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Abstract

In the present work, an r-h adaptive isogeometric analysis is proposed for plane elasticity

problems. For performing the r-adaption, the control net is considered to be a network of

springs with the individual spring stiffness values being proportional to the error estimated at

the control points. While preserving the boundary control points, relocation of only the interior

control points is made by adopting a successive relaxation approach to achieve the equilibrium

of spring system. To suit the non-interpolatory nature of the isogeometric approximation, a

new point-wise error estimate for the h-refinement is proposed. To evaluate the point-wise

error, hierarchical B-spline functions in Sobolev spaces are considered. The proposed adaptive

h-refinement strategy is based on using De-Casteljau’s algorithm for obtaining the new control

points. The subsequent control meshes are thus obtained by using a recursive subdivision

of reference control mesh. Such a strategy ensures that the control points lie in the physical

domain in subsequent refinements, thus making the physical mesh to exactly interpolate the

control mesh and thereby allowing the exact imposition of essential boundary conditions in the

classical isogeometric analysis. The combined r-h adaptive refinement strategy results in better

convergence characteristics with reduced errors than r- or h-refinement. Several numerical

examples are presented to illustrate the efficiency of the proposed approach.
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ACCEPTED MANUSCRIPT

1 Introduction

The concept of isogeometric analysis (IGA) advanced by Hughes et al. [1] is a novel tool for the

analysis of partial differential equations. The primary objective is to map the physical domain

exactly at coarse discretization and to simplify the refinement techniques by integration of Com-

puter Aided Design (CAD) and Computer Aided Engineering (CAE). As a result, the method has

received growing interest for many engineering problems [2, 3].

Mesh based methods (e.g., the traditional finite element method) are not desirable when applied

to problems requiring remeshing and adaptive strategies. Finite element modelling of thin struc-

tures with large deformation, material discontinuities, and crack propagation requires remeshing

to avoid highly distorted elements and to capture moving fronts. To overcome problems associated

with the conventional FEM, various meshless techniques, for example, the smoothed particle hy-

drodynamics [4], the element-free Galerkin method (EFGM) [5, 6], the meshless Petrov Galerkin

method (MLPG) [7], and the method of finite spheres [8] have been used. These methods have

helped to achieve results which are devoid of mesh dependency. Although IGA is also a mesh

based numerical method, unlike the C0-continuous approximations (i.e., the Lagrange interpola-

tion functions) used in FEM, splines used in IGA are smooth, piecewise polynomials with Cp−1

continuity, where p is the order of the basis. These hierarchical basis functions help to perform

mesh refinements to improve the solution in a seamless manner. Two main steps in an adaptive

process include: (1) error estimation and (2) adaptive refinement based on the estimated error [9].

For the weak-form Galerkin finite element models, estimates of error can be obtained by recov-

ery based methods, residual based methods, or goal-oriented methods. A more detailed review on

these methods is presented by Ainsworth and Oden [10] and Babuska and Strouboulis [11]. The

effectiveness of the adaptive refinement strategy relies on the accuracy of estimating the error in

the numerical solution of the problem being solved.

Adaptive refinements in IGA have been studied by Hughes et al. [1]. In addition to the classical
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ACCEPTED MANUSCRIPT

h-refinement (knot insertion) and p-refinement (degree elevation), an efficient refinement technique

called k-refinement (includes both knot insertion and degree elevation) has also been discussed by

Hughes et al. [1]. The method involves an order elevation followed by the element discretization

resulting in Cp−1-continuous function and is quite different from the C0 functions introduced by

classical p-refinement. The method was applied to elastic shell analysis and an improved conver-

gence of solution was observed using the k-refinement (see [1]). Cottrell et al. [12] also studied

the k-refinement to understand the smoothness of solution over classical C0-continuous functions.

The desirable properties of such adaptive IGA include convergence, regularity, compactness of

support of basis functions and accurate representation of complex geometry on coarse grids. Re-

finement (h→ 0) implies convergence to the exact solution. While local refinement is preferred in

practice, uniform refinement is the basis for standard convergence proofs. With regularity we aim

at conforming methods with basis functions at least in H1(Ω). In contrast to conventional FEM,

additional global smoothness is regarded as beneficial.

The drawback of the tensor-product splines is that all refinements act globally. Any local re-

finement [13] requires a global refinement resulting in a number of control points associated with

unwanted basis functions. For adaptive strategies hierarchical splines was presented by Forsey and

Bartels [14]. Splines with varied knot line segments was presented in [15]. The research was later

focused towards locally refinable tensor product splines [16]. T-splines (see [17, 18]) overcome

such limitation by introducing locally refined T-junctions. T-splines are superior for making the

transition from CAD to CAE seemingly more painless, but it also has superior properties from an

exclusive design perspective or analysis perspective. It allows the designers to manipulate the com-

plex models with far less control points than required by traditional non uniform rational B-splines

(NURBS). Adaptive refinement studies using T-splines are made in [19]. The use of hierarchical

splines for refinement is done in [20] and T-splines and LR B-splines[21] are used in some recent

works ([22, 23, 24]). However, there is a need to overcome some limitations of the T-splines, in

particular, with respect to the linear dependence of T-spline blending functions corresponding to
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ACCEPTED MANUSCRIPT

particular T-meshes [25]. The most recent development has been towards use of analysis suitable

T-spline spaces [26] that are hierarchical in nature[27]. The hierarchical model allows complete

local control of refinement by using a spline hierarchy whose levels identify subsequent levels of

refinement for the underlying geometric representation. Recent studies have been towards estimat-

ing errors for very smooth functions. In this context, Cottrell et al. [28] have proposed an error

estimation technique in a suitable Sobolev space. Xu et al. [29] have proposed a new error estimate

based on a posteriori error estimation.

The essence of performing the r-refinement is to distribute the number of degrees of freedom

in such a manner to obtain an optimal initial mesh so that accuracy of the solution obtained is the

highest possible ([30], [31] and [32]). In the r-refinement for finite element method using hierar-

chical estimators the control point relocation procedure is based on the spring analogy approach

(see [33] and [34]), where the stiffness of the spring is proportional to the error in solution. There

have been several works on r-adaption based on material force method (see, for example, [35],

[36], [37], [38], [39], [40], and [41]). There has been recent works on control point adjustment

for B-spline curve approximation [42]. Various methods for parameterization of computational

domain in isogeometric analysis in terms of control point locations has been studied and compared

[43]. One of this includes r-adaption techniques based on residual error estimators together with

a conjugate gradient algorithm for relocation of control points [43]. Two-dimensional domain de-

composition based on skeleton computation for parameterization in isogeometric analysis has been

made in [44]. The bounds on influence of domain parameterization and knot spacing on numerical

stability in isogeometric analysis has been studied in [45].

There has been also hierarchical approaches to adaptive local refinement in isogeometric anal-

ysis [46]. Re-parameterization and shape optimization has recently been studied. Mapped B-spline

basis functions are used for shape design and isogeometric analysis over an arbitrary parameter-

ization [47]. A mesh regularization scheme to update internal control points for isogeometric

shape design optimization has been proposed in [48]. High quality construction of analysis suit-
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able trivariate NURBS solids by re-parameterization methods is made in [49]. Some fundamental

aspects of shape optimization in the context of isogeometric analysis has been discussed in [50].

The physical mesh obtained in IGA by mapping of the parameter mesh is only end interpolatory

to the control mesh. The reason is that the only end B-spline basis satisfies the Kronecker delta

property for given open knot vector. In such cases we define control variables where degrees

of freedom, boundary conditions, and geometry of physical domain are prescribed, unlike nodal

variables in FEM. Such an description poses an issue in imposing Dirichlet (essential) boundary

conditions exactly. Wang et al. [51] introduced a transformation method to relate both control

and nodal variables to impose the essential boundary conditions. Bazilevs et al. [52] weakly en-

forced Dirichlet boundary conditions, which is shown to be effective. This issue is also observed

in meshless methods, like moving least squares and reproducing kernel methods. Approaches like

Lagrange multiplier [53], Transformation [54], and penalty [55] methods have also been used to

impose essential boundary conditions.

In the present work, we propose a novel r-h adaptive isogeometric analysis for the numerical

solution of plane elasticity problems. The r-adaptive strategy is based on relocation of the interior

control point locations . The main aim of relocating the control points is to obtain an optimal

control net. Such an optimal initial control net will ensure that the degrees of freedom defined

at the control points are efficiently distributed, so that accuracy of the solution obtained is the

highest possible, while preserving the exactness of the geometry. In this process only the interior

control points are moved and the boundary control points are kept fixed. To this effect the control

net is considered to be a network of springs with the spring stiffness being proportional to the

error estimated by considering equilibrium at the global degrees of freedom defined at the control

points. Equilibrium of spring system is achieved by considering a successive relaxation approach

(see [34, 56, 57, 58]). The approach allows to relocate the control points towards the area of largest

estimated error.

The r-adaption is followed by a h-refinement. A new error estimate for h-refinement is also

5
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proposed in this work. Considering the non-interpolatory nature of the approximations in the

isogeometric analysis, the classical approach to estimate the point-wise interpolation error in the

Sobolev norm: e = u − uh has been used with some modifications [59, 60]. To this effect, in

the proposed method, hierarchical B-spline smooth functions in Sobolev space are considered to

evaluate the error. The only requirement of Sobolev error estimation is the sufficient smoothness

of function, u, to belong to an appropriate Sobolev space and is met by using hierarchical B-spline

functions. The proposed estimator thus includes hierarchical B-spline functions as, ũ, together

with ũh as the solution to IGA.

An adaptive h-refinement strategy based on computed error is performed by using De-Casteljau’s

algorithm. Based on the proposed error estimator, the h-refinement is achieved through knot inser-

tion in the parameter mesh. An updated control mesh is then obtained by using linear interpolation

over the reference control mesh. The proposed method seeks for recursive subdivision algorithm

to compute the new control points on the control mesh. The collection of such points is treated as

subsequent control mesh which inherently includes the features of original geometry and hence,

the physical mesh obtained through such a method preserves the original geometry. The algorithm

allows finding points on the physical domain exactly. The physical mesh obtained from subse-

quent iterations interpolates the control mesh exactly through h-refinement, thereby avoids the use

of additional procedures like Lagrange multipliers to impose essential boundary conditions. The

combined r-h adaptive refinement strategy results in better convergence characteristics with re-

duced errors than r- or h-refinement alone. Numerical examples for the analysis of plane elasticity

problems are considered for illustrating the use of the proposed method.

Following are the main contributions of the present work:

• A r-adaption procedure for IGA based on a spring analogy approach.

• An error estimate for h-refinement strategy in IGA. The displacement based error estimator

is based on defining hierarchical B-spline smooth functions in Sobolev spaces.

6
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ACCEPTED MANUSCRIPT

• A novel refinement strategy based on De-Casteljau’s algorithm for h-refinement. Such a

procedure allows direct imposition of boundary conditions in the conventional IGA.

The paper is organized as follows. Section 2 is devoted to the univariate and multi-variate B-

spline basis functions and nonuniform rational B-spline (NURBS). In Section 3 we define various

Sobolev spaces and associated norms. Section 4 includes strong, weak, and matrix-vector form

of the boundary value problem in the context of isogeometric analysis. The proposed method for

error estimation in a Sobolev space are discussed in Section 5. Sections 5.1 and 6 deal with the

h- and r-refinements. Numerical examples involving two-dimensional problems are presented in

Section 7. Finally, in Section 8 we present a summary and discussion of the findings of the present

study.

2 B-spline Basis functions and NURBS

Let K be a vector containing a non-descending sequence in parameter space, K ∈ P, which is

defined as

K = {ξ1, ξ2, ..., ξnk
}, ξi ∈ R

such that ξi > ξi−1 i = 2, 3, ..., nk

(1)

The vector K and scalar ξi are often termed as knot vector and knots, respectively, in computational

geometry. Once we define the knot vector, the B-spline basis N
p

i
(ξ) of order p > 0 are computed

7
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from constant basis using a recursive subdivision method.

for p = 0 ; N0
i
(ξ) =































1 if ξ ∈ [ξi, ξi+1)

0 otherwise































for p > 0 ; N
p

i
(ξ) =































(ξ−ξi)

(ξi+p−ξi)
N

p−1

i
(ξ) +

(ξi+p+1−ξ)

(ξi+p+1−ξi+1)
N

p−1

i+1
(ξ) if ξ ∈ [ξi, ξi+p+1)

0 otherwise































(2)

The B-spline basis for an arbitrary knot vector does not contain interpolation functions. In or-

der to obtain interpolation functions, knots are required to be repeated, which is referred to as

the knot multiplicity. In this regard, we introduce an open knot vector containing the end knot

with knot multiplicity equal to p + 1. Further, B-spline basis includes other important properties

such as:

• Partition of unity
∑ncp

i=1
N

p

i
(ξ) = 1 ∀ ξ ∈ [0, 1)

• Non Negative N
p

i
(ξ) > 0 ∀ ξ ∈ [0, 1)

• Kronecker delta N
p

i
(ξ j) = δi j ξ j ∈ [ξi, ξi+p+1)

iff the knot multiplicity of ξ j equal to order of curve

The stan-

dard geometries, such as a circle or ellipse, are best represented using rational functions. In this

regard, we generalize the B-spline to rational polynomial referred as nonuniform rational B-splines

(NURBS):

NP
i (ξ) =

N
p

i
(ξ)wi

∑ncp

j=0
N

p

j
(ξ)w j

(3)

where wi are the weights associated with the control points; we note that the number of weights

and control points must match. We also note that the B-spline functions are recovered from

NURBS by taking all weights equal to unity. A piecewise B-spline curve is constructed by taking

a linear combination of the basis vectors N
p

i
(ξ) and the coefficients Pi, referred to as the control

8
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ACCEPTED MANUSCRIPT

points:

P(x) =

ncp
∑

i=1

N
p

i
(ξ) Pi (4)

The B-spline polynomials of order p have Cp−1 continuous derivatives. If k represents knot

multiplicity at knot ξi, then continuous derivative of polynomial gets reduced by Cp−1−k at that knot.

Figure 1 shows the quadratic B-spline basis and polynomial curve for an assumed knot vector. The

basis functions associated with control points P1, P4, and P7 are interpolation functions as knots

are repeated. It can also be seen in continuous derivative of B-spline polynomial. Polynomial have

C1-continuous derivative except at control points where knots are repeated making the continuity

C0, that is, at control point P4.

A prior knowledge of univariate B-spline basis helps to define the basis in multi-dimension by

making use of tensor product. Let dp represent dimension of parametric space, Pdp . A knot vector

defined in Pdp is expressed as:

Ki = {ξ
ℓ
1
, ξℓ

2
, ..., ξℓ

nℓ
k
+pℓ+1
} for ℓ = 1, 2, ..., dp (5)

where nℓ
k

and pℓ are the knot vector dimension and basis order in ℓth parametric direction. Let NPℓ

i
,

i = 1, 2, ldots, nℓcp, be the univariate basis function defined in ℓth parametric direction. Multivariate

basis function are then defined through tensor product and expressed as

BP
i (ξ) =

dp
∏

ℓ=1

N
pℓ

i
(ξℓ) (6)

where i, ξ and P are the multi-index in parameter space. Finally, for a given control net Pi ∈ R
d,

Pi = {p
ℓ
1
, pℓ

2
, . . . , pℓ

nℓcp

}, the B-spline surface is defined as

P(x) =

nℓcp
∑

i=1

BP
i (ξ)Pi (7)

9
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3 Sobolev Spaces and Norms

Let Ω be an open bounded domain in Rd with a piecewise smooth boundary Γ. In order to study

linear elliptic PDEs, we consider real-valued Sobolev spaces that are built on the function space

L2(Ω), where L2(Ω) consists of functions that are square-integrable in the Lebesgue sense (see

Reddy [61])

L2(Ω) = { f :

∫

Ω

f 2dΩ < +∞} (8)

The space L2(Ω) with the scalar product

(u, v)L2(Ω) =

∫

Ω

u v dΩ, u, v ∈ L2(Ω) (9)

and the associated norm ‖ u ‖L2(Ω)= (u, u)
1/2

L2(Ω)
becomes a Hilbert space. As an aid we first introduce

concept of multi-index notation and the notion of a weak derivative.

Index notation

Let Zn
+ denote the set of all ordered n-tuples of non-negative integers : a member α ∈ Zn

+ is

denoted by α = (α1, α2, . . . , αn), where each component αi is a non-negative integer. The norm of

α is given by‖ α ‖= α1 + α2 + ∙ ∙ ∙ + αn and the partial derivative Dαu is given by

Dαu =
∂‖α‖u

∂x
α1

1
∂x
α2

2
. . . ∂x

αn
n

(10)

Weak Derivative

We denote C∞
0

(Ω) as the space of infinitely differentiable functions which are nonzero only on

a compact subset of Ω. If u ∈ L2(Ω) is a locally integrable function, we say that u possesses the

(weak) derivative v = Dαu in L2(Ω) provided that v ∈ L2(Ω) and

〈v, φ〉 = (−1)‖α‖〈u,Dαφ〉 ,∀φ ∈ C∞0 (Ω) (11)

10
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in the sense of distributions. The Sobolev space of order m, denoted by Hm(Ω) is defined as the

space consisting of those functions in L2(Ω) that, together with all their weak partial derivatives up

to order m, belong to L2(Ω) (see Reddy [61])

Hm(Ω) =
{

u : Dαu ∈ L2(Ω)∀ ‖ α ‖≤ m
}

(12)

The inner product (., .)m
H

(Ω) to makeHm(Ω) an inner product space is defined by

(u, v)m
H

(Ω) =
∑

‖α‖≤m

(Dαu,Dαv)L2(Ω) f or u, v ∈ Hm(Ω) (13)

The inner product space induces the Sobolev norm ‖ ∙ ‖m
H

(Ω), which is defined as (see Reddy [61])

‖ u ‖2Hm(Ω) = (u, u)Hm(Ω) =
∑

‖α‖≤m

(Dαu,Dαu)L2(Ω) (14)

Let us consider a function Uh ∈ Sh = {Uh ∈ Hm(Ω) | Uh = ug in Γu} and u be a sufficiently

smooth function u ∈ S = {u ∈ H>m(Ω) | u = ug in Γu}. The estimate on Sobolev error norm in

general can be obtained using Eq. 14. The projection in Sobolev space in general is written as (see

Reddy [61])

‖Uh − u‖m = c1(he)
α ‖u‖r (15)

where, α = min(p + 1 − m, r − m)

The above relation illustrates that the convergence rate is directly related to the order of polynomial

basis, p, and element size, he. α, c1, r and m are constants. The error in the in particular form for

finite element method, solution can now be defined. Let uh ∈ Sh = {uh ∈ H1(Ω) | uh = ug in Γu}

be the finite element solution function. We can then write

‖e‖m := ‖uh − u‖m = c2(he)
α ‖u‖r (16)

Unlike in finite element method, the NURBS functions used in IGA are not interpolatory in na-

ture, but only interpolate at end control points. As a result, the analogy of Sobolev error estimates

11
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used in interpolatory functions needs to be altered to get an estimate on error in IGA. This strong

requirement in error estimation requires use of sufficiently smooth functions, u, and meeting the

continuity requirements as NURBS functions. One choice for such functions is by considering

a hierarchical B-spline function, ũ. Here in we mean that we use sufficiently smooth higher or-

der B spline approximation functions that are recursively constructed from lower order B spline

approximations as discussed in [14].

4 Boundary Value Problem

Consider a linear elastic material body occupying a geometric region Ω in real number space

Ω ∈ R3, as shown in Fig. 2. The boundary of the geometric region is denoted as Γ, such that

Γ = Γt ∪ Γu, where Γt denotes the part of the boundary where tractions t are prescribed and Γu is

the portion of the boundary where displacements ug are specified. The strong form of a boundary

value problem considering Dirichlet (essential) and Neumann (natural) type boundary conditions

can be stated as follows: find the displacement u(x)Ω 7→ R3 such that the following equilibrium

equation, Eq. (17), is satisfied:

∇ ∙ σ + f = 0 in Ω

given u = ug on Γu

σn = t on Γt

(17)

where f and σ denote the body force vector and stress tensor. For isotropic elastic material,

the stress tensor is proportional to the gradient of the displacement via Hooke’s law: σ = C : ∇u,

where C the fourth-order linear elasticity tensor.
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4.1 Galerkin Weak form

Consider a finite dimensional solution space Sh and test space Vh such that Sh ⊂ S and Vh ⊂ V.

Where S and V are the infinite dimension solution and test space. These finite dimensional space

are defined as

S
h = {uh ∈ Hp(Ω) | uh = ug in Γu} (18)

V
h = {wh ∈ Hp(Ω) | wh = 0 in Γu} (19)

where H p(Ω) is a Hilbert space controlling regularity of the solution and the test fields. The

interest is to find a finite dimensional solution field, uh ∈ Sh, such that it holds for all choices of

finite dimensional test function, wh ∈ Vh, following the integral equation

∫

Ω

∇wh : C : ∇uh dΩ =

∫

Ω

wh ∙ f dΩ +

∫

Γt

wh ∙ t dΓ (20)

In an abstract manner we can write the Galerkin weak form as

a(wh,uh) = (wh, f ) + (wh, t)Γ (21)

Where, a(∙, ∙) represent a Bilinear form of trial and test function, (∙, ∙) is linear form of test function.

Finite dimensional solution field and test function are approximated using B-spline basis as

uh =
∑

i

BP
i ui wh =

∑

j

BP
j w j (22)

substituting Eq. 22 in Eq. 21 we get

wa(BP, BP)u = w (BP, f ) + w (BP, t)Γ (23)

wKu = w( f b + f t) (24)

Where, K = a(BP, BP), f b = (BP, f ) and f t = (BP, t)Γ Eq. 24 is the matrix-vector form of the

Galerkin weak form. The matrix-vector form has to hold for all possible choices of w ∈ Rne , which

13
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results in force equilibrium equation as

KU = F (25)

The solution to Eq. 25 will give the values of displacement vector U.

5 Error estimation in Isogeometric Analysis

5.1 h-refinement

Let ũh ∈ Sh = {ũh ∈ H p(Ω) | ũh = ug in Γu} and ũ ∈ Sh = {ũ ∈ Hn> p(Ω) | ũ = ug in Γu}

be the hierarchical smooth B-spline function of higher order, recursively constructed from lower

order basis functions. Following section refsec:3 we propose an estimate on error for Isogeometric

analysis as

‖e‖m = ‖ũ
h − ũ‖m (26)

We demonstrate in one dimension as to how the above estimate is acceptable. Fig. 3(a) illustrates

the following terms: u1 to u5 are the nodally exact values , u is any very smooth function inter-

polating the nodally exact values. ũh is the NURBS function obtained from nodally exact values

as ũh = N
p

i
ui . ũ is the hierarchical B-spline function obtained from same nodally exact values

as ũh = Nn
i

ui. Now we increase the discretization. Figure 3(b) illustrates the same description

for larger element discretization. It is observed that with increase in the discretization the hierar-

chical B-spline function matches the exact solution. These pictures clearly show that the solution

converges as discretization of element increases (or element size decreases). Fig. 3(b) also clearly

indicates that the error between NURBS and interpolatory function never approaches to zero value,

even for a very larger element discretization. The reason for this is due to the non-interpolatory

nature of NURBS function. But, it is observed that the error between NURBS and hierarchical

B-spline function approaches to zero for larger element discretization, see Fig. 3(a) and (b). We

14
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want to emphasize that we can get an estimate on error as the difference between NURBS function

and hierarchical B spline functions as e = ũh − ũ. The discretization of physical domain depends

on the structure of knot vector, i.e. a non-zero knot span in parameter domain is mapped to an

element in physical domain. Fig. 4 below illustrates the relation between them in one dimension.

The knot vector considered for the example is {0, 0, 0, 1, 1, 1}. The non-zero knot span, i.e. [ξ3, ξ4],

correspond to one element discretization in physical domain. It is obvious that considering more

number of non-zero knot span in parameter domain accounts for increase of element discretization

in physical domain.

A non-zero knot span in a knot vector is obtained by process of independent knot insertion, i.e.

not accounting for multiplicity of knot. The modified knot vector seeks for increased number of

basis and control points. In the proposed method new control points are obtained by making use

of linear interpolation over reference control points. This is given as

P∗i =
(ξ − ξi)

(ξi+1 − ξi)
Pi +

(ξi+2 − ξ)

(ξi+2 − ξi+1)
Pi−1 ∀ ξ ∈ [ξi, ξi+2)

Figure 4(a) describes the B-spline curve interpolating only end control points as only the end basis

satisfies the Kronecker delta property for open knot vector. The aforementioned method is adopted

for h-refinement and is devoid of issues of relating the control variable to nodal variable. It has

been reported that a direct imposition of displacement boundary condition to the control points

results in significant error in the solution with deteriorated rates of convergence (see [51] and

[52] for details). Similar situations are also seen in other mesh-less methods (see [62]). In the

present work, the issue is best addressed by not considering any auxiliary methods to relate the

control variables to the nodal variables in physical domain. In the proposed we can also extend the

interpolation of reference control points, i.e. moving from linear interpolation to quadratic and so

on. Figure 4(a)- (c) shows an example to describe the approach for h-refinement. It is seen from

Fig. 4(c) that an introduction of a new non zero knot span results in an increase in the number of

elements in the physical domain as seen in Fig. 4(a), together with a change in the basis as shown

15
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in Fig. 4(b).

Figure 5(a) illustrates the one element discretization of physical domain. In the first step of

h-refinement, the control points are not considered to be linear interpolation of reference control

points. In the present method by using a recursive sub-division technique and using a elevation

algorithm new control points which are on the physical domain are obtained from the reference

control points. The new set of control points , P∗
i
, obtained by making use of recursive sub-division

algorithm over the reference control mesh is given by

P∗i =
(ξ − ξi)

(ξi+p − ξi)
Pi +

(ξi+p+1 − ξ)

(ξi+p+1 − ξi+1)
Pi−1 ∀ ξ ∈ [ξi, ξi+p+1)

Figure 5(b) and (c) are the five and ten element discretization of physical domain obtained by this

procedure. It is clearly seen that the control points lie on the physical domain. Moreover, the

geometry of the physical domain is also preserved.

To illustrate the proposed method of h-refinement a quarter segment of an annulus is consid-

ered (see Fig. 6(a)). A reference control net is considered to generate one element discretization

of physical domain as shown in Fig 6(b). The physical domain interpolates only the end corner

points. Using the proposed h-refinement makes the physical domain to exactly interpolate the

control points at all locations, see Fig. 6(c) and (d). The geometry and continuity of the phys-

ical geometry is hence preserved and no other auxiliary methods are required for imposition of

boundary conditions.

6 r-refinement

The proposed method is based on estimating the residual error. Following the defintion of error in

equation26 and using the equations of equilibrium given in equation21 we obtain the equilibrium

residual error. For any arbitrary approximation spaceV ∈ Hn> p(Ω) we have.
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a(eh
m,V) = (ũh,V) − (ũ,V) (27)

=
∑

N∈Ωpatch

∫

N

RN(x)V(x)dx (28)

where N is the subpatch in the B-spline parametrization Ωpatch(ξ, η) of Ω. Using Cauchy-Schwartz

inequality, together with following the propoerties of bilinear form a(∙, ∙) and using the approx-

imation theory [10], we can obtain the residual based a-posterior error estimate in Isogeometric

analysis as

‖eh
m‖

2 ≤ C
∑

N∈Ωpatch

r2
N‖RN‖

2
L2(Ωpatch)

(29)

where C is a constant and rN is the diameter of the patch. The error function thus seeks for control

point relocation (r-adaption) to the area of largest error quantity. A spring system is obtained by

connecting a given set of control point to its neighboring control point through a pseudo spring

whose stiffness is proportional to the computed error at that location. The compact support of

basis functions at any control point, gives information about its neighboring control points. Let

e(xi) be a discrete value of error computed at global control point position, xi for i = 1, 2, ...ncp.

The edge stiffness of spring, S j for j = 1, 2, ..., nspr, are defined as

K j =
e(x

j

1
) + e(x

j

2
)

2
(30)

where x
j

1
and x

j

2
are the local control point positions of spring, S j. A linear system of equations

can be arrived at each degree freedom of a control point as

K jx j = b j ⇒































K
j

11
x

j

1
+ K

j

12
x

j

2
= b

j

1

K
j

21
x

j

1
+ K

j

22
x

j

2
= b

j

2































(31)

Assembling the linear system of equation for each spring, S j for j = 1, 2, ..., nspr, results in global
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equations expressed in abstract matrix-vector form as

KX = B (32)

where K corresponds to global stiffness matrix of the spring system obtained by assembling the

local stiffness matrices, X is unknown control point position vector required to be evaluated and

B is global force vector which are nothing but discrete forces due to imbalance in equilibrium at

each control point position. The new position of control points are computed by forcing the global

force vector to zero, that is B = 0, and solving for global control point position vector, X.

i.e. KX = 0 (33)

In Fig. 7, consider Q and Q∗ be the boundary points before and after deformation. The displace-

ment vector, u, gives the detail of displaced position of boundary points. Unit vector in normal and

tangential direction to a surface boundary are denoted as, nn and nt, such that nn ∙nt = 0. Let Pn and

Pt be the projection tensor which project vector along normal and tangential direction of surface

boundary. The mathematical operation essential to convert singular algebraic equation, that is, Eq.

(33), to non-singular algebraic equation is given as

Pnu = 0 (34)

Equation (34) guarantees that the nodes located at corner retains its initial position and boundary

nodes are allowed to displace only along surface boundary. The algebraic equation, Eq. (33), are

solved using relaxation method, where the nodal points are updated iteratively as

xnew = xold + ω

∑

i(xi − xold) [Ki(xold) − Ki(xold)]
∑

i Ki

(35)

where, ω is a relaxation parameter arbitrarily chosen by trial and error procedure.
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7 Numerical Examples

Numerical examples in two dimensional elasticity has been considered for demonstrating the pro-

posed method. The numerical examples considered are: (a) Block under pressure (b) L- shape

problem and (c) Infinite plate with a circular hole. The choice of control net made for each exam-

ple is arbitrarily chosen so as to result in highest possible estimated error. The proposed method of

error estimation and combined r-h refinement strategy has been implemented for all the examples.

Firstly a relocation of control points is made based on spring analogy algorithm indicating a reduc-

tion in the solution error. This is then followed by h− refinement. A comparison of convergence

characteristics of of h- and r-h refinement has been done.

7.1 Block under pressure

Figure 8(a) illustrates the setup for block under pressure example. Where E is the young modulus

and ν is poisson’s ratio. The bottom edge of the block is restrained against both horizontal and

vertical displacement and the top edge is subjected to uniform traction. The discretization of

physical domain is illustrated in Fig. 8(d). Knot vector considered in both ξ and η direction are

shown in Fig. 8(c), called as parameter mesh. The information of control points are shown in Fig.

8(b), called as control mesh. A non-zero knot span in parameter mesh and control point information

in control mesh accounts for element discretization in physical domain. Fig. 8 illustrates the

relation of control, parameter and physical mesh for element Ω1.

An initial coarse physical mesh is considered for the r-refinement. Figure 9(a) shows the error

plot measured as difference of IGA solution and hierarchical B-spline solution. A relocation of

control points is made to understand the variation of error using spring analogy method. The

method allows the control points to move towards the area of largest error. As a result, a reduction

in L2 error norm is observed [see Fig. 9(b)]. The error plot and physical mesh after r-refinement

are shown in Figs. 10(a) and (b). These figures illustrate that in order to reduce the error in the
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solution the geometry of physical mesh has to match with the gradient of the solution field.

Figures 11(a)–(e) are the physical meshes obtained after the r-refinement, termed as r-h re-

finement meshes. The same analogy is used to generate r-h meshes as in h-refinement operation,

i.e. using recursive subdivision algorithm. The L2 error norm plotted against degrees of freedom

is shown in Fig 11(f). A comparison of h- and r-h are also shown. The convergence of solution

for r-h are found better than the h-refinement. Figure 13 shows stress field plotted for block under

pressure example after the r − h refinement. This indicates that proposed strategy is best suited for

obtaining flexible discretization.

7.2 Problem with L-Shaped Domain

An L-shaped domain of a specified geometry and subjected to a uniform pressure on two of its

edges as shown in Fig. 14(a) is considered for the analysis. Figures 14(b) and (c) shows the

control net and the parameter mesh in index shape. Here the control points at the re-entrant corner

are repeated to achieve the L-shaped geometry. A typical element Ω1 is marked on the physical

mesh as shown in Fig. 14(d). An r-adaption procedure is performed on a initial coarse mesh.

Figures 15(a) and (b) shows the physical mesh before and after r-adaption. There is a decrease

in error norm with iterations and is shown in Figs. 15(c). The control point movement clearly

indicates that the geometry of the physical mesh to matches the gradient of the solution field. The

distribution of errors before and after relocation of the control points is shown in Fig. 16. A r-h

adaption is performed on the relocated mesh and the meshes are shown in Fig. 17.

The final mesh obtained after combined r-h adaption cycles are shown in Fig. 18(a). A compar-

ison of the percentages of the error norms for both h- and r-h refinements are shown in Fig. 18(b).

The stress fields are shown in Fig. 19. These plots clearly indicate that there is a considerable

decrease in the error when a combined refinement strategy is used.
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7.3 Infinite plate with hole problem

A square plate with a circular hole, as shown in Fig. 20(a), is considered for the analysis (in

this example a smooth geometry of the domain is considered for discretization). The control net,

parameter mesh, and physical mesh are shown in Figs. 20(b)–(d).

The initial mesh considered is subjected to an r-adaption procedure based on the spring anal-

ogy. The resulting mesh is shown in Fig. 21(b). The error decreases with iteration as can be seen

from Fig. 21(c). The distribution of errors before and after adaption is shown in Figs. 22(a)–(b).

The h-adaptive meshes are shown in Fig. 23. The final mesh obtained after combined r-h adaption

cycles are shown in Fig. 24. A comparison of the percentages of the error norm for both h- and

r-h refinements is shown in Fig. 25(b). These plots clearly indicate that there is a considerable

decrease in the error when a combined refinement strategy is used. The stress fields obtained from

the combined r − h strategy are shown in Fig. 26.

8 Conclusions

In the present work, an r-h adaptive isogeometric analysis is presented for the analysis of plane

elasticity problems. The r-adaptive strategy is based on parameterization of arbitrarily chosen

control point locations, that is, the control net is considered to be a network of springs. The

spring stiffness is taken to be proportional to the discrete residual error estimated by considering

equilibrium at the global degrees of freedom defined at the control points. Equilibrium of spring

system is achieved by considering a successive relaxation approach. A new error estimate for the

h-refinement has been derived. The classical approach to estimate the point-wise interpolation

error, e = u − uh, in a Sobolev space cannot be directly applied to isogeometric analysis because

the approximations are not interpolatory in nature. Therefore, in the proposed method hierarchical

B-spline smooth functions are used to evaluate the interpolation error and there by the interpolation

errors estimated are acceptable as the continuity properties are retained. An adaptive h-refinement
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based on computed error is performed by using the De-Casteljau’s algorithm for parameterization

of the computational domain. The point-wise error estimation in Sobolev space as the difference

of B-spline based solution and the hierarchical solution indicates the convergence of the solution

with increase in the number of degrees of freedom. The method adopted for h-refinement which

relates the control variable and nodal variable, illustrates that the rate of convergence is higher.

The r-refinement based on the spring analogy illustrates that the geometry of control mesh is to

follow the geometry of the solution field in order to reduce the error. The h-refinement followed

by r-refinement shows better rate of convergence than only the h-refinement.
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Figure 1: (a) B-spline basis functions of order 2 (b) B-spline basis functions of order 2 in two

dimensions for a knot vector K = {0, 0, 0, 1/4, 2/4, 2/4, 3/4, 1, 1, 1} (c) Control net and B-spline

curve
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Figure 2: Two dimensional elastic body under consideration
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Figure 3: Description of progressive hierarchical B - spline for error estimation in IGA
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Figure 4: Approach for h-refinement in IGA (a) One element discretization (b) Two element dis-

cretization (c) Quadratic B- spline basis for one element discretization (d) Quadratic B- spline

basis for two element discretization (e) Parametric domain for one element (f) Parametric domain

for two elements
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Figure 5: Adaptive h-refinement in IGA. (a) One element discretization. (b) Five element dis-

cretization. (c) Ten element discretization.
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Figure 6: Adaptive h-refinement in IGA (a) Annulus Example (b) One element discretization (c)

Five element discretization (d) Ten element discretization
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Figure 7: Boundary condition in r− adaption
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Figure 8: Block under pressure example (a) Physical domain (b) Control net or mesh (c) Parameter

mesh in Index space (d) Physical mesh over the physical domain
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(a)

(b)

Figure 9: r-refinement for block under pressure example (a) Error plot before r-adaption (b) Error

norm in r-adaption
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Figure 10: (a) Error plot after r-adaption (b) Physical mesh before r-adaption (c) Physical mesh

after r-adaption
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Figure 11: r-h refinement meshes for block under pressure example
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Figure 12: (a) Final r-h refinement mesh and (b) Comparison of error norm for h- and r-h refine-

ment
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(a) (b)

(c)

Figure 13: Block under pressure example (a) Distribution of stress σxx (b) Distribution of stress

σyy (c) Distribution of stress σxy obtained from the final adapted mesh
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Figure 14: L Shaped domain (a) Physical domain (b) Control net or mesh (c) Parameter mesh in

Index space (d) Physical mesh over the physical domain
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Figure 15: r-refinement for L-shaped domain (a) Physical mesh before r-adaption (b) Physical

mesh after r-adaption (c) Error norm percentage with iterations.
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(a)

(b)

Figure 16: r-refinement for L-shaped domain (a) Error plot before r-adaption (b) Error norm plot

after r-adaption
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Figure 17: r-h refinements for L-shaped domain.
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Figure 18: (a) Final r-h refinement mesh for L-shaped domain (b) Comparison of error norm for

h- and r-h refinement
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Figure 19: L shaped example (a) Distribution of stress σxx (b) Distribution of stress σyy (c) Distri-

bution of stress σxy ontained from the final adapted mesh
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Figure 20: Plate with a circular hole example (a) Physical domain (b) Control net (c) Parameter

mesh (d) Physical mesh
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Figure 21: (a) Mesh before r-adaption (b) Mesh after r-adaption (c) Error norm variation with

iterations
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Figure 22: (a) Error plot before r− adaption (b) Error plot after r− adaption
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Figure 23: h− adaptive refinement meshes
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Figure 24: Combined r-h adaptive refinement meshes
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Figure 25: (a) Final mesh obtained from combined rh adaptive refinement meshes (b) Comparison

of convergence in error norm between h and r-h refinements
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Figure 26: Plate with a hole example (a) Distribution of stress σxx (b) Distribution of stress σyy (c)

Distribution of stress σxy obtained from the final adapted mesh
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