error performance and least

ML decoding complexity M4.5. For 4 and 16 QAM constel-

lations this code provides full-diversity with ML decoding. In

this subsection we will show that this code is full-diversity

ACZF/ACZF-SIC decodable with complexity of M4. This

is a reduction by a factor of M0.5 from its ML decoding

complexity.

We now introduce some notations. For any two complex

numbers a, b let

A(a, b) =

[
a b

−b∗ a∗

]

be the Alamouti matrix embedding the complex numbers a
and b. Note that A(a, b) is a scaled unitary matrix for every

non-zero vector [a b]T ∈ C2, and A(a, b) equals the all-zero

matrix if and only if both a, b = 0. For any vector u ∈ C2

we have ||A(a, b)u||2 = (|a|2 + |b|2)||u||2. Let γ = e
jπ
4 ,

θ = 1
2 tan

−1(2), c = cos θ and s = sin θ.

The parameters of the Srinath-Rajan code are K = 8 and

T = 4 and its design is
[

cA(s1, s2) γsA(js3, js4)

γcA(s3, s4) sA(js1, js2)

]

+

[

sA(js5, js6) γcA(s7, s8)

γsA(js7, js8) cA(s5, s6)

]

.

The proposed ACZF/ACZF-SIC decoder has L = 2 subsets

with I1 = {1, 2, 3, 4} and I2 = {5, 6, 7, 8}. Since λ = Nt this

decoder has the minimum achievable complexity M4.

Proof of full-diversity: In order to use Theorem 2 we need

to show that for any choice of sI1
, sI2

∈ C4 \ {0}, the matrix

X̃ =




cA(s1, s2) γsA(js3, js4)
γcA(s3, s4) sA(js1, js2)
sA(js5, js6) γcA(s7, s8)
γsA(js7, js8) cA(s5, s6)




has full column rank. We will prove this by contradiction.

Suppose X̃ does not have full-column rank. We will first

show that none of the component Alamouti blocks is identi-

cally zero. Say s3, s4 = 0, since sI1
6= 0, at least one of s1

or s2 is non-zero. Thus A(s1, s2) and A(js1, js2) are scaled

unitary matrices, while A(js3, js4) and A(s3, s4) are zero.











s1 γ2s3 γs2

γs2 s1 γ2s3

γ2s3 γs2 s1

















m1,1 0 0

0 m2,1 0

0 0 m3,1









+









s4 γ2s6 γs5

γs5 s4 γ2s6

γ2s6 γs5 s4

















m1,2 0 0

0 m2,2 0

0 0 m3,2









+









s7 γ2s9 γs8

γs8 s7 γ2s9

γ2s9 γs8 s7

















m1,3 0 0

0 m2,3 0

0 0 m3,3









.

(10)

Thus the upper 4× 4 submatrix of X̃ is of full-rank, and hence

X̃ has full column rank. Since this is a contradiction, at least

one of s3, s4 is non-zero and hence A(js3, js4) and A(s3, s4)
are non-zero matrices. Using similar arguments we can prove

that all the Alamouti blocks in X̃ are non-zero.

Let h = [hT
1 hT

2 ]
T , with h1,h2 ∈ C2, be a non-zero

vector in the null-space of X̃. Since the blocks have Alamouti

structure, the first two columns and the last two columns of

X̃ are orthogonal pairs. Thus, the submatrix of X̃ comprising

the first two columns and the submatrix comprising the last

two columns are both of rank 2. This implies that neither h1

nor h2 is a zero vector. Now consider the first two rows of

X̃. Since h is in the null-space we have

cA(s1, s2)h1 + γsA(js3, js4)h2 = 0.

In particular, ||cA(s1, s2)h1||2 = ||γsA(js3, js4)h2||2, i.e.,

c2(|s1|2 + |s2|2)||h1||2 = s2(|s3|2 + |s4|2)||h2||2. (11)

Using the same technique on the second two rows of X̃

c2(|s3|2 + |s4|2)||h1||2 = s2(|s1|2 + |s2|2)||h2||2. (12)

From (11) and (12) we have

||h1||
||h2||

=
s

c
. (13)

Repeating this method on the last four rows of X̃ we get

||h1||
||h2||

=
c

s
. (14)

However, (13) and (14) imply that c = s which is

not true. Thus X̃ has full column rank for any

choice of sI1
, sI2

∈ C4 \ {0}. This completes the

proof.

V. SPHERE DECODING IMPLEMENTATION

The sphere decoding algorithm [22] can be used to ML

decode STBCs with low average complexity. This algorithm

can be modified to implement both the ACZF and ACZF-SIC

decoders. The ACZF-SIC decoder can be implemented with

only a minor modification, and we explain this below.

We consider STBCs that are encoded by a square M -QAM

constellation. In this case the real and imaginary parts of each

complex symbol si are encoded independently by a
√
M -

ary PAM constellation. Thus we use a real sphere decoder

to implement the ACZF-SIC decoder. When the constellation

A ⊂ C is arbitrary one can use the complex sphere decoder

with the same modifications as explained below.

Let m = argmaxℓ∈{1,...,L} det(G
H
Iℓ
GIℓ

). Then we have

y =
√
SNR[GIm

GIc
m
]

[
sIm

sIc
m

]
+ n. (15)

Represent
√
SNR[GIm

GIc
m
] by G0 and [sTIm

sTIc
m
]T by s0,

then decoding s is equivalent to decoding s0. For any complex

vector u, let ǔ be the real vector obtained from u by replacing

every element of ui of u by the tuple [(ui)Re (ui)Im]T . Let

Ǧ0 be the 2NrT × 2K real matrix obtained from the matrix

G0 = [gi,j ] by replacing every element gi,j by the 2× 2
matrix [

(gi,j)Re −(gi,j)Im
(gi,j)Im (gi,j)Re

]
.

Then (15) is equivalent to the real system y̌ = Ǧ0š0 + ň. The

ACZF-SIC algorithm decodes the first 2λ symbols of š0 with

ZF-SIC by conditioning on the remaining 2(K −λ) symbols.

Note that the elements of š0 are encoded with a
√
M -ary PAM

signal set with centroid at zero. With a suitable scaling and

translation this system can be modified into

ỹ = Ǧ0x+ n,

where the entries of the 2K dimensional real symbol vector x

are encoded with the alphabet Z√
M = {0, 1, . . . ,

√
M − 1}.

Let the QR decomposition of Ǧ0 be [Q Q′]

[
R

0

]
, where

R = [ri,j ] is 2K × 2K upper triangular matrix and Q is a

2NrT × 2K matrix. Searching for a lattice point within a

squared distance of C from ỹ is equivalent to searching for a

vector x ∈ Z√
M such that

||y′ −Rx||2 ≤ C′,

where y′ = QT ỹ and C′ = C − ||Q′T ỹ||2 [27].

The sphere-decoding implementation of ACZF-SIC decoder

with Schnorr-Euchner enumeration [28] is given in Algo-

rithm 2. This algorithm is a modification of Algorithm II

of [27]. The variable i represents the current stage of the

sphere decoder, Ti is the accumulated Euclidean distance of

the current lattice point from y′ at stage i−1, and ξi represents

the interference faced by xi from the already detected symbols

xi+1, . . . , x2K . The variable d is the square of the current

search radius, and is initialized with the value of ∞. Steps 2

and 6 together detect the symbols in the Schnorr-Euchner order

for i = 2λ+ 1, . . . , 2K . However, if i ≤ 2λ the symbol xi is

ZF-SIC decoded, i.e., it is set to the nearest element in Z√
M

after removing the interference from already detected symbols.

If the symbol xi is within the search sphere and constellation

boundaries, then Step 3 updates the values of Ti−1, ξi−1 and

moves to the next stage, i.e., the (i− 1)th stage. If, however,



Input: y′ and R

Output: Decoded symbol vector x̂.

%% Initialization

Step 1. Set i := 2K , T2K := 0, ξ2K := 0, d := ∞.

Step 2. if i ≤ 2λ then

xi := min{
√
M − 1,max{0, rnd

(
y′
i−ξi
ri,i,

)
}}

end

else

xi := rnd
(

y′
i−ξi
ri,i,

)
, ∆i := sign(y′i − ξi − ri,ixi).

end

Go to Step 3.

Step 3. if d < Ti + |y′i − ξi − ri,ixi|2 then
%% We are outside the sphere.

Go to Step 4.
end

else if xi ≤ −1 or xi ≥
√
M then

%% We are outside the constellation boundaries.

Go to Step 6.
end

else
%% We are inside the sphere and

%% the constellation boundaries

if i > 1 then

ξi−1 :=
∑2K

j=i ri−1,jxj ,

Ti−1 = Ti + |y′i − ξi − ri,ixi|2, i := i− 1, go to

Step 2.
end

else
%% i = 1, a valid lattice point is found.

Go to Step 5.
end

end

Step 4. if i = 2K then
Terminate.

end

else if i ≤ 2λ then
i := 2λ+ 1, go to Step 6.

end

else
i := i+ 1, go to Step 6.

end

Step 5. Set d := T1 + |y′1 − ξ1 − r1,1x1|2, x̂ = x,

i := 2λ+ 1, go to Step 6.

Step 6. %% Schnorr-Euchner enumeration.

xi := xi +∆i, ∆i = −∆i − sign(∆i), go to Step 3.

Algorithm 2: Sphere decoding implementation of the ACZF-

SIC decoder.
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Fig. 1. Golden code, Nr = 2.

i = 1 then the decoder has found a new lattice point within

the search sphere and in Step 5 the value of x̂ is updated, the

new search radius is set to the distance of Rx̂ from y′, and

the decoder goes to the i = 2λ+1 stage. This is different from

the usual sphere decoder where i is set to 2 after a valid point

has been found. This difference arises because in ACZF-SIC

the symbols x1, . . . , x2λ are decoded by ZF-SIC, and hence

require no Schnorr-Euchner enumeration. The case that the

accumulated Euclidean distance from y′ at the current stage

exceeds
√
d is handled in Step 4. In this case if the current

stage is 2K then the program is terminated as no lattice point

at a distance
√
d or less can be found, else if i > 2λ then the

decoder goes to stage i+1 for Schnorr-Euchner enumeration,

and if i < 2λ it goes to stage 2λ+ 1 as the first 2λ symbols

do not undergo enumeration.

VI. SIMULATION RESULTS

The simulation results comparing the performance of the

ACZF-SIC decoder with the ML decoder for the Golden code,

3 antenna TAST code, 4 antenna Perfect code and the Srinath-

Rajan code are given in Fig. 1- 4, in that order. In all the cases

it can be seen that ACZF-SIC performs identical to the ML

decoder. The simulations provided in [15] show that the same

holds true for the 3 antenna Perfect code with ACZF decoding.

From Table I we see that for each of these five codes the

ACZF-SIC complexity is strictly less than the ML decoding

complexity. From the table we also see that the ACZF-

SIC complexity of these codes is less than or equal to the

complexity of the full-diversity codes with least known ML

decoding complexity. Thus the decoding complexity of the

best performing codes for 2, 3 and 4 antennas with low

ML decoding complexity (complexity less than MK) can

be reduced further by using the ACZF-SIC decoder without

trading off the error performance.
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Fig. 2. The 3× 3 TAST code, Nr = 3.
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Fig. 3. The 4 antenna Perfect code, Nr = 4.

VII. CONCLUSION

In this paper, we have introduced two new low complexity

decoding techniques for STBCs - the ACZF and ACZF-SIC

decoders. We have given sufficient conditions for an STBC

to give full-diversity with ACZF/ACZF-SIC decoding, and

shown that the Golden code, 3 and 4 antenna Perfect code,

3 antenna TAST code and the Srinath-Rajan code can be full-

diversity ACZF/ACZF-SIC decoded with complexity less than

that of ML decoding. Simulations show that this advantage in

decoding comfort comes with no loss in error performance

with respect to ML decoding. These five codes along with

ACZF/ACZF-SIC decoding outperform all known codes for

Nt ≤ 4 in terms of complexity and error performance. The
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Fig. 4. The Srinath-Rajan code, Nr = 2.

following problems are yet to be settled.

• The reason for the essentially-ML performance of

ACZF/ACZF-SIC decoders is to be investigated. Is there

a criterion that ensures that a given non-ML decoding

technique has error performance close to that of the ML

decoder?

• Constructing/Identifying STBCs for Nt > 4 that allow

full-diversity ACZF/ACZF-SIC decoding. For example,

are all TAST codes [19] or all codes from Cyclic Division

Algebras [29] full-diversity ACZF/ACZF-SIC decodable?

APPENDIX A

PROOF OF THEOREM 1

In order to prove the theorem we first derive a lower bound

for det(GH
Im

GIm
), we then use this result to derive an upper

bound on the probability of decoding error.

Assume that the hypothesis of the theorem is true. Let

h = vec(H). For every ℓ = 1, . . . , L each entry of GIℓ
is a

complex linear combination of entries of h. Thus the function

fℓ(h) = det(GH
Iℓ
GIℓ

) is a polynomial in entries of h and

hence is a continuous function. Note that m itself is a function

of h, and

det(GH
Im

GIm
) = f(h) = max

ℓ∈{1,...,L}
fℓ(h)

is a also a continuous function since it is the maximum of

L individual continuous functions. We will now follow an

argument similar to [1], [2] to derive a lower bound on f .

Consider the unit sphere S in CNrT . From the hypothesis of

the theorem, f(h) > 0 for every h ∈ S. Since S is a compact

set and f is continuous, there exists a real number c > 0 such

that f(h) ≥ c for any h ∈ S . Since each GIℓ
, ℓ = 1, . . . , L is

a linear function of h it satisfies GIℓ
(h) = ||h|| GIℓ

(
h

||h||

)
.

Therefore fℓ(h) = ||h||2λ fℓ

(
h

||h||

)
for all ℓ = 1, . . . , L,



and hence f(h) = ||h||2λ f
(

h

||h||

)
for any h 6= bf0. Since

h

||h|| ∈ S we have f
(

h

||h||

)
≥ c. Thus,

det(GH
Im

GIm
) = f(h) ≥ c ||h||2λ. (16)

Assume that the transmitted information vector is b ∈ AK .

Let E1 be the event that the tuple (bIc
m
,bIm

) does not belong

to the set of vectors (3) obtained at the end of the second step

of the decoding process. Let E denote the event of the decoder

deciding in favour of the wrong codeword. Then

P(E) = P(E ∩ E1) + P(E ∩ Ec
1)

≤ P(E1) + P(E/Ec
1). (17)

We will now upper bound each of the two terms in the above

expression to complete the proof.

Since b is the transmitted vector we have

y =
√
SNR(GIc

m
bIc

m
+GIm

bIm
) + n. The vector

ŝIm
(bIc

m
) which belongs to the set of vectors in (3) is

the output of ZF decoder for the system

y(bIc
m
) = y −

√
SNRGIc

m
bIc

m

=
√
SNRGIm

bIm
+ n.

This is a space-time block coded system with a ZF receiver

whose equivalent channel matrix is GIm
. The full-diversity

(i.e., order of NtNr diversity) criterion for this system is given

in Theorem 1 of [1], and it coincides with (16). Following the

same steps as in the proof of Theorem 1 of [1] we can show

that

P(E1) ≤ P
(
ŝIm

(bIc
m
) 6= bIm

)
≤ c1SNR

−NtNr , (18)

for some real number c1 > 0.

The term P(E/Ec
1) is the probability that the minimum

distance decoder does not decide in favour of b given that

the information symbol vector (bIc
m
,bIm

) does belong to the

set (3). This step of the decoder is same as that of ML decoding

of C except that the search space of the ML decoder has been

reduced from the entire codebook C of size MK to the set of

MK−λ codewords corresponding to the information vectors

in (3). Since the transmitted codeword belongs to the reduced

set of codewords, the probability that the wrong codeword is

output at this step is upper bounded by the probability of error

of the ML decoder of C. Thus there exists a constant c2 > 0
such that

P(E/Ec
1) ≤ c2SNR

−rNr , (19)

where r = min{rank(X−X′) | X,X′ ∈ C,X 6= X′}.

Since r ≤ Nt, from (17), (18) and (19) we have

P(E) ≤ (c1 + c2)SNR
−rNr at high signal to noise ratios.

Thus the ACZF decoder achieves the same diversity order as

the ML decoder.

APPENDIX B

PROOF OF THEOREM 2

We will first prove that for a given ℓ = 1, . . . , L, the matrix

GIℓ
has full column rank if and only if XIℓ

(u)H 6= 0 for

any non-zero vector u = [u1 u2 · · · uλ] ∈ Cλ. Let Iℓ =
{i1, i2, . . . , iλ} i.e.,

GIℓ
= [vec(Ai1H) vec(Ai2H) · · · vec(AiλH)],

The columns of GIℓ
are linearly independent if and only if the

matrices Ai1H, . . . ,AiλH are linearly independent, i.e., the

matrix
∑λ

j=1 ujAijH 6= 0 for any non-zero vector u. This is

same as XIℓ
(u)H 6= 0 for any non-zero vector u.

Using the result from the previous paragraph we will now

show that the criteria of Theorems 1 and 2 are equivalent. Let

EA denote the event that the criterion of Theorem 1 is satisfied,

and let EB be the event corresponding to Theorem 2. We need

to prove that EA implies EB and vice-versa, or equivalently

Ec
A implies Ec

B and vice-versa. The event EA is that for every

H 6= 0, at least one the L matrices {GIℓ
} is of full column

rank. From the result in the previous paragraph this happens if

and only if for any given H 6= 0 there exists an ℓ ∈ {1, . . . , L}
such that XIℓ

(uℓ)H 6= 0 for any uℓ 6= 0.

Suppose Ec
A is true. There exists an H 6= 0 and non-zero

vectors u1, . . . ,uL such that XIℓ
(uℓ)H = 0 for ℓ = 1, . . . , L.

Thus all XIℓ
(uℓ) have a common non-zero nullspace, and

hence the matrix X̃ in (6) does not have full column rank.

Thus Ec
B is true.

Now suppose Ec
B is true. This means there exist non-zero

vectors u1, . . . ,uL such that X̃ has a non-zero nullspace.

Choose H 6= 0 to be any matrix with columns in the nullspace

of X̃. Thus, X̃H = 0 and hence XIℓ
(uℓ)H = 0 for each

ℓ = 1, . . . , L for this choice of non-zero vectors u1, . . . ,uL.

This negates the event EA. This completes the proof.

APPENDIX C

PROOF OF LEMMA 1

The criteria of Theorems 1 and 2 are equivalent, thus it is

enough to prove that the criterion of Theorem 1 implies full-

diversity with ACZF-SIC decoding. The proof is similar to

that of Theorem 1. The difference lies in upper bounding the

term P(E1), which itself is upper bounded by the probability

of error of the ZF-SIC decoder for the system

y(bIc
m
) =

√
SNRGIm

bIm
+ n.

Let Im = {i1, . . . , iλ} and let SNRk and SNR′
k be the post-

processing signal to noise ratios for the symbol sik for ZF

and ZF-SIC decoders respectively. Further, let Pk and P′
k be

the probability of error for sik with ZF and ZF-SIC decoder

respectively.

Suppose the criterion of Theorem 1 is satisfied. From the

proof of Theorem 1 we have that Pk ≤ ckSNR
−NtNr at high

SNR, for some real number ck > 0 for k = 1, . . . , λ. We

will now show that P′
k is of the order of SNR−NtNr for k =

1, . . . , λ. Given this result on P′
k the rest of the proof is similar

to that of Theorem 1.

Now let the ZF-SIC decoder decode the symbols in the

order iλ, iλ−1, . . . , i1, then we have SNRλ = SNR′
λ for

every channel H. Hence P′
λ = Pλ = O(SNR−NtNr). Now

consider the ZF-SIC detection of the symbol siλ−1
. If the

symbol siλ is decoded correctly the number of interferences



faced by siλ−1
is one less in ZF-SIC receiver than in the

ZF receiver. In that case the post-processing signal to noise

ratio SNR′
λ−1 ≥ SNRλ−1 for any channel H. Therefore if

siλ were decoded correctly by the ZF-SIC receiver then

P′
λ−1 ≤ Pλ−1 = O(SNR−NtNr). Now the overall prob-

ability of error for siλ−1
is upper bounded by the sum of

probability of error for siλ and the probability of detecting

siλ−1
wrongly given that siλ was detected correctly. Since

both these terms are of the order of SNR−NtNr we have that

P′
λ−1 = O(SNR−NtNr). Using a similar argument we can

prove that P′
k = O(SNR−NtNr) for all k = 1, . . . , λ.
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