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Abstract

We present a locally supersymmetric extension of the minimal supersymmetric Standard Model (MSSM)

based on the gauge group SU(3)C ×SU(2)L×U(1)Y ×U(1)′ where, except for the supersymmetry breaking

scale which is fixed to be ∼ 1011 GeV, we require that all non-Standard-Model parameters allowed by

the local spacetime and gauge symmetries assume their natural values. The U(1)′ symmetry, which is

spontaneously broken at the intermediate scale, serves to (i) explain the weak scale magnitudes of µ and bµ

terms, (ii) ensure that dimension-3 and dimension-4 baryon-number-violating superpotential operators (and,

in a class of models, all ∆B = 1 operators) are forbidden, solving the proton-lifetime problem, (iii) predict

bilinear lepton number violation in the superpotential at just the right level to accommodate the observed

mass and mixing pattern of active neutrinos (leading to a novel connection between the SUSY breaking scale

and neutrino masses), while corresponding trilinear operators are strongly supppressed. The phenomenology

is like that of the MSSM with bilinear R-parity violation, were the would-be lightest supersymmetric particle

decays leptonically with a lifetime of ∼ 10−12 − 10−8 s. Theoretical consistency of our model requires the

existence of multi-TeV, stable, colour-triplet, weak-isosinglet scalars or fermions, with either conventional or

exotic electric charge which should be readily detectable if they are within the kinematic reach of a hadron

collider. Null results of searches for heavy exotic isotopes implies that the re-heating temperature of our

Universe must have been below their mass scale which, in turn, suggests that sphalerons play a key role for

baryogensis. Finally, the dark matter cannot be the weakly interacting neutralino.
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I. INTRODUCTION

Softly broken supersymmetry (SUSY) with weak scale super-partners is a theoretically appealing

and phenomenologically viable framework for physics beyond the Standard Model (SM) [1]. Weak

scale SUSY provides an elegant mechanism to stabilize the weak interaction scale against runaway

quantum corrections that arise when the SM is embedded into a larger framework that includes

particles much heavier than the weak scale [2]. As a result, SUSY models provide a much more

convincing setting for the unification of the strong and electroweak interactions of the SM into a

single interaction at the much larger scale MGUT that appears in grand unified theories (GUTs).

Moreover, it is well-known that the measured value of gauge couplings (and of the down-type

third generation fermion masses) are incompatible with grand unification if these are extrapolated

to high energy as in the SM, but unify rather well in SUSY GUTs with super-partners of SM

particles around the TeV scale [3]. Also, SUSY theories with a conserved R-parity quantum number

can readily accommodate the observed amount of cold dark matter, most naturally (though not

necessarily) in the form of a weak interacting massive neutralinos that are left over as thermal

relics from the Big Bang [4].

While these remarkable properties of SUSY have continued to provide impetus for its exploration

even in the absence of any direct evidence from searches at high energy colliders – a situation that,

we hope, will change once the data from the Large Hadron Collider (LHC) become available – we

note that generic SUSY models give rise to new problems not present in the SM. These include:

• The µ-problem: Why is the coefficient of the gauge-invariant ĤuĤd superpotential term not

as large as the GUT scale but of about the weak scale as needed for phenomenology? In

addition, we also need a soft SUSY breaking (SSB) scalar bilinear term, with its coefficient

bµ also taking on a weak scale value.

• The proton decay problem: Why are the renormalizable SU(3) × SU(2) × U(1)Y invariant

baryon- and lepton-number violating couplings that could potentially cause weak scale pro-

ton decay small (or, more likely, absent)? In addition, why are the couplings of R-parity

conserving dimension-4 baryon and lepton number violating operators in the superpotential

also small enough so as not to conflict with the limts on proton lifetime?

• The SUSY flavour and CP problems: Why are quark/lepton flavour-violating and CP -

violating couplings so much smaller than their naturally expected values?



We stress that these are issues only for a generic SUSY model in that a number of mechanisms to

evade each of these “problems” have been suggested in the literature [5–7].

We speculate that the answers to these questions will be evident once the mechanisms by which

the dimensionful parameters in the sparticle sector arise are understood. Our goal here is to present

a new model that addresses the first two of the three problems mentioned above (we have nothing

new to add about flavour or CP violation), where gravitational interactions convey the effects of

SUSY-breaking that occurs in a “hidden sector” to the “observable sector” which includes the SM

particles and their superpartners, together with additional exotics (some of which may be close to

the weak scale) that we are forced to include for the consistency of the framework.

In view of the fact that there are already numerous models that attempt to address one or

more of the issues, we should explain our rationale for constructing yet one more model. The main

reason is that for our construction we adopt the following reasonable ground rules that are not all

respected by other authors.

1. We present the complete dynamics of both SUSY breaking and its mediation to the observ-

able sector that determines the various scales in the theory. In other words, we do not simply

assume that certain fields get vacuum expectation values (vevs) at appropriate scales.

2. Since there are arguments [8] that suggest that gravitational dynamics does not respect

global symmetries, we allow ourselves to use only gauge symmetries to restrict the form

of the dynamics; i.e. we eschew ad hoc global symmetries, including any R-symmetry. In

other words, the weak scale values for µ and bµ, as well as the observed lower bound on the

life-time of the proton are derived as a consequence of local symmetries.

3. All (non-SM) interactions not explicitly forbidden by the symmetries are assumed to be

allowed, and with one exception discussed below, with natural values for the parameters.

We have, of course, no explanation of the pattern of SM Yukawa couplings which, as usual,

we take to reproduce the observed fermion masses.

It is well known that in all realistic models where gravity acts as the messenger of SUSY-

breaking to the observable sector, SUSY breaking occurs at an intermediate scale Λ such that

Λ2/MP ∼ 1 TeV, where MP is the Planck scale. The small ratio, Λ/MP is usually unexplained.1

Our attempt is not different in this respect in that we also set the scale of SUSY-breaking by hand

1 There are, however, suggestions where this hierarchy may be accounted for by non-perturbative dynamics.



to be hierarchically different from the Planck scale. The novel feature of our model is that this

same intermediate scale Λ sets the scale of active neutrino masses (along with the scale of the µ and

bµ parameters), and that it is possible to accommodate – but not explain – the observed mixing

pattern of neutrinos.

The remainder of this paper is organised as follows. In Sec. II we present the general ideas

behind how we obtain the SSB parameters, weak scale µ and bµ terms and neutrino masses. The

construction of the model is completed in Sec. III where several exotic fields necessary to cancel

quantum anomalies are introduced. The broad aspects of the phenomenology of the model are

discussed in Sec. IV. These include, the suppression of proton decay and nn̄ oscillations, neutrino

masses and mixing, the spectrum of new particles and their signals at the LHC, and finally some

cosmological considerations. We summarize our findings in Sec. V.

II. MODEL PRELIMINARIES

We begin the construction of our supergravity-based framework, focussing for the moment only

on general features – the new fields, and the origin of associated scales that are essential for viable

phenomenology. Discussion of some details necessary in order to obtain the complete model is

deferred to Section III.

The general approach for solutions to the µ problem is to include a new symmetry, perhaps an

R symmetry, that forbids the introduction of the superpotential µ-term which is then generated

only upon the spontaneous breakdown of this symmetry [5]. We take the same approach and, for

reasons explained above, introduce a new U(1)′ gauge symmetry that forbids the µ term. We will

arange the dynamics so that spontaneous breakdown of this local symmetry generates both the µ

as well as the SSB bµ terms with weak scale values. We begin, however, with the supersymmetry

breaking sector and the generation of SSB terms for the superpartners of the SM particles that

results from the gravitational coupling between the supersymmetry-breaking sector and the SM

superfields.

A. Supersymmetry breaking

As usual, we assume that supersymmetry is broken in a hidden sector that couples to SM

particles and their superpartners only via (very suppressed) gravitational interactions [9]. Following

Polonyi [10], we introduce a superfield Ŝ which is a singlet under both the SM gauge group as



well as the new U(1)′ symmetry that, as we said, precludes us from including the µ-term in the

superpotential. Since there are no symmetry considerations to restrict the self couplings of Ŝ in

the superpotential, we must allow the hidden sector potential to be an arbitrary function of Ŝ,

and not restrict it to be the linear Polonyi superpotential. Since we are talking about the effective

theory at the Planck scale, we would expect that MP determines the scale of the superpotential

for Ŝ. However, in order to obtain the SUSY breaking vev
√
FS at the intermediate scale Λ, and

to ensure the subsequent cancellation of the cosmological constant, we are forced to choose the

overall scale of the superpotential to be much smaller than MP (this ad hoc choice of scale, is the

exception mentioned in item 3. of Sec. I, and is common to most supergravity models), so that we

write

Ŵ0(Ŝ) =
Λ2

M2
P

[
M2

P Ŝ + αMP Ŝ
2 + βŜ3 + γM3

P

]
, (1)

with the dimensionless coefficients α, β and γ being O(1), and Λ determining the over-all scale of

this superpotential. The precise details of the form of Ŵ0 are unimportant as long as the mass

parameters and vevs (if non-zero) are O(MP ). We terminate the series after the cubic term only

for definiteness. Naive dimensional analysis suggests that if it does not vanish, 〈S〉 ∼ MP , while

FS ∼ Λ2.

B. Soft symmetry breaking terms for MSSM superpartners

The MSSM [11] includes the superfields,

Φ̂i = (Q̂•, D̂
c
•, Û

c
• , L̂•, Ê

c
•, Ĥd, Ĥu), (2)

where the • denotes the generation index. These fields constitute the MSSM sector. We write

down the most general superpotential consistent with the local SU(3)C ×SU(2)L ×U(1)Y ×U(1)′

gauge symmetry, where, as mentioned above, the last factor is the new local U(1) symmetry that we

introduce to forbid the ĤuĤd term in the superpotential. We will see below that we can assign U(1)′

charges consistently with the cancellation of gauge and gravitational anomalies, so that the same

U(1)′ symmetry also forbids dimension-2, dimension-3, dimension-4 baryon-number and lepton-

number violating operators involving the MSSM fields in the superpotential. The renormalizable

MSSM superpotential, therefore, includes only the usual fermion Yukawa coupling terms. The

µ-term, together with other dimensionful terms (discussed below) will be dynamically generated.

We choose the superpotential, the Kähler potential and the gauge kinetic function for our



effective theory valid below the Planck scale to be,

Ŵ = Ŵ0(Ŝ) + ŴMSSM + · · · ,

K̂ = Ŝ†Ŝ +
∑

i

Φ̂†
i Φ̂i +

∑

i

(
Ki

(
Ŝ

MP
,
Ŝ†

MP

)
Φ̂†
i Φ̂i + h.c.

)
+ · · · , (3)

f̂(α)AB = δAB

(
1 + f(α)

Ŝ

MP
+ · · ·

)
,

where the ellipses denote terms involving other fields which we will introduce later, or Planck-

suppressed higher order terms that are undoubtedly present but will not alter the SSB masses and

couplings of the MSSM fields. Here, f(α) are dimensionless parameters taken to be O(1), A,B label

the gauge group indices while the index α labels the gauge group factor [SU(3)C , SU(2)L,U(1)Y or

U(1)′], and ŴMSSM specifies the usual superpotential Yukawa couplings of the MSSM superfields.

The last term involving the functions Ki in the Kähler potential generically results in non-universal

SSB mass parameters for the MSSM fields when the scalar component of Ŝ acquires a vev ∼ MP

[12].

The scalar potential in supergravity is

V = M4
P e

G(Gi(G
−1)ijG

j − 3) +
1

2
M4

P g
2
(
Ref−1

AB

)
Gi(tA)ijφjG

k(tB)klφl, (4)

where, following the notation of Ref.[13],

G =

(
K̂

M2
P

+ ln | Ŵ
M3

P

|2
)

Φ̂i=φi

,

Gi =
∂G

∂Φ̂i

∣∣∣∣
Φ̂i=φi

, Gj =
∂G

∂Φ̂j†

∣∣∣∣
Φ̂i=φi

, (5)

Gi
j =

∂2G

∂Φ̂i∂Φ̂j†

∣∣∣∣
Φ̂i=φi

.

In this expression for the scalar potential of a general locally supersymmetric quantum field theory,

we have abused notation and used Φi to denote any superfield, and φi the scalar component of

Φ̂i. We trust that the dual use of Φi as any superfield here, and also as the symbol for the chiral

superfields of the MSSM in (2), will not cause any confusion. In the last term of (4), g denotes

the gauge coupling constant, in general different for each of the four gauge group factors, and tA

denote the generators of the gauge group. Note that in this term in the scalar potential, we have

suppressed the index α (on g, on the gauge kinetic function, and on the gauge group generators)

which is implicitly summed over all four gauge group factors. Substituting (3) into the equation for

the scalar potential gives us the SSB parameters for the MSSM fields. Because of the non-minimal



terms involving Ki in the Kähler potential, we must rescale the fields (by non-universal factors

∼ 1) so that the kinetic energy terms take their canonical form in order to read of the scalar SSB

mass parameters and trilinear couplings. The scale for these soft terms, which would have taken

on a universal value had we not required the rescaling of fields just mentioned, can be written as,

msoft ∼
〈Ŵ |Φ̂i=φi

〉
M2

P

≃ 〈Ŵ0|Ŝ=S〉
M2

P

. (6)

Since 〈S〉 ∼ MP , we have 〈Ŵ0〉 ∼ Λ2MP , so that we must choose Λ ∼ 1010 − 1011 GeV in order

for msoft to be at the TeV scale. This well known reasoning applies to matter and Higgs scalar

mass parameters as well as to the trilinear interactions, but not to the SSB bµ term which, like the

supersymmetric µ-term, is forbidden by the U(1)′ symmetry.

Gaugino masses arise because the gauge kinetic functions are field-dependent [1]. The gaugino

mass matrix (which is, of course, diagonal) is generically given by,

mλ =
1

2
MP e

G/2 ∂f̂∗
AB

∂Φj∗

∣∣∣∣∣
Φj∗=φj∗

(G−1)jkG
k. (7)

SinceGk and
∂f̂∗

AB

∂Φj∗

∣∣∣∣
Φj∗=φj∗

∼ 1/MP , (G)jk ∼ M2
P with eG/2 ∼ Λ2/M2

P , the magnitude of the gaugino

mass parameters is ∼ Λ2/MP which is comparable to the other SSB parameters as desired. If the

gauge kinetic function depends on the gauge group factor (through, e.g. f(α) in (3)), non-universal

gaugino masses will result.

This discussion of SSB parameters in supergravity models is not new. We present it mainly to

set up notation, and for the sake of completeness.

C. µ and bµ terms

To explain why the µ-term has a magnitude around the weak scale rather than MP , we choose

U(1)′ charges so that the operator ĤuĤd is forbidden in the superpotential. An effective µ-term is

then generated either via the vev of the auxiliary component of a new (elementary or composite) SM

singlet superfield Ẑ† that spontaneously breaks U(1)′ and couples to the MSSM Higgs superfields

in the Kähler potential [14], or via the vev of the scalar components of Ẑ with a superpotential

coupling to ĤuĤd [15]. In either case, we have to ensure that an SSB breaking bµ term, also with

a weak scale magnitude, can be generated consistent with the assumed local symmetry.

Guidice and Masiero [14] proposed that µ may be generated via the term

K̂ ∋ Ẑ†nĤuĤd

Mn
P



which would lead to µ ∼ FZZ
n−1/Mn

P , where we have abused notation to denote the vevs of the

auxiliary and scalar components of Ẑ by the corresponding fields. To generate a non-zero value

for FZ , we must have 2,

Ŵ ∋ ẐẐ
′m

Mm−2
P

,

which suggests FZ ∼ Z
′m

Mm−2

P

∼ Zm

Mm−2

P

. These required couplings of Ẑ and Ẑ ′ must, of course be

consistent with their U(1)′ charges. In this case, it is easy to see that we must also include

Ŵ ∋ Ẑ
′mnĤuĤd

Mmn−1
P

in the superpotential since it is not forbidden by the U(1)′ symmetry. A vev for Z
′
will amend the

magnitude of µ from its value above by a factor 1+
(

Z
MP

)(m−1)(n−1)
∼ O(1) for m,n ≥ 1. This new

contribution can potentially also give a contribution to bµ which is ∼
(

Z
MP

)(m−1)(n−1)−n
×µ2. We

see that the choice n = 1 in the original Guidice-Masiero proposal potentially gives an undesirably

large value bµ ∼ µ2 × MP

Z . Only values of m and n such that (m − 1)(n − 1) ≥ n are guaranteed

to be “safe” in this regard.

Alternatively, we can generate µ via a superpotential term,

Ŵ ∋ ẐnĤuĤd

Mn−1
P

which will give µ ∼ Zn

Mn−1

P

if the scalar component of Z acquires a vev [15]. If FZ also acquires a

vev via a superpotential term,

Ŵ ∋ ẐpẐ
′q

Mp+q−3
P

,

we obtain bµ ∼ µ2×
(

Z
MP

)p+q−n−2
∼ µ2 if p+q = n+2. If qn

p is not an integer, the U(1)′ symmetry

precludes the appearance of the operator Ẑ
′†P ĤuĤd in the Kähler potential for any integer value

of P , so that there can be no corresponding contribution to µ via the Guidice-Masiero mechanism.

In the following, we will use this second mechanism with n = 2, p = 3 and q = 1 to generate

weak scale values for both µ and bµ. This then requires that 〈Z〉 ∼ 〈Z ′〉 ∼ Λ ∼ 1011 GeV. Moreover,

we will see that the vev for the scalar component of the superfield Ẑ
′
that we are led to introduce

to get a non-zero auxiliary component of Ẑ also serves to give the desired mass scale in the neutrino

sector.

2 The m Ẑ′ fields in this superpotential need not all be the same. In other words, for m = 2 the superpotential
operator could be ẐẐ

′

1Ẑ
′

2. To obtain the following estimates assume that the vevs of the three fields (if non-zero)
have comparable magnitudes.



D. Neutrino masses

It is well known [16] that lepton number and R-parity violating terms in the superpotential

ŴLV ∋ λijkǫabL̂
a
i L̂

b
jÊ

c
k + λ′

ijkǫabL̂
a
i Q̂

b
jD̂

c
k + ǫiǫabL̂

a
i Ĥ

b
u (8)

induce masses for active neutrinos which then are Majorana fermions. Here, a and b are SU(2)L

indices, and we have suppressed colour indices on Q̂ and D̂c in the second term. The dimensionless

coupling constants λijk (λ′
ijk) are antisymmetric in the generation indices i and j (j and k). The

last term in (8) evidently leads to mixing between the active neutrino fields and the higgsinos,

resulting in a 7×7 neutrino–higgsino–neutral-gaugino mass matrix. Assuming that ǫi are all much

smaller than the other entries of this matrix (which all have a weak scale magnitude) of this matrix,

we see that one linear combination of the neutrinos acquires a mass ∼ ǫ2i
Mweak

at the tree-level, while

other neutrinos acquire masses via radiative corrections since there is no symmetry that precludes

this. For |ǫi| ∼ 10−4 GeV, we see that the tree-level neutrino mass scale is ∼ 0.1 eV.

Just as for the µ-parameter, we have to explain why the magnitude of ǫi is so small. We

envisage that this bilinear term is forbidden in the superpotential, and arises only when the scalar

component of a superfield X̂ that enters the superpotential via the dimension-5 operator (with

smaller powers of X̂ being forbidden by the U(1)′ symmetry),

Ŵ ∋ X̂3

M2
P

L̂Ĥu , (9)

acquires a vev, spontaneously breaking the U(1)′ symmetry that we have already introduced to

alleviate the µ problem. Remarkably, we see that if X̂ ∼ 1011 GeV, the desired magnitude for ǫi is

obtained.

As we have mentioned, neutrino mass matrices may also be generated via the operators L̂iL̂jÊ
c
k

and L̂iQ̂jD̂
c
k which violate lepton number by one unit. They generate a neutrino mass matrix at

one loop level via the diagrams shown in Fig. 1. Loops with third generation leptons/quarks yield

the largest entries, and the corresponding scale of the neutrino mass is given by,

mν ∼ λ · λ
32π2

sin 2θτmτ or
λ′ · λ′

32π2
sin 2θbmb, (10)

where λ and λ′ denote the appropriate λijk or λ′
ijk coupling, and θτ , θb are the intragenerational

mixing angles for tau sleptons and bottom squarks, respectively. Since sin 2θf ∼ mf

MSUSY
∼ 10−2 for

f = b, τ , we see that we can obtain a neutrino mass scale of 0.1 eV (which is consistent with all

data) if λ, λ′ ∼ 10−3.



ν• ν•

l̃i1,2, d̃i1,2

lj, dj

FIG. 1: Diagrams by which neutrino masses are generated at the one loop level by the trilinear R-parity

violating superpotential interactions in (8).

In keeping with our stated philosophy, a coupling of this magnitude requires explanation. We

may envision that these couplings, which are forbidden at the tree-level by the U(1)′ symmetry,

may be induced by vevs of the scalar components of superfields Ŷ that enter the superpotential

through,

Ŵ ∋ Ŷ1

MP
L̂L̂Êc +

Ŷ2

MP
Q̂L̂D̂c. (11)

This would require 〈Yi〉 ∼ 1015 GeV, four orders of magnitude larger than the scale 1011 GeV for

the vevs of the fields neeeded to solve the µ problem. While the existence of such fields cannot be

logically excluded, since they are not needed for anything, we may consistently assume that these

are absent. In this case, we may expect that λ, λ′ ∼ Λ
MP

∼ 10−7 (or even smaller if the symmetry

requires higher powers of the MSSM singlet field). The contributions to active neutrino masses

from these couplings is then completely negligible, at least as far as their measured oscillation

parameters are concerned.

We will see below that the field Ẑ ′ that we introduce along with Ẑ to solve the µ and bµ problems,

simultaneously plays the role of the field X̂ that sets the mass scale in the active neutrino sector.

Radiative corrections then allow us to accommodate (though not explain) the required pattern of

neutrino masses and mixing angles.

III. THE COMPLETE MODEL

We have just seen that in addition to a hidden sector superpotential Ŵ0 that we need to break

supersymmetry at an intermediate scale Λ ∼ 1011 GeV, we have to introduce new superfields that

we will call X̂1 and X̂2 that acquire vevs ∼ Λ for their scalar components, and ∼ Λ3

MP
for their

auxiliary components. The field X̂2 plays a dual role in that it not only induces the SUSY breaking



vev for FX1
that we need for the Kim-Nilles mechanism [15], but also sets the mass scale for active

neutrinos. We begin by exhibiting a model that leads to this required pattern of vevs for the fields

Ŝ and X̂1,2.

A. Dynamical origin of the vaccum expectation values

We begin by introducing the superpotential,

Ŵ =
Λ2

M2
P

[M2
P Ŝ + αMP Ŝ

2 + βŜ3 + γM3
P ] +

κ

MP
X̂3

1 X̂2 + · · · . (12)

The first term is just Ŵ0 that we have introduced earlier. The second term shows the lowest

dimensional interaction involving the fields X̂1,2 (that we introduce to dynamically generate the

µ and bµ parameters as described in Sec. II C) invariant under the U(1)′ gauge symmetry. The

corresponding coupling constant κ ∼ 1. We will see below that this term is essential in that if

κ = 0, we will have only supersymmetric solutions. The ellipses include superpotential couplings

of X̂1 to the fields Ĥu,d, of X̂2 to L̂i and Ĥu and ŴMSSM that are unimportant for our analysis of

the vevs of Ŝ and X̂1,2. The Kähler potential takes the minimal form,

K̂ = Ŝ†Ŝ + X̂†
1X̂1 + X̂†

2X̂2 + Φ̂†
i Φ̂i + · · · , (13)

consistent with the assumed symmetries. The ellipses denote higher dimensional terms such as

(Ŝ+Ŝ†)n

Mn
P

X̂†
i X̂i, as well as similar terms involving MSSM superfields that are consistent with the

assumed symmetries. These higher dimensional terms are undoubtedly present, but will only give

O(1) corrections to the solutions that we will obtain for the vevs, that do not qualitatively change

the different scales that we obtained by our analysis. Finally, to obtain weak scale masses for

gauginos, we choose the gauge kinetic function to be given by (3). Again, higher powers of Ŝ
MP

that may be present in the gauge kinetic function will not qualitatively alter our solution.

To facilitate our calculation of the vevs for the scalar components of Ŝ and X̂1,2, we evaluate

the relevant portion of the scalar potential for our model by substituting the superpotential (12)

along with our choice of the Kähler potential and the gauge kinetic function into (4) to obtain,

V = Λ4

[
V0(α, β, γ,

S

MP
) +

Λ2

M2
P

V1(α, β, γ, κ,
S

MP
,
X1

Λ
,
X2

Λ
)

+
Λ4

M4
P

V2(α, β, γ, κ,
S

MP
,
X1

Λ
,
X2

Λ
) + · · ·

]
eK/M2

P

+
g′2

2
Λ4

(
1 + f

S

MP

)−1 [
X1

X1X
∗
1

Λ2
+ X2

X2X
∗
2

Λ2

]2
, (14)



where K (without the caret) is the value of the Kähler potential, with the superfields replaced by

their scalar components. For simplicity, we have taken α, β, γ, κ to be real parameters. Also, g′

that appears in the D-term contribution to the potential is the gauge coupling strength for the

new U(1)′ group. Finally, X1,2 denote the U(1)′ charges of the fields X̂1,2: these evidently must

satisfy 3X1 = −X2 in order for the superpotential to be U(1)′ invariant.

Keeping in mind that our goal is to show that this potential allows (classical) minima with

〈S〉 ∼ MP , 〈X1,2〉 ∼ Λ with 〈Φi〉 ≪ Λ, we have written the scalar potential in terms of appropriately

scaled fields S
MP

and
X1,2

Λ , and left out terms in the observable fields Φi in (14). Although we have

no dynamical argument for selecting this vacuum solution, it is clearly the only one that can lead to

a viable phenomenology. The dimensionless functions V0, V1, V2 and K/M2
P are then all O(1) and

the scalar potential itself is O(Λ4). Indeed, (14) is an expansion of the scalar potential with each

successive term being smaller in magnitude by a factor Λ2

M2

P

. The ellipses denote yet higher order

terms. The observable sector fields (that we have not written) would enter via the functions V2, V3,

· · · , and also via suppressed terms in the square parenthesis in the last term of (14). Fortunately,

these terms only result in tiny corrections to the vevs of the scalar components of Ŝ and X̂1,2, and

can be neglected in our analysis. The functions V0 and V1 are given by,

V0(α, β, γ,
S

MP
) = fsf

∗
s − 3WsW

∗
s

V1(α, β, γ, κ,
S

MP
,
X1

Λ
,
X2

Λ
) = (f∗

s
S∗

MP
− 3W ∗

s )κ
X3

1

Λ3

X2

Λ
+ c.c.

+

(
3κ

X2
1

Λ2

X2

Λ
+Ws

X∗
1

Λ

)(
3κ

X2
1

Λ2

X2

Λ
+Ws

X∗
1

Λ

)∗

+

(
κ
X3

1

Λ3
+Ws

X∗
2

Λ

)(
κ
X3

1

Λ3
+Ws

X∗
2

Λ

)∗
, (15)

where

fs = FS/Λ
2, with

FS =
∂WS

∂S
+

WS

M2
P

∂K

∂S
, (16)

Ws =
1

M3
P

[M2
PS + αMPS

2 + βS3 + γM3
P ].

In addition to the extremization conditions,

∂V

∂(S/MP )
=

∂V

∂(X1/Λ)
=

∂V

∂(X2/Λ)
= 0,

(17)

for the fields S and X1,2, we require that

〈V 〉 = 0, 〈FS〉 6= 0, (18)



so that the cosmological constant vanishes (to the order that we are evaluating it) and that su-

persymmetry is broken. We further require that there are no tachyonic directions after we have

shifted the fields by their vacuum expectation values; i.e the squared scalar mass parameters are

non-negative.

We can satisfy these conditions order-by-order in powers of Λ2. Specifically, we show that for a

given choice of 〈S〉 ∼ MP and 〈X1,2〉 ∼ Λ, it is possible to choose the model parameters α, β, γ

all O(1), so that (17) and (18) are satisfied. Toward this end, we write,

〈S〉
MP

= a0 + a1
Λ2

M2
P

+ a2
Λ4

M4
P

+ · · · ,

〈X1〉
Λ

= b0 + b1
Λ2

M2
P

+ b2
Λ4

M4
P

+ · · · ,

〈X2〉
Λ

= c0 + c1
Λ2

M2
P

+ c2
Λ4

M4
P

+ · · · ,

α = α0 + α1
Λ2

M2
P

+ α2
Λ4

M4
P

+ · · · ,

β = β0 + β1
Λ2

M2
P

+ β2
Λ4

M4
P

+ · · · ,

γ = γ0 + γ1
Λ2

M2
P

+ γ2
Λ4

M4
P

+ · · · , (19)

where the coefficients a•’s, b•’s, · · · γ•’s are all are O(1). If we work to leading order, i.e. drop all

terms O(Λ4 × Λ2

M2

P

), it is clear that we must separately minimize the first and last terms of (14),

and also satisfy (18). Minimization of the D-term contribution to the scalar potential then gives

us (we take the vevs to be real),

X1
〈X1〉2
Λ2

+ X2
〈X2〉2
Λ2

= 0, or 3X1 = −X2. (20)

Extremization with respect to S and the vanishing of the cosmological constant then give,

(〈fs〉2 − 3〈Ws〉2)eK/M2

P = 0,
∂(V0e

K/M2

P )

∂(S/MP )
= 0. (21)

It is clear that for given values of a0, b0 and c0, we can always choose two of the three parameters

α0, β0 and γ0 to satisfy these conditions.

While the ratio 〈X1〉
〈X2〉 is fixed even at leading order, the scale of 〈X1,2〉 is still arbitrary. This

degeneracy of the potential is removed once we take the terms ∼ Λ6/M2
P that appear in V1 into

account. The extremization conditions then give us,

(〈X2〉
MP

)[
81

(
κ〈X2〉2
Λ2

)2

+ 3
√
3

(
〈fs〉

〈S〉
MP

+ 〈Ws〉
)

κ〈X2〉2
Λ2

+ 〈Ws〉2
]
= 0. (22)



We obtain non-vanishing values of 〈X2〉 if the second factor vanishes. Substituting fs =
√
3Ws

from the first equation in (21), we see that we obtain real solutions for 〈X2〉 provided,
∣∣∣∣
〈S〉
MP

∣∣∣∣ ≥ 2− 1√
3
≈ 1.42. (23)

The reader may be concerned that we are assuming the effective theory assumed to be valid

below the Planck scale to derive Planck scale vevs for which yet higher powers of Ŝ in Ŵ0 (these

are not forbidden by any symmetry) may be important. Moreover, the superpotential could also

include terms such as Ŝn

Mn
P
× X̂3

1
X̂2

MP
(as well as corresponding terms involving MSSM superfields) that

would, for large enough n, destabilize κ in (12) from its value of O(1), if 〈S〉 > MP . The point,

however, is that none of our conclusions from this point on will depend on the choice of Ŵ0. The rest

of our analysis (which determines the observable particle physics) would be qualitatively unchanged

even if Ŵ0 is not a polynomial and radiative corrections are included, as long as 〈S〉 ∼ MP . Thus,

while the precise value of the vev is not trustworthy, our conclusions about various scales arrived

at using the fact that 〈S〉 ∼ MP are reliable. Put somewhat differently, we have assumed that the

potential of the high energy theory has a local minimum (our vaccuum), with a SUSY breaking

scale Λ ≪ MP and a cosmological constant that is fine-tuned to be (almost) zero, sufficiently

separated from other minima. An expansion about this minimum, (rather than about S = 0)

then leads to an effective field theory in which the higher dimensional operators will indeed all be

suppressed by corresponding powers of MP .

We now have to check whether the extremum that we have obtained is indeed a local minimum.

Toward this end, in Table I we give an illustrative example of a solution3 for 〈S〉 = 1.5MP .

The spontaneous breakdown of the U(1)′ gives a massless would-be Goldstone boson (a linear

combination of the imaginary components of the X1,2 fields) that makes the U(1)′ gauge field

massive via the Higgs mechanism. A corresponding combination of the real parts of X1 and X2

acquire a large mass mXh ∼ Λ, the precise value depends on the details including parameters in the

gauge kinetic function. The corresponding orthogonal combination Xl (h and l here denote heavy

and light) as well as the non-Goldstone combination of X1I and X2I get masses ∼ (2− 20)Λ2/MP

from the interactions contained in the V1 part of the scalar potential (14). The real and imaginary

parts of the singlet S also acquire TeV scale masses. The positive values of the squared mass

parameters indeed demonstrate that we have a true minimum. We remark that for solutions at

the lower extreme
∣∣∣ 〈S〉MP

∣∣∣ = 2 − 1√
3
, m2

Xl = 0, so that the state Xl which may be very light, could

3 There will be a corresponding solution for a negative value of 〈S〉 with the same spectrum and the same value of
β0, but with the signs of α0, γ0 and κb20 flipped in.



a0 γ0 κb20 α0 β0 〈FS〉 m2
SR m2

SI m2

Xh m2

Xl m2
XI

(Λ2) ( Λ
4

M2

P

) ( Λ
4

M2

P

) (Λ2) ( Λ
4

M2

P

) ( Λ
4

M2

P

)

1.5 -.35 -.053 -.44 .059 .63 5.6 14.4 ∼1 7.4 54.8

1.5 -.2 -.106 -.21 -.029 1.26 15.5 64.8 ∼1 29.7 219.4

1.5 -.1 -.14 -.059 -.088 1.67 8.25 134 ∼1 52.7 390

1.5 -.05 -.16 .017 -.118 1.88 2.49 177.6 ∼1 66.7 493.6

TABLE I: Sample solutions with zero vaccum energy and local minima along with the leading values of the

parameters in (19). We have also given SUSY breaking parameter FS in units of Λ2 and also the squared

masses of the various scalar fields in units of either Λ2 or (Λ2/MP )
2 as appropriate. As discussed in the

text, the corresonding solution for 〈S〉 = −1.5MP has an identical spectrum.

have implications for Higgs physics as well as for cosmology.

B. Anomalies

Since our solutions to the µ and bµ problem, as well as the mechanism for neutrino masses

discussed in Sec. IID, both require us to extend the gauge group, we need to ensure that the

associated anomalies cancel. We will see shortly that this will require us to introduce new fields

(some of which are charged under the MSSM gauge group, SU(3)C × SU(2)L × U(1)Y ) that may

manifest themselves as exotic particles at the multi-TeV scale [17, 18].

We note that the invariance of the usual quark Yukawa coupling terms in the superpotential

require that

2Q+ U c +Dc +Hu +Hd = 0, (24)

with the understanding that the calligraphic symbol for the field denotes its U(1)′ charge. Since

an important role of the U(1)′ field was to forbid the µ term, we know that Hu + Hd 6= 0, from

which we infer that

2Q+ U c +Dc 6= 0. (25)

We commence our discussion of the anomalies by observing that the new fields Ŝ and X̂1,2 are

SU(3)C × SU(2)L × U(1)Y singlets, and so do not spoil the anomaly cancellation of the MSSM.

We thus need to focus only on the mixed anomalies involving the MSSM gauge group or gravity

and the new U(1)′ gauge group. We begin with the cancellation of the [SU(3)C ]
2 ×U(1)′ anomaly

which, with the field content that we have up to this point, would require

2Q+ U c +Dc = 0,



in direct contradiction with (25). We are thus led to introduce new SU(2)L singlet, colour triplet

fields K̂ and K̂ ′ in the 3 and 3∗ representation of SU(3)C with U(1)′ quantum numbers K and

K′, respectively, and weak hypercharge y(K) = −y(K ′). Since K̂ and K̂ ′ are in conjugate rep-

resentations of the MSSM gauge group, their introduction does not affect the cancellation of the

SU(3)C × SU(2)L × U(1)Y and the mixed [gravity]2 − U(1)Y anomalies. We choose their U(1)′

charges to cancel the mixed [SU(3)C ]
2 ×U(1)′ anomaly. However, we also need to ensure that the

coloured superfields acquire a mass. The simplest way to do so is to introduce a superpotential

coupling

Ŵ ∋ X̂2
1 K̂K̂ ′

MP

which is consistent with the cancellation of the anomaly provided we introduce one pair of K̂ and

K̂ ′ for each matter family. To understand the reason for this, we first note that the cancellation

of the [SU(3)C ]
2 × U(1)′ anomaly then requires that,

[SU(3)C ]
2 − U(1)′ : 3(2Q + U c +Dc) +

nK∑

i=1

(
Ki +K′

i

)
= 0, (26)

where the factor 3 on the first term on the right-hand-side arises because there are three quark

families, and the index i = 1 − nK counts different sets of K̂ and K̂ ′ fields (with the same U(1)′

quantum numbers). Since our solution to the µ and bµ problems requires that Hu +Hd = −2X1,

we infer from (26) that the lowest dimensionality U(1)′-invariant superpotential operator that can

give the new coloured fields a mass is X̂
6

nK
1 K̂K̂ ′, where nK = 1, 3 or 6, is the number of pairs of

these coloured fields. The corresponding mass for these fields is ∼ Λ
6

nK

M
6

nK
−1

P

, which for Λ ∼ 1011 GeV

is unacceptably small for nK = 1 but leads to the interesting prediction of new coloured states at

the multi-TeV scale if nK = 3 is the number of quark generations.

The superpotential, for quarks, leptons, Higgs and the new superfields that various considera-

tions have led us to introduce, must include

Ŵ ∋ Yu
ijQ̂iÛ

c
j Ĥu+Yd

ijQ̂iD̂
c
jĤd+Ye

ijL̂iÊ
c
j Ĥd+a

X̂2
1

MP
ĤuĤd+a′

X̂3
1 X̂2

MP
+hi

X̂3
2

M2
P

L̂iĤu+a
′′

i

X̂2
1

MP
K̂iK̂

′
i+· · · ,
(27)

where Y’s are the usual quark and lepton Yukawa coupling matrices, and a, a′, a
′′

i and hi are

dimensionless coupling constants assumed to be O(1), and a sum over the indices i and j is

implied. The penultimate term leads to neutrino masses as discussed in Sec. IID. The last term

in (27), that gives supersymmetric masses to the K̂i and K̂ ′
i has been written in the diagonal basis

for these fields. The ellipses include yet higher dimensional operators in the superpotential that



would be allowed by the gauge symmetry but are of no relevance to us, along with the dynamics

of the SUSY-breaking singlet Ŝ that we have already discussed.

The conditions for the cancellation of the remaining gauge and mixed gauge-gravity anomalies

that supplement (26) above read,

[SU(2)L]
2 − U(1)′ : 9Q+ 3L+Hu +Hd = 0, (28)

[U(1)Y ]
2 − U(1)′ : 2Q+ 16U c + 4Dc + 3(2L + 4Ec) + 2Hd + 2Hu

+3

3∑

i=1

(
y(Ki)

2Ki + y(K ′
i)
2K′

i

)
= 0, (29)

[gravity]2 −U(1)′ : 9(2Q + U c +Dc) + 3(2L + Ec) + 2(Hd +Hu) +N1X1 +N2X2

+N3Y1 +N4Y2 + 3
3∑

i=1

(
Ki +K′

i

)
= 0, (30)

U(1)Y − [U(1)′]2 : 3(2Q2 − 4U c2 + 2Dc2) + 3(−2L2 + 2Ec2) + 2(−H2
d +H2

u)

+3

3∑

i=1

(
y(Ki)K2

i + y(K ′
i)K′2

i

)
= 0, and (31)

[U(1)′]3 : 9(2Q3 + U c3 +Dc3) + 3(2L3 + Ec3) + 2(H3
d +H3

u) +N1X 3
1 +N2X 3

2

+N3Y3
1 +N4Y3

2 + 3

3∑

i=1

(
K3

i +K′3
i

)
= 0. (32)

The reader will have to notice that we have included two additional SU(3)C × SU(2)L × U(1)Y

singlet superfields Ŷ1 and Ŷ2 with non-trivial U(1)′ charges that do not alter anomalies involving

any SM gauge boson in our analysis. As we will see below, their inclusion is only necessary if

we want to obtain rational values for all U(1)′ charges. We have also allowed for several copies

(N1, N2, N3, N4) of the SM singlet superfields (X̂1, X̂2, Ŷ1, Ŷ2, respectively). We must thus

understand that the couplings a, a′, a
′′
as well as the coupling hi that appear in (27) carry an

extra index that specifies just which one of these multiple singlet fields we are referring to.

The various U(1)′ charges are, of course, not independent since the corresponding invariance of



Ŵ in (27) requires that,

Q+ U c +Hu = 0, (33)

Q+Dc +Hd = 0, (34)

L+ Ec +Hd = 0, (35)

2X1 +Hd +Hu = 0, (36)

3X2 + L+Hu = 0, (37)

2X1 +Ki +K′
i = 0, (38)

X2 + 3X1 = 0. (39)

Notice that we can eliminate Hu, Hd and X1 from (33), (34), (36) and (38) to obtain (26). The

other equations are all independent and, along with the ratio Y1/X1 which is fixed to obtain rational

values of U(1)′ charges as discussed below, can be used to write the U(1)′ charges of the seventeen

fields (up to discrete quadratic or cubic ambiguities) in terms of the charges of any two fields which

we will take to be X1 and L. Our aim is to display one such solution explicitly.

Toward this end, we remark that by considering the linear combination

1

2
× (29) + (28) − 8× (33) − 2× (34)− 6× (35),

of equations (28), (29), (33), (34) and (35), and noting that Hu+Hd = −2X1 = Ki+K′
i, we obtain

(since X1 6= 0)

3∑

i=1

y(K̂i)
2 = 4. (40)

This choice of weak hypercharges is necessary to guarantee the cancellation of the [U(1)Y ]
2−U(1)′

anomaly.

Next, in (30) for the cancellation of the [gravity]2 − U(1)′ anomaly, we first note that the first

and last terms sum to zero. Then, using (35)–(37) together with X2 = −3X1, we find that,

(N1 − 3N2 + 29)X1 +N3Y1 +N4Y2 = 0, (41)

which shows why multiple copies of some of these MSSM singlet fields are necessary. A simple



solution is given by,4

N1 = 1, N2 = 10, X2 = −3X1,

N3 = 1, N4 = 2, Y1 = −2Y2. (42)

We now turn to the last two anomaly constraints, the quadratic and cubic equations, (31) and

(32), for the U(1)′ charges. These depend explicitly on the weak hypercharges of the fields K̂i

which, as we have seen, satisfy (40). Of the many possible solutions, we first make the simple

choice y(K̂i) = (2, 0, 0) which obviously leads to integrally charged, coloured particles. To find a

solution, we first use (33)–(39) together with (28) to eliminate all U(1)′ charges in terms of X1,

L and K1, and then plug these into (31) to obtain (note that K2 and K3 drop out because the

corresponding weak hypercharges are chosen to be zero),

8

3
X1(−9L + 56X1)− 12X1K1 = 0. (43)

Finally, we turn to the [U(1)′]3 anomaly equation (32). Writing all but Ki and Y1 in terms of

L and X1 (remember that Y1 = −2Y2), this reduces to,

3∑

i=1

K2
i + 2X1Ki =

1

18X1
{72L2X1 − 968LX 2

1 +
19970

3
X 3
1 +

3

4
Y3
1}. (44)

We now eliminate K1 using (43) and find,

(K2 + X1)
2 + (K3 + X1)

2 =

(X1

9

)2
[
15557 +

(
3Y1

2X1

)3
]
. (45)

Remarkably, L does not appear in this equation, which has solutions with rational values of U(1)′

charges for 3Y1

2X1
= −1, −3, −4, −6, −10, · · · .5 We now see the role of the Ŷ1,2 fields. Without

these, the anomaly constraints would be satisfied, only for irrational values of the U(1)′ charges,

precluding the possibility of embedding the model into a grand unified framework with a simple

gauge group.6

We note that it is also possible to satisfy the anomaly equations with y(K̂i) =
(
2
3 ,

4
3 ,

4
3

)
which

leads to electric charges ±1
3 or ±2

3 for the coloured K̂i and K̂ ′
i fields. Again solutions are possible

4 We emphasize that while (40) and (41) must always be satisfied, from here on, our focus will be to exhibit an
explicit solution of the anomaly constraints. Other solutions may also be possible. We have checked though that
it is not possible to satisfy the anomaly equations if N1 = N2 = N3 = N4 = 1.

5 We focus on negative values only to limit the magnitudes of the U(1)′ charges K2,3.
6 This is also the reason that we do not include a kinetic mixing between the U(1)Y and U(1)′ gauge particles. The
main low energy effect of such a mixing would be to alter the usual MSSM D-term contribution to the scalar mass
parameters, which would now depend not only on MZ and tan β, but also on an additional parameter characterizing
the mixing [19].



for 3Y1

2X1
= −1, −3, −4, −6, −10, · · · . In this case, the reader may suppose that the new coloured

particles may mix (upon spontaneous breaking of U(1)′) with the usual SU(2)-singlet quarks and

squarks with the same spin and electric charge. However, as we will see below, there are simple

cases where such mixing is precluded.

To recapitulate, the requirement of anomaly cancellation forces us to introduce three pairs of

coloured fields K̂i and K̂ ′
i, with either integral or fractional electric charges, with masses at the

TeV scale. We also require SM singlet superfields X̂1,2 and Ŷ1,2, with ten copies of X̂2 and two of

Ŷ2. The Ŷ1,2 fields are necessary only if we insist on rational values of U(1)′ charges. There are

many solutions to the anomaly equations. Here, we exhibit an explicit solution with 3Y1

2X1
= −22,

for which the new U(1)′ charges are fixed by the corresponding charges of X̂1 and L̂i fields by,

X2 = −3X1, Y1 = −44

3
X1, Y2 =

22

3
X1,

K1 =
2

9
(−9L+ 56X1)

[
−2

3
L − 40

27
X1

]
, K2 =

61

9
X1

[
−4

3
L+

139

27
X1

]
,

K3 = −2

3
X1

[
−4

3
L+

358

27
X1

]
, K′

i = −Ki − 2X1, i = 1, 2, 3, (46)

Q = (−3L+ 2X1)/9, Dc = −2

3
L+

97

9
X1, U c =

4

3
L − 83

9
X1,

Ec = −2L+ 11X1, Hu = −L+ 9X1, Hd = L − 11X1,

where the values of Ki outside (within) the square parenthesis refer to the integrally (fractionally)

charged case for the K̂i fields discussed above. For rational values of L,X1, we obtain rational

U(1)′ charges for all the other fields. We have checked that despite the large number of fields that

we have introduced, the U(1)′ gauge coupling does not blow up below Q = MP as long as the

corresponding weak scale gauge coupling is smaller than about 0.05 [0.6] for (L,X1) = (1,1) [(1,

0.1)], i.e. as long as the couplings of fields such as Êc, D̂c, etc. that have a much larger coupling

to the U(1)′ gauge boson than X̂1, are similar in magnitude to the SM gauge couplings.

The alert reader will have noted that since we chose the weak hypercharges for the colour triplet

fields to be positive, it is the charged 1
3 triplet K̂1, not the anti-triplet K̂

′
1, that has positive charge.

Before closing this discussion, we point out how the U(1)′ charges in (46) would be altered had we

instead chosen the weak hypercharge y(K̂1) = −2
3 . This would have only shown itself only in the

U(1)Y − U(1)′2 anomaly equation (31), which does not distinguish whether the K̂
(′)
i are triplets

or anti-triplets. The flip of the sign of the weak hypercharge of K̂1 thus results in an interchange

of the U(1)′ charges of K̂1 and K̂ ′
1 from their values (in the square parenthesis) in (46), with the

U(1)′ charges of all other fields remaining unchanged.



C. A recap

With the U(1)′ charges that we have just obtained in (46), the most general superpotential,

invariant under the assumed symmetries, may be written as,

W =
Λ2

M2
P

[M2
P Ŝ + αMP Ŝ

2 + βŜ3 + γM3
P ] +

2∑

a=1

yaŶ1Ŷ
2
2a +

10∑

b=1

κb
MP

X̂3
1 X̂2b + Y u

ij Q̂iÛ
c
j Ĥu +

Y d
ijQ̂iD̂

c
jĤd + Y e

ijL̂iÊ
c
j Ĥd +

X̂2
1

MP
ĤuĤd +

10∑

b=1

hib
X̂3

2b

M2
P

L̂iĤu + a
′′

i

X̂2
1

MP
K̂iK̂

′
i + · · · , (47)

where a sum over i, j is implied, and ya are couplings of O(1). Here, we have explicitly shown

the sums over the MSSM singlet fields X̂2b and Ŷ2a, while the sums over the family indices i and

j (including for the colour triplet superfields K̂i and K̂ ′
i) are implied. The ellipses denote other

terms allowed by the symmetries, but suppressed by even higher powers of MP , that are irrelevant

for our analysis.

It is instructive to note that trilinear R-parity violating operators,

L̂iL̂jÊ
c
k, L̂iQ̂jD̂

c
k, and Û c

i D̂
c
jD̂

c
k,

are automatically forbidden by the U(1)′ gauge symmetry. Since 2L + Ec = L +Q + Dc = 11X1,

the first two operators may be induced, by the spontaneous breaking of U(1)′, via effective terms,

(X̂†
1)

2X̂3
2

M6
P

L̂L̂Êc,
(X̂†

1)
2X̂3

2

M6
P

L̂Q̂D̂c

in the Kähler potential which, because 〈FX1
〉 ∼ Λ3

MP
and 〈X1,2〉 ∼ Λ, leads to associated di-

mensionless couplings ∼ Λ7

M7

P

∼ 10−49 which are utterly negligible. Since U c + 2Dc = 37
3 X1, the

baryon-number violating trilinear superpotential interaction Û c
i D̂

c
jD̂

c
k cannot be induced.

IV. PHENOMENOLOGY

A. Proton Decay and nn̄ oscillations

We have just seen that the U(1)′ gauge symmetry that we have introduced automatically sup-

presses all dimensionless baryon and lepton number violating superpotential couplings to negligible

levels. Thus, the introduction of ad hoc global symmetries to avoid the disastrous prediction of

proton decay at the weak interaction rate is unnecessary within our model.

The dimension-4 superpotential operators (which generate dimension-5 terms in the interaction

Lagrangian),

Q̂Q̂Q̂L̂ and Û cÛ cD̂cÊc,



can lead to a dangerously high rate for proton decay [6]. It is, however, easy to see that the U(1)′

gauge symmetry also forbids these operators. Moreover, these operators are not induced even after

U(1)′ breaking because 3Q+L = 2
3X1, while 2U c +Dc+ Ec = 30

9 X1. The baryon-number violating

(but lepton-number conserving) operator, Q̂Q̂Q̂Ĥd is also not possible. We also note that baryon-

and lepton-number violating terms,

Q̂Q̂Û c†Êc† and Q̂Û c†D̂c†L̂,

in the Kähler potential, which give rise to gauge-boson-mediated proton decay in many SUSY

grand unified theories are also forbidden.7 Our model is thus safe from constraints from the non-

observation of proton decay at Super-Kamiokande [20].

Indeed, it turns out that the proton is stable within this framework.8 To see this, we first

observe that the coefficients multiplying L in the U(1)′ charges in (46) are proportional to the

weak hypercharges of the corresponding fields, so that changing just the value of L amounts to

just a U(1)Y transformation, under which our Lagrangian is automatically invariant. Next, taking

L = 2
3X1, we observe that the U(1)′ charges of the MSSM fields, normalized so that X1 = 3, are

given by,

(Q,U c,Dc,L, Ec,Hd,Hu,X1) = (0,−25, 31, 2, 29,−31, 25, 3) = (0, 2, 1, 2, 2, 2, 1, 0) mod 3. (48)

Since only those products of MSSM fields OMSSM that are of the form OMSSM ×X
(†)n
1 X

(†)m
2 (with

m and n being integers) arise in the low energy theory even after spontaneous breakdown of the

U(1)′ group, we conclude that the U(1)′ charge of OMSSM must vanish modulo 3. In other words,

a Z3 subgroup of U(1)′ with charges of MSSM fields as in (48) remains as a discrete symmetry of

the low energy theory even though U(1)′ is spontaneously broken.9 Indeed, this Z3 is the same as

the discrete symmetry group B3 first discussed by Ibañez and Ross [21]. The Z3 charges of MSSM

fields in (48) coincide with the corresponding 2(B − Y ) charges modulo 3, so that conservation

of Z3 implies that the SU(3)C × SU(2) × U(1)Y invariant low energy effective theory conserves

7 We mention in passing that dimension-5 lepton-number-violating interactions generated by the operators L̂L̂ĤuĤu

or Q̂ÛcÊcĤd in the superpotential, or the operators ÛcD̂c†Êc or Q̂ÛcL̂† in the Kähler potential are allowed, but
very strongly suppressed by a high power (6, for the first operator, and even larger for the other operators) of 〈X1〉

MP

in addition to the usual factor of MP .
8 We thank Christoph Luhn for pointing this out to us.
9 There is a potential loophole in this argument since it is possible that the fields Y1,2 acquire vevs. Then, for instance,
if Y1/X1 is not an integer, the vev of Y1 would break the Z3 symmetry, obviating our argument. However, even
though a ∆B = 1 operator may then be allowed in the low energy theory, we would expect that it would have a
very high dimensionality, so that the proton decay rate would still be very suppressed by appropriate powers of
MP .



2B modulo 3, or that ∆B = 1, 2 processes are forbidden [22]. The proton is thus stable within

our framework, and further, neutron anti-neutron oscillations are also forbidden (or at least very

strongly suppressed if Y1 or Y2 acquires a Z3 breaking vev).

B. Neutrino sector

We have already seen in Sec. IID that because X̂2b fields acquire vevs ∼ Λ, the penultimate

term in the superpotential (47) naturally results in a neutrino mass scale ∼ 0.1 eV. We have also

seen that lepton-number-violating trilinear couplings are suppressed to insignificant levels. In the

(s)neutrino sector, the TeV scale effective theory is just the MSSM with bilinear R-parity violation

[23] contained in the superpotential terms,

Weff ∋ ǫiǫabL̂
a
i Ĥ

b
u, (49)

with ǫi = hi
〈X2〉3
M2

P

∼ 10−4 GeV, together with the concomitant SSB cousin of the bµ term,

Vsoft = ǫabbǫiL̃
a
iH

b
u + c.c. , (50)

where L̃i denotes the slepton doublet.

The phenomenology of models with bilinear R-parity violation, especially as it impacts on the

neutrino sector, has been extensively studied in the literature. Here, we will only summarize

the salient features. The sneutrino fields acquire vevs, 〈ν̃i〉 ∼ ǫi ∼ 10−4 GeV, which lead to a

mixing between the neutral gauginos and the neutrinos. In other words, we now have a 7 × 7

neutral gaugino-higgsino-neutrino mass matrix that must be diagonalized to obtain the neutrino

and neutralino mass eigenstates [23].

At tree level, one linear combination of neutrinos, ν3, obtains a mass whose scale is given by,

mtree
ν ∼ g2

4

ǫ2

mSUSY
(51)

which, for mSUSY ∼ 100 GeV and ǫ ∼ 10−4 GeV yields a neutrino mass scale ∼ 0.1 eV, which

is of the right magnitude to accommodate atmospheric neutrino data [24] which can most simply

be explained as νµ − ντ oscillations with a mass difference ∆m2
atmos = 2.5 × 10−3 eV2 and a

large mixing angle. A neutrino mass of ∼ 0.1 eV is also compatible with constraints from large

scale structure formation that suggest mν
<∼ 0.3 eV [25]. We must keep in mind that there is

considerable numerical lee-way in (51), in that in writing this, we have treated 〈h0d〉, M1,2 and |µ|
all to be comparable and taken them to be all equal to mSUSY.
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FIG. 2: One-loop diagrams that contribute to the radiative masses for neutrinos. There is also an analogous

diagram to (a) with a tau-stau loop in place of the quark-squark loop. As discussed in the text, the diagram

with the top quark-squark loop in (a) only contributes to the mass of ν3 (the one neutrino massive at tree-

level) but not to the masses of ν1 and ν2. The crosses denote fermion mass insertions and the solid circle

denotes bilinear mixing between different scalars. The external neutrino lines with a diamond (and h̃u/h̃d

at the other end) symbolize that the neutrinos νi/νj (i, j = 1, 2, 3) couple to the quark-squark system via

their h̃u/h̃d content, and so the “internal higgsino line” is not a propagator in a Feynman diagram.

The remaining neutrinos ν1,2 obtain masses at the loop level, dominantly via the diagrams shown

in Fig. 2, where the bottom quark or the gaugino mass breaks the chiral symmetry. Because the

(tree-level) eigenvector for ν1,2 only has components in the νe, νµ, ντ and h̃d directions [29], these

neutrinos only obtain their mass from the bottom quark-squark and tau-stau loops in Fig. 2a,

whereas both bottom and top quark-squark loops, as well as the the tau-stau loops, contribute to

the correction to mν3 . The order of magnitude of the contribution from Fig. 2a is given by,

mrad
ν ∼ 3

16π2
Y 2
q mq sin 2θq ln

(
m2

q̃2

m2
q̃1

)
ǫ2

m2
SUSY

, (52)

where q = t, b, Yq is the quark Yukawa coupling, θq is the corresponding squark mixing angle,

and mq̃1,2 , the masses of the squarks. Detailed analyses [23, 29] of bilinear R-parity violation have

shown that the radiatively generated neutrino mass is compatible with the solar neutrino mass scale

∆m2
solar = 8× 10−5 eV2, obtained [26] by interpreting the deficit of solar neutrinos as oscillations

between neutrinos with this smaller mass difference.

We now turn to contributions from the diagrams in Fig. 2b and Fig. 2c that have been examined



in detail in Ref.[27, 28], where it has been shown that the contributions from the loops in diagrams

b are generally larger than those from diagrams c. More importantly, a naive estimate of these

contributions obtained using loop factors, coupling constant and mass insertions as we did for

diagrams a gives a completely wrong answer because of large cancellations between contributions

between the loop with h,H and with A that cause the total contribution to vanish, both in the

(unphysical) limit where mh = mA = mH , and in the decoupling limit where mA,mH → ∞, with

mh and -ino masses fixed. The numerical analysis in Ref.[28] shows that this contribution, which

scales as 1/ cos2 β, is suppressed from its naive value by a factor of about 10−3 − 10−2. For tan β

in its intermediate range ∼ 30 yields mrad
ν ∼ 10−2 eV, in general agreement with the solar neutrino

mass scale, for bǫ ∼ (1− 3)mSUSYǫ.

We have thus seen that our model naturally yields the right scale of neutrino masses. A detailed

analysis of neutrino masses and mixings, and comparison with the observed data is beyond the

scope of this paper. Neutrino phenomenology for models with bilinear R-parity violation has

been examined in detail in Ref.[29] where it has been shown that it is possible to accommodate

the pattern of neutrino masses together with the large mixing angles that provide a good fit to

the solar and the atmospheric neutrino data. For the “minimal” boundary conditions used in

this analysis, the potentially large contributions from diagrams in Fig. 2b and Fig. 2c appear

to be subdominant. The analyses of Ref.[30] illustrate that these contributions can, however, be

dominant, and further that both a normal as well as an inverted hierarchy may be possible within

this framework. We will refer the interested reader to these studies for details.10 Before moving

on, we remind the reader that our model differs sharply from the U(1)′ model of Ref. [31] in that

we do not include independent right-handed neutrino fields.

C. New Particles at the TeV scale: Masses and Decay patterns

We now focus our attention on the effective theory, valid at the TeV scale, that is relevant

for phenomenological analyses of new physics signals at high energy colliders such as the LHC, or

from various direct and indirect searches for dark matter that are very topical today. This theory

is a softly broken supersymmetric SU(3)C × SU(2)L × U(1)Y gauge theory, with the particle

content of the MSSM augmented, as we have already seen, by additional supermultiplets of exotic

particles with properties that we discuss below. The underlying U(1)′ gauge symmetry (which is

10 It would be interesting to perform a similarly detailed analysis with non-degenerate sneutrinos to examine whether
the model can also accommodate a phenomenologically viable solution with nearly degenerate neutrinos.



spontaneously broken at the scale Λ ∼ 1011 GeV), restricts the forms of both the superpotential

as well as of the SSB terms.

1. MSSM superpartners

We have already seen that the non-trivial gauge kinetic function that we have introduced in (3)

leads to weak scale masses for MSSM gauginos. Since there is no reason for the coefficients f(α)

to be the same, we will generically expect that these gaugino masses are not universal. Of course,

embedding the model into a SUSY GUT framework may yield a common mass for the gauginos.

Although the U(1)′ gauge boson, which acquires a mass by the Higgs mechanism, and the

associated gaugino-higgsino states essentially decouple from TeV scale physics, the U(1)′ leaves its

imprint on the scalar spectrum via a contribution from the so-called U(1)′ D-term contributions

[32] scalar SSB mass parameters. Thus the scalar mass parameters are given by,

m2
• = m2

•(high) +Q• ×D, (53)

where m2
•(high) is the SSB scalar mass parameter (in general, non-universal if the non-minimal

Kähler potential terms in (3) are significant) for the MSSM scalars induced by gravitational inter-

actions, Q• is the U(1)′ charge of the corresponding field as given in (46), and D is a parameter

(positive or negative) with dimension of mass squared, and a magnitude typically around the weak

scale squared. In scenarios where the high scale SSB parameters are, for some reason, universal (re-

member that scalars of the first two generations with the same MSSM quantum numbers must be

approximately degenerate for phenomenological reasons), the determination of scalar masses will

provide information about the underlying U(1)′ charges of MSSM fields. We remind the reader

that m2
Hu

< m2
Hd

facilitates radiative electroweak symmetry breaking.

The heavier MSSM superpartners decay as usual, mainly via their gauge and gaugino couplings,

though effects of third generation Yukawa couplings may also be relevant [33]. An important differ-

ence from R-parity conserving models most extensively studied in the literature is that the would-be

lightest supersymmetric particle (which, for defniteness, we will take to be the lightest neutralino,

Z̃1) can decay via its neutrino component that is induced by the lepton-number-violating super-

potential term. We may estimate this component to be O(ǫi/µ) ∼ 10−7, which (very roughly

speaking) gives a lifetime of
<∼ 10−12 s [10−8 s], assuming that the vector bosons in Z̃1 → W±ℓ∓ or

Z̃1 → Zν are real [virtual] [34]. Thus, except when the neutralino is lighter than MW , we would

expect it to decay within the detector with, or without, a discernable vertex separation.



2. Exotics

In addition to the MSSM fields, we have seen that our model includes several TeV scale exotics.

First, we have the coloured Ki, K
′
i (both scalar and fermion) at the TeV scale, as we can see from

the superpotential in (27), remembering that 〈X1〉 = Λ. Also, as we have seen in Table I the

scalars Xl and XI (and as can be seen from (27) also the fermions) acquire weak scale masses.11

These particles couple to SM particles only via the very suppressed U(1)′ gauge interactions (or

even more weakly, via gravity or via the Planck scale suppressed superpotential interactions), only

the coloured K̂i and K̂ ′
i fields are of phenomenological interest [35].

We first observe that with integer hypercharge assignment for K̂i and K̂ ′
i, the lightest of the

colour triplet states with each integer hypercharge, be it a boson or a fermion, will be stable

since ordinary (s)quarks have fractional charges. For the fractional hypercharge case that we have

considered, the lightest of the K1/K
′
1 states is stable because the colour triplet state has charged

+1
3 , while the anti-triplet has the charged −1

3 . Surprisingly, the lightest of the K2,3 and K ′
2,3 states

is also stable, despite the fact that K̂ ′
2,3 and Û c have the same SU(3)C ×SU(2)L×U(1)Y quantum

numbers, and so may be expected to mix upon U(1)′ breaking via a term Û cK̂2,3 that may be

induced in the superpotential when X̂1,2 or Ŷ1,2 acquire vevs. One can, however, readily check

from the U(1)′ charges in (46) that one would require fractional powers of X̂1,2 and/or Ŷ1,2×Û cK̂2,3

in the superpotential to maintain the underlying U(1)′ invariance.12 We thus conclude that such

a mixing (that would have led to the decay of “the K states”) is not allowed. A similar analysis

shows that K̂ ′
2,3D̂

cD̂c term (which would allow the decays K ′
2,3 → dd, or K̃2,3 → dd̃

(∗)
R or the

conjugate modes) or the ĤuQ̂K̂ ′
2,3 terms are also not allowed for the same set of values of 3Y1

2X1
that

we have examined.

Finally, we turn to the case where y(K̂i) = (−2
3 ,

4
3 ,

4
3 ) that we considered at the end of

Sec. IIIB so that the coloured exotics have the same MSSM charges as the singlet quark su-

perfields. We have checked that even in this case mixing between K1 scalars/fermions with singlet

11 Actually, the situation is more complicated than this because of the fact that there are ten X̂2 fields, of which just
one combination appears in the third last term of (27). The spectrum that we have discussed is for this particular
combination of X̂2i fields. The remaining nine combinations do not affect the minimization of the scalar potential
discussed in Sec. IIIA, and so are more like the Ŷ1,2 fields in this respect. While the scalar components of these
fields get TeV scale masses from SUSY breaking effects, the corresponding fermions remain essentially massless.
Since these remaining X̂2j and the Ŷ1,2 fields couple to the MSSM sector or to the K̂i, K̂

′
i fields only via the U(1)′

gauge interaction (or even more weakly, via gravity), these appear to be irrelevant for our analysis.
12 We have checked that such a mixing is forbidden not only for the U(1)′ charges in (46) that are special to our

choice, 3Y1

2X1
= −22, but also for the corresponding charges for other choices, −1,−3,−4,−6,−10 that we made for

this combination.



down squarks/quarks is forbidden because the U(1)′ charge of K̂1D̂
c equals 277

27 X1. Mixing be-

tween K̂2,3 and Û remains forbidden exactly as before since the corresponding U(1)′ charges are

unaffected by the flip of the weak hypercharge of K̂1. We have also checked that U(1)′ breaking

does not induce ĤdQ̂K̂ ′
1, Q̂Q̂K̂1, Û

cD̂cK̂ ′
1, Û

cÊcK̂1 and L̂Q̂K̂ ′
1 couplings since U(1)′ invariance

can only be maintained if these operators are multiplied by fractional powers of X̂1,2 and/or Ŷ1,2

fields. This situation thus seems to be different from that in the models in Ref. [18], [31] and [36]

where couplings of the exotics to ordinary particles are possible when the exotics have the same

weak hypercharges as the singlet quarks.

D. Collider Signals

Since the R-parity violating couplings of MSSM superpartners are constrained by the observed

neutrino masses to be rather small, these would dominantly be pair-produced at colliders via their

gauge interactions, with cross sections as in the well-studied R-parity conserving models. They

would then cascade decay [37] to lighter sparticles as usual. The impact of the induced R-parity

violating couplings is that the Z̃1 (which we have assumed to be the lightest MSSM superpartner)

produced at the end of the cascade is itself unstable and decays via Z̃1 → ℓW (∗) and Z̃1 → νZ(∗) as

discussed above. The (real or virtual) vector bosons decay to quarks and leptons with branching

fractions given by the SM. In addition, the neutralino may decay via Z̃1 → h (or A,H) + ν,

where h dominantly decays via bb̄. We refer the reader to Ref.[34, 38], where the branching

fractions for the decay of the neutralino have been examined in detail. We only mention that

while the Emiss
T signatures may be degraded in this R-parity violating scenario, the presence of

charged leptons, b-quarks and potential vertex gaps provide additional handles for SUSY searches

at colliders [34, 38, 39].

The stable coloured exotics that are necessary to cancel the [SU(3)C ]
2 × U(1)′ anomaly will

provide the smoking-gun signature of our scenario if they are accessible at the LHC, or at a

future Very Large Hadron Collider. Once produced, the lighter of the colour triplet/anti-triplet

K̂i/K̂
′
i scalar or fermion would pair up with an ordinary anti-quark/quark to form a heavy hadron,

which then decays to the stable ground state of the exotic (s)quark–light antiquark system (or its

conjugate). For the case of integrally charged K’s, as well as for the case where the colour-triplet K̂1

has the “wrong” sign of the weak hypercharge, this stable hadron will be fractionally charged, while

in all other cases it will either be neutral or integrally charged. The penetrating track of a slow-

moving, charged heavy particle provides a characteristic signature for the heavy charged hadron.



Indeed, even in the case that the ground state is electrically neutral, charge exchange interactions

of this hadron with the nucleon in a detector may transmute the neutral hadron to its charged

isospin partner, resulting a sudden appearance of a track in the detector [40]. Signals from stable

quarks, squarks and gluino-hadrons in collider experiments have been examined in the literature

[40, 41]. Experiments at the Fermilab Tevatron has carried out a search for penetrating tracks of

slow-moving heavy particles and the non-observation of any signal has led to upper limits on the

corresponding cross sections. These limits can then be translated to lower bounds on masses of

various quasi-stable exotic particles: about 250 GeV for stable top-squarks and about 170/206 GeV

for charged winos/higgsinos [42]. Even with a modest integrated luminosity of understood data,

the claimed LHC reach for gluino-hadrons/top squarks exceeds 1600/800 GeV [43].

Before closing this section, we remark that, because the exotic particles have negligible couplings

to SM particles, the low energy constraints on supersymmetry, e.g. from the branching ratios

b → sγ, b → sℓℓ̄, gµ−2 etc. will be essentially as in the MSSM with the corresponding parameters.

E. Cosmology and dark matter

In our scenario, we lose the neutralino as a thermal dark matter candidate since it decays via

R-parity violating couplings that give rise to neutrino masses. While this may be viewed as a

negative, it does not exclude the model, since dark matter may reside in different sector of the

theory. Observation of a dark matter signal in direct searches for neutralinos would rule out our

model.13 In this connection, we mention that it may be possible to modify the model to allow

more than one pair of SU(2)L doublets [36] with different U(1)′ quantum numbers (which do not

acquire a vev) such that a discrete subgroup under which the new doublet transforms non-trivially

is left unbroken.

A potentially more serious problem is the presence of coloured TeV scale exotics in the K̂ − K̂ ′

sector. These would bind with ordinary nuclei to form exotic isotopes whose expected abundance

(from thermal production in the Big Bang)[44] exceeds by orders of magnitude the upper limits[45]

on the exotic isotope fraction for masses up to ∼ 10 TeV: see Ref. [46]. These bounds may be evaded

if the reheating temperature after inflation is smaller than the mass of the stableK-particles. While

this is not currently fashionable, we are not aware of any considerations that exclude this possibility.

Since the renormalizable baryon number violating operators have extremely small couplings in our

13 More precisely, it would be an unbelievable coincidence that there is a weakly interacting massive particle (WIMP)
component of DM that has no connection with electroweak symmetry breaking.



framework, low scale baryogenesis mechanisms of Ref. [47] do not apply , and we need to examine

whether electroweak baryogenesis [48] can be accommodated within the model.

V. SUMMARY

We have constructed a theoretically consistent and phenomenologically viable supergravity

model where we impose only local symmetries to restrict the dynamics. We fix the SUSY breaking

scale by hand to be Λ ∼ 1011 GeV, but otherwise assume that all new, i.e. non-SM, parame-

ters are given by the natural values allowed by the underlying symmetries. Our gauge group is

SU(3)C × SU(2)L × U(1)Y × U(1)′, where the U(1)′ gauge symmetry (which is spontaneously

broken at the intermediate scale) plays multiple roles: it serves to solve the µ and bµ problems,

restricts the form of R-parity violating interactions so that dimension three and dimension four

baryon number violating superpotential couplings, and in a class of models all ∆B = 1 couplings,

are absent (solving the problem of proton lifetime in SUSY models), and determines the order of

magnitude of the corresponding renormalizable lepton number violating interactions. Specifically,

(in the superfield basis where the fermionic components are the e, µ and τ leptons along with the

hd higgsino) trilinear lepton number violating couplings in the superpotential are negligible, so

that “bilinear R-parity violation” dominates. This, in turn, allows us to obtain a novel connec-

tion between the scale of SUSY breaking and the mass scale of active neutrinos, that allows us to

accommodate the observed pattern of neutrino mases and mixing angles.

The low energy theory at the (multi)-TeV scale is the MSSM augmented by several new fields.

SUSY phenomenology would be largely that for models with bilinear R-parity violation, and has

been examined in the literature. We must, however, keep in mind that often assumed scalar uni-

versality of the mSUGRA model would generically not apply here, and perhaps, even gaugino mass

parameters may be non-universal. The only relevant effect of R-parity violation in collider exper-

iments would be that the would-be LSP is unstable; its lepton daughters, and possible displaced

vertex would provide additional handles to enhance the SUSY signal over SM background. Very

low energy phenomenology (rare decays, gµ − 2, CP violation of SM particles) is unaltered from

the MSSM because the new fields are extremely weakly coupled to SM particles.

There must, however, be new colour triplet, weak iso-singlet superfields with either the usual

quark quantum numbers or exotic quantum numbers (integrally charged quarks, or charged +1
3

quarks) which would be copiously produced at a hadron collider if they are kinematically accessible.

Quite possibly though these fields may be at the multi-TeV scale, and so would require a Very Large



Hadron Collider for their experimental scrutiny. The unambiguious prediction of our model (which

serves to distinguish it from other models with U(1) gauge extensions) is that there are several

stable coloured particles (whether these are fermions or scalars depends on details of parameters)

which would combine with light quarks/antiquarks to form stable hadrons. Such hadrons would be

readily discoverable at a high energy hadron collider, where it would even be possible to determine

their mass.

Although these multi-TeV stable coloured particles provide the most striking phenomenological

signature of our model, they also cause its demise if they are produced in the Big Bang, since

their existence is excluded by very stringent upper limits on the abundance of heavy isotopes of

hydrogen and other elements. We must, therefore assume that the reheating temperature after

inflation was low enough not to produce these particles, and further, that the observed baryon

asymmetry arises from sphaleron effects. Finally, we do not have a WIMP candidate for DM, so

that detection of DM via direct searches would be a decisive blow to our model.
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