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Abstract

Software Transactional Memory systems (STMs) have garnered significant interest as an elegant alternative

for addressing synchronization and concurrency issues with multi-threaded programming in multi-core systems.

For STMs to be efficient, they must guarantee some progress properties. This work explores the notion of one

of the progress property, i.e., starvation-freedom, in STMs. An STM system is said to be starvation-free if every

thread invoking a transaction gets the opportunity to take a step (due to the presence of a fair scheduler) such that

the transaction eventually commits.

A few starvation-free algorithms have been proposed in the literature in context of single-version STMs.

These algorithms are priority based i.e. if two transactions are in conflict, then the transaction with lower priority

will abort. A transaction running for a long time will eventually have the highest priority and hence commit. But

the drawback with this approach is that if a set of high-priority transactions become slow, then they can cause

several other transactions to abort. So, we propose multi-version starvation-free STM system which addresses

this issue.

Multi-version STMs maintain multiple-versions for each transactional object. By storing multiple versions,

these systems can achieve greater concurrency. In this paper, we propose multi-version starvation-free STM,

KSFTM, which as the name suggests achieves starvation-freedom while storing K-versions of each t-object.

Here K is an input parameter fixed by the application programmer depending on the requirement. Our algorithm

is dynamic which can support different values of K ranging from one to infinity. If K is infinite, then there is no

limit on the number of versions. But a separate garbage-collection mechanism is required to collect unwanted

versions. On the other hand, when K is one, it becomes the same as a single-version starvation-free STM system.

We prove the correctness and starvation-freedom property of the KSFTM algorithm.

To the best of our knowledge, this is the first multi-version STM system that satisfies starvation-freedom. We

implement KSFTM and compare its performance with single-version starvation-free STM system (SV-SFTM)

which works on the priority principle. Our experiments show that KSFTM gives an average speedup on the

worst-case time to commit of a transaction by a factor of 1.22, 1.89, 23.26 and 13.12 times over PKTO, SV-

SFTM, NOrec STM and ESTM respectively for counter application. KSFTM performs 1.5 and 1.44 times better

than PKTO and SV-SFTM but 1.09 times worse than NOrec for low contention KMEANS application of STAMP

benchmark whereas KSFTM performs 1.14, 1.4 and 2.63 times better than PKTO, SV-SFTM and NOrec for

LABYRINTH application of STAMP benchmark which has high contention with long-running transactions.

1 Introduction

STMs [13, 25] are a convenient programming interface for a programmer to access shared memory without wor-

rying about consistency issues. STMs often use an optimistic approach for concurrent execution of transactions
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(a piece of code invoked by a thread). In optimistic execution, each transaction reads from the shared memory, but

all write updates are performed on local memory. On completion, the STM system validates the reads and writes

of the transaction. If any inconsistency is found, the transaction is aborted, and its local writes are discarded.

Otherwise, the transaction is committed, and its local writes are transferred to the shared memory. A transaction

that has begun but has not yet committed/aborted is referred to as live.

A typical STM is a library which exports the following methods: stm-begin which begins a transaction,

stm-read which reads a transactional object or t-object, stm-write which writes to a t-object, stm-tryC which

tries to commit the transaction. Typical code for using STMs is as shown in Algorithm 1 which shows how an

insert of a concurrent linked-list library is implemented using STMs.

Correctness: Several correctness-criteria have been proposed for STMs such as opacity [11], local opacity

[18, 19]. All these correctness-criteria require that all the transactions including aborted ones appear to execute

sequentially in an order that agrees with the order of non-overlapping transactions. Unlike the correctness-criteria

for traditional databases, such as serializability, strict-serializability [22], the correctness-criteria for STMs ensure

that even aborted transactions read correct values. This ensures that programmers do not see any undesirable side-

effects due to the reads by transaction that get aborted later such as divide-by-zero, infinite-loops, crashes etc. in

the application due to concurrent executions. This additional requirement on aborted transactions is a fundamental

requirement of STMs which differentiates STMs from databases as observed by Guerraoui & Kapalka [11]. Thus

in this paper, we focus on optimistic executions with the correctness-criterion being local opacity [19].

Starvation Freedom: In the execution shown in Algorithm 1, there is a possibility that the transaction which a

thread tries to execute gets aborted again and again. Every time, it executes the transaction, say Ti, Ti conflicts

with some other transaction and hence gets aborted. In other words, the thread is effectively starving because it is

not able to commit Ti successfully.

A well known blocking progress condition associated with concurrent programming is starvation-freedom

[15, chap 2], [14]. In the context of STMs, starvation-freedom ensures that every aborted transaction that is retried

infinitely often eventually commits. It can be defined as: an STM system is said to be starvation-free if a thread

invoking a transaction Ti gets the opportunity to retry Ti on every abort (due to the presence of a fair underlying

scheduler with bounded termination) and Ti is not parasitic, i.e., Ti will try to commit given a chance then Ti

will eventually commit. Parasitic transactions [4] will not commit even when given a chance to commit possibly

because they are caught in an infinite loop or some other error.

Algorithm 1 Insert(LL, e): Invoked by a thread to insert an element e into a linked-list LL. This method is

implemented using transactions.

1: retry = 0;

2: while (true) do

3: id = stm-begin (retry);

4: ...

5: ...

6: v = stm-read(id, x); /* reads the value of x as v */

7: ...

8: ...

9: stm-write(id, x, v′); /* writes a value v′ to x */

10: ...

11: ...

12: ret = stm-tryC(id); /* stm-tryC can return commit or abort */

13: if (ret == commit) then

14: break;

15: else

16: retry++;

17: end if

18: end while

Wait-freedom is another interesting progress condition for STMs in which every transaction commits regardless

of the nature of concurrent transactions and the underlying scheduler [14]. But it was shown by Guerraoui and

Kapalka [4] that it is not possible to achieve wait-freedom in dynamic STMs in which data sets of transactions

are not known in advance. So in this paper, we explore the weaker progress condition of starvation-freedom for

transactional memories while assuming that the data sets of the transactions are not known in advance.
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Figure 1: Limitation of Single-version Starvation Free Algorithm

Related work on the starvation-free STMs: Starvation-freedom in STMs has been explored by a few researchers

in literature such as Gramoli et al. [9], Waliullah and Stenstrom [27], Spear et al. [26]. Most of these systems

work by assigning priorities to transactions. In case of a conflict between two transactions, the transaction with

lower priority is aborted. They ensure that every aborted transaction, on being retried a sufficient number of times,

will eventually have the highest priority and hence will commit. We denote such an algorithm as single-version

starvation-free STM or SV-SFTM.

Although SV-SFTM guarantees starvation-freedom, it can still abort many transactions spuriously. Consider

the case where a transaction Ti has the highest priority. Hence, as per SV-SFTM, Ti cannot be aborted. But if it is

slow (for some reason), then it can cause several other conflicting transactions to abort and hence, bring down the

efficiency and progress of the entire system.

Fig 1 illustrates this problem. Consider the execution: r1(x, 0)r1(y, 0)w2(x, 10)w2(z, 10)w3(y, 15)w1(z, 7).
It has three transactions T1, T2 and T3. Let T1 has the highest priority. After reading y, suppose T1 becomes

slow. Next T2 and T3 want to write to x, z and y respectively and commit. But T2 and T3’s write operations are

in conflict with T1’s read operations. Since T1 has higher priority and has not committed yet, T2 and T3 have to

abort. If these transactions are retried and again conflict with T1 (while it is still live), they will have to abort

again. Thus, any transaction with the priority lower than T1 and conflicts with it has to abort. It is as if T1 has

locked the t-objects x, y and does not allow any other transaction, write to these t-objects and to commit.

Multi-version starvation-free STM: A key limitation of single-version STMs is limited concurrency. As shown

above, it is possible that one long transaction conflicts with several transactions causing them to abort. This

limitation can be overcome by using multi-version STMs where we store multiple versions of the data item (either

unbounded versions with garbage collection, or bounded versions where the oldest version is replaced when the

number of versions exceeds the bound).

Several multi-version STMs have been proposed in the literature [17, 20, 8, 23] that provide increased concur-

rency. But none of them provide starvation-freedom. Furthermore, achieving starvation-freedom while using only

bounded versions is especially challenging given that a transaction may rely on the oldest version that is removed.

In that case, it would be necessary to abort that transaction, making it harder to achieve starvation-freedom.

A typical code using STMs is as shown in Algorithm 1. It shows the overview of a concurrent insert method

which inserts an element e into a linked-list LL. It consists of a loop where the thread creates a transaction. This

transaction executes the code to insert an element e in a linked-list LL using stm-read and stm-write operations.

(The result of stm-write operation are stored locally.) At the end of the transaction, the thread calls stm-tryC. At

this point, the STM checks if the given transaction can be committed while satisfying the required safety properties

(e.g., serializability [22], opacity [11]). If yes, then the transaction is committed. At this time, any updates done by

the transaction are reflected in the shared memory. Otherwise, it is aborted. In this case, all the updates made by

the transaction are discarded. If the given transaction is aborted, then the invoking thread may retry that transaction

again like Line 16 in Algorithm 1.

The advantage of multi-version STMs, is that they allow greater concurrency by allowing more transactions

to commit. Consider the execution shown in Fig 1. Suppose this execution used multiple versions for each t-

object. Then it is possible for all the three transactions to commit. Transactions T2 and T3 create a new version

corresponding to each t-object x, z and y and return commit. Since multiple versions are being used, T1 need

not abort as well. T1 reads the initial value of z, and returns commit. So, by maintaining multiple versions all

the transactions T1, T2, and T3 can commit with equivalent serial history as T1T2T3 or T1T3T2. Thus multiple

versions can help with starvation-freedom without sacrificing on concurrency. This motivated us to develop a

multi-version starvation-free STM system.

Although multi-version STMs provide greater concurrency, they suffer from the cost of garbage collection.

One way to avoid this is to use bounded-multi-version STMs, where the number of versions is bounded to be

at most K. Thus, when (K + 1)th version is created, the oldest version is removed. Bounding the number of

versions can hinder with starvation freedom: a transaction needing to read a version that is currently removed

must be aborted.
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This paper addresses this gap by developing a starvation-free algorithm for bounded MVSTMs. Our approach

is different from the approach used in SV-SFTM to provide starvation-freedom in single version STMs (the policy

of aborting lower priority transactions in case of conflict) as it does not work for MVSTMs. As part of the

derivation of our final starvation-free algorithm, we consider an algorithm (PKTO) that considers this approach

and show that it is insufficient to provide starvation freedom.

Contributions of the paper:

• We propose a multi-version starvation-free STM system as K-version starvation-free STM or KSFTM for

a given parameter K. Here K is the number of versions of each t-object and can range from 1 to ∞. To

the best of our knowledge, this is the first starvation-free MVSTM. We develop KSFTM algorithm in a

step-wise manner starting from MVTO [17] as follows:

– First, in SubSection 3.3, we use the standard idea to provide higher priority to older transactions.

Specifically, we propose priority-based K-version STM algorithm Priority-based K-version MVTO

or PKTO. This algorithm guarantees the safety properties of strict-serializability and local opacity.

However, it is not starvation-free.

– We analyze PKTO to identify the characteristics that will help us to achieve preventing a transaction

from getting aborted forever. This analysis leads us to the development of starvation-free K-version

TO or SFKTO (SubSection 3.5), a multi-version starvation-free STM obtained by revising PKTO. But

SFKTO does not satisfy correctness, i.e., strict-serializability, and local opacity.

– Finally, we extend SFKTO to develop KSFTM (SubSection 3.6) that preserves the starvation-freedom,

strict-serializability, and local opacity. Our algorithm works on the assumption that any transaction

that is not deadlocked, terminates (commits or aborts) in a bounded time.

• Our experiments (Section 4) show that KSFTM gives an average speedup on the worst-case time to commit

of a transaction by a factor of 1.22, 1.89, 23.26 and 13.12 times over PKTO, SV-SFTM, NOrec STM [6]

and ESTM [7] respectively for counter application. KSFTM performs 1.5 and 1.44 times better than PKTO

and SV-SFTM but 1.09 times worse than NOrec for low contention KMEANS application of STAMP [21]

benchmark whereas KSFTM performs 1.14, 1.4 and 2.63 times better than PKTO, SV-SFTM and NOrec for

LABYRINTH application of STAMP benchmark which has high contention with long-running transactions.

2 System Model and Preliminaries

Following [12, 19], we assume a system of n processes/threads, p1, . . . , pn that access a collection of transactional

objects (or t-objects) via atomic transactions. Each transaction has a unique identifier. Within a transaction,

processes can perform transactional operations or methods: stm-begin that begins a transaction, stm-write(x, v)
operation that updates a t-object x with value v in its local memory, the stm-read(x) operation tries to read x,

stm-tryC() that tries to commit the transaction and returns commit if it succeeds, and stm-tryA() that aborts the

transaction and returns A . For the sake of presentation simplicity, we assume that the values taken as arguments

by stm-write operations are unique.

Operations stm-read and stm-tryC() may return A , in which case we say that the operations forcefully abort.

Otherwise, we say that the operations have successfully executed. Each operation is equipped with a unique trans-

action identifier. A transaction Ti starts with the first operation and completes when any of its operations return

A or C . We denote any operation that returns A or C as terminal operations. Hence, operations stm-tryC()
and stm-tryA() are terminal operations. A transaction does not invoke any further operations after terminal

operations.

For a transaction Tk, we denote all the t-objects accessed by its read operations as rsetk and t-objects accessed

by its write operations as wsetk. We denote all the operations of a transaction Tk as Tk.evts or evtsk.

History: A history is a sequence of events, i.e., a sequence of invocations and responses of transactional opera-

tions. The collection of events is denoted as H.evts. For simplicity, we only consider sequential histories here:

the invocation of each transactional operation is immediately followed by a matching response. Therefore, we

treat each transactional operation as one atomic event, and let <H denote the total order on the transactional oper-

ations incurred by H . With this assumption, the only relevant events of a transaction Tk is of the types: rk(x, v),
rk(x,A ), wk(x, v), stm-tryCk(C ) (or ck for short), stm-tryCk(A ), stm-tryAk(A ) (or ak for short). We

identify a history H as tuple 〈H.evts,<H〉.
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Let H|T denote the history consisting of events of T in H , and H|pi denote the history consisting of events of

pi in H . We only consider well-formed histories here, i.e., no transaction of a process begins before the previous

transaction invocation has completed (either commits or aborts). We also assume that every history has an initial

committed transaction T0 that initializes all the t-objects with value 0.

The set of transactions that appear in H is denoted by H.txns. The set of committed (resp., aborted) trans-

actions in H is denoted by H.committed (resp., H.aborted). The set of incomplete or live transactions in H is

denoted by H.incomp = H.live = (H.txns−H.committed−H.aborted).
For a history H , we construct the completion of H , denoted as H , by inserting stm-tryAk(A ) immediately

after the last event of every transaction Tk ∈ H.live. But for stm-tryCi of transaction Ti, if it released the lock

on first t-object successfully that means updates made by Ti is consistent so, Ti will immediately return commit.

Transaction orders: For two transactions Tk, Tm ∈ H.txns, we say that Tk precedes Tm in the real-time order

of H , denote Tk ≺RT
H Tm, if Tk is complete in H and the last event of Tk precedes the first event of Tm in H . If

neither Tk ≺RT
H Tm nor Tm ≺RT

H Tk, then Tk and Tm overlap in H . We say that a history is t-sequential if all

the transactions are ordered by this real-time order. Note that from our earlier assumption all the transactions of a

single process are ordered by real-time.

Sub-history: A sub-history (SH) of a history (H) denoted as the tuple 〈SH.evts, <SH〉 and is defined as: (1)

<SH⊆<H ; (2) SH.evts ⊆ H.evts; (3) If an event of a transaction Tk ∈ H.txns is in SH then all the events of

Tk in H should also be in SH .

For a history H , let R be a subset of H.txns. Then H.subhist(R) denotes the sub-history of H that is formed

from the operations in R.

Valid and legal history: A successful read rk(x, v) (i.e., v 6= A ) in a history H is said to be valid if there exist

a transaction Tj that wrote v to x and committed before rk(x, v). Formally, 〈rk(x, v) is valid ⇔ ∃Tj : (cj <H

rk(x, v))∧ (wj(x, v) ∈ Tj .evts)∧ (v 6= A )〉. The history H is valid if all its successful read operations are valid.

We define rk(x, v)’s lastWrite as the latest commit event ci preceding rk(x, v) in H such that x ∈ wseti (Ti

can also be T0). A successful read operation rk(x, v), is said to be legal if the transaction containing rk’s lastWrite

also writes v onto x: 〈rk(x, v) is legal ⇔ (v 6= A ) ∧ (H.lastWrite(rk(x, v)) = ci) ∧ (wi(x, v) ∈ Ti.evts)〉.
The history H is legal if all its successful read operations are legal. From the definitions we get that if H is legal

then it is also valid.

Opacity and Strict Serializability: We say that two histories H and H ′ are equivalent if they have the same set

of events. Now a history H is said to be opaque [11, 12] if it is valid and there exists a t-sequential legal history S
such that (1) S is equivalent to H and (2) S respects ≺RT

H , i.e., ≺RT
H ⊂≺RT

S . By requiring S being equivalent to

H , opacity treats all the incomplete transactions as aborted. We call S an (opaque) serialization of H .

Along same lines, a valid history H is said to be strictly serializable if H.subhist(H.committed) is opaque.

Unlike opacity, strict serializability does not include aborted or incomplete transactions in the global serialization

order. An opaque history H is also strictly serializable: a serialization of H.subhist(H.committed) is simply the

subsequence of a serialization of H that only contains transactions in H.committed.

Serializability is commonly used criterion in databases. But it is not suitable for STMs as it does not consider

the correctness of aborted transactions as shown by Guerraoui & Kapalka [11]. Opacity, on the other hand,

considers the correctness of aborted transactions as well. Similarly, local opacity (described below) is another

correctness-criterion for STMs but is not as restrictive as opacity.

Local opacity: For a history H, we define a set of sub-histories, denoted as H.subhistSet as follows: (1) For each

aborted transaction Ti, we consider a subhist consisting of operations from all previously committed transactions

and including all successful operations of Ti (i.e., operations which did not return A ) while immediately putting

commit after last successful operation of Ti; (2) for last committed transaction Tl considers all the previously

committed transactions including Tl.

A history H is said to be locally-opaque [18, 19] if all the sub-histories in H.subhistSet are opaque. It must be

seen that in the construction of sub-history of an aborted transaction Ti, the subhist will contain operations from

only one aborted transaction which is Ti itself and no other live/aborted transactions. Similarly, the sub-history

of committed transaction Tl has no operations of aborted and live transactions. Thus in local opacity, no aborted

or live transaction can cause another transaction to abort. It was shown that local opacity [18, 19] allows greater

concurrency than opacity. Any history that is opaque is also locally-opaque but not necessarily the vice-versa. On

the other hand, a history that is locally-opaque is also strict-serializable, but the vice-versa need not be true.

Graph Characterization of Local Opacity: To prove correctness of STM systems, it is useful to consider graph

characterization of histories. In this section, we describe the graph characterization developed by Kumar et al

[17] for proving opacity which is based on characterization by Bernstein and Goodman [2]. We extend this

characterization for LO.
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Consider a history H which consists of multiple versions for each t-object. The graph characterization uses

the notion of version order. Given H and a t-object x, we define a version order for x as any (non-reflexive) total

order on all the versions of x ever created by committed transactions in H . It must be noted that the version order

may or may not be the same as the actual order in which the version of x are generated in H . A version order of

H , denoted as ≪H is the union of the version orders of all the t-objects in H .

Consider the history H2 : r1(x, 0)r2(x, 0)r1(y, 0)r3(z, 0)w1(x, 5)w3(y, 15)w2(y, 10)w1(z, 10)c1c2r4(x, 5)
r4(y, 10)w3(z, 15)c3r4(z, 10). Using the notation that a committed transaction Ti writing to x creates a version

xi, a possible version order for H2≪H2 is: 〈x0 ≪ x1〉, 〈y0 ≪ y2 ≪ y3〉, 〈z0 ≪ z1 ≪ z3〉.
We define the graph characterization based on a given version order. Consider a history H and a version order

≪. We then define a graph (called opacity graph) on H using ≪, denoted as OPG(H,≪) = (V,E). The vertex

set V consists of a vertex for each transaction Ti in H . The edges of the graph are of three kinds and are defined

as follows:

1. real-time(real-time) edges: If Ti commits before Tj starts in H , then there is an edge from vi to vj . This set

of edges are referred to as rt(H).

2. rf (reads-from) edges: If Tj reads x from Ti in H , then there is an edge from vi to vj . Note that in order

for this to happen, Ti must have committed before Tj and ci <H rj(x). This set of edges are referred to as

rf(H).

3. mv(multiversion) edges: The mv edges capture the multiversion relations and is based on the version order.

Consider a successful read operation rk(x, v) and the write operation wj(x, v) belonging to transaction Tj

such that rk(x, v) reads x from wj(x, v) (it must be noted Tj is a committed transaction and cj <H rk).

Consider a committed transaction Ti which writes to x, wi(x, u) where u 6= v. Thus the versions created

xi, xj are related by ≪. Then, if xi ≪ xj we add an edge from vi to vj . Otherwise (xj ≪ xi), we add an

edge from vk to vi. This set of edges are referred to as mv(H,≪).

Using the construction, the OPG(H2,≪H2) for history H2 and ≪H2 is shown in Fig 14. The edges are

annotated. The only mv edge from T4 to T3 is because of t-objects y, z. T4 reads value 5 for z from T1 whereas

T3 also writes 15 to z and commits before r4(z).

rf

rt, rf
rf

mv

rt, rf

rt, rf

rtT0

T1

T4

T3

T2

Figure 2: OPG(H2,≪H2)

Kumar et al [17] showed that if a version order ≪ exists for a history H such that OPG(H,≪H) is acyclic,

then H is opaque. This is captured in the following result.

Result 1 A valid history H is opaque iff there exists a version order ≪H such that OPG(H,≪H) is acyclic.

This result can be easily extended to prove LO as follows

Theorem 2 A valid history H is locally-opaque iff for each sub-history sh in H.subhistSet there exists a version

order ≪sh such that OPG(sh,≪sh) is acyclic. Formally, 〈(H is locally-opaque) ⇔ (∀sh ∈ H.subhistSet, ∃ ≪sh:
OPG(sh,≪sh) is acyclic)〉.

Proof. To prove this theorem, we have to show that each sub-history sh in H.subhistSet is valid. Then the rest

follows from Result 9. Now consider a sub-history sh. Consider any read operation ri(x, v) of a transaction Ti. It

6



is clear that Ti must have read a version of x created by a previously committed transaction. From the construction

of sh, we get that all the transaction that committed before ri are also in sh. Hence sh is also valid.

Now, proving sh to be opaque iff there exists a version order ≪sh such that OPG(sh,≪sh) is acyclic follows

from Result 9.

3 The Working of KSFTM Algorithm

In this section, we propose K-version starvation-free STM or KSFTM for a given parameter K. Here K is the

number of versions of each t-object and can range from 1 to ∞. When K is 1, it boils down to single-version

starvation-free STM. If K is ∞, then KSFTM uses unbounded versions and needs a separate garbage collection

mechanism to delete old versions like other MVSTMs proposed in the literature [17, 20]. We denote KSFTM

using unbounded versions as UVSFTM and UVSFTM with garbage collection as UVSFTM-GC.

Next, we describe some starvation-freedom preliminaries in SubSection 3.1 to explain the working of KSFTM

algorithm. To explain the intuition behind the KSFTM algorithm, we start with the modification of MVTO [2, 17]

algorithm in SubSection 3.3. We then make a sequence of modifications to it to arrive at KSFTM algorithm.

3.1 Starvation-Freedom Preliminaries

In this section, we start with the definition of starvation-freedom. Then we describe the invocation of transactions

by the application. Next, we describe the data structures used by the algorithms.

Definition 1 Starvation-Freedom: A STM system is said to be starvation-free if a thread invoking a non-parasitic

transaction Ti gets the opportunity to retry Ti on every abort, due to the presence of a fair scheduler, then Ti will

eventually commit.

As explained by Herlihy & Shavit [14], a fair scheduler implies that no thread is forever delayed or crashed.

Hence with a fair scheduler, we get that if a thread acquires locks then it will eventually release the locks. Thus a

thread cannot block out other threads from progressing.

Assumption about Scheduler: In order for starvation-free algorithm KSFTM (described in SubSection 3.6) to

work correctly, we make the following assumption about the fair scheduler:

Assumption 1 Bounded-Termination: For any transaction Ti, invoked by a thread Thx, the fair system scheduler

ensures, in the absence of deadlocks, Thx is given sufficient time on a CPU (and memory etc.) such that Ti

terminates (either commits or aborts) in bounded time.

While the bound for each transaction may be different, we use L to denote the maximum bound. In other words,

in time L, every transaction will either abort or commit due to the absence of deadlocks.

There are different ways to satisfy the scheduler requirement. For example, a round-robin scheduler which

provides each thread equal amount of time in any window satisfies this requirement as long as the number of

threads is bounded. In a system with two threads, even if a scheduler provides one thread 1% of CPU and another

thread 99% of the CPU, it satisfies the above requirement. On the other hand, a scheduler that schedules the threads

as ‘T1, T2, T1, T2, T2, T1, T2, T2, T2, T2, T1, T2, T2, T2, T2, T2, T2, T2, T2, T1, T2(16times)’ does not satisfy the

above requirement. This is due to the fact that over time, thread 1 gets infinitesimally smaller portion of the CPU

and, hence, the time required for it to complete (commit or abort) will continue to increase over time.

In our algorithm, we will ensure that it is deadlock free using standard techniques from the literature. In other

words, each thread is in a position to make progress. We assume that the scheduler provides sufficient CPU time

to complete (either commit or abort) within a bounded time.

As explained by Herlihy & Shavit [14], a fair scheduler implies that no thread is forever delayed or crashed.

Hence with a fair scheduler, we get that if a thread acquires locks then it will eventually release the locks. Thus a

thread cannot block out other threads from progressing.

Transaction Invocation: Transactions are invoked by threads. Suppose a thread Thx invokes a transaction Ti.

If this transaction Ti gets aborted, Thx will reissue it, as a new incarnation of Ti, say Tj . The thread Thx will

continue to invoke new incarnations of Ti until an incarnation commits.

When the thread Thx invokes a transaction, say Ti, for the first time then the STM system assigns Ti a unique

timestamp called current timestamp or CTS. If it aborts and retries again as Tj , then its CTS will change. However,
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in this case, the thread Thx will also pass the CTS value of the first incarnation (Ti) to Tj . By this, Thx informs

the STM system that, Tj is not a new invocation but is an incarnation of Ti.

We denote the CTS of Ti (first incarnation) as Initial Timestamp or ITS for all the incarnations of Ti. Thus,

the invoking thread Thx passes ctsi to all the incarnations of Ti (including Tj). Thus for Tj , itsj = ctsi. The

transaction Tj is associated with the timestamps: 〈itsj , ctsj〉. For Ti, which is the initial incarnation, its ITS and

CTS are the same, i.e., itsi = ctsi. For simplicity, we use the notation that for transaction Tj , j is its CTS, i.e.,

ctsj = j.

1 2 3 11 12 1397

X
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rlts val
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rlts val
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ts

read-list (rl)

version-list

Figure 3: Data Structures for Maintaining Versions

We also assume that in the absence of other concurrent conflicting transactions, every transaction will commit.

In other words, if a transaction is executing in a system where other concurrent conflicting transactions are not

present then it will not self-abort. If transactions can self-abort then providing starvation-freedom is impossible.

Common Data Structures and STM Methods: Here we describe the common data structures used by all the

algorithms proposed in this section. For each t-object, the algorithms maintain multiple versions in version-list
(or vlist) using list. Similar to versions in MVTO [17], each version of a t-object is a tuple denoted as vTuple and

consists of three fields: (1) timestamp, (or ts) of the transaction that created this version which normally is the

CTS; (2) the value (or val) of the version; (3) a list, called read-list (or rl), consisting of transactions ids (can

be CTS as well) that read from this version. The read-list of a version is initially empty. Fig 3 illustrates this

structure. For a t-object x, we use the notation x[t] to access the version with timestamp t. Depending on the

algorithm considered, the fields change of this structure.

The algorithms have access to a global atomic counter, G tCntr used for generating timestamps in the various

transactional methods. We assume that the STM system exports the following methods for a transaction Ti: (1)

stm-begin(t) where t is provided by the invoking thread, Thx. From our earlier assumption, it is the CTS of the

first incarnation. In case Thx is invoking this transaction for the first time, then t is null. This method returns

a unique timestamp to Thx which is the CTS/id of the transaction. (2) stm-readi(x) tries to read t-object x.

It returns either value v or A . (3) stm-writei(x, v) operation that updates a t-object x with value v locally. It

returns ok. (4) stm-tryCi() tries to commit the transaction and returns C if it succeeds. Otherwise, it returns A .

Correctness Criteria: For ease of exposition, we initially consider strict-serializability as correctness-criterion

to illustrate the correctness of the algorithms. But strict-serializability does not consider the correctness of aborted

transactions and as a result not a suitable correctness-criterion for STMs. Finally, we show that the proposed STM

algorithm KSFTM satisfies local opacity, a correctness-criterion for STMs (described in Section 2). We denote

the set of histories generated by an STM algorithm, say A, as gen(A).

3.2 Motivation for Starvation Freedom in Multi-Version Systems

In this section, first we describe the starvation freedom solution used for single version i.e. SV-SFTM algorithm

and then the drawback of it.

3.2.1 Illustration of SV-SFTM

Forward-oriented optimistic concurrency control protocol (FOCC), is a commonly used optimistic algorithm in

databases [28, Chap 4]. In fact, several STM Systems are also based on this idea. In a typical STM system (also

in database optimistic concurrency control algorithms), a transaction execution is divided can be two phases -

a read/local-write phase and try-Commit phase (also referred to as validation phase in databases). The various

algorithms differ in how the try-Commit phase executes. Let the write-set or wset and read-set or rset of a ti
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denotes the set of t-objects written & read by ti. In FOCC a transaction ti in its try-Commit phase is validated

against all live transactions that are in their read/local-write phase as follows: 〈wset(ti)∩ (∀tj : rset
n(tj)) = Φ〉.

This implies that the wset of ti can not have any conflict with the current rset of any transaction tj in its read/local-

write phase. Here rsetn(tj) implies the rset of tj till the point of validation of ti. If there is a conflict, then either

ti or tj (all transactions conflicting with ti) is aborted. A commonly used approach in databases is to abort ti, the

validating transaction.

In SV-SFTM we use tss which are monotonically in increasing order. We implement the tss using atomic

counters. Each transaction ti has two time-stamps: (i) current time-stamp or CTS: this is a unique ts alloted to

ti when it begins; (ii) initial time-stamp or ITS: this is same as CTS when a transaction ti starts for the first time.

When ti aborts and re-starts later, it gets a new CTS. But it retains its original CTS as ITS. The value of ITS

is retained across aborts. For achieving starvation freedom, SV-SFTM uses ITS with a modification to FOCC as

follows: a transaction ti in try-Commit phase is validated against all other conflicting transactions, say tj which

are in their read/local-write phase. The ITS of ti is compared with the ITS of any such transaction tj . If ITS of ti
is smaller than ITS of all such tj , then all such tj are aborted while ti is committed. Otherwise, ti is aborted. We

show that SV-SFTM satisfies opacity and starvation-free.

Theorem 3 Any history generated by SV-SFTM is opaque.

Theorem 4 SV-SFTM ensure starvation-freedom.

We prove the correctness by showing that the conflict graph [28, Chap 3], [18] of any history generated by

SV-SFTM is acyclic. We show starvation-freedom by showing that for each transaction ti there eventually exists

a global state in which it has the smallest ITS.

Fig 4 shows the a sample execution of SV-SFTM. It compares the execution of FOCC with SV-SFTM. The

execution on the left corresponds to FOCC, while the execution one the right is of SV-SFTM for the same input.

It can be seen that each transaction has two tss in SV-SFTM. They correspond to CTS, ITS respectively. Thus,

transaction T1,1 implies that CTS and ITS are 1. In this execution, transaction T3 executes the read operation

r3(z) and is aborted due to conflict with T2. The same happens with T3,3. Transaction T5 is re-execution of T3.

With FOCC T5 again aborts due to conflict with T4. In case of SV-SFTM, T5,3 which is re-execution of T3,3 has

the same ITS 3. Hence, when T4,4 validates in SV-SFTM, it aborts as T5,3 has lower ITS. Later T5,3 commits.

It can be seen that ITSs prioritizes the transactions under conflict and the transaction with lower ITS is given

higher priority.
read/local-write phase

r1(x) w1(x)

read/local-write phase

r2(y) r2(z) w2(z)

r1(y)

r3(z)
T3

w2(z)r2(y)

r3(z)

r1(x) r1(y) w1(x)

r2(z)

abort

w4(z)
T4

w4(z)

T2,2

T3,3

C4

abort

T1

T2

T1,1

T5

r5(z) abort

abort

A3

A4

C5

T4,4

T5,3

Validation

C2

C1

Validation

C1

C2

r5(z)

A3

Figure 4: Sample execution of SV-SFTM

3.2.2 Drawback of SV-SFTM

Figure 5 is representing history H: r1(x, 0)r1(y, 0)w2(x, 10)w3(y, 15)a2a3c1 It has three transactions T1, T2 and

T3. T1 is having lowest time stamp and after reading it became slow. T2 and T3 wants to write to x and y
respectively but when it came into validation phase, due to r1(x), r1(y) and not committed yet, T2 and T3 gets
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aborted. However, when we are using multiple version T2 and T3 both can commit and T1 can also read from T0.

The equivalent serial history is T1T2T3.

T1

w2(x, 10)
T2

T3

A3

A2

C1

w3(y, 15)

r1(x, 0) r1(y, 0)

Figure 5: Pictorial representation of execution under SFTM

3.2.3 Data Structures and Pseudocode of SV-SFTM

We start with data-structures that are local to each transaction. For each transaction Ti:

• rseti(read-set): It is a list of data tuples (d tuples) of the form 〈x, val〉, where x is the t-object and v is the

value read by the transaction Ti. We refer to a tuple in Ti’s read-set by rseti[x].

• wseti(write-set): It is a list of (d tuples) of the form 〈x, val〉, where x is the t-object to which transaction

Ti writes the value val. Similarly, we refer to a tuple in Ti’s write-set by wseti[x].

In addition to these local structures, the following shared global structures are maintained that are shared

across transactions (and hence, threads). We name all the shared variable starting with ‘G’.

• G tCntr (counter): This a numerical valued counter that is incremented when a transaction begins.

For each transaction Ti we maintain the following shared time-stamps:

• G locki: A lock for accessing all the shared variables of Ti.

• G itsi (initial timestamp): It is a time-stamp assigned to Ti when it was invoked for the first time.

• G ctsi (current timestamp): It is a time-stamp when Ti is invoked again at a later time. When Ti is created

for the first time, then its G cts is same as its its.

• G validi: This is a boolean variable which is initially true (T ). If it becomes false (F ) then Ti has to be

aborted.

• G statei: This is a variable which states the current value of Ti. It has three states: live, commit or

abort.

For each data item x in history H , we maintain:

• x.val (value): It is the successful previous closest value written by any transaction.

• x.rl (readList): It is the read list consists of all the transactions that have read x.

Algorithm 2 STM init(): Invoked at the start of the STM system. Initializes all the data items used by the STM

System

1: G tCntr = 1;

2: for all data item x used by the STM System do

3: add 〈0, nil〉 to x.val;/* T0 is initializing x */

4: end for;

Algorithm 5 STM writei(x, val): A Transaction Ti writes into local memory

1: Append the d tuple〈x, val〉 to wseti./* If same dataitem then overwrite the tuple */

2: return ok;
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Algorithm 3 STM stm-begin(its): Invoked by a thread to start a new transaction Ti. Thread can pass a parameter

its which is the initial timestamp when this transaction was invoked for the first time. If this is the first invocation

then its is nil. It returns the tuple 〈id,G cts〉

1: i = unique-id; /* An unique id to identify this transaction. It could be same as G cts. */

2: if (its == nil) then

3: G itsi = G ctsi = G tCntr.get&Inc();
4: /* G tCntr.get&Inc() returns the current value of G tCntr and atomically increments it by 1. */

5: else

6: G itsi = its;

7: G ctsi = G tCntr.get&Inc();
8: end if

9: rseti = wseti = null;
10: G statei = live;

11: G validi = T ;

12: return 〈i, G ctsi〉

Algorithm 4 STM read(i, x): Invoked by a transaction Ti to read x. It returns either the value of x or A

1: if (x ∈ wseti) then /* Check if x is in wseti */

2: return wseti[x].val;
3: else if (x ∈ rseti) then /* Check if x is in rseti */

4: return rseti[x].val;
5: else/* x is not in rseti and wseti */

6: lock x;

7: lock G locki;
8: if (G validi == F ) then

9: return abort(i);
10: end if

11: val = x.val;
12: add Ti to x.rl;
13: unlock G locki;
14: unlock x;

15: return val;
16: end if
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Algorithm 6 STM findLLTS(TSet): Find the lowest its value among all the live trasactions in TSet.

1: min its = ∞
2: for all ( Tj ∈ TSet) do

3: if ((G itsj < min its) && (G statej == live)) then

4: min its = G itsj ;

5: end if

6: end for

7: return min its;

Algorithm 7 STM stm-tryC(): Returns C on commit else return Abort A

1: lock G locki
2: if (G validi == F ) then return abort(i);
3: end if

4: TSet = null /* TSet storing transaction Ids */

5: for all (x ∈ wseti) do

6: lock x in pre-defined order;

7: for all (Tj ∈ x.rl) do

8: TSet = TSet ∪ {Tj}
9: end for

10: end for/* x ∈ wseti */

11: TSet = TSet ∪ {Ti} /* Add current transaction Ti into TSet */

12: for all ( Tk ∈ TSet) do

13: lock G lockk in pre-defined order; /* Note: Since Ti is also in TSet, G locki is also locked */

14: end for

15: if (G validi == F ) then return abort(i);
16: else

17: if (G itsi == findLLTS(TSet)) then /* Check if Ti has lowest its among all live transactions in

TSet */

18: for all (Tj ∈ TSet) do /* (Ti 6= Tj) */

19: G validj = F
20: unlock G lockj ;

21: end for

22: else

23: return abort(i);
24: end if

25: end if

26: for all (x ∈ wseti) do

27: replace the old value in x.val with newV alue;

28: x.rl = null;

29: end for

30: G statei = commit;

31: unlock all variables locked by Ti;

32: return C ;

Algorithm 8 abort(i): Invoked by various STM methods to abort transaction Ti. It returns A

1: G validi = F ;

2: G statei = abort;

3: unlock all variables locked by Ti;

4: return A ;

Simplifying Assumptions: We next describe the main idea behind the starvation-free STM algorithm KSFTM

through a sequence of algorithms. For ease of exposition, we make two simplifying assumptions (1) We assume

that in the absence of other concurrent conflicting transactions, every transaction will commit. In other words, if a

transaction is executed in a system by itself, it will not self-abort. (2) We initially consider strict-serializability as

correctness-criterion to illustrate the correctness of the algorithms. But strict-serializability does not consider the

correctness of aborted transactions and as a result not a suitable correctness-criterion for STMs. Finally, we show
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that the proposed STM algorithm KSFTM satisfies local opacity, a correctness-criterion for STMs.

We denote the set of histories generated by an STM algorithm, say A, as gen(A).

3.3 Priority-based MVTO Algorithm

In this subsection, we describe a modification to the multi-version timestamp ordering (MVTO) algorithm [2, 17]

to ensure that it provides preference to transactions that have low ITS, i.e., transactions that have been in the system

for a longer time. We denote the basic algorithm which maintains unbounded versions as Priority-based MVTO

or PMVTO (akin to the original MVTO). We denote the variant of PMVTO that maintains K versions as PKTO

and the unbounded versions variant with garbage collection as PMVTO-GC. In this sub-section, we specifically

describe PKTO. But most of these properties apply to PMVTO and PMVTO-GC as well.

stm-begin(t): A unique timestamp ts is allocated to Ti which is its CTS (i from our assumption). The timestamp

ts is generated by atomically incrementing the global counter G tCntr. If the input t is null, then ctsi = itsi = ts
as this is the first incarnation of this transaction. Otherwise, the non-null value of t is assigned as itsi.
stm-read(x): Transaction Ti reads from a version of x in the shared memory (if x does not exist in Ti’s local

buffer) with timestamp j such that j is the largest timestamp less than i (among the versions x), i.e., there exists no

version of x with timestamp k such that j < k < i. After reading this version of x, Ti is stored in x[j]’s read-list.

If no such version exists then Ti is aborted.

stm-write(x, v): Ti stores this write to value x locally in its wseti. If Ti ever reads x again, this value will be

returned.

stm-tryC : This operation consists of three steps. In Step 1, it checks whether Ti can be committed. In Step 2, it

performs the necessary tasks to mark Ti as a committed transaction and in Step 3, Ti return commits.

1. Before Ti can commit, it needs to verify that any version it creates does not violate consistency. Suppose Ti

creates a new version of x with timestamp i. Let j be the largest timestamp smaller than i for which version

of x exists. Let this version be x[j]. Now, Ti needs to make sure that any transaction that has read x[j] is

not affected by the new version created by Ti. There are two possibilities of concern:

(a) Let Tk be some transaction that has read x[j] and k > i (k = CTS of Tk). In this scenario, the value

read by Tk would be incorrect (w.r.t strict-serializability) if Ti is allowed to create a new version. In

this case, we say that the transactions Ti and Tk are in conflict. So, we do the following:

(i) if Tk has already committed then Ti is aborted;

(ii) if Tk is live and itsk is less than itsi. Then again Ti is aborted;

(iii) If Tk is still live with itsi less than itsk then Tk is aborted.

(b) The previous version x[j] does not exist. This happens when the previous version x[j] has been

overwritten. In this case, Ti is aborted since PKTO does not know if Ti conflicts with any other

transaction Tk that has read the previous version.

2. After Step 1, we have verified that it is ok for Ti to commit. Now, we have to create a version of each

t-object x in the wset of Ti. This is achieved as follows:

(a) Ti creates a vTuple 〈i, wseti.x.v, null〉. In this tuple, i (CTS of Ti) is the timestamp of the new

version; wseti.x.v is the value of x is in Ti’s wset, and the read-list of the vTuple is null.

(b) Suppose the total number of versions of x is K. Then among all the versions of x, Ti replaces the

version with the smallest timestamp with vTuple 〈i, wseti.x.v, null〉. Otherwise, the vTuple is added

to x’s vlist.

3. Transaction Ti is then committed.

The algorithm described here is only the main idea. The actual implementation will use locks to ensure that

each of these methods are linearizable [16]. It can be seen that PKTO gives preference to the transaction having

lower ITS in Step 1a. Transactions having lower ITS have been in the system for a longer time. Hence, PKTO

gives preference to them.
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3.4 Pseudocode of PKTO

Algorithm 9 STM init(): Invoked at the start of the STM system. Initializes all the t-objects used by the STM

System

1: G tCntr = 1;

2: for all x in T do /* All the t-objects used by the STM System */

3: add 〈0, 0, nil〉 to x.vl; /* T0 is initializing x */

4: end for;

Algorithm 10 STM stm-begin(its): Invoked by a thread to start a new transaction Ti. Thread can pass a pa-

rameter its which is the initial timestamp when this transaction was invoked for the first time. If this is the first

invocation then its is nil. It returns the tuple 〈id,G cts〉

1: i = unique-id; /* An unique id to identify this transaction. It could be same as G cts */

2: /* Initialize transaction specific local and global variables */

3: if (its == nil) then

4: /* G tCntr.get&Inc() returns the current value of G tCntr and atomically increments it */

5: G itsi = G ctsi = G tCntr.get&Inc();
6: else

7: G itsi = its;

8: G ctsi = G tCntr.get&Inc();
9: end if

10: rseti = wseti = null;
11: G statei = live;

12: G validi = T ;

13: return 〈i, G ctsi〉

Algorithm 11 STM read(i, x): Invoked by a transaction Ti to read t-object x. It returns either the value of x or

A

1: if (x ∈ rseti) then /* Check if the t-object x is in rseti */

2: return rseti[x].val;
3: else if (x ∈ wseti) then /* Check if the t-object x is in wseti */

4: return wseti[x].val;
5: else/* t-object x is not in rseti and wseti */

6: lock x; lock G locki;
7: if (G validi == F ) then return abort(i);

8: end if

9: /* findLTS: From x.vl, returns the largest ts value less than G ctsi. If no such version exists, it returns

nil */

10: curV er = findLTS(G ctsi, x);
11: if (curV er == nil) then return abort(i); /* Proceed only if curV er is not nil */

12: end if

13: val = x[curV er].v; add 〈x, val〉 to rseti;
14: add Ti to x[curV er].rl;
15: unlock G locki; unlock x;

16: return val;
17: end if

Algorithm 12 STM writei(x, val): A Transaction Ti writes into local memory

1: Append the d tuple〈x, val〉 to wseti.
2: return ok;

14



Algorithm 13 STM stm-tryC(): Returns ok on commit else return Abort

1: /* The following check is an optimization which needs to be performed again later */

2: lock G locki;
3: if (G validi == F ) then

4: return abort(i);

5: end if

6: unlock G locki;
7: largeRL = allRL = nil; /* Initialize larger read list (largeRL), all read list (allRL) to nil */

8: for all x ∈ wseti do

9: lock x in pre-defined order;

10: /* findLTS: returns the version with the largest ts value less than G ctsi. If no such version exists, it

returns nil. */

11: prevV er = findLTS(G ctsi, x); /* prevVer: largest version smaller than G ctsi */

12: if (prevV er == nil) then /* There exists no version with ts value less than G ctsi */

13: lock G locki; return abort(i);

14: end if

15: /* getLar: obtain the list of reading transactions of x[prevV er].rl whose G cts is greater than G ctsi */

16: largeRL = largeRL ∪ getLar(G ctsi, x[prevV er].rl);
17: end for/* x ∈ wseti */

18: relLL = largeRL ∪ Ti; /* Initialize relevant Lock List (relLL) */

19: for all (Tk ∈ relLL) do

20: lock G lockk in pre-defined order; /* Note: Since Ti is also in relLL, G locki is also locked */

21: end for

22: /* Verify if G validi is false */

23: if (G validi == F ) then

24: return abort(i);

25: end if

26: abortRL = nil /* Initialize abort read list (abortRL) */

27: /* Among the transactions in Tk in largeRL, either Tk or Ti has to be aborted */

28: for all (Tk ∈ largeRL) do

29: if (isAborted(Tk)) then /* Transaction Tk can be ignored since it is already aborted or about to be aborted

*/

30: continue;

31: end if

32: if (G itsi < G itsk) ∧ (G statek == live) then

33: /* Transaction Tk has lower priority and is not yet committed. So it needs to be aborted */

34: abortRL = abortRL ∪ Tk; /* Store Tk in abortRL */

35: else/* Transaction Ti has to be aborted */

36: return abort(i);

37: end if

38: end for

Algorithm 14 isAborted(Tk): Verifies if Ti is already aborted or its G valid flag is set to false implying that Ti

will be aborted soon

1: if (G validk == F ) ∨ (G statek == abort) ∨ (Tk ∈ abortRL) then

2: return T ;

3: else

4: return F ;

5: end if

Algorithm 15 abort(i): Invoked by various STM methods to abort transaction Ti. It returns A

1: G validi = F ; G statei = abort;

2: unlock all variables locked by Ti;

3: return A ;

We have the following property on the correctness of PKTO.
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39: /* Store the current value of the global counter as commit time and increment it */

40: comTime = G tCntr.get&Inc();
41: for all Tk ∈ abortRL do /* Abort all the transactions in abortRL */

42: G validk = F ;

43: end for

44: /* Having completed all the checks, Ti can be committed */

45: for all (x ∈ wseti) do

46: newTuple = 〈G ctsi, wseti[x].val, nil〉; /* Create new v tuple: G cts, val, rl for x */

47: if (|x.vl|> k) then

48: replace the oldest tuple in x.vl with newTuple; /* x.vl is ordered by timestamp */

49: else

50: add a newTuple to x.vl in sorted order;

51: end if

52: end for/* x ∈ wseti */

53: G statei = commit;

54: unlock all variables;

55: return C ;

Property 5 Any history generated by PKTO is strict-serializable.

Consider a history H generated by PKTO. Let the committed sub-history of H be CSH = H.subhist(H.committed).
It can be shown that CSH is opaque with the equivalent serialized history SH ′ is one in which all the transactions

of CSH are ordered by their CTSs. Hence, H is strict-serializable.

Possibility of Starvation in PKTO: As discussed above, PKTO gives priority to transactions having lower ITS.

But a transaction Ti having the lowest ITS could still abort due to one of the following reasons: (1) Upon executing

stm-read(x) method if it does not find any other version of x to read from. This can happen if all the versions

of x present have a timestamp greater than ctsi. (2) While executing Step 1a(i), of the stm-tryC method, if Ti

wishes to create a version of x with timestamp i. But some other transaction, say Tk has read from a version with

timestamp j and j < i < k. In this case, Ti has to abort if Tk has already committed.

This issue is not restricted only to PKTO. It can occur in PMVTO (and PMVTO-GC) due to the point (2)

described above.

X
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Figure 6: Pictorial representation of execution under PKTO
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We illustrate this problem in PKTO with Fig 6. Here transaction T26, with ITS 26 is the lowest among all the

live transactions, starves due to Step 1a.(i) of the stm-tryC. First time, T26 gets aborted due to higher timestamp

transaction T29 in the read-list of x[25] has committed. We have denoted it by a ‘(C)’ next to the version. The

second time, T26 retries with same ITS 26 but new CTS 33. Now when T33 comes for commit, suppose another

transaction T34 in the read-list of x[25] has already committed. So this will cause T33 (another incarnation of T26)

to abort again. Such scenario can possibly repeat again and again and thus causing no incarnation of T26 to ever

commit leading to its starvation.

Garbage Collection in UVSFTM-GC and PMVTO-GC: Having multiple versions to increase the performance

and to decrease the number of aborts, leads to creating too many versions which are not of any use and hence

occupying space. So, such garbage versions need to be taken care of. Hence we come up with a garbage collection

over these unwanted versions. This technique help to conserve memory space and increases the performance in

turn as no more unnecessary traversing of garbage versions by transactions is necessary. We have used a global,

i.e., across all transactions a list that keeps track of all the live transactions in the system. We call this list as

live-list. Each transaction at the beginning of its life cycle creates its entry in this live-list. Under the optimistic

approach of STM, each transaction in the shared memory performs its updates in the stm-tryC phase. In this

phase, each transaction performs some validations, and if all the validations are successful then the transaction

make changes or in simple terms creates versions of the corresponding t-object in the shared memory. While

creating a version every transaction, check if it is the least timestamp live transaction present in the system by

using live-list data structure, if yes then the current transaction deletes all the version of that t-object and create

one of its own. Else the transaction does not do any garbage collection or delete any version and look for creating

a new version of next t-object in the write set, if at all. Fig 10 and Fig 11 show that both UVSFTM-GC and

PMVTO-GC performs better than UVSFTM and PMVTO across all workloads.

3.5 Modifying PKTO to Obtain SFKTO: Trading Correctness for Starvation-Freedom

Our goal is to revise PKTO algorithm to ensure that starvation-freedom is satisfied. Specifically, we want the

transaction with the lowest ITS to eventually commit. Once this happens, the next non-committed transaction

with the lowest ITS will commit. Thus, from induction, we can see that every transaction will eventually commit.

Key Insights For Eliminating Starvation in PKTO: To identify the necessary revision, we first focus on the

effect of this algorithm on two transactions, say T50 and T60 with their CTS values being 50 and 60 respectively.

Furthermore, for the sake of discussion, assume that these transactions only read and write t-object x. Also,

assume that the latest version for x is with ts 40. Each transaction first reads x and then writes x (as part of

the stm-tryC operation). We use r50 and r60 to denote their read operations while w50 and w60 to denote their

stm-tryC operations. Here, a read operation will not fail as there is a previous version present.

Now, there are six possible permutations of these statements. We identify these permutations and the action

that should be taken for that permutation in Table 1. In all these permutations, the read operations of a transaction

come before the write operations as the writes to the shared memory occurs only in the stm-tryC operation (due

to optimistic execution) which is the final operation of a transaction.
S. No Sequence Action

1. r50, w50, r60, w60 T60 reads the version written by T50. No conflict.

2. r50, r60, w50, w60 Conflict detected at w50. Either abort T50 or T60.

3. r50, r60, w60, w50 Conflict detected at w50. Hence, abort T50.

4. r60, r50, w60, w50 Conflict detected at w50. Hence, abort T50.

5. r60, r50, w50, w60 Conflict detected at w50. Either abort T50 or T60.

6. r60, w60, r50, w50 Conflict detected at w50. Hence, abort T50.

Table 1: Permutations of operations

From this table, it can be seen that when a conflict is detected, in some cases, algorithm PKTO must abort T50.

In case both the transactions are live, PKTO has the option of aborting either transaction depending on their ITS.

If T60 has lower ITS then in no case, PKTO is required to abort T60. In other words, it is possible to ensure that

the transaction with lowest ITS and the highest CTS is never aborted. Although in this example, we considered

only one t-object, this logic can be extended to cases having multiple operations and t-objects.

Next, consider Step 1b of PKTO algorithm. Suppose a transaction Ti wants to read a t-object but does not find

a version with a timestamp smaller than i. In this case, Ti has to abort. But if Ti has the highest CTS, then it will

certainly find a version to read from. This is because the timestamp of a version corresponds to the timestamp of

the transaction that created it. If Ti has the highest CTS value then it implies that all versions of all the t-objects
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Figure 7: Correctness of SFKTO Algorithm

have a timestamp smaller than CTS of Ti. This reinforces the above observation that a transaction with lowest ITS

and highest CTS is not aborted.

To summarize the discussion, algorithm PKTO has an in-built mechanism to protect transactions with lowest

ITS and highest CTS value. However, this is different from what we need. Specifically, we want to protect a

transaction Ti, with lowest ITS value. One way to ensure this: if transaction Ti with lowest ITS keeps getting

aborted, eventually it will achieve the highest CTS. Once this happens, PKTO ensures that Ti cannot be further

aborted. In this way, we can ensure the liveness of all transactions.

The working of starvation-free algorithm: To realize this idea and achieve starvation-freedom, we consider

another variation of MVTO, Starvation-Free MVTO or SFMVTO. We specifically consider SFMVTO with K
versions, denoted as SFKTO.

A transaction Ti instead of using the current time as ctsi, uses a potentially higher timestamp, Working Times-

tamp - WTS or wtsi. Specifically, it adds C ∗ (ctsi − itsi) to ctsi, i.e.,

wtsi = ctsi + C ∗ (ctsi − itsi); (1)

where, C is any constant greater than 0. In other words, when the transaction Ti is issued for the first time, wtsi
is same as ctsi(= itsi). However, as transaction keeps getting aborted, the drift between ctsi and wtsi increases.

The value of wtsi increases with each retry.

Furthermore, in SFKTO algorithm, CTS is replaced with WTS for stm-read, stm-write and stm-tryC
operations of PKTO. In SFKTO, a transaction Ti uses wtsi to read a version in stm-read. Similarly, Ti uses wtsi
in stm-tryC to find the appropriate previous version (in Step 1b) and to verify if Ti has to be aborted (in Step 1a).

Along the same lines, once Ti decides to commit and create new versions of x, the timestamp of x will be same

as its wtsi (in Step 3). Thus the timestamp of all the versions in vlist will be WTS of the transactions that created

them.

Now, we have the following property about SFKTO algorithm.

Property 6 SFKTO algorithm ensures starvation-freedom.

While the proof of this property is somewhat involved, the key idea is that the transaction with lowest ITS value,

say Tlow, will eventually have highest WTS value than all the other transactions in the system. Moreover, after a

certain duration, any new transaction arriving in the system (i.e., whose ITS value sufficiently higher than that of

Tlow) will have a lower WTS value than Tlow. This will ensure that Tlow will not be aborted. In fact, this property

can be shown to be true of SFMVTO as well.

The drawback of SFKTO: Although SFKTO satisfies starvation-freedom, it, unfortunately, does not satisfy

strict-serializability. Specifically, it violates the real-time requirement. PKTO uses CTS for its working while

SFKTO uses WTS. It can be seen that CTS is close to the real-time execution of transactions whereas WTS of

a transaction Ti is artificially inflated based on its ITS and might be much larger than its CTS. We illustrate this

with an example. Consider the history H1 as shown in Fig 7: r1(x, 0)r2(y, 0)w1(x, 10)
C1w2(x, 20)C2r3(x, 10)r3(z, 25)C3 with CTS as 50, 60 and 80 and WTS as 50, 100 and 80 for T1, T2, T3 respec-

tively. Here T1, T2 are ordered before T3 in real-time with T1 ≺RT
H1 T3 and T2 ≺RT

H1 T3 although T2 has a higher

WTS than T3.

Here, as per SFKTO algorithm, T3 reads x from T1 since T1 has the largest WTS (50) smaller than T3’s

WTS (80). It can be verified that it is possible for SFKTO to generate such a history. But this history is not

strict-serializable. The only possible serial order equivalent to H1 and legal is T1T3T2. But this violates real-time

order as T3 is serialized before T2 but in H1, T2 completes before T3 has begun. Since H1 is not strict-serializable,

it is not locally-opaque as well. Naturally, this drawback extends to SFMVTO as well.
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3.6 Design of KSFTM: Regaining Correctness while Preserving Starvation-Freedom

In this section, we discuss how principles of PKTO and SFKTO can be combined to obtain KSFTM that provides

both correctness (strict-serializability and locally-opaque) as well as starvation-freedom. To achieve this, we first

understand why the initial algorithm, PKTO satisfies strict-serializability. This is because CTS was used to create

the ordering among committed transactions. CTS is closely associated with real-time. In contrast, SFKTO uses

WTS which may not correspond to the real-time, as WTS may be significantly larger than CTS as shown by H1
in Fig 7.

One straightforward way to modify SFKTO is to delay a committing transaction, say Ti with WTS value wtsi
until the real-time (G tCntr) catches up to wtsi. This will ensure that value of WTS will also become same as the

real-time thereby guaranteeing strict-serializability. However, this is unacceptable, as in practice, it would require

transaction Ti locking all the variables it plans to update and wait. This will adversely affect the performance of

the STM system.

We can allow the transaction Ti to commit before its wtsi has caught up with the actual time if it does not

violate the real-time ordering. Thus, to ensure that the notion of real-time order is respected by transactions in the

course of their execution in SFKTO, we add extra time constraints. We use the idea of timestamp ranges. This

notion of timestamp ranges was first used by Riegel et al. [24] in the context of multi-version STMs. Several other

researchers have used this idea since then such as Guerraoui et al. [10], Crain et al. [5], Aydonat & Abdelrahman

[1].

Thus, in addition to ITS, CTS and WTS, each transaction Ti maintains a timestamp range: Transaction Lower

Timestamp Limit or tltli, and Transaction Upper Timestamp Limit or tutli. When a transaction Ti begins, tltli
is assigned ctsi and tutli is assigned a largest possible value which we denote as infinity. When Ti executes a

method m in which it reads a version of a t-object x or creates a new version of x in stm-tryC, tltli is incremented

while tutli gets decremented 1.

We require to serialize all the transactions based on their WTS while maintaining their real-time order. On

executing m, Ti is ordered w.r.t to other transactions that have created a version of x based on increasing order

of WTS. For all transactions Tj which also have created a version of x and whose wtsj is less than wtsi, tltli
is incremented such that tutlj is less than tltli. Note that all such Tj are serialized before Ti. Similarly, for any

transaction Tk which has created a version of x and whose wtsk is greater than wtsi, tutli is decremented such

that it becomes less than tltlk. Again, note that all such Tk is serialized after Ti.

Note that in the above discussion, Ti need not have created a version of x. It could also have read the version

of x created by Tj . After the increments of tltli and the decrements of tutli, if tltli turns out to be greater than

tutli then Ti is aborted. Intuitively, this implies that Ti’s WTS and real-time orders are out of sync and cannot be

reconciled.

Finally, when a transaction Ti commits: (1) Ti records its commit time (or comTimei) by getting the current

value of G tCntr and incrementing it by incrV al which is any value greater than or equal to 1. Then tutli is set

to comTimei if it is not already less than it. Now suppose Ti occurs in real-time before some other transaction,

Tk but does not have any conflict with it. This step ensures that tutli remains less than tltlk (which is initialized

with ctsk); (2) Ensure that tltli is still less than tutli. Otherwise, Ti is aborted.

We illustrate this technique with the history H1 shown in Fig 7. When T1 starts its cts1 = 50, tltl1 =
50, tutl1 = ∞. Now when T1 commits, suppose G tCntr is 70. Hence, tutl1 reduces to 70. Next, when T2

commits, suppose tutl2 reduces to 75 (the current value of G tCntr). As T1, T2 have accessed a common t-object

x in a conflicting manner, tltl2 is incremented to a value greater than tutl1, say 71. Next, when T3 begins, tltl3
is assigned cts3 which is 80 and tutl3 is initialized to ∞. When T3 reads 10 from T1, which is r3(x, 10), tutl3
is reduced to a value less than tltl2(= 71), say 70. But tltl3 is already at 80. Hence, the limits of T3 have

crossed and thus causing T3 to abort. The resulting history consisting of only committed transactions T1T2 is

strict-serializable.

Based on this idea, we next develop a variation of SFKTO, K-version Starvation-Free STM System or KSFTM.

To explain this algorithm, we first describe the structure of the version of a t-object used. It is a slight variation

of the t-object used in PKTO algorithm. It consists of: (1) timestamp, ts which is the WTS of the transaction that

created this version (and not CTS like PKTO); (2) the value of the version; (3) a list, called read-list, consisting

of transactions ids (could be CTS as well) that read from this version; (4) version real-time timestamp or vrt

which is the tutl of the transaction that created this version. Thus a version has information of WTS and tutl of the

transaction that created it.

1Technically ∞, which is assigned to tutli, cannot be decremented. But here as mentioned earlier, we use ∞ to denote the largest possible

value that can be represented in a system.
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Now, we describe the main idea behind stm-begin, stm-read, stm-write and stm-tryC operations of a

transaction Ti which is an extension of PKTO. Note that as per our notation i represents the CTS of Ti.

stm-begin(t): A unique timestamp ts is allocated to Ti which is its CTS (i from our assumption) which is

generated by atomically incrementing the global counter G tCntr. If the input t is null then ctsi = itsi = ts as

this is the first incarnation of this transaction. Otherwise, the non-null value of t is assigned to itsi. Then, WTS is

computed by Eq.(1). Finally, tltl and tutl are initialized: tltli = ctsi, tutli = ∞.

stm-read(x): Transaction Ti reads from a version of x with timestamp j such that j is the largest timestamp less

than wtsi (among the versions x), i.e. there exists no version k such that j < k < wtsi is true. If no such j exists

then Ti is aborted. Otherwise, after reading this version of x, Ti is stored in j’s rl. Then we modify tltl, tutl as

follows:

1. The version x[j] is created by a transaction with wtsj which is less than wtsi. Hence, tltli = max(tltli, x[j].vrt
+1).

2. Let p be the timestamp of smallest version larger than i. Then tutli = min(tutli, x[p].vrt− 1).

3. After these steps, abort Ti if tltl and tutl have crossed, i.e., tltli > tutli.

stm-write(x, v): Ti stores this write to value x locally in its wseti.
stm-tryC : This operation consists of multiple steps:

1. Before Ti can commit, we need to verify that any version it creates is updated consistently. Ti creates a new

version with timestamp wtsi. Hence, we must ensure that any transaction that read a previous version is

unaffected by this new version. Additionally, creating this version would require an update of tltl and tutl of

Ti and other transactions whose read-write set overlaps with that of Ti. Thus, Ti first validates each t-object

x in its wset as follows:

(a) Ti finds a version of x with timestamp j such that j is the largest timestamp less than wtsi (like in

stm-read). If there exists no version of x with a timestamp less than wtsi then Ti is aborted. This is

similar to Step 1b of the stm-tryC of PKTO algorithm.

(b) Among all the transactions that have previously read from j suppose there is a transaction Tk such that

j < wtsi < wtsk. Then (i) if Tk has already committed then Ti is aborted; (ii) Suppose Tk is live,

and itsk is less than itsi. Then again Ti is aborted; (iii) If Tk is still live with itsi less than itsk then

Tk is aborted.

This step is similar to Step 1a of the stm-tryC of PKTO algorithm.

(c) Next, we must ensure that Ti’s tltl and tutl are updated correctly w.r.t to other concurrently executing

transactions. To achieve this, we adjust tltl, tutl as follows: (i) Let j be the ts of the largest version

smaller than wtsi. Then tltli = max(tltli, x[j].vrt + 1). Next, for each reading transaction, Tr

in x[j].read-list, we again set, tltli = max(tltli, tutlr + 1). (ii) Similarly, let p be the ts of the

smallest version larger than wtsi. Then, tutli = min(tutli, x[p].vrt− 1). (Note that we don’t have

to check for the transactions in the read-list of x[p] as those transactions will have tltl higher than

x[p].vrt due to stm-read.) (iii) Finally, we get the commit time of this transaction from G tCntr:

comTimei = G tCntr.add&Get(incrV al) where incrV al is any constant ≥ 1. Then, tutli =
min(tutli, comTimei). After performing these updates, abort Ti if tltl and tutl have crossed, i.e.,

tltli > tutli.

2. After performing the tests of Step 1 over each t-objects x in Ti’s wset, if Ti has not yet been aborted, we

proceed as follows: for each x in wseti create a vTuple 〈wtsi, wseti.x.v, null,
tutli〉. In this tuple, wtsi is the timestamp of the new version; wseti.x.v is the value of x is in Ti’s wset; the

read-list of the vTuple is null; vrt is tutli (actually it can be any value between tltli and tutli). Update

the vlist of each t-object x similar to Step 2 of stm-tryC of PKTO.

3. Transaction Ti is then committed.

Step 1c.(iii) of stm-tryC ensures that real-time order between transactions that are not in conflict. It can be seen

that locks have to be used to ensure that all these methods to execute in a linearizable manner (i.e., atomically).
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3.7 Data Structures and Pseudocode of KSFTM

The STM system consists of the following methods: init(), stm-begin(), read(i, x), writei(i, x, v) and stm-tryC(i).
We assume that all the t-objects are ordered as x1, x2, ...xn and belong to the set T . We describe the data-

structures used by the algorithm.

We start with structures that local to each transaction. Each transaction Ti maintains a rseti and wseti. In

addition it maintains the following structures (1) comTimei: This is value given to Ti when it terminates which

is assigned a value in stm-tryC method. (2) A series of lists: smallRL, largeRL, allRL, prevVL, nextVL, relLL,

abortRL. The meaning of these lists will be clear with the description of the pseudocode. In addition to these local

structures, the following shared global structures are maintained that are shared across transactions (and hence,

threads). We name all the shared variable starting with ‘G’.

• G tCntr (counter): This a numerical valued counter that is incremented when a transaction begins and

terminates.

For each transaction Ti we maintain the following shared time-stamps:

• G locki: A lock for accessing all the shared variables of Ti.

• G itsi (initial timestamp): It is a time-stamp assigned to Ti when it was invoked for the first time without

any aborts. The current value of G tCntr is atomically assigned to it and then incremented. If Ti is aborted

and restarts later then the application assigns it the same G its.

• G ctsi (current timestamp): It is a time-stamp when Ti is invoked again at a later time after an abort. Like

G its,the current value of G tCntr is atomically assigned to it and then incremented. When Ti is created

for the first time, then its G cts is same as its G its.

• G wtsi (working timestamp): It is the time-stamp that Ti works with. It is either greater than or equal to

Ti’s G cts. It is computed as follows: G wtsi = G ctsi + C ∗ (G ctsi −G itsi).

• G validi: This is a boolean variable which is initially true. If it becomes false then Ti has to be aborted.

• G statei: This is a variable which states the current value of Ti. It has three states: live, committed or

aborted.

• G tltli, G tutli (transaction lower & upper time limits): These are the time-limits described in the previous

section used to keep the transaction WTS and real-time orders in sync. G tltli is G cts of Ti when transac-

tion begins and is a non-decreasing value. It continues to increase (or remains same) as Ti reads t-objects

and later terminates. G tutli on the other hand is a non-increasing value starting with ∞ when the Ti is

created. It reduces (or remains same) as Ti reads t-objects and later terminates. If Ti commits then both

G tltli & G tutli are made equal.

Two transactions having the same ITS are said to be incarnations. No two transaction can have the same CTS.

For simplicity, we assume that no two transactions have the same WTS as well. In case, two transactions have the

same WTS, one can use the tuple 〈WTS, CTS 〉 instead of WTS. But we ignore such cases. For each t-object x in

T , we maintain:

• x.vl (version list): It is a list consisting of version tuples or vTuple of the form 〈ts, val,rl,vrt〉. The

details of the tuple are explained below.

• ts (timestmp): Here ts is the G wtsi of a committed transaction Ti that has created this version.

• val: The value of this version.

• rl (readList): rl is the read list consists of all the transactions that have read this version. Each entry in this

list is of the form 〈rts〉 where rts is the G wtsj of a transaction Tj that read this version.

• vrt (version real-time timestamp): It is the G tutl value (which is same as G tltl) of the transaction Ti that

created this version at the time of commit of Ti.
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Algorithm 16 STM init(): Invoked at the start of the STM system. Initializes all the t-objects used by the STM

System

1: G tCntr = 1; /* Global Transaction Counter */

2: for all x in T do /* All the t-objects used by the STM System */

3: /* T0 is creating the first version of x: ts = 0, val = 0,rl = nil,vrt = 0 */

4: add 〈0, 0, nil, 0〉 to x.vl;

5: end for;

Algorithm 17 STM stm-begin(its): Invoked by a thread to start a new transaction Ti. Thread can pass a pa-

rameter its which is the initial timestamp when this transaction was invoked for the first time. If this is the first

invocation then its is nil. It returns the tuple 〈id,G wts,G cts〉

1: i = unique-id; /* An unique id to identify this transaction. It could be same as G cts */

2: /* Initialize transaction specific local & global variables */

3: if (its == nil) then

4: G itsi = G wtsi = G ctsi = G tCntr.get&Inc(); /* G tCntr.get&Inc() returns the current value of

G tCntr and atomically increments it */

5: else

6: G itsi = its;

7: G ctsi = G tCntr.get&Inc();
8: G wtsi = G ctsi + C ∗ (G ctsi −G itsi); /* C is any constant greater or equal to than 1 */

9: end if

10: G tltli = G ctsi; G tutli = comTimei = ∞;

11: G statei = live; G validi = T ;

12: rseti = wseti = nil;
13: return 〈i, G wtsi, G ctsi〉

Algorithm 18 STM read(i, x): Invoked by a transaction Ti to read t-object x. It returns either the value of x or

A

1: if (x ∈ wseti) then /* Check if the t-object x is in wseti */

2: return wseti[x].val;
3: else if (x ∈ rseti) then /* Check if the t-object x is in rseti */

4: return rseti[x].val;
5: else/* t-object x is not in rseti and wseti */

6: lock x; lock G locki;
7: if (G validi == F ) then return abort(i);

8: end if

9: /* findLTS: From x.vl, returns the largest ts value less than G wtsi. If no such version exists, it returns

nil */

10: curV er = findLTS(G wtsi, x);
11: if (curV er == nil) then return abort(i); /* Proceed only if curV er is not nil */

12: end if

13: /* findSTL: From x.vl, returns the smallest ts value greater than G wtsi. If no such version exists, it

returns nil */

14: nextV er = findSTL(G wtsi, x);
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15: if (nextV er 6= nil) then

16: /* Ensure that G tutli remains smaller than nextV er’s vrt */

17: G tutli = min(G tutli, x[nextV er].vrt− 1);
18: end if

19: /* G tltli should be greater than x[curV er].vrt */

20: G tltli = max(G tltli, x[curV er].vrt+ 1);
21: if (G tltli > G tutli) then /* If the limits have crossed each other, then Ti is aborted */

22: return abort(i);

23: end if

24: val = x[curV er].v; add 〈x, val〉 to rseti;
25: add Ti to x[curV er].rl;
26: unlock G locki; unlock x;

27: return val;
28: end if

Algorithm 19 STM writei(x, val): A Transaction Ti writes into local memory

1: Append the d tuple〈x, val〉 to wseti.
2: return ok;

Algorithm 20 STM stm-tryC(): Returns ok on commit else return Abort

1: /* The following check is an optimization which needs to be performed again later */

2: lock G locki;
3: if (G validi == F ) then return abort(i);

4: end if

5: unlock G locki;
6: /* Initialize smaller read list (smallRL), larger read list (largeRL), all read list (allRL) to nil */

7: smallRL = largeRL = allRL = nil;
8: /* Initialize previous version list (prevVL), next version list (nextVL) to nil */

9: prevV L = nextV L = nil;
10: for all x ∈ wseti do

11: lock x in pre-defined order;

12: /* findLTS: returns the version of x with the largest ts less than G wtsi. If no such version exists, it

returns nil. */

13: prevV er = findLTS(G wtsi, x); /* prevVer: largest version smaller than G wtsi */

14: if (prevV er == nil) then /* There exists no version with ts value less than G wtsi */

15: lock G locki; return abort(i);

16: end if

17: prevV L = prevV L ∪ prevV er; /* prevVL stores the previous version in sorted order */

18: allRL = allRL ∪ x[prevV er].rl; /* Store the read-list of the previous version */

19: /* getLar: obtain the list of reading transactions of x[prevV er].rl whose G wts is greater than G wtsi
*/

20: largeRL = largeRL ∪ getLar(G wtsi,
x[prevV er].rl);

21: /* getSm: obtain the list of reading transactions of x[prevV er].rl whose G wts is smaller than G wtsi
*/

22: smallRL = smallRL ∪ getSm(G wtsi,
x[prevV er].rl);

Algorithm 21 isAborted(Tk): Verifies if Ti is already aborted or its G valid flag is set to false implying that Ti

will be aborted soon

1: if (G validk == F ) ∨ (G statek == abort) ∨ (Tk ∈ abortRL) then

2: return T ;

3: else

4: return F ;

5: end if
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23: /* findSTL: returns the version with the smallest ts value greater than G wtsi. If no such version exists,

it returns nil. */

24: nextV er = findSTL(G wtsi, x); /* nextVer: smallest version larger than G wtsi */

25: if (nextV er 6= nil)) then

26: nextV L = nextV L ∪ nextV er; /* nextVL stores the next version in sorted order */

27: end if

28: end for/* x ∈ wseti */

29: relLL = allRL ∪ Ti; /* Initialize relevant Lock List (relLL) */

30: for all (Tk ∈ relLL) do

31: lock G lockk in pre-defined order; /* Note: Since Ti is also in relLL, G locki is also locked */

32: end for

33: /* Verify if G validi is false */

34: if (G validi == F ) then return abort(i);

35: end if

36: abortRL = nil /* Initialize abort read list (abortRL) */

37: /* Among the transactions in Tk in largeRL, either Tk or Ti has to be aborted */

38: for all (Tk ∈ largeRL) do

39: if (isAborted(Tk)) then

40: /* Transaction Tk can be ignored since it is already aborted or about to be aborted */

41: continue;

42: end if

43: if (G itsi < G itsk) ∧ (G statek == live) then

44: /* Transaction Tk has lower priority and is not yet committed. So it needs to be aborted */

45: abortRL = abortRL ∪ Tk; /* Store Tk in abortRL */

46: else/* Transaction Ti has to be aborted */

47: return abort(i);

48: end if

49: end for

50: /* Ensure that G tltli is greater than vrt of the versions in prevV L */

51: for all (ver ∈ prevV L) do

52: x = t-object of ver;

53: G tltli = max(G tltli, x[ver].vrt+ 1);
54: end for

55: /* Ensure that vutli is less than vrt of versions in nextV L */

56: for all (ver ∈ nextV L) do

57: x = t-object of ver;

58: G tutli = min(G tutli, x[ver].vrt− 1);
59: end for

60: /* Store the current value of the global counter as commit time and increment it */

61: comTimei = G tCntr.add&Get(incrV al); /* incrV al can be any constant ≥ 1 */

62: G tutli = min(G tutli, comTimei); /* Ensure that G tutli is less than or equal to comTime */

63: /* Abort Ti if its limits have crossed */

64: if (G tltli > G tutli) then return abort(i);

65: end if

24



66: for all (Tk ∈ smallRL) do

67: if (isAborted(Tk)) then

68: continue;

69: end if

70: if (G tltlk ≥ G tutli) then /* Ensure that the limits do not cross for both Ti & Tk */

71: if (G statek == live) then /* Check if Tk is live */

72: if (G itsi < G itsk) then

73: /* Transaction Tk has lower priority and is not yet committed. So it needs to be aborted */

74: abortRL = abortRL ∪ Tk; /* Store Tk in abortRL */

75: else/* Transaction Ti has to be aborted */

76: return abort(i);

77: end if/* (G itsi < G itsk) */

78: else/* (Tk is committed. Hence, Ti has to be aborted) */

79: return abort(i);

80: end if/* (G statek == live) */

81: end if/* (G tltlk ≥ G tutli) */

82: end for(Tk ∈ smallRL)
83: /* After this point Ti can’t abort. */

84: G tltli = G tutli;
85: /* Since Ti can’t abort, we can update Tk’s G tutl */

86: for all (Tk ∈ smallRL) do

87: if (isAborted(Tk)) then

88: continue;

89: end if

90: /* The following line ensure that G tltlk ≤ G tutlk < G tltli. Note that this does not cause the limits of

Tk to cross each other because of the check in Line 70.*/

91: G tutlk = min(G tutlk, G tltli − 1);
92: end for

93: for all Tk ∈ abortRL do /* Abort all the transactions in abortRL since Ti can’t abort */

94: G validk = F ;

95: end for

96: /* Having completed all the checks, Ti can be committed */

97: for all (x ∈ wseti) do

98: /* Create new v tuple: ts, val,rl,vrt for x */

99: newTuple = 〈G wtsi, wseti[x].val, nil, G tltli〉;
100: if (|x.vl|> k) then

101: replace the oldest tuple in x.vl with newTuple; /* x.vl is ordered by ts */

102: else

103: add a newTuple to x.vl in sorted order;

104: end if

105: end for/* x ∈ wseti */

106: G statei = commit;

107: unlock all variables;

108: return C ;
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Algorithm 22 abort(i): Invoked by various STM methods to abort transaction Ti. It returns A

1: G validi = F ; G statei = abort;

2: unlock all variables locked by Ti;

3: return A ;

We get the following nice properties on KSFTM. For simplicity, we assumed C and incrV al to be 0.1 and 1

respectively in our analysis. But the proof and the analysis holds for any value greater than 0.

Theorem 7 Any history generated by KSFTM is strict-serializable and locally-opaque.

Theorem 8 KSFTM algorithm ensures starvation-freedom.

As explained in the description Property 6, the proof of this property is somewhat involved. As expected, this

proof can be extended to UVSFTM as well.

Garbage Collection: Having described the starvation-free algorithm, we now describe how garbage collection

can be performed on the unbounded variant, UVSFTM to achieve UVSFTM-GC. This is achieved by deleting

non-latest version (i.e., there exists a version with greater ts) of each t-object whose timestamp, ts is less than the

CTS of smallest live transaction. It must be noted that UVSFTM (KSFTM) works with WTS which is greater or

equal to CTS for any transaction. Interestingly, the same garbage collection principle can be applied for PMVTO

to achieve PMVTO-GC.

To identify the transaction with the smallest CTS among live transactions, we maintain a set of all the live

transactions, live-list. When a transaction Ti begins, its CTS is added to this live-list. And when Ti terminates

(either commits or aborts), Ti is deleted from this live-list.

4 Experimental Evaluation

For performance evaluation of KSFTM with the state-of-the-art STMs, we implemented the the algorithms PKTO,

SV-SFTM [9, 27, 26] along with KSFTM in C++ 2. We used the available implementations of NOrec STM [6], and

ESTM [7] developed in C++. Although, only KSFTM and SV-SFTM provide starvation-freedom, we compared

with other STMs as well, to see its performance in practice.

Experimental system: The experimental system is a 2-socket Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz

with 14 cores per socket and 2 hyper-threads (HTs) per core, for a total of 56 threads. Each core has a private

32KB L1 cache and 256 KB L2 cache. The machine has 32GB of RAM and runs Ubuntu 16.04.2 LTS. In

our implementation, all threads have the same base priority and we use the default Linux scheduling algorithm.

This satisfies the Assumption 1 (bounded-termination) about the scheduler. We ensured that there no parasitic

transactions [3] in our experiments.

Methodology: Here we have considered two different applications:(1) Counter application - In this, each thread

invokes a single transaction which performs 10 reads/writes operations on randomly chosen t-objects. A thread

continues to invoke a transaction until it successfully commits. To obtain high contention, we have taken large

number of threads ranging from 50-250 where each thread performs its read/write operation over a set of 5 t-

objects. We have performed our tests on three workloads stated as: (W1) Li - Lookup intensive: 90% read,

10% write, (W2) Mi - Mid intensive: 50% read, 50% write and (W3) Ui - Update intensive: 10% read, 90%

write. This application is undoubtedly very flexible as it allows us to examine performance by tweaking different

parameters (refer to SubSection 4.1 for details). (2) Two benchmarks from STAMP suite [21] - (a) We considered

KMEANS which has low contention with short running transactions. The number of data points as 2048 with 16

dimensions and total clusters as 5. (b) We then considered LABYRINTH which has high contention with long

running transactions. We considered the grid size as 64x64x3 and paths to route as 48.

To study starvation in the various algorithms, we considered max-time, which is the maximum time taken by

a transaction among all the transactions in a given experiment to commit from its first invocation. This includes

time taken by all the aborted incarnations of the transaction to execute as well. To reduce the effect of outliers, we

took the average of max-time in ten runs as the final result for each application.

Results Analysis: Fig 8 illustrates max-time analysis of KSFTM over the above mentioned STMs for the counters

application under the workloads W1, W2 and W3 while varying the number of threads from 50 to 250. For

KSFTM and PKTO, we chose the value of K as 5 and C as 0.1 as the best results were obtained with these

2Code is available here: https://github.com/PDCRL/KSFTM
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Figure 8: Performance analysis on workload W1, W2, W3
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Figure 9: Performance analysis on KMEANS, LABYRINTH and KSFTM’s Stability

parameters. We can see that KSFTM performs the best for all the three workloads. KSFTM gives an average

speedup on max-time by a factor of 1.22, 1.89, 23.26 and 13.12 over PKTO, SV-SFTM, NOrec STM and ESTM

respectively.

Fig 9(a) shows analysis of max-time for KMEANS while Fig 9(b) shows for LABYRINTH. In this analysis

we have not considered ESTM as the integrated STAMP code for ESTM is not publicly available. For KMEANS,

KSFTM performs 1.5 and 1.44 times better than PKTO and SV-SFTM. But, NOrec is performing 1.09 times better

than KSFTM. This is because KMEANS has short running transactions have low contention. As a result, the

commit time of the transactions is also low.

On the other hand for LABYRINTH, KSFTM again performs the best. It performs 1.14, 1.4 and 2.63 times

better than PKTO, SV-SFTM and NOrec respectively. This is because LABYRINTH has high contention with

long running transactions. This result in longer commit times for transactions.

Fig 9(c) shows the stability of KSFTM algorithm over time for the counter application. Here we fixed the num-

ber of threads to 32, K as 5, C as 0.1, t-objects as 1000, along with 5 seconds warm-up period on W1 workload.

Each thread invokes transactions until its time-bound of 60 seconds expires. We performed the experiments on

number of transactions committed over time in the increments 5 seconds. The experiment shows that over time

KSFTM is stable which helps to hold the claim that KSFTM’s performance will continue in same manner if time

is increased to higher orders.

Maintaining multiple versions to increase the performance and to decrease the number of aborts, leads to
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Figure 10: Time comparison among variants of KSFTM

creating too many versions which are not of any use and hence occupying space. So, such garbage versions need

to be taken care of. Hence we come up with a garbage collection over these unwanted versions. This technique

help to conserve memory space and increases the performance in turn as no more unnecessary traversing of

garbage versions by transactions is necessary. We have used a global, i.e., across all transactions a list that keeps

track of all the live transactions in the system. We call this list as live-list. Each transaction at the beginning of its

life cycle creates its entry in this live-list. Under the optimistic approach of STM, each transaction in the shared

memory performs its updates in the stm-tryC phase. In this phase, each transaction performs some validations,

and if all the validations are successful then the transaction make changes or in simple terms creates versions of

the corresponding t-object in the shared memory. While creating a version every transaction, check if it is the least

timestamp live transaction present in the system by using live-list data structure, if yes then the current transaction

deletes all the version of that t-object and create one of its own. Else the transaction does not do any garbage

collection or delete any version and look for creating a new version of next t-object in the write set, if at all.

Fig 10 represents three variants of KSFTM (UVSFTM, UVSFTM-GC, and KSFTM) and Fig 11 shows the three

variants of PKTO (PMVTO, PMVTO-GC, and PKTO) on all the workloads W1W2 and W3. KSFTM outperforms

UVSFTM and UVSFTM-GC by a factor of 2.1 and 1.5. Similarly, PKTO outperforms PMVTO and PMVTO-GC by

a factor of 2 and 1.35. These results show that maintaining finite versions corresponding to each t-object performs

better than maintaining infinite versions and garbage collection on infinite versions corresponding to each t-object.
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Comparison on the basis of Abort count: Fig 12 shows the abort count comparisons of KSFTM with PKTO,

ESTM, NOrec, MVTO, and SV-SFTM across all workloads (W1, W2, and W3). The number of aborts in ESTM

and NOrec are high as compared to all other STM algorithms while all other algorithms (KSFTM, PKTO, MVTO,

SV-SFTM) have marginally small differences among them.

Best value of K and optimal value of constant C: To identify the best value of K for KSFTM, we ran our

experiment, varying value of K and keeping the number of threads as 64 on workload W1 and obtained the

optimal value of K in KSFTM is 5 as shown in Fig 13.(a) for counter application. Similarly, we calculate the best

value of K as 5 for PKTO on the same parameters. C, is a constant that is used to calculate WTS of a transaction.

i.e., wtsi = ctsi + C ∗ (ctsi − itsi); where, C is any constant greater than 0. We run or experiments across load

W1, for 64 threads and other parameters are same as defined in the methodology of Section 4, we achieve the best

value of C as 0.1 for counter application. Experimental results are shown in Fig 13 (b).

4.1 Pseudo code of Counter Application

OP LT SEED is defined as number of operations per transaction, T OBJ SEED is defined as number of transaction

objects in the system, TRANS LT defines the total number of transactions to be executed in the system, and

READ PER is the percentage of read operation which is used to define various workloads.

Algorithm 24 testFunc helper():Function invoked by threads

1: transaction count = 0
2: while (TRANS LT) do

3: /* Log the time at the start of every transaction */

4: begin time = time request()
5: /* Invoke the test function to execute a transaction */

6: abort count[thread id] = test function()
7: transaction count++
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Algorithm 23 main(): The main procedure invoked by counter application

1: /* To log abort counts by each thread */

2: abort count[NUMTHREADS]
3: /* To log average time taken by each transaction to commit */

4: time taken[NUMTHREADS]
5: /* To log the time of longest running transaction by each thread, worst case time */

6: worst time[NUMTHREADS]
7: for (i = 0 : NUMTHREADS) do

8: pthread create(&threads[i], NULL, testFunc helper,(void∗)args)

9: end for

10: for (i = 0 : NUMTHREADS) do

11: pthread join(threads[i], &status)

12: end for

13: max worst time = 0.0
14: total abort count = 0
15: average timetaken = 0
16: for (i = 0 : NUMTHREADS) do

17: if (max worst time < worst time[i]) then

18: max worst time = worst time[i]
19: end if

20: total abort count+ = abort count[i]
21: average time taken+ = time taken[i]
22: end for

8: /* Log the time at the end of every transaction */

9: end time = time request()
10: time taken[thread id]+ = (end time− begin time)
11: if (worst time[threadid] < (end time− begin time)) then

12: worst time[threadid] = (end time− begin time)
13: end if

14: TRANS LT -= 1

15: end while

16: time taken[thread id] /= transaction count
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Algorithm 25 test function():main test function while executes a transaction

1: Transaction ∗T = new Transaction;

2: T → g its = NIL

3: local abort count = 0

4: label:

5: while (true) do

6: if (T → g its != NIL) then

7: its = T → g its
8: T = lib → stm-begin(its)
9: else

10: T = lib → stm-begin(T → g its)
11: end if

12: for all (OP LT SEED) do

13: t obj = rand()%T OBJ SEED
14: randV al = rand()%OP SEED
15: if (randV al <= READ PER) then

16: stm-read(t obj, value)
17: if (value == ABORTED) then

18: local abort count++

19: goto label

20: end if

21: else

22: stm-write(t obj, value)
23: end if

24: end for

25: if (lib → stm-tryC() == ABORTED) then

26: local abort count++

27: continue

28: end if

29: break

30: end while

5 Graph Characterization of Local Opacity & KSFTM Correctness

To prove correctness of STM systems, it is useful to consider graph characterization of histories. In this section,

we describe the graph characterization developed by Kumar et al [17] for proving opacity which is based on

characterization by Bernstein and Goodman [2]. We extend this characterization for LO.

Consider a history H which consists of multiple versions for each t-object. The graph characterization uses

the notion of version order. Given H and a t-object x, we define a version order for x as any (non-reflexive) total

order on all the versions of x ever created by committed transactions in H . It must be noted that the version order

may or may not be the same as the actual order in which the version of x are generated in H . A version order of

H , denoted as ≪H is the union of the version orders of all the t-objects in H .

Consider the history H2 : r1(x, 0)r2(x, 0)r1(y, 0)r3(z, 0)w1(x, 5)w3(y, 15)w2(y, 10)w1(z, 10)
c1c2r4(x, 5)r4(y, 10)w3(z, 15)c3r4(z, 10). Using the notation that a committed transaction Ti writing to x creates

a version xi, a possible version order for H2 ≪H2 is: 〈x0 ≪ x1〉, 〈y0 ≪ y2 ≪ y3〉, 〈z0 ≪ z1 ≪ z3〉.
We define the graph characterization based on a given version order. Consider a history H and a version order

≪. We then define a graph (called opacity graph) on H using ≪, denoted as OPG(H,≪) = (V,E). The vertex

set V consists of a vertex for each transaction Ti in H . The edges of the graph are of three kinds and are defined

as follows:

1. real-time(real-time) edges: If Ti commits before Tj starts in H , then there is an edge from vi to vj . This set

of edges are referred to as rt(H).

2. rf (reads-from) edges: If Tj reads x from Ti in H , then there is an edge from vi to vj . Note that in order

for this to happen, Ti must have committed before Tj and ci <H rj(x). This set of edges are referred to as
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rf(H).

3. mv(multiversion) edges: The mv edges capture the multiversion relations and is based on the version order.

Consider a successful read operation rk(x, v) and the write operation wj(x, v) belonging to transaction Tj

such that rk(x, v) reads x from wj(x, v) (it must be noted Tj is a committed transaction and cj <H rk).

Consider a committed transaction Ti which writes to x, wi(x, u) where u 6= v. Thus the versions created

xi, xj are related by ≪. Then, if xi ≪ xj we add an edge from vi to vj . Otherwise (xj ≪ xi), we add an

edge from vk to vi. This set of edges are referred to as mv(H,≪).

Using the construction, the OPG(H2,≪H2) for history H2 and ≪H2 is shown in Fig 14. The edges are

annotated. The only mv edge from T4 to T3 is because of t-objects y, z. T4 reads value 5 for z from T1 whereas

T3 also writes 15 to z and commits before r4(z).

rf

rt, rf
rf

mv

rt, rf

rt, rf

rtT0

T1

T4

T3

T2

Figure 14: OPG(H2,≪H2)

Kumar et al [17] showed that if a version order ≪ exists for a history H such that OPG(H,≪H) is acyclic,

then H is opaque. This is captured in the following result.

Result 9 A valid history H is opaque iff there exists a version order ≪H such that OPG(H,≪H) is acyclic.

This result can be easily extended to prove LO as follows

Theorem 10 A valid history H is locally-opaque iff for each sub-history sh in H.subhistSet there exists a ver-

sion order ≪sh such that OPG(sh,≪sh) is acyclic. Formally, 〈(H is locally-opaque) ⇔ (∀sh ∈ H.subhistSet, ∃ ≪sh:
OPG(sh,≪sh) is acyclic)〉.

Proof. To prove this theorem, we have to show that each sub-history sh in H.subhistSet is valid. Then the rest

follows from Result 9. Now consider a sub-history sh. Consider any read operation ri(x, v) of a transaction Ti. It

is clear that Ti must have read a version of x created by a previously committed transaction. From the construction

of sh, we get that all the transaction that committed before ri are also in sh. Hence sh is also valid.

Now, proving sh to be opaque iff there exists a version order ≪sh such that OPG(sh,≪sh) is acyclic follows

from Result 9.

Lemma 11 Consider a history H in gen(KSFTM) with two transactions Ti and Tj such that both their G valid

flags are true. there is an edge from Ti → Tj then G tltli < G tltlj .

Proof. There are three types of possible edges in MVSG.

1. Real-time edge: Since, transaction Ti and Tj are in real time order so comTimei < G ctsj . As we know

from Lemma 36 (G tltli ≤ comTimei). So, (G tltli ≤ CTSj).
We know from STM stm-begin(its) method, G tltlj = G ctsj .

Eventually, G tltli < G tltlj .

2. Read-from edge: Since, transaction Ti has been committed and Tj is reading from Ti so, from Line 99

stm-tryC(Ti), G tltli = vrti.

and from Line 20 STM read(j, x), G tltlj = max(G tltlj ,
x[curV er].vrt+ 1) ⇒ (G tltlj > vrti) ⇒ (G tltlj > G tltli)
Hence, G tltli < G tltlj .
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3. Version-order edge: Consider a triplet wj(xj)rk(xj)wi(xi) in which there are two possibilities of version

order:

(a) i ≪ j =⇒ G wtsi < G wtsj
There are two possibilities of commit order:

i. comTimei <H comTimej : Since, Ti has been committed before Tj so G tltli = vrti. From

Line 53 of stm-tryC(Tj), vrti < G tltl(j).
Hence, G tltli < G tltlj .

ii. comTimej <H comTimei: Since, Tj has been committed before Ti so G tltlj = vrtj . From

Line 58 of stm-tryC(Ti), G tutli < vrtj . As we have assumed G validi is true so definitely

it will execute the Line 84 stm-tryC(Ti) i.e. G tltli = G tutli.
Hence, G tltli < G tltlj .

(b) j ≪ i =⇒ G wtsj < G wtsi
Again, there are two possibilities of commit order:

i. comTimej <H comTimei: Since, Tj has been committed before Ti and Tk read from Tj . There

can be two possibilities G wtsk.

A. G wtsk > G wtsi: That means Tk is in largeRL of Ti. From Line 45 to Line 47of

stm-tryC(i), either transaction Tk or Ti, G valid flag is set to be false. If Ti returns abort

then this case will not be considered in Lemma 11. Otherwise, as Tj has already been com-

mitted and later Ti will execute the Line 99 stm-tryC(Ti), Hence, G tltlj < G tltli.

B. G wtsk < G wtsi: That means Tk is in smallRL of Ti. From Line 17 of read(k, x),
G tutlk < vrti and from Line 20 of read(k, x), G tltlk > vrtj . Here, Tj has already

been committed so, G tltlj = vrtj . As we have assumed G validi is true so definitely it

will execute the Line 99 stm-tryC(Ti), G tltli = vrti.

So, G tutlk < G tltli and G tltlk > G tltlj . While considering G validk flag is true →
G tltlk < G tutlk.

Hence, G tltlj < G tltlk < G tutlk < G tltli.
Therefore, G tltlj < G tltlk < G tltli.

ii. comTimei <H comTimej : Since, Ti has been committed before Tj so, G tltli = vrti. From

Line 58 of stm-tryC(Tj), G tutlj < vrti i.e. G tutlj < G tltli. Here, Tk read from Tj . So,

From Line 17 of read(k, x), G tutlk < vrti → G tutlk < G tltli from Line 20 of read(k, x),
G tltlk > vrtj . As we have assumed G validj is true so definitely it will execute the Line 99

stm-tryC(Tj), G tltlj = vrtj .

Hence, G tltlj < G tltlk < G tutlk < G tltli.
Therefore, G tltlj < G tltlk < G tltli.

Theorem 12 Any history H gen(KSFTM) is local opaque iff for a given version order ≪ H, MVSG(H,≪) is

acyclic.

Proof. We are proving it by contradiction, so Assuming MVSG(H,≪) has cycle. From Lemma 11, For any two

transactions Ti and Tj such that both their G valid flags are true and if there is an edge from Ti → Tj then G tltli
< G tltlj . While considering transitive case for k transactions T1, T2, T3...Tk such that G valid flags of all the

transactions are true. if there is an edge from T1 → T2 → T3 →....→ Tk then G tltl1 < G tltl2 < G tltl3 < ....<
G tltlk.

Now, considering our assumption, MVSG(H,≪) has cycle so, T1 → T2 → T3 →....→ Tk → T1 that implies

G tltl1 < G tltl2 < G tltl3 < ....< G tltlk < G tltl1.

Hence from above assumption, G tltl1 < G tltl1 but this is impossible. So, our assumption is wrong.

Therefore, MVSG(H,≪) produced by KSFTM is acyclic.

M OrderH : It stands for method order of history H in which methods of transactions are interval (consists of

invocation and response of a method) instead of dot (atomic). Because of having method as an interval, methods

of different transactions can overlap. To prove the correctness (local opacity) of our algorithm, we need to order

the overlapping methods.

Let say, there are two transactions Ti and Tj either accessing common (t-objects/G lock) or G tCntr through

operations opi and opj respectively. If res(opi) <H inv(opj) then opi and opj are in real-time order in H. So, the

M OrderH is opi → opj .
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If operations are overlapping and either accessing common t-objects or sharing G lock:

1. readi(x) and readj(x): If readi(x) acquires the lock on x before readj(x) then the M OrderH is opi →
opj .

2. readi(x) and stm-tryCj(): If they are accessing common t-objects then, let say readi(x) acquires the lock

on x before stm-tryCj() then the M OrderH is opi → opj . Now if they are not accessing common t-objects

but sharing G lock then, let say readi(x) acquires the lock on G locki before stm-tryCj() acquires the

lock on relLL (which consists of G locki and G lockj) then the M OrderH is opi → opj .

3. stm-tryCi() and stm-tryCj(): If they are accessing common t-objects then, let say stm-tryCi() acquires

the lock on x before stm-tryCj() then the M OrderH is opi → opj . Now if they are not accessing common

t-objects but sharing G lock then, let say stm-tryCi() acquires the lock on relLLi before stm-tryCj()
then the M OrderH is opi → opj .

If operations are overlapping and accessing different t-objects but sharing G tCntr counter:

1. stm-begini and stm-beginj : Both the stm-begin are accessing shared counter variable G tCntr. If

stm-begini executes G tCntr.get&Inc() before stm-beginj then the M OrderH is opi → opj .

2. stm-begini and stm-tryC(j): If stm-begini executes G tCntr.get&Inc() before stm-tryC(j) then the

M OrderH is opi → opj .

Linearization: The history generated by STMs are generally not sequintial because operations of the transac-

tions are overlapping. The correctness of STMs is defined on sequintial history, inorder to show history generated

by our algorithm is correct we have to consider sequintial history. We have enough information to order the

overlapping methods, after ordering the operations will have equivalent sequintial history, the total order of the

operation is called linearization of the history.

Operation graph (OPG): Consider each operation as a vertex and edges as below:

1. Real time edge: If response of operation opi happen before the invocation of operation opj i.e. rsp(opi) <H

inv(opj) then there exist real time edge between opi → opj .

2. Conflict edge: It is based on L OrderH which depends on three conflicts:

(a) Common t-object: If two operations opi and opj are overlapping and accessing common t-object x.

Let say opi acquire lock first on x then L Order.opi(x) <H L Order.opj(x) so, conflict edge is opi
→ opj .

(b) Common G valid flag: If two operation opi and opj are overlapping but accessing common G valid
flag instead of t-object. Let say opi acquire lock first on G validi then L Order.opi(x) <H L Order.opj(x)

so, conflict edge is opi → opj .

3. Common G tCntr counter: If two operation opi and opj are overlapping but accessing common G tCntr
counter instead of t-object. Let say opi access G tCntr counter before opj then L Order.opi(x) <H

L Order.opj(x) so, conflict edge is opi → opj .

Lemma 13 All the locks in history H (L OrderH ) gen(KSFTM) follows strict partial order. So, operation graph

(OPG(H)) is acyclic. If (opi→opj) in OPG, then atleast one of them will definitely true: (Fpui(α) < Lpl opj(α))

∪ (access.G tCntri <access.G tCntrj) ∪ (Fpu opi(α) <access.G tCntrj) ∪ (access.G tCntri <Lpl opj(α)).

Here, α can either be t-object or G valid.

Proof. we consider proof by induction, So we assummed there exist a path from op1 to opn and there is an edge

between opn to opn+1. As we described, while constructing OPG(H) we need to consider three types of edges.

We are considering one by one:

1. Real time edge between opn to opn+1:

(a) opn+1 is a locking method: In this we are considering all the possible path between op1 to opn:
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i. (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)).

So, (Fu op1(α) < Ll opn(α)) < (Fu opn(α) < Ll opn+1(α))

Hence, (Fu op1(α) < Ll opn+1(α))

ii. (Fu op1(α) < Ll opn(α)): Here, (access.G tCntrn < Ll opn+1(α)). As we know if any

method is locking as well as accessing common counter then locking tobject first then access-

ing the counter after that unlocking tobject i.e.

So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).

Hence, (Fu op1(α) < Ll opn+1(α))

iii. (access.G tCntr1) < (access.G tCntrn): Here, (access.G tCntrn) < Ll opn+1(α)).

So, (access.G tCntr1) < (access.G tCntrn) < Ll opn+1(α)).

Hence, (access.G tCntr1) < Ll opn+1(α)).

iv. (Fu op1(α) < (access.G tCntrn): Here, (access.G tCntrn) < Ll opn+1(α)).

So, (Fu op1(α) < (access.G tCntrn) < Ll opn+1(α)).

Hence, (Fu op1(α) < Ll opn+1(α))

v. (access.G tCntr1) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)).

So, (access.G tCntr1) < Ll opn(α)) < (Fu opn(α) < Ll opn+1(α)).

Hence, (access.G tCntr1) < Ll opn+1(α)).

vi. (access.G tCntr1) <Ll opn(α)): Here, (access.G tCntrn <Ll opn+1(α)). As we know if any

method is locking as well as accessing common counter then locking tobject first then accessing

the counter after that unlocking tobject i.e.

So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).

Hence, (access.G tCntr1) < Ll opn+1(α)).

(b) opn+1 is a non-locking method: Again, we are considering all the possible path between op1 to opn:

i. (Fu op1(α) < Ll opn(α)): Here, (access.G tCntrn) < (access.G tCntrn+1).

As we know if any method is locking as well as accessing common counter then locking tobject

first then accessing the counter after that unlocking tobject i.e.

So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).

Hence, (Fu op1(α) < (access.G tCntrn+1)

ii. (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < (access.G tCntrn+1).

So, (Fu op1(α) < Ll opn(α)) < (Fu opn(α) < (access.G tCntrn+1)

Hence, (Fu op1(α) < (access.G tCntrn+1))

iii. (access.G tCntr1) < (access.G tCntrn): Here, (access.G tCntrn) < (access.G tCntrn+1).

So, (access.G tCntr1) < (access.G tCntrn) < (access.G tCntrn+1).

Hence, (access.G tCntr1) < (access.G tCntrn+1).

iv. (Fu op1(α) < (access.G tCntrn): Here, (access.G tCntrn) < (access.G tCntrn+1).

So, (Fu op1(α) < (access.G tCntrn) < (access.G tCntrn+1).

Hence, (Fu op1(α) < (access.G tCntrn+1)

v. (access.G tCntr1) < Ll opn(α)): Here, (access.G tCntrn) < (access.G tCntrn+1).

As we know if any method is locking as well as accessing common counter then locking tobject

first then accessing the counter after that unlocking tobject i.e.

So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).

Hence, (access.G tCntr1) < (access.G tCntrn+1).

vi. (access.G tCntr1) < Ll opn(α)): Here, (Fu opn(α) < (access.G tCntrn+1).

So, (access.G tCntr1) < Ll opn(α)) < (Fu opn(α) < (access.G tCntrn+1).

Hence, (access.G tCntr1) < (access.G tCntrn+1).

2. Conflict edge between opn to opn+1:

(a) (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)). Ref 1.(a).i.

(b) (access.G tCntr1) < (access.G tCntrn): Here, (Fu opn(α) < Ll opn+1(α)). As we know if any

method is locking as well as accessing common counter then locking tobject first then accessing the

counter after that unlocking tobject i.e.

So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).

Hence, (access.G tCntr1) < Ll opn+1(α)).
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(c) (Fu op1(α) < (access.G tCntrn): Here, (Fu opn(α) < Ll opn+1(α)). As we know if any method

is locking as well as accessing common counter then locking tobject first then accessing the counter

after that unlocking tobject i.e.

So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).

Hence, (Fu op1(α) < Ll opn+1(α)).

(d) (access.G tCntr1) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)).

Ref 1.(a).v.

3. Common counter edge between opn to opn+1:

(a) (Fu op1(α) < Ll opn(α)): Here, (access.G tCntrn) < (access.G tCntrn+1). As we know if any

method is locking as well as accessing common counter then locking tobject first then accessing the

counter after that unlocking tobject i.e.

So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).

Hence, (Fu op1(α) < (access.G tCntrn+1).

(b) (access.G tCntr1) < (access.G tCntrn): Here, (access.G tCntrn) < (access.G tCntrn+1). Ref

1.(b).iii.

(c) (Fu op1(α) < (access.G tCntrn): Here, (access.G tCntrn) < (access.G tCntrn+1). Ref 1.(b).iv.

(d) (access.G tCntr1) < Ll opn(α)): Here, (access.G tCntrn) < (access.G tCntrn+1). Ref 1.(b).v

Therefore, OPG(H, M Order) produced by KSFTM is acyclic.

Lemma 14 Any history H gen(KSFTM) with α linearization such that it respects M OrderH then (H, α) is valid.

Proof. From the definition of valid history: If all the read operations of H is reading from the previously committed

transaction Tj then H is valid.

In order to prove H is valid, we are analyzing the read(i,x). so, from Line 10, it returns the largest ts value

less than G wtsi that has already been committed and return the value successfully. If such version created by

transaction Tj found then Ti read from Tj . Otherwise, if there is no version whose WTS is less than Ti’s WTS,

then Ti returns abort.

Now, consider the base case read(i,x) is the first transaction T1 and none of the transactions has been created a

version then as we have assummed, there always exist T0 by default that has been created a version for all t-objects.

Hence, T1 reads from committed transaction T0.

So, all the reads are reading from largest ts value less than G wtsi that has already been committed. Hence, (H,

α) is valid.

Lemma 15 Any history H gen(KSFTM) with α and β linearization such that both respects M OrderH i.e.

M OrderH ⊆ α and M OrderH ⊆ β then ≺RT
(H,α)= ≺RT

(H,β).

Proof. Consider a history H gen(KSFTM) such that two transactions Ti and Tj are in real time order which

respects M OrderH i.e. stm-tryCi < stm-beginj . As α and β are linearizations of H so, stm-tryCi <(H,α)

stm-beginj and stm-tryCi <(H,β) stm-beginj . Hence in both the cases of linearizations, Ti committed before

begin of Tj . So, ≺RT
(H,α)= ≺RT

(H,β).

Lemma 16 Any history H gen(KSFTM) with α and β linearization such that both respects M OrderH i.e.

M OrderH ⊆ α and M OrderH ⊆ β then (H,α) is local opaque iff (H,β) is local opaque.

Proof. As α and β are linearizations of history H gen(KSFTM) so, from Lemma 14 (H, α) and (H, β) are valid

histories.

Now assuming (H, α) is local opaque so we need to show (H, β) is also local opaque. Since (H, α) is local

opaque so there exists legal t-sequential history S (with respect to each aborted transactions and last committed

transaction while considering only committed transactions) which is equivalent to (H , α). As we know β is a

linearization of H so (H , β) is equivalent to some legal t-sequential history S. From the definition of local opacity

≺RT
(H,α)⊆≺RT

S . From Lemma 15, ≺RT
(H,α)= ≺RT

(H,β) that implies ≺RT
(H,β)⊆≺RT

S . Hence, (H,β) is local opaque.

Now consider the other way in which (H, β) is local opaque and we need to show (H, α) is also local opaque.

We can prove it while giving the same argument as above, by exchanging α and β.

Hence, (H,α) is local opaque iff (H,β) is local opaque.
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Theorem 17 Any history generated by KSFTM is locally-opaque.

Proof. For proving this, we consider a sequential history H generated by KSFTM. We define the version order

≪vrt: for two versions vi, vj it is defined as

(vi ≪vrt vj) ≡ (vi.vrt < vj .vrt)
Using this version order ≪vrt, we can show that all the sub-histories in H.subhistSet are acyclic.

Since the histories generated by KSFTM are locally-opaque, we get that they are also strict-serializable.

Corollary 18 Any history generated by KSFTM is strict-serializable.

6 Proof of Liveness

Proof Notations: Let gen(KSFTM) consist of all the histories accepted by KSFTM algorithm. In the follow sub-

section, we only consider histories that are generated by KSFTM unless explicitly stated otherwise. For simplicity,

we only consider sequential histories in our discussion below.

Consider a transaction Ti in a history H generated by KSFTM. Once it executes stm-begin method, its ITS,

CTS, WTS values do not change. Thus, we denote them as itsi, ctsi, wtsi respectively for Ti. In case the context

of the history H in which the transaction executing is important, we denote these variables as H.itsi, H.ctsi, H.wtsi
respectively.

The other variables that a transaction maintains are: tltl, tutl, lock, valid, state. These values change as the

execution proceeds. Hence, we denote them as: H.tltli, H.tutli, H.locki, H.validi, H.statei. These represent

the values of tltl, tutl, lock, valid, state after the execution of last event in H . Depending on the context, we

sometimes ignore H and denote them only as: locki, validi, statei, tltli, tutli.
We approximate the system time with the value of tCntr. We denote the sys-time of history H as the value of

tCntr immediately after the last event of H . Further, we also assume that the value of C is 1 in our arguments.

But, it can be seen that the proof will work for any value greater than 1 as well.

The application invokes transactions in such a way that if the current Ti transaction aborts, it invokes a new

transaction Tj with the same ITS. We say that Ti is an incarnation of Tj in a history H if H.itsi = H.itsj . Thus

the multiple incarnations of a transaction Ti get invoked by the application until an incarnation finally commits.

To capture this notion of multiple transactions with the same ITS, we define incarSet (incarnation set) of Ti in

H as the set of all the transactions in H which have the same ITS as Ti and includes Ti as well. Formally,

H.incarSet(Ti) = {Tj |(Ti = Tj) ∨ (H.itsi = H.itsj)}

Note that from this definition of incarSet, we implicitly get that Ti and all the transactions in its incarSet of H
also belong to H . Formally, H.incarSet(Ti) ∈ H.txns.

The application invokes different incarnations of a transaction Ti in such a way that as long as an incarnation

is live, it does not invoke the next incarnation. It invokes the next incarnation after the current incarnation has got

aborted. Once an incarnation of Ti has committed, it can’t have any future incarnations. Thus, the application

views all the incarnations of a transaction as a single application-transaction.

We assign incNums to all the transactions that have the same ITS. We say that a transaction Ti starts afresh,

if Ti.incNum is 1. We say that Ti is the nextInc of Ti if Tj and Ti have the same ITS and Ti’s incNum is Tj’s

incNum + 1. Formally, 〈(Ti.nextInc = Tj) ≡ (itsi = itsj) ∧ (Ti.incNum = Tj .incNum+ 1)〉
As mentioned the objective of the application is to ensure that every application-transaction eventually com-

mits. Thus, the applications views the entire incarSet as a single application-transaction (with all the transactions

in the incarSet having the same ITS). We can say that an application-transaction has committed if in the corre-

sponding incarSet a transaction in eventually commits. For Ti in a history H , we denote this by a boolean value

incarCt (incarnation set committed) which implies that either Ti or an incarnation of Ti has committed. Formally,

we define it as H.incarCt(Ti)

H.incarCt(Ti) =

{

True (∃Tj : (Tj ∈ H.incarSet(Ti)) ∧ (Tj ∈ H.committed))

False otherwise

From the definition of incarCt we get the following observations & lemmas about a transaction Ti

Observation 19 Consider a transaction Ti in a history H with its incarCt being true in H . Then Ti is terminated

(either committed or aborted) in H . Formally, 〈H,Ti : (Ti ∈ H.txns) ∧ (H.incarCt(Ti)) =⇒ (Ti ∈
H.terminated)〉.
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Observation 20 Consider a transaction Ti in a history H with its incarCt being true in H1. Let H2 be a extension

of H1 with a transaction Tj in it. Suppose Tj is an incarnation of Ti. Then Tj’s incarCt is true in H2. Formally,

〈H1, H2, Ti, Tj : (H1 ⊑ H2) ∧ (H1.incarCt(Ti)) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) =⇒
(H2.incarCt(Tj))〉.

Lemma 21 Consider a history H1 with a strict extension H2. Let Ti & Tj be two transactions in H1 & H2
respectively. Let Tj not be in H1. Suppose Ti’s incarCt is true. Then ITS of Ti cannot be the same as ITS of

Tj . Formally, 〈H1, H2, Ti, Tj : (H1 ⊏ H2) ∧ (H1.incarCt(Ti)) ∧ (Tj ∈ H2.txns) ∧ (Tj /∈ H1.txns) =⇒
(H1.itsi 6= H2.itsj)〉.

Proof. Here, we have that Ti’s incarCt is true in H1. Suppose Tj is an incarnation of Ti, i.e., their ITSs are the

same. We are given that Tj is not in H1. This implies that Tj must have started after the last event of H1.

We are also given that Ti’s incarCt is true in H1. This implies that an incarnation of Ti or Ti itself has

committed in H1. After this commit, the application will not invoke another transaction with the same ITS as Ti.

Thus, there cannot be a transaction after the last event of H1 and in any extension of H1 with the same ITS of T1.

Hence, H1.itsi cannot be same as H2.itsj .

Now we show the liveness with the following observations, lemmas & theorems. We start with two observa-

tions about that histories of which one is an extension of the other. The following states that for any history, there

exists an extension. In other words, we assume that the STM system runs forever and does not terminate. This is

required for showing that every transaction eventually commits.

Observation 22 Consider a history H1 generated by gen(KSFTM). Then there is a history H2 in gen(KSFTM)

such that H2 is a strict extension of H1. Formally, 〈∀H1 : (H1 ∈ gen(ksftm)) =⇒ (∃H2 : (H2 ∈
gen(ksftm)) ∧ (H1 ⊏ H2)〉.

The follow observation is about the transaction in a history and any of its extensions.

Observation 23 Given two histories H1 & H2 such that H2 is an extension of H1. Then, the set of transactions

in H1 are a subset equal to the set of transaction in H2. Formally, 〈∀H1, H2 : (H1 ⊑ H2) =⇒ (H1.txns ⊆
H2.txns)〉.

In order for a transaction Ti to commit in a history H , it has to compete with all the live transactions and all

the aborted that can become live again as a different incarnation. Once a transaction Tj aborts, another incarnation

of Tj can start and become live again. Thus Ti will have to compete with this incarnation of Tj later. Thus, we

have the following observation about aborted & committed transactions.

Observation 24 Consider an aborted transaction Ti in a history H1. Then there is an extension of H1, H2 in

which an incarnation of Ti, Tj is live and has ctsj is greater than ctsi. Formally, 〈H1, Ti : (Ti ∈ H1.aborted) =⇒
(∃Tj , H2 : (H1 ⊑ H2) ∧ (Tj ∈ H2.live) ∧ (H2.itsi = H2.itsj) ∧ (H2.ctsi < H2.ctsj))〉.

Observation 25 Consider an committed transaction Ti in a history H1. Then there is no extension of H1, in

which an incarnation of Ti, Tj is live. Formally, 〈H1, Ti : (Ti ∈ H1.committed) =⇒ (∄Tj , H2 : (H1 ⊑
H2) ∧ (Tj ∈ H2.live) ∧ (H2.itsi = H2.itsj))〉.

Lemma 26 Consider a history H1 and its extension H2. Let Ti, Tj be in H1, H2 respectively such that they are

incarnations of each other. If WTS of Ti is less than WTS of Tj then CTS of Ti is less than CTS Tj . Formally,

〈H1, H2, Ti, Tj : (H1 ⊏ H2) ∧ (Ti ∈ H1.txns) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.wtsi <
H2.wtsj) =⇒ (H1.ctsi < H2.ctsj)〉

Proof. Here we are given that

H1.wtsi < H2.wtsj (2)

The definition of WTS of Ti is: H1.wtsi = H1.ctsi + C ∗ (H1.ctsi −H1.itsi). Combining this Eq.(2), we

get that

(C+1)∗H1.ctsi−C ∗H1.itsi < (C+1)∗H2.ctsj−C ∗H2.itsj
Ti∈H2.incarSet(Tj)
−−−−−−−−−−−−−→

H1.itsi=H2.itsj
H1.ctsi < H2.ctsj .

Lemma 27 Consider a live transaction Ti in a history H1 with its wtsi less than a constant α. Then there

is a strict extension of H1, H2 in which an incarnation of Ti, Tj is live with WTS greater than α. Formally,

〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.wtsi < α) =⇒ (∃Tj , H2 : (H1 ⊑ H2) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ ((Tj ∈
H2.committed) ∨ ((Tj ∈ H2.live) ∧ (H2.wtsj > α))))〉.
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Proof. The proof comes the behavior of an application-transaction. The application keeps invoking a transaction

with the same ITS until it commits. Thus the transaction Ti which is live in H1 will eventually terminate with an

abort or commit. If it commits, H2 could be any history after the commit of T2.

On the other hand if Ti is aborted, as seen in Observation 24 it will be invoked again or reincarnated with

another CTS and WTS. It can be seen that CTS is always increasing. As a result, the WTS is also increasing. Thus

eventually the WTS will become greater α. Hence, we have that either an incarnation of Ti will get committed or

will eventually have WTS greater than or equal to α.

Next we have a lemma about CTS of a transaction and the sys-time of a history.

Lemma 28 Consider a transaction Ti in a history H . Then, we have that CTS of Ti will be less than or equal to

sys-time of H . Formally, 〈Ti, H1 : (Ti ∈ H.txns) =⇒ (H.ctsi ≤ H.sys-time)〉.

Proof. We get this lemma by observing the methods of the STM System that increment the tCntr which are

stm-begin and stm-tryC. It can be seen that CTS of Ti gets assigned in the stm-begin method. So if the last

method of H is the stm-begin of Ti then we get that CTS of Ti is same as sys-time of H . On the other hand if

some other method got executed in H after stm-begin of Ti then we have that CTS of Ti is less than sys-time

of H . Thus combining both the cases, we get that CTS of Ti is less than or equal to as sys-time of H , i.e.,

(H.ctsi ≤ H.sys-time)
From this lemma, we get the following corollary which is the converse of the lemma statement

Corollary 29 Consider a transaction Ti which is not in a history H1 but in an strict extension of H1, H2.

Then, we have that CTS of Ti is greater than the sys-time of H . Formally, 〈Ti, H1, H2 : (H1 ⊏ H2) ∧ (Ti /∈
H1.txns) ∧ (Ti ∈ H2.txns) =⇒ (H2.ctsi > H1.sys-time)〉.

Now, we have lemma about the methods of KSFTM completing in finite time.

Lemma 30 If all the locks are fair and the underlying system scheduler is fair then all the methods of KSFTM

will eventually complete.

Proof. It can be seen that in any method, whenever a transaction Ti obtains multiple locks, it obtains locks in the

same order: first lock relevant t-objects in a pre-defined order and then lock relevant G locks again in a predefined

order. Since all the locks are obtained in the same order, it can be seen that the methods of KSFTM will not

deadlock.

It can also be seen that none of the methods have any unbounded while loops. All the loops in stm-tryC method

iterate through all the t-objects in the write-set of Ti. Moreover, since we assume that the underlying scheduler is

fair, we can see that no thread gets swapped out infinitely. Finally, since we assume that all the locks are fair, it

can be seen all the methods terminate in finite time.

Theorem 31 Every transaction either commits or aborts in finite time.

Proof. This theorem comes directly from the Lemma 30. Since every method of KSFTM will eventually complete,

all the transactions will either commit or abort in finite time.

From this theorem, we get the following corollary which states that the maximum lifetime of any transaction is L.

Corollary 32 Any transaction Ti in a history H will either commit or abort before the sys-time of H crosses

ctsi + L.

The following lemma connects WTS and ITS of two transactions, Ti, Tj .

Lemma 33 Consider a history H1 with two transactions Ti, Tj . Let Ti be in H1.live. Suppose Tj’s WTS is

greater or equal to Ti’ s WTS. Then ITS of Tj is less than itsi + 2 ∗ L. Formally, 〈H,Ti, Tj : ({Ti, Tj} ⊆
H.txns) ∧ (Ti ∈ H.live) ∧ (H.wtsj ≥ H.wtsi) =⇒ (H.itsi + 2L ≥ H.itsj)〉.

Proof. Since Ti is live in H1, from Corollary 32, we get that it terminates before the system time, tCntr becomes

ctsi + L. Thus, sys-time of history H1 did not progress beyond ctsi + L. Hence, for any other transaction Tj

(which is either live or terminated) in H1, it must have started before sys-time has crossed ctsi + L. Formally

〈ctsj ≤ ctsi + L〉.
Note that we have defined WTS of a transaction Tj as: wtsj = (ctsj+C ∗(ctsj− itsj)). Now, let us consider

the difference of the WTSs of both the transactions.
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wtsj − wtsi = (ctsj + C ∗ (ctsj − itsj))− (ctsi + C ∗ (ctsi − itsi))
= (C + 1)(ctsj − ctsi)− C(itsj − itsi)
≤ (C + 1)L− C(itsj − itsi) [∵ ctsj ≤ ctsi + L]
= 2 ∗ L+ itsi − itsj [∵ C = 1]

Thus, we have that: 〈(itsi + 2L− itsj) ≥ (wtsj − wtsi)〉. This gives us that

((wtsj − wtsi) ≥ 0) =⇒ ((itsi + 2L− itsj) ≥ 0).
From the above implication we get that, (wtsj ≥ wtsi) =⇒ (itsi + 2L ≥ itsj).

It can be seen that KSFTM algorithm gives preference to transactions with lower ITS to commit. To understand

this notion of preference, we define a few notions of enablement of a transaction Ti in a history H . We start with

the definition of itsEnabled as:

Definition 2 We say Ti is itsEnabled in H if for all transactions Tj with ITS lower than ITS of Ti in H have

incarCt to be true. Formally,

H.itsEnabled(Ti) =

{

True (Ti ∈ H.live) ∧ (∀Tj ∈ H.txns : (H.itsj < H.itsi) =⇒ (H.incarCt(Tj)))

False otherwise

The follow lemma states that once a transaction Ti becomes itsEnabled it continues to remain so until it terminates.

Lemma 34 Consider two histories H1 and H2 with H2 being a extension of H1. Let a transaction Ti being live

in both of them. Suppose Ti is itsEnabled in H1. Then Ti is itsEnabled in H2 as well. Formally, 〈H1, H2, Ti :
(H1 ⊑ H2) ∧ (Ti ∈ H1.live) ∧ (Ti ∈ H2.live) ∧ (H1.itsEnabled(Ti)) =⇒ (H2.itsEnabled(Ti))〉.

Proof. When Ti begins in a history H3 let the set of transactions with ITS less than itsi be smIts. Then in any

extension of H3, H4 the set of transactions with ITS less than itsi remains as smIts.

Suppose H1, H2 are extensions of H3. Thus in H1, H2 the set of transactions with ITS less than itsi will

be smIts. Hence, if Ti is itsEnabled in H1 then all the transactions Tj in smIts are H1.incarCt(Tj). It can be

seen that this continues to remain true in H2. Hence in H2, Ti is also itsEnabled which proves the lemma.

The following lemma deals with a committed transaction Ti and any transaction Tj that terminates later. In

the following lemma, incrV al is any constant greater than or equal to 1.

Lemma 35 Consider a history H with two transactions Ti, Tj in it. Suppose transaction Ti commits before Tj

terminates (either by commit or abort) in H . Then comTimei is less than comTimej by at least incrV al.
Formally, 〈H, {Ti, Tj} ∈ H.txns : (stm-tryCi <H term-opj) =⇒ (comTimei + incrV al ≤ comTimej)〉.

Proof. When Ti commits, let the value of the global tCntr be α. It can be seen that in stm-begin method,

comTimej get initialized to ∞. The only place where comTimej gets modified is at Line 61 of stm-tryC. Thus if

Tj gets aborted before executing stm-tryC method or before this line of stm-tryC we have that comTimej remains

at ∞. Hence in this case we have that 〈comTimei + incrV al < comTimej〉.
If Tj terminates after executing Line 61 of stm-tryC method then comTimej is assigned a value, say β. It

can be seen that β will be greater than α by at least incrV al due to the execution of this line. Thus, we have that

〈α+ incrV al ≤ β〉
The following lemma connects the G tltl and comTime of a transaction Ti.

Lemma 36 Consider a history H with a transaction Ti in it. Then in H , tltli will be less than or equal to

comTimei. Formally, 〈H, {Ti} ∈ H.txns : (H.tltli ≤ H.comTimei)〉.

Proof. Consider the transaction Ti. In stm-begin method, comTimei get initialized to ∞. The only place where

comTimei gets modified is at Line 61 of stm-tryC. Thus if Ti gets aborted before this line or if Ti is live we have

that (tltli ≤ comTimei). On executing Line 61, comTimei gets assigned to some finite value and it does not

change after that.

It can be seen that tltli gets initialized to ctsi in Line 4 of stm-begin method. In that line, ctsi reads tCntr
and increments it atomically. Then in Line 61, comTimei gets assigned the value of tCntr after incrementing it.

Thus, we clearly get that ctsi(= tltli initially) < comTimei. Then tltli gets updated on Line 20 of read, Line 53

and Line 84 of stm-tryC methods. Let us analyze them case by case assuming that tltli was last updated in each

of these methods before the termination of Ti:
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1. Line 20 of read method: Suppose this is the last line where tltli updated. Here tltli gets assigned to 1 +

vrt of the previously committed version which say was created by a transaction Tj . Thus, we have the

following equation,

tltli = 1 + x[j].vrt (3)

It can be seen that x[j].vrt is same as tltlj when Tj executed Line 99 of stm-tryC. Further, tltlj in turn

is same as tutlj due to Line 84 of stm-tryC. From Line 62, it can be seen that tutlj is less than or equal to

comTimej when Tj committed. Thus we have that

x[j].vrt = tltlj = tutlj ≤ comTimej (4)

It is clear that from the above discussion that Tj executed stm-tryC method before Ti terminated (i.e.

stm-tryCj <H1 term-opi). From Eq.(3) and Eq.(4), we get

tltli ≤ 1 + comTimej
incrV al≥1
−−−−−−−→ tltli ≤ incrV al + comTimej

Lemma 35
−−−−−−−→ tltli ≤ comTimei

2. Line 53 of stm-tryC method: The reasoning in this case is very similar to the above case.

3. Line 84 of stm-tryC method: In this line, tltli is made equal to tutli. Further, in Line 62, tutli is made

lesser than or equal to comTimei. Thus combing these, we get that tltli ≤ comTimei. It can be seen that

the reasoning here is similar in part to Case 1.

Hence, in all the three cases we get that 〈tltli ≤ comTimei〉.
The following lemma connects the G tutl,comTime of a transaction Ti with WTS of a transaction Tj that has

already committed.

Lemma 37 Consider a history H with a transaction Ti in it. Suppose tutli is less than comTimei. Then, there

is a committed transaction Tj in H such that wtsj is greater than wtsi. Formally, 〈H ∈ gen(KSFTM), {Ti} ∈
H.txns : (H.tutli < H.comTimei) =⇒ (∃Tj ∈ H.committed : H.wtsj > H.wtsi)〉.

Proof. It can be seen that G tutli initialized in stm-begin method to ∞. tutli is updated in Line 17 of read

method, Line 58 & Line 62 of stm-tryC method. If Ti executes Line 17 of read method and/or Line 58 of stm-tryC

method then tutli gets decremented to some value less than ∞, say α. Further, it can be seen that in both these

lines the value of tutli is possibly decremented from ∞ because of nextV er (or ver), a version of x whose ts

is greater than Ti’s WTS. This implies that some transaction Tj , which is committed in H , must have created

nextV er (or ver) and wtsj > wtsi.
Next, let us analyze the value of α. It can be seen that α = x[nextV er/ver].vrt − 1 where nextV er/ver

was created by Tj . Further, we can see when Tj executed stm-tryC, we have that x[nextV er].vrt = tltlj (from

Line 99). From Lemma 36, we get that tltlj ≤ comTimej . This implies that α < comTimej . Now, we have

that Tj has already committed before the termination of Ti. Thus from Lemma 35, we get that comTimej <
comTimei. Hence, we have that,

α < comTimei (5)

Now let us consider Line 62 executed by Ti which causes tutli to change. This line will get executed only after

both Line 17 of read method, Line 58 of stm-tryC method. This is because every transaction executes stm-tryC

method only after read method. Further within stm-tryC method, Line 62 follows Line 58.

There are two sub-cases depending on the value of tutli before the execution of Line 62: (i) If tutli was ∞ and

then get decremented to comTimei upon executing this line, then we get comTimei = tutli. From Eq.(5), we

can ignore this case. (ii) Suppose the value of tutli before executing Line 62 was α. Then from Eq.(5) we get that

tutli remains at α on execution of Line 62. This implies that a transaction Tj committed such that wtsj > wtsi.
The following lemma connects the G tltl of a committed transaction Tj and comTime of a transaction Ti that

commits later.

Lemma 38 Consider a history H1 with transactions Ti, Tj in it. Suppose Tj is committed and Ti is live in

H1. Then in any extension of H1, say H2, tltlj is less than or equal to comTimei. Formally, 〈H1, H2 ∈
gen(KSFTM), {Ti, Tj} ⊆ H1, H2.txns : (H1 ⊑ H2) ∧ (Tj ∈ H1.committed) ∧ (Ti ∈ H1.live) =⇒
(H2.tltlj < H2.comTimei)〉.
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Proof. As observed in the previous proof of Lemma 36, if Ti is live or aborted in H2, then its comTime is ∞. In

both these cases, the result follows.

If Ti is committed in H2 then, one can see that comTime of Ti is not ∞. In this case, it can be seen that

Tj committed before Ti. Hence, we have that comTimej < comTimei. From Lemma 36, we get that tltlj ≤
comTimej . This implies that tltlj < comTimei.
In the following sequence of lemmas, we identify the condition by when a transaction will commit.

Lemma 39 Consider two histories H1, H3 such that H3 is a strict extension of H1. Let Ti be a transaction in

H1.live such that Ti itsEnabled in H1 and G validi flag is true in H1. Suppose Ti is aborted in H3. Then there

is a history H2 which is an extension of H1 (and could be same as H1) such that (1) Transaction Ti is live in H2;

(2) there is a transaction Tj that is live in H2; (3) H2.wtsj is greater than H2.wtsi; (4) Tj is committed in H3.

Formally, 〈H1, H3, Ti : (H1 ⊏ H3) ∧ (Ti ∈ H1.live) ∧ (H1.validi = True) ∧ (H1.itsEnabled(Ti)) ∧ (Ti ∈
H3.aborted)) =⇒ (∃H2, Tj : (H1 ⊑ H2 ⊏ H3) ∧ (Ti ∈ H2.live) ∧ (Tj ∈ H2.txns) ∧ (H2.wtsi <
H2.wtsj) ∧ (Tj ∈ H3.committed))〉.

Proof. To show this lemma, w.l.o.g we assume that Ti on executing either read or stm-tryC in H2 (which could

be same as H1) gets aborted resulting in H3. Thus, we have that Ti is live in H2. Here Ti is itsEnabled in H1.

From Lemma 34, we get that Ti is itsEnabled in H2 as well.

Let us sequentially consider all the lines where a Ti could abort. In H2, Ti executes one of the following lines

and is aborted in H3. We start with stm-tryC method.

1. STM stm-tryC:

(a) Line 3 : This line invokes abort() method on Ti which releases all the locks and returns A to the

invoking thread. Here Ti is aborted because its valid flag, is set to false by some other transaction, say

Tj , in its stm-tryC algorithm. This can occur in Lines: 45, 74 where Ti is added to Tj’s abortRL set.

Later in Line 94, Ti’s valid flag is set to false. Note that Ti’s valid is true (after the execution of the

last event) in H1. Thus, Ti’s valid flag must have been set to false in an extension of H1, which we

again denote as H2.

This can happen only if in both the above cases, Tj is live in H2 and its ITS is less than Ti’s ITS.

But we have that Ti’s itsEnabled in H2. As a result, it has the smallest among all live and aborted

transactions of H2. Hence, there cannot exist such a Tj which is live and H2.itsj < H2.itsi. Thus,

this case is not possible.

(b) Line 15: This line is executed in H2 if there exists no version of x whose ts is less than Ti’s WTS.

This implies that all the versions of x have tss greater than wtsi. Thus the transactions that created

these versions have WTS greater than wtsi and have already committed in H2. Let Tj create one such

version. Hence, we have that 〈(Tj ∈ H2.committed) =⇒ (Tj ∈ H3.committed)〉 since H3 is an

extension of H2.

(c) Line 34 : This case is similar to Case 1a, i.e., Line 3.

(d) Line 47 : In this line, Ti is aborted as some other transaction Tj in Ti’s largeRL has committed. Any

transaction in Ti’s largeRL has WTS greater than Ti’s WTS. This implies that Tj is already committed

in H2 and hence committed in H3 as well.

(e) Line 64 : In this line, Ti is aborted because its lower limit has crossed its upper limit. First, let us

consider tutli. It is initialized in stm-begin method to ∞. As long as it is ∞, these limits cannot cross

each other. Later, tutli is updated in Line 17 of read method, Line 58 & Line 62 of stm-tryC method.

Suppose tutli gets decremented to some value α by one of these lines.

Now there are two cases here: (1) Suppose tutli gets decremented to comTimei due to Line 62 of

stm-tryC method. Then from Lemma 36, we have tltli ≤ comTimei = tutli. Thus in this case, Ti

will not abort. (2) tutli gets decremented to α which is less than comTimei. Then from Lemma 37,

we get that there is a committed transaction Tj in H2.committed such that wtsj > wtsi. This implies

that Tj is in H3.committed.

(f) Line 76: This case is similar to Case 1a, i.e., Line 3.

(g) Line 79 : In this case, Tk is in Ti’s smallRL and is committed in H1. And, from this case, we have

that
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H2.tutli ≤ H2.tltlk (6)

From the assumption of this case, we have that Tk commits before Ti. Thus, from Lemma 38, we

get that comTimek < comTimei. From Lemma 36, we have that tltlk ≤ comTimek. Thus, we

get that tltlk < comTimei. Combining this with the inequality of this case Eq.(6), we get that

tutli < comTimei.

Combining this inequality with Lemma 37, we get that there is a transaction Tj in H2.committed and

H2.wtsj > H2.wtsi. This implies that Tj is in H3.committed as well.

2. STM read:

(a) Line 7: This case is similar to Case 1a, i.e., Line 3

(b) Line 22: The reasoning here is similar to Case 1e, i.e., Line 64.

The interesting aspect of the above lemma is that it gives us a insight as to when a Ti will get commit. If

an itsEnabled transaction Ti aborts then it is because of another transaction Tj with WTS higher than Ti has

committed. To precisely capture this, we define two more notions of a transaction being enabled cdsEnabled and

finEnabled. To define these notions of enabled, we in turn define a few other auxiliary notions. We start with

affectSet,

H.affectSet(Ti) = {Tj |(Tj ∈ H.txns) ∧ (H.itsj < H.itsi + 2 ∗ L)}

From the description of KSFTM algorithm and Lemma 33, it can be seen that a transaction Ti’s commit can

depend on committing of transactions (or their incarnations) which have their ITS less than ITS of Ti + 2∗L, which

is Ti’s affectSet. We capture this notion of dependency for a transaction Ti in a history H as commit dependent

set or cds as: the set of all transactions Tj in Ti’s affectSet that do not any incarnation that is committed yet, i.e.,

not yet have their incarCt flag set as true. Formally,

H.cds(Ti) = {Tj |(Tj ∈ H.affectSet(Ti)) ∧ (¬H.incarCt(Tj))}

Based on this definition of cds, we next define the notion of cdsEnabled.

Definition 3 We say that transaction Ti is cdsEnabled if the following conditions hold true (1) Ti is live in H; (2)

CTS of Ti is greater than or equal to ITS of Ti + 2 ∗ L; (3) cds of Ti is empty, i.e., for all transactions Tj in H
with ITS lower than ITS of Ti + 2 ∗ L in H have their incarCt to be true. Formally,

H.cdsEnabled(Ti) =

{

True (Ti ∈ H.live) ∧ (H.ctsi ≥ H.itsi + 2 ∗ L) ∧ (H.cds(Ti) = φ)

False otherwise

The meaning and usefulness of these definitions will become clear in the course of the proof. In fact, we later

show that once the transaction Ti is cdsEnabled, it will eventually commit. We will start with a few lemmas about

these definitions.

Lemma 40 Consider a transaction Ti in a history H . If Ti is cdsEnabled then Ti is also itsEnabled. Formally,

〈H,Ti : (Ti ∈ H.txns) ∧ (H.cdsEnabled(Ti)) =⇒ (H.itsEnabled(Ti))〉.

Proof. If Ti is cdsEnabled in H then it implies that Ti is live in H . From the definition of cdsEnabled, we get

that H.cds(Ti) is φ implying that any transaction Tj with itsk less than itsi + 2 ∗ L has its incarCt flag as true in

H . Hence, for any transaction Tk having itsk less than itsi, H.incarCt(Tk) is also true. This shows that Ti is

itsEnabled in H .

Lemma 41 Consider a transaction Ti which is cdsEnabled in a history H1. Consider an extension of H1,

H2 with a transaction Tj in it such that Ti is an incarnation of Tj . Let Tk be a transaction in the affectSet

of Tj in H2 Then Tk is also in the set of transaction of H1. Formally, 〈H1, H2, Ti, Tj , Tk : (H1 ⊑ H2) ∧
(H1.cdsEnabled(Ti)) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (Tk ∈ H2.affectSet(Tj)) =⇒ (Tk ∈ H1.txns)〉
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Proof. Since Ti is cdsEnabled in H1, we get (from the definition of cdsEnabled) that

H1.ctsi ≥ H1.itsi + 2 ∗ L (7)

Here, we have that Tk is in H2.affectSet(Tj). Thus from the definition of affectSet, we get that

H2.itsk < H2.itsj + 2 ∗ L (8)

Since Ti and Tj are incarnations of each other, their ITS are the same. Combining this with Eq.(8), we get that

H2.itsk < H1.itsi + 2 ∗ L (9)

We now show this proof through contradiction. Suppose Tk is not in H1.txns. Then there are two cases:

• No incarnation of Tk is in H1: This implies that Tk starts afresh after H1. Since Tk is not in H1, from

Corollary 29 we get that

H2.ctsk > H1.sys-time
Tk starts afresh
−−−−−−−−−−−→
H2.ctsk=H2.itsk

H2.itsk > H1.sys-time
(Ti∈H1)∧Lemma 28
−−−−−−−−−−−−−−→
H1.sys-time≥H1.ctsi

H2.itsk >

H1.ctsi
Eq.(7)
−−−−→ H2.itsk > H1.itsi + 2 ∗ L

H1.itsi=H2.itsj
−−−−−−−−−−→ H2.itsk > H2.itsj + 2 ∗ L

But this result contradicts with Eq.(8). Hence, this case is not possible.

• There is an incarnation of Tk, Tl in H1: In this case, we have that

H1.itsl = H2.itsk (10)

Now combing this result with Eq.(9), we get that H1.itsl < H1.itsi + 2 ∗ L. This implies that Tl is in

affectSet of Ti in H1. Since Ti is cdsEnabled, we get that Tl’s incarCt must be true.

We also have that Tk is not in H1 but in H2 where H2 is an extension of H1. Since H2 has some events

more than H1, we get that H2 is a strict extension of H1.

Thus, we have that, (H1 ⊏ H2) ∧ (H1.incarCt(Tl)) ∧ (Tk ∈ H2.txns) ∧ (Tk /∈ H1.txns). Combining

these with Lemma 21, we get that (H1.itsl 6= H2.itsk). But this result contradicts Eq.(10). Hence, this

case is also not possible.

Thus from both the cases we get that Tk should be in H1. Hence proved.

Lemma 42 Consider two histories H1, H2 where H2 is an extension of H1. Let Ti, Tj , Tk be three transactions

such that Ti is in H1.txns while Tj , Tk are in H2.txns. Suppose we have that (1) ctsi is greater than itsi+2∗L
in H1; (2) Ti is an incarnation of Tj; (3) Tk is in affectSet of Tj in H2. Then an incarnation of Tk, say Tl (which

could be same as Tk) is in H1.txns. Formally, 〈H1, H2, Ti, Tj , Tk : (H1 ⊑ H2)∧(Ti ∈ H1.txns)∧({Tj , Tk} ∈
H2.txns)∧ (H1.ctsi > H1.itsi +2 ∗L)∧ (Ti ∈ H2.incarSet(Tj))∧ (Tk ∈ H2.affectSet(Tj)) =⇒ (∃Tl :
(Tl ∈ H2.incarSet(Tk)) ∧ (Tl ∈ H1.txns))〉

Proof.

This proof is similar to the proof of Lemma 41. We are given that

H1.ctsi ≥ H1.itsi + 2 ∗ L (11)

We now show this proof through contradiction. Suppose no incarnation of Tk is in H1.txns. This implies that

Tk must have started afresh in some history H3 which is an extension of H1. Also note that H3 could be same as

H2 or a prefix of it, i.e., H3 ⊑ H2. Thus, we have that

H3.itsk > H1.sys-time
Lemma 28
−−−−−−−→ H3.itsk > H1.ctsi

Eq.(11)
−−−−−→ H3.itsk > H1.itsi + 2 ∗ L

H1.itsi=H2.itsj
−−−−−−−−−−→

H3.itsk > H2.itsj + 2 ∗ L
H3⊑H2

−−−−−−−−−−→
Observation 23

H2.itsk > H2.itsj + 2 ∗ L
affectSet
−−−−−−−→
definition

Tk /∈ H2.affectSet(Tj)

But we are given that Tk is in affectSet of Tj in H2. Hence, it is not possible that Tk started afresh after H1.

Thus, Tk must have a incarnation in H1.
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Lemma 43 Consider a transaction Ti which is cdsEnabled in a history H1. Consider an extension of H1, H2
with a transaction Tj in it such that Tj is an incarnation of Ti in H2. Then affectSet of Ti in H1 is same as the

affectSet of Tj in H2. Formally, 〈H1, H2, Ti, Tj : (H1 ⊑ H2)∧(H1.cdsEnabled(Ti))∧(Tj ∈ H2.txns)∧(Ti ∈
H2.incarSet(Tj)) =⇒ ((H1.affectSet(Ti) = H2.affectSet(Tj)))〉

Proof. From the definition of cdsEnabled, we get that Ti is in H1.txns. Now to prove that affectSets are the same,

we have to show that (H1.affectSet(Ti) ⊆ H2.affectSet(Tj)) and (H1.affectSet(Tj) ⊆ H2.affectSet(Ti)).
We show them one by one:

(H1.affectSet(Ti) ⊆ H2.affectSet(Tj)): Consider a transaction Tk in H1.affectSet(Ti). We have to

show that Tk is also in H2.affectSet(Tj). From the definition of affectSet, we get that

Tk ∈ H1.txns (12)

Combining Eq.(12) with Observation 23, we get that

Tk ∈ H2.txns (13)

From the definition of ITS, we get that

H1.itsk = H2.itsk (14)

Since Ti, Tj are incarnations we have that .

H1.itsi = H2.itsj (15)

From the definition of affectSet, we get that,

H1.itsk < H1.itsi + 2 ∗ L
Eq.(14)
−−−−−→ H2.itsk < H1.itsi + 2 ∗ L

Eq.(15)
−−−−−→ H2.itsk < H2.itsj + 2 ∗ L

Combining this result with Eq.(13), we get that Tk ∈ H2.affectSet(Tj).

(H1.affectSet(Ti) ⊆ H2.affectSet(Tj)): Consider a transaction Tk in H2.affectSet(Tj). We have to

show that Tk is also in H1.affectSet(Ti). From the definition of affectSet, we get that Tk ∈ H2.txns.

Here, we have that (H1 ⊑ H2)∧(H1.cdsEnabled(Ti))∧(Ti ∈ H2.incarSet(Tj))∧(Tk ∈ H2.affectSet(Tj)).
Thus from Lemma 41, we get that Tk ∈ H1.txns. Now, this case is similar to the above case. It can be seen that

Equations 12, 13, 14, 15 hold good in this case as well.

Since Tk is in H2.affectSet(Tj), we get that

H2.itsk < H2.itsi + 2 ∗ L
Eq.(14)
−−−−−→ H1.itsk < H2.itsj + 2 ∗ L

Eq.(15)
−−−−−→ H1.itsk < H1.itsi + 2 ∗ L

Combining this result with Eq.(12), we get that Tk ∈ H1.affectSet(Ti).
Next we explore how a cdsEnabled transaction remains cdsEnabled in the future histories once it becomes true.

Lemma 44 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be two transac-

tions which are live in H1 and H2 respectively. Let Ti be an incarnation of Tj and ctsi is less than ctsj . Suppose

Ti is cdsEnabled in H1. Then Tj is cdsEnabled in H2 as well. Formally, 〈H1, H2, Ti, Tj : (H1 ⊑ H2) ∧ (Ti ∈
H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj) ∧ (H1.cdsEnabled(Ti)) =⇒
(H2.cdsEnabled(Tj))〉.

Proof. We have that Ti is live in H1 and Tj is live in H2. Since Ti is cdsEnabled in H1, we get (from the

definition of cdsEnabled) that

H1.ctsi ≥ H2.itsi + 2 ∗ L (16)

We are given that ctsi is less than ctsj and Ti, Tj are incarnations of each other. Hence, we have that

H2.ctsj > H1.ctsi

> H1.itsi + 2 ∗ L [From Eq.(16)]

> H2.itsj + 2 ∗ L [itsi = itsj ]
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Thus we get that ctsj > itsj + 2 ∗L. We have that Tj is live in H2. In order to show that Tj is cdsEnabled in

H2, it only remains to show that cds of Tj in H2 is empty, i.e., H2.cds(Tj) = φ. The cds becomes empty when

all the transactions of Tj’s affectSet in H2 have their incarCt as true in H2.

Since Tj is live in H2, we get that Tj is in H2.txns. Here, we have that (H1 ⊑ H2)∧(Tj ∈ H2.txns)∧(Ti ∈
H2.incarSet(Tj))∧ (H1.cdsEnabled(Ti)). Combining this with Lemma 43, we get that H1.affectSet(Ti) =
H2.affectSet(Tj).

Now, consider a transaction Tk in H2.affectSet(Tj). From the above result, we get that Tk is also in

H1.affectSet(Ti). Since Ti is cdsEnabled in H1, i.e., H1.cdsEnabled(Ti) is true, we get that H1.incarCt(Tk)
is true. Combining this with Observation 20, we get that Tk must have its incarCt as true in H2 as well, i.e.

H2.incarCt(Tk). This implies that all the transactions in Tj’s affectSet have their incarCt flags as true in H2.

Hence the H2.cds(Tj) is empty. As a result, Tj is cdsEnabled in H2, i.e., H2.cdsEnabled(Tj).
Having defined the properties related to cdsEnabled, we start defining notions for finEnabled. Next, we define

maxWTS for a transaction Ti in H which is the transaction Tj with the largest WTS in Ti’s incarSet. Formally,

H.maxWTS(Ti) = max{H.wtsj |(Tj ∈ H.incarSet(Ti))}

From this definition of maxWTS, we get the following simple observation.

Observation 45 For any transaction Ti in H , we have that wtsi is less than or equal to H.maxWTS(Ti).
Formally, H.wtsi ≤ H.maxWTS(Ti).

Next, we combine the notions of affectSet and maxWTS to define affWTS. It is the maximum of maxWTS of

all the transactions in its affectSet. Formally,

H.affWTS(Ti) = max{H.maxWTS(Tj)|(Tj ∈ H.affectSet(Ti))}

Having defined the notion of affWTS, we get the following lemma relating the affectSet and affWTS of two

transactions.

Lemma 46 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be two transac-

tions which are live in H1 and H2 respectively. Suppose the affectSet of Ti in H1 is same as affectSet of Tj in H2.

Then the affWTS of Ti in H1 is same as affWTS of Tj in H2. Formally, 〈H1, H2, Ti, Tj : (H1 ⊑ H2) ∧ (Ti ∈
H1.txns) ∧ (Tj ∈ H2.txns) ∧ (H1.affectSet(Ti) = H2.affectSet(Tj)) =⇒ (H1.affWTS(Ti) =
H2.affWTS(Tj))〉.

Proof.

From the definition of affWTS, we get the following equations

H.affWTS(Ti) = max{H.maxWTS(Tk)|(Tk ∈ H1.affectSet(Ti))} (17)

H.affWTS(Tj) = max{H.maxWTS(Tl)|(Tl ∈ H2.affectSet(Tj))} (18)

From these definitions, let us suppose that H1.affWTS(Ti) is H1.maxWTS(Tp) for some transaction Tp

in H1.affectSet(Ti). Similarly, suppose that H2.affWTS(Tj) is H2.maxWTS(Tq) for some transaction Tq

in H2.affectSet(Tj).
Here, we are given that H1.affectSet(Ti) = H2.affectSet(Tj)). Hence, we get that Tp is also in H1.affectSet(Ti).

Similarly, Tq is in H2.affectSet(Tj) as well. Thus from Equations (17) & (18), we get that

H1.maxWTS(Tp) ≥ H2.maxWTS(Tq) (19)

H2.maxWTS(Tq) ≥ H1.maxWTS(Tp) (20)

Combining these both equations, we get that H1.maxWTS(Tp) = H2.maxWTS(Tq) which in turn implies

that H1.affWTS(Ti) = H2.affWTS(Tj).
Finally, using the notion of affWTS and cdsEnabled, we define the notion of finEnabled
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Definition 4 We say that transaction Ti is finEnabled if the following conditions hold true (1) Ti is live in H; (2)

Ti is cdsEnabled is H; (3) H.wtsj is greater than H.affWTS(Ti). Formally,

H.finEnabled(Ti) =

{

True (Ti ∈ H.live) ∧ (H.cdsEnabled(Ti)) ∧ (H.wtsj > H.affWTS(Ti))

False otherwise

It can be seen from this definition, a transaction that is finEnabled is also cdsEnabled. We now show that just

like itsEnabled and cdsEnabled, once a transaction is finEnabled, it remains finEnabled until it terminates. The

following lemma captures it.

Lemma 47 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be two transac-

tions which are live in H1 and H2 respectively. Suppose Ti is finEnabled in H1. Let Ti be an incarnation of Tj

and ctsi is less than ctsj . Then Tj is finEnabled in H2 as well. Formally, 〈H1, H2, Ti, Tj : (H1 ⊑ H2) ∧ (Ti ∈
H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj) ∧ (H1.finEnabled(Ti)) =⇒
(H2.finEnabled(Tj))〉.

Proof. Here we are given that Tj is live in H2. Since Ti is finEnabled in H1, we get that it is cdsEnabled in H1
as well. Combining this with the conditions given in the lemma statement, we have that,

〈(H1 ⊑ H2) ∧ (Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj)

∧(H1.cdsEnabled(Ti))〉
(21)

Combining Eq.(21) with Lemma 44, we get that Tj is cdsEnabled in H2, i.e., H2.cdsEnabled(Tj). Now, in

order to show that Tj is finEnabled in H2 it remains for us to show that H2.wtsj > H2.affWTS(Tj).
We are given that Tj is live in H2 which in turn implies that Tj is in H2.txns. Thus changing this in Eq.(21),

we get the following

〈(H1 ⊑ H2) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj)

∧(H1.cdsEnabled(Ti))〉
(22)

Combining Eq.(22) with Lemma 43 we get that

H1.affWTS(Ti) = H2.affWTS(Tj) (23)

We are given that H1.ctsi < H2.ctsj . Combining this with the definition of WTS, we get

H1.wtsi < H2.wtsj (24)

Since Ti is finEnabled in H1, we have that

H1.wtsi > H1.affWTS(Ti)
Eq.(24)
−−−−−→ H2.wtsj > H1.affWTS(Ti)

Eq.(23)
−−−−−→ H2.wtsj >

H2.affWTS(Tj)
Now, we show that a transaction that is finEnabled will eventually commit.

Lemma 48 Consider a live transaction Ti in a history H1. Suppose Ti is finEnabled in H1 and validi is true in

H1. Then there exists an extension of H1, H3 in which Ti is committed. Formally, 〈H1, Ti : (Ti ∈ H1.live) ∧
(H1.validi) ∧ (H1.finEnabled(Ti)) =⇒ (∃H3 : (H1 ⊏ H3) ∧ (Ti ∈ H3.committed))〉.

Proof. Consider a history H3 such that its sys-time being greater than ctsi + L. We will prove this lemma using

contradiction. Suppose Ti is aborted in H3.

Now consider Ti in H1: Ti is live; its valid flag is true; and is finEnabled. From the definition of finEnabled,

we get that it is also cdsEnabled. From Lemma 40, we get that Ti is itsEnabled in H1. Thus from Lemma 39, we

get that there exists an extension of H1, H2 such that (1) Transaction Ti is live in H2; (2) there is a transaction

Tj in H2; (3) H2.wtsj is greater than H2.wtsi; (4) Tj is committed in H3. Formally,

〈(∃H2, Tj : (H1 ⊑ H2 ⊏ H3) ∧ (Ti ∈ H2.live) ∧ (Tj ∈ H2.txns) ∧ (H2.wtsi < H2.wtsj)

∧(Tj ∈ H3.committed))〉
(25)
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Here, we have that H2 is an extension of H1 with Ti being live in both of them and Ti is finEnabled in H1.

Thus from Lemma 47, we get that Ti is finEnabled in H2 as well. Now, let us consider Tj in H2. From Eq.(25),

we get that (H2.wtsi < H2.wtsj). Combining this with the observation that Ti being live in H2, Lemma 33 we

get that (H2.itsj ≤ H2.itsi + 2 ∗ L).
This implies that Tj is in affectSet of Ti in H2, i.e., (Tj ∈ H2.affectSet(Ti)). From the definition of

affWTS, we get that

(H2.affWTS(Ti) ≥ H2.maxWTS(Tj)) (26)

Since Ti is finEnabled in H2, we get that wtsi is greater than affWTS of Ti in H2.

(H2.wtsi > H2.affWTS(Ti)) (27)

Now combining Equations 26, 27 we get,

H2.wtsi > H2.affWTS(Ti) ≥ H2.maxWTS(Tj)

> H2.affWTS(Ti) ≥ H2.maxWTS(Tj) ≥ H2.wtsj [From Observation 45]

> H2.wtsj

But this equation contradicts with Eq.(25). Hence our assumption that Ti will get aborted in H3 after getting

finEnabled is not possible. Thus Ti has to commit in H3.

Next we show that once a transaction Ti becomes itsEnabled, it will eventually become finEnabled as well and

then committed. We show this change happens in a sequence of steps. We first show that Transaction Ti which

is itsEnabled first becomes cdsEnabled (or gets committed). We next show that Ti which is cdsEnabled becomes

finEnabled or get committed. On becoming finEnabled, we have already shown that Ti will eventually commit.

Now, we show that a transaction that is itsEnabled will become cdsEnabled or committed. To show this, we

introduce a few more notations and definitions. We start with the notion of depIts (dependent-its) which is the

set of ITSs that a transaction Ti depends on to commit. It is the set of ITS of all the transactions in Ti’s cds in a

history H . Formally,

H.depIts(Ti) = {H.itsj |Tj ∈ H.cds(Ti)}

We have the following lemma on the depIts of a transaction Ti and its future incarnation Tj which states that

depIts of a Ti either reduces or remains the same.

Lemma 49 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be two trans-

actions which are live in H1 and H2 respectively and Ti is an incarnation of Tj . In addition, we also have that

ctsi is greater than itsi +2 ∗L in H1. Then, we get that H2.depIts(Tj) is a subset of H1.depIts(Ti). Formally,

〈H1, H2, Ti, Tj : (H1 ⊑ H2) ∧ (Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi ≥
H1.itsi + 2 ∗ L) =⇒ (H2.depIts(Tj) ⊆ H1.depIts(Ti))〉.

Proof. Suppose H2.depIts(Tj) is not a subset of H1.depIts(Ti). This implies that there is a transaction Tk such

that H2.itsk ∈ H2.depIts(Tj) but H1.itsk /∈ H1.depIts(Tj). This implies that Tk starts afresh after H1 in

some history say H3 such that H1 ⊏ H3 ⊑ H2. Hence, from Corollary 29 we get the following

H3.itsk > H1.sys-time
Lemma 28
−−−−−−−→ H3.itsk > H1.ctsi =⇒ H3.itsk > H1.itsi + 2 ∗ L

H1.itsi=H2.itsj
−−−−−−−−−−→

H3.itsk > H2.itsj + 2 ∗ L
affectSet,depIts
−−−−−−−−−−−→

definitions
H2.itsk /∈ H2.depIts(Tj)

We started with itsk in H2.depIts(Tj) and ended with itsk not in H2.depIts(Tj). Thus, we have a contra-

diction. Hence, the lemma follows.

Next we denote the set of committed transactions in Ti’s affectSet in H as cis (commit independent set). Formally,

H.cis(Ti) = {Tj |(Tj ∈ H.affectSet(Ti)) ∧ (H.incarCt(Tj))}

In other words, we have that H.cis(Ti) = H.affectSet(Ti) − H.cds(Ti). Finally, using the notion of cis we

denote the maximum of maxWTS of all the transactions in Ti’s cis as partAffWTS (partly affecting WTS). It turns

out that the value of partAffWTS affects the commit of Ti which we show in the course of the proof. Formally,

partAffWTS is defined as
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H.partAffWTS(Ti) = max{H.maxWTS(Tj)|(Tj ∈ H.cis(Ti))}

Having defined the required notations, we are now ready to show that a itsEnabled transaction will eventually

become cdsEnabled.

Lemma 50 Consider a transaction Ti which is live in a history H1 and ctsi is greater than or equal to itsi+2∗L.

If Ti is itsEnabled in H1 then there is an extension of H1, H2 in which an incarnation Ti, Tj (which could be same

as Ti), is either committed or cdsEnabled. Formally, 〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.ctsi ≥ H1.itsi + 2 ∗ L) ∧
(H1.itsEnabled(Ti)) =⇒ (∃H2, Tj : (H1 ⊏ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ ((Tj ∈ H2.committed) ∨
(H2.cdsEnabled(Tj))))〉.

Proof. We prove this by inducting on the size of H1.depIts(Ti), n. For showing this, we define a boolean

function P (k) as follows:

P (k) =



















True 〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.ctsi ≥ H1.itsi + 2 ∗ L) ∧ (H1.itsEnabled(Ti))∧

(k ≥ |H1.depIts(Ti)|) =⇒ (∃H2, Tj : (H1 ⊏ H2) ∧ (Tj ∈ H2.incarSet(Ti))∧

((Tj ∈ H2.committed) ∨ (H2.cdsEnabled(Tj))))〉

False otherwise

As can be seen, here P (k) means that if (1) Ti is live in H1; (2) ctsi is greater than or equal to itsi + 2 ∗ L;

(3) Ti is itsEnabled in H1 (4) the size of H1.depIts(Ti) is less than or equal to k; then there exists a history H2
with a transaction Tj in it which is an incarnation of Ti such that Tj is either committed or cdsEnabled in H2. We

show P (k) is true for all (integer) values of k using induction.

Base Case - P (0): Here, from the definition of P (0), we get that |H1.depIts(Ti)|= 0. This in turn implies that

H1.cds(Ti) is null. Further, we are already given that Ti is live in H1 and H1.ctsi ≥ H1.itsi +2 ∗L. Hence, all

these imply that Ti is cdsEnabled in H1.

Induction case - To prove P (k + 1) given that P (k) is true: If |H1.depIts(Ti)|≤ k, from the induction

hypothesis P (k), we get that Tj is either committed or cdsEnabled in H2. Hence, we consider the case when

|H1.depIts(Ti)|= k + 1 (28)

Let α be H1.partAffWTS(Ti). Suppose H1.wtsi < α. Then from Lemma 27, we get that there is an

extension of H1, say H3 in which an incarnation of Ti, Tl (which could be same as Ti) is committed or is live in

H3 and has WTS greater than α. If Tl is committed then P (k + 1) is trivially true. So we consider the latter case

in which Tl is live in H3. In case H1.wtsi ≥ α, then in the analysis below follow where we can replace Tl with

Ti.

Next, suppose Tl is aborted in an extension of H3, H5. Then from Lemma 39, we get that there exists an

extension of H3, H4 in which (1) Tl is live; (2) there is a transaction Tm in H4.txns; (3) H4.wtsm > H4.wtsl
(4) Tm is committed in H5.

Combining the above derived conditions (1), (2), (3) with Lemma 36 we get that in H4,

H4.itsm ≤ H4.itsl + 2 ∗ L (29)

Eq.(29) implies that Tm is in Tl’s affectSet. Here, we have that Tl is an incarnation of Ti and we are given that

H1.ctsi ≥ H1.itsi + 2 ∗ L. Thus from Lemma 42, we get that there exists an incarnation of Tm, Tn in H1.

Combining Eq.(29) with the observations (a) Tn, Tm are incarnations; (b) Tl, Ti are incarnations; (c) Ti, Tn

are in H1.txns, we get that H1.itsn ≤ H1.itsi + 2 ∗ L. This implies that Tn is in H1.affectSet(Ti). Since

Tn is not committed in H1 (otherwise, it is not possible for Tm to be an incarnation of Tn), we get that Tn is in

H1.cds(Ti). Hence, we get that H4.itsm = H1.itsn is in H1.depIts(Ti).
From Eq.(28), we have that H1.depIts(Ti) is k+1. From Lemma 49, we get that H4.depIts(Ti) is a subset of

H1.depIts(Ti). Further, we have that transaction Tm has committed. Thus H4.itsm which was in H1.depIts(Ti)
is no longer in H4.depIts(Ti). This implies that H4.depIts(Ti) is a strict subset of H1.depIts(Ti) and hence

|H4.depIts(Ti)|≤ k.

Since Ti and Tl are incarnations, we get that H4.depIts(Ti) = H1.depIts(Tl). Thus, we get that

|H4.depIts(Ti)|≤ k =⇒ |H4.depIts(Tl)|≤ k (30)

Further, we have that Tl is a later incarnation of Ti. So, we get that
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H4.ctsl > H4.ctsi
given
−−−→ H4.ctsl > H4.itsi + 2 ∗ L

H4.itsi=H4.itsl−−−−−−−−−−→ H4.ctsl > H4.itsl + 2 ∗ L (31)

We also have that Tl is live in H4. Combining this with Equations 30, 31 and given the induction hypothesis

that P (k) is true, we get that there exists a history extension of H4, H6 in which an incarnation of Tl (also Ti),

Tp is either committed or cdsEnabled. This proves the lemma.

Lemma 51 Consider a transaction Ti in a history H1. If Ti is cdsEnabled in H1 then there is an extension of

H1, H2 in which an incarnation Ti, Tj (which could be same as Ti), is either committed or finEnabled. Formally,

〈H1, Ti : (Ti ∈ H.live) ∧ (H1.cdsEnabled(Ti)) =⇒ (∃H2, Tj : (H1 ⊏ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧
((Tj ∈ H2.committed) ∨ (H2.finEnabled(Tj)))〉.

Proof. In H1, suppose H1.affWTS(Ti) is α. From Lemma 27, we get that there is a extension of H1, H2 with

a transaction Tj which is an incarnation of Ti. Here there are two cases: (1) Either Tj is committed in H2. This

trivially proves the lemma; (2) Otherwise, wtsj is greater than α.

In the second case, we get that

(Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (H.cdsEnabled(Ti)) ∧ (Tj ∈ H2.incarSet(Ti))∧

(H1.wtsi < H2.wtsj)
(32)

Combining the above result with Lemma 26, we get that H1.ctsi < H2.ctsj . Thus the modified equation is

(Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (H1.cdsEnabled(Ti)) ∧ (Tj ∈ H2.incarSet(Ti))∧

(H1.ctsi < H2.ctsj)
(33)

Next combining Eq.(33) with Lemma 43, we get that

H1.affectSet(Ti) = H2.affectSet(Tj) (34)

Similarly, combining Eq.(33) with Lemma 44 we get that Tj is cdsEnabled in H2 as well. Formally,

H2.cdsEnabled(Tj) (35)

Now combining Eq.(34) with Lemma 46, we get that

H1.affWTS(Ti) = H2.affWTS(Tj) (36)

From our initial assumption we have that H1.affWTS(Ti) is α. From Eq.(36), we get that H2.affWTS(Tj) =
α. Further, we had earlier also seen that H2.wtsj is greater than α. Hence, we have that H2.wtsj > H2.affWTS(Tj).
Combining the above result with Eq.(35), H2.cdsEnabled(Tj), we get that Tj is finEnabled, i.e., H2.finEnabled(Tj).

Next, we show that every live transaction eventually become itsEnabled.

Lemma 52 Consider a history H1 with Ti be a transaction in H1.live. Then there is an extension of H1, H2
in which an incarnation of Ti, Tj (which could be same as Ti) is either committed or is itsEnabled. Formally,

〈H1, Ti : (Ti ∈ H.live) =⇒ (∃Tj , H2 : (H1 ⊏ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ (Tj ∈ H2.committed) ∨
(H.itsEnabled(Ti)))〉.

Proof. We prove this lemma by inducting on ITS.

Base Case - itsi = 1: In this case, Ti is the first transaction to be created. There are no transactions with smaller

ITS. Thus Ti is trivially itsEnabled.

Induction Case: Here we assume that for any transaction itsi ≤ k the lemma is true.

Combining these lemmas gives us the result that for every live transaction Ti there is an incarnation Tj (which

could be the same as Ti) that will commit. This implies that every application-transaction eventually commits.

The follow lemma captures this notion.
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Theorem 53 Consider a history H1 with Ti be a transaction in H1.live. Then there is an extension of H1, H2
in which an incarnation of Ti, Tj is committed. Formally, 〈H1, Ti : (Ti ∈ H.live) =⇒ (∃Tj , H2 : (H1 ⊏

H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ (Tj ∈ H2.committed))〉.

Proof. Here we show the states that a transaction Ti (or one of it its incarnations) undergoes before it commits. In

all these transitions, it is possible that an incarnation of Ti can commit. But to show the worst case, we assume that

no incarnation of Ti commits. Continuing with this argument, we show that finally an incarnation of Ti commits.

Consider a live transaction Ti in H1. Then from Lemma 52, we get that there is a history H2, which is an

extension of H1, in which Tj an incarnation of Ti is either committed or itsEnabled. If Tj is itsEnabled in H2,

then from Lemma 50, we get that Tk, an incarnation of Tj , will be cdsEnabled in a extension of H2, H3 (assuming

that Tk is not committed in H3).

From Lemma 51, we get that there is an extension of H3, H4 in which an incarnation of Tk, Tl will be

finEnabled assuming that it is not committed in H4. Finally, from Lemma 48, we get that there is an extension of

H4 in which Tm, an incarnation of Tl, will be committed. This proves our theorem.

7 Discussion and Conclusion

In this paper, we propose a K version starvation-free STM system, KSFTM. The algorithm ensures that if an

aborted transaction is retried successively, then it will eventually commit. The algorithm maintains K versions

where K can range from between one to infinity. For correctness, we show KSFTM satisfies strict-serializability

[22] and local opacity [18, 19]. To the best of our knowledge, this is the first work to explore starvation-freedom

with MVSTMs.

Our experiments show that KSFTM performs better than single-version STMs (ESTM, Norec STM) under high

contention and also single-version starvation-free STM SV-SFTM developed based on the principle of priority. On

the other hand, its performance is comparable or slightly worse than multi-version STM, PKTO (around 2%). This

is the cost of the overhead required to achieve starvation-freedom which we believe is a marginal price.

In this document, we have not considered a transactional solution based on two-phase locking (2PL) and its

multi-version variants [28]. With the carefully designed 2PL solution, one can ensure that none of the transactions

abort [28]. But this will require advance knowledge of the code of the transactions which may not always be

available with the STM library. Without such knowledge, it is possible that a 2PL solution can deadlock and cause

further aborts which will, raise the issue of starvation-freedom again.

Since we have considered strict-serializable as one of the correctness-criteria, this algorithm can be extended to

databases as well. In fact, to the best of our knowledge, there has been no prior work on starvation-freedom in the

context of database concurrency control.
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