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Absolute electron and positron fluxes from PAMELA/Fermi and Dark Matter
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We extract the positron and electron fluxes in the energy range 10 - 100 GeV by combining the recent data

from PAMELA and Fermi LAT. The absolute positron and electron fluxes thus obtained are found to obey the

power laws: E−2.65 and E−3.06 respectively, which can be confirmed by the upcoming data from PAMELA.

The positron flux appears to indicate an excess at energies E >
∼ 50 GeV even if the uncertainty in the secondary

positron flux is added to the Galactic positron background. This leaves enough motivation for considering new

physics, such as annihilation or decay of dark matter, as the origin of positron excess in the cosmic rays.

PACS numbers: 12.60.Jv, 98.80.Cq, 95.35.+d

I. INTRODUCTION

Recent results from the Fermi Large Area Telescope

(LAT) [1] indicate an excess of the electron plus positron flux

(Φe− +Φe+ ) at energies above 100 GeV. This also confirms

the earlier results from ATIC [2] and PPB-BETS [3], apart

from the peak at around 600 GeV in the ATIC data. The

HESS [4] collaboration also reported an excess of Φe− +Φe+

above 340 GeV, confirming their previous results [5]. Mean-

while PAMELA data [6] have shown an excess in (Φe+/Φe−+
Φe+), compared to the Galactic background at 10-100 GeV.

PAMELA also confirms the earlier results from HEAT [7] and

AMS [8]. Somewhat surprisingly, PAMELA did not find any

antiproton excess below 100 GeV [9].

Although standard astrophysical sources may be able to ac-

count for the anomaly [10], the positron excess at PAMELA

and the electron plus positron flux of Fermi have caused a lot

of excitement being interpreted as indirect detection of dark

matter (DM) [11, 12]. If dark mater couples to standard model

(SM) particles then the annihilation or decay of DM could,

indeed, be the origin of cosmic ray anomalies observed by

PAMELA and Fermi. The annihilation or decay of DM pro-

duces an equal number of particles (electrons and/or protons)

and antiparticles (positrons and/or antiprotons), which could

form a significant component of the observed cosmic rays.

Since the background matter fluxes in the Galactic medium

are at least one order of magnitude larger than the antiparti-

cle fluxes, the DM signal is better observable in the Galactic

antimatter fluxes.

Currently the antiproton flux up to 100 GeV in the

PAMELA data is consistent with the Galactic background.

However, there is an approximately 10% excess in the

PAMELA (Φe+/(Φe− +Φe+)) data over the background.

Since this excess is not given in terms of the absolute positron

flux, it gives rise to various ambiguities [13]. The main source

of these ambiguities is that the excess of the positron flux,

as given by the PAMELA collaboration, crucially depends on

the uncertainty in the background of the electron as well as

the positron fluxes [14, 15, 16]. Therefore it is not apparent

that PAMELA implies a statistically significant positron ex-

cess until one shows it in terms of an absolute positron flux.

In this paper we make an attempt to disentangle the abso-

lute positron flux up to an energy of 100 GeV by combining

the current data from PAMELA and Fermi. We quantify the

excess of the absolute positron flux after discussing the uncer-

tainty in the secondary positron background flux [15, 16]. It

is shown that the combined PAMELA and Fermi data seem

to indicate an excess in the absolute positron flux for E >
∼ 50

GeV. We then demonstrate the compatibility of this excess

with the annihilating DM scenario, and we compare this sce-

nario with the current Fermi data. Moreover, we find that the

absolute positron and electron fluxes admit power law spectra

of E−2.65 and E−3.06 respectively.

II. ABSOLUTE POSITRON FLUX AND BACKGROUND

So far no experiment has provided the absolute magnitude

of the Galactic positron flux. Below 100 GeV the excess in

the PAMELA data is about 10%. On the other hand, the elec-

tron plus positron flux at Fermi does not seem to indicate any

excess below 100 GeV. In order to accept the positron excess

interpretation of PAMELA, it is crucial to show an excess in

the absolute magnitude of the positron flux itself.

To decisively settle this issue, we combine the data from

PAMELA and Fermi and extract the absolute positron and

electron fluxes as:

Φe+ =

(

Φe+

Φe− +Φe+

)

PAMELA

× (Φe− +Φe+)Fermi ,

Φe− = (Φe− +Φe+)Fermi −Φe+ . (1)

In order to utilize Eq. (1), we need Φe−+e+ from Fermi and

Φe+/(Φe− +Φe+) by PAMELA in the same energy bin, so

that the combined central values and uncertainties can be eval-

uated at a given energy E . To this end for each energy bin of

the Fermi data we interpolate the PAMELA data. We evaluate

the uncertainty of the absolute positron and electron fluxes as:

(δΦe+)
2 = (Φe+)

2

(

(

δ(Φe+/(Φe− +Φe+))

Φe+/(Φe− +Φe+)

)2

+

(

δ(Φe− +Φe+)

Φe− +Φe+

)2
)

,

(δΦe−)
2 = (δΦe−+e+)

2 +(δΦe+)
2 . (2)
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Whether there is an excess or not in these combined fluxes

will depend on the background expectations. The Galac-

tic positron background fluxes were recently examined in

Ref.s [14, 15, 16]. The majority of positrons in our galaxy are

produced from scatterings of cosmic-ray protons with the in-

terstellar medium. The positrons thus produced from proton-

proton collisions provide background for the positrons pro-

duced from the annihilation or decay of DM. Therefore the

background positrons in the Galactic medium are always sec-

ondary and can be parameterized as [17]:

Φbkg

sec, e+
=

4.5ε0.7

1+ 650ε2.3+ 1500ε4.2
GeV−1cm−2s−1sr−1 , (3)

where the dimensionless parameter is ε = E/(1 GeV). How-

ever, there is a large uncertainty in the secondary positron

fluxes coming from cosmic ray propagation [13], as shown

in FIG. 1. In the Galactic medium the flux of the primary and

secondary electrons is about an order of magnitude larger than

that of the positrons. These electron fluxes are parameterized

as [17]:

Φbkg

prim, e−
=

0.16ε−1.1

1+ 11ε0.9+ 3.2ε2.15
GeV−1cm−2s−1sr−1

Φbkg

sec, e−
=

0.70ε0.7

1+ 11ε1.5+ 600ε2.9+ 580ε4.2
GeV−1cm−2s−1sr−1 .

(4)

In FIG. 1 we have shown the absolute positron and electron

fluxes: Φe+ and Φe− , extracted from PAMELA and Fermi,

up to 100 GeV. The corresponding error bars are also shown.

From FIG. 1 it can be seen that the extracted positron flux

exhibits a clear excess with respect to the background for

E >
∼ 50 GeV. There is a minor excess of electron plus positron

fluxes if we assume a 10% reduced background:

Φrbkg

e−+e+
= 0.0253ε−3.206GeV−1cm−2s−1sr−1 . (5)

The reduced background can be thought of as uncertainty in

the current estimation of electron flux [14]. Here we compare

this reduced background with the e−+ e+ spectrum of Fermi.

III. POSITRON EXCESSES FROM DM ANNIHILATION

Annihilation of DM produces equally positrons and elec-

trons in the Galactic medium which can be a significant com-

ponent of cosmic rays. However, as we discussed, the back-

ground electron flux in the Galactic medium is much larger

than the background positron flux. Therefore finding a DM

signal, if any, in the Galactic positron flux is easier than find-

ing one in the electron flux. Thus, in what follows, we will

focus on the positron flux in the cosmic rays.

Recent studies have shown that the e− + e+ spectrum of

Fermi and the excess at PAMELA, without an excess in an-

tiprotons, can simultaneously be explained with TeV scale
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FIG. 1: The total (primary plus secondary) background electron

flux (black-solid line), the total reduced background electron flux

(red-dashed line) and the positron background (green dot-dashed

line) with propagation uncertainty (pink band) are shown in the en-

ergy range 10-100 GeV. Electron (blue-circle) and positron (maroon-

square) fluxes, extracted from PAMELA and Fermi, are also shown

with respect to their backgrounds. The power law fitting of positron

and electron fluxes are found to be E−2.56 and E−3.06 respectively.

DM, which annihilates to µ+µ− and τ+τ− [18, 19]. This ex-

planation requires either the local density of DM or its an-

nihilation cross section to be considerably higher than typi-

cally expected. This enhancement is referred to as the “boost

factor". The origin of such a boost factor could be astro-

physical: large inhomogeneities, caused by merging sub-

structures for example, could enhance the local density. Alter-

natively, assuming a homogeneous distribution of dark mat-

ter in the galaxy, its annihilation cross section to µ+µ− and

τ+τ− pairs at present could be significantly larger than that

of the typical thermal relic, which is a few times 10−26

cm3/s [20]. The boost might arise from a combination of

astro- and particle physics effects. Several possible expla-

nations for the boost factor have been proposed, in particu-

lar Sommerfeld enhancement of the dark matter annihilation

cross-section [20, 25, 26, 27, 28, 29], non-thermal dark matter

from thermal relic decay [30, 31, 32, 33, 34, 35, 36, 37, 38],

annihilation of thermal relic by resonance [39, 40] and so on.

If the boost factor originates from particle physics then its

value is model dependent, but it should be constrained by the

Big-Bang Nucleosynthesis (BBN) [21], gamma ray and ra-

dio observations [22], diffuse gamma ray background [23] and

more severe constraints from gamma rays produced by inverse

Compton scattering of the energetic electrons and positrons

from DM annihilations [24].
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A. Positron Propagation

If the positrons are produced via the annihilation or decay

of DM, then they travel in the galaxy under the influence of a

magnetic field which is assumed to be order of a few micro-

gauss. As a result the motion of positrons can be thought of as

a random walk. The positron flux in the vicinity of the solar

system can be obtained by solving the diffusion equation [15,

41, 42]

∂
∂t

fe+(E,~r, t) = Ke+(E)∇ 2 fe+(E,~r, t)+

∂
∂t
[b(E) fe+(E,~r, t)]+Q(E,~r), (6)

where fe+(E,~r) is the number density of positrons per unit

energy, E is the energy of the positron, Ke+(E) is the diffu-

sion constant, b(E) is the energy-loss rate and Q(E,~r) is the

positron source term. The positron source term Q(E,~r) due to

DM annihilation is given by:

Q(E,~r) =
1

2
n2

DM(~r) f e+

inj , (7)

where the factor 1/2 accounts the Majorana nature of DM,

and the injection spectrum can be given as

f e+

inj = 〈σDM|vrel|〉
dNe+

dE
. (8)

In the above equation the fragmentation function dNe+/dE

represents the number of positrons with energy E which are

produced from the annihilation of DM. We assume that the

positrons are in steady state, i.e. ∂ fe+/∂t = 0. Then from Eq.

(6), the positron flux in the vicinity of the solar system can be

obtained in a semi-analytical form [15, 41, 42]

Φe+(E,~r⊙) =
ve+

4πb(E)
(nDM)2

⊙〈σDM|vrel|〉×

Z MDM

E
dE ′ dNe+

dE ′
I(λD(E,E

′)) , (9)

where λD(E,E
′) is the diffusion length from energy E ′ to en-

ergy E and I(λD(E,E
′) is the halo function which is inde-

pendent of particle physics. An analogous solution for the

electron flux can also be obtained.

The net positron flux in the galactic medium then can be

given by

(Φe+)Gal = (Φe+)bkg +Φe+(E,~r⊙). (10)

The first term in the above equation is given by Eq. (3) while

the second term is given by Eq. (9), which depends on vari-

ous factors: b(E), λD(E,E
′), I(λD(E,E

′)), ve+ , (nDM)⊙ and

the injection spectrum f e+

inj . The energy loss due to inverse

Compton scattering and synchrotron radiation with galactic

magnetic field, described by b(E), is determined by the pho-

ton density and the magnetic field strength. Its value is taken

to be b(E) = 10−16ε2GeVs−1 [17]. The number density of

DM in the solar system is given by

(nDM)⊙ =
ρ⊙

MDM
, (11)

where ρ⊙ ≈ 0.3 GeV/cm3. In the energy range we are in-

terested in, the value of ve+ is taken approximately to be c,

the velocity of light. The values of diffusion length λD(E,E
′)

and the corresponding halo function I(λD(E,E
′)) are based

on astrophysical assumptions [15, 41, 42]. By considering

different heights of the galactic plane and different DM halo

profiles the results may vary slightly. In the following for the

height of galactic plane we take <
∼ 4 kpc, which is referred

to as "med" model [15, 42], and we have used the NFW DM

halo profile [43]

ρ(r) = ρ⊙

(r⊙

r

)





1+
(

r⊙
rs

)

1+
(

r
rs

)
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, (12)

to determine the halo function I(λD(E,E
′)), where rs ≈ 20kpc

and r⊙ ≈ 8.5kpc. In FIG.s (2) and (4) we have shown the
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FIG. 2: e− + e+ flux from annihilation of DM to µ+µ−. We have

used a boost factor of 5.3×103, a DM mass MDM = 3 TeV, and the

reduced background (5).

the total electron and positron fluxes from the annihilation of

DM to muon and tau pairs respectively, plotted using DARK-

SUSY [44]. Meanwhile, in FIG.s (3) and (5) we have shown

the extracted positron flux. In the following we discuss a spe-

cific particle physics model where the DM annihilation to SM

leptons can be enhanced through the Sommerfeld correction.

B. A model for Sommerfeld enhanced DM annihilation

cross-section

As an illustrative example, we consider the model for Som-

merfeld enhanced annihilation to muons which was proposed

in Ref. [37, 47]. The SM is extended by adding a hidden sector

composed of three scalars S(1,0,3/2), χ(1,0,1) and φ(1,0,1),
where the numbers inside the parenthesis are quantum num-

bers under gauge group SU(2)L ×U(1)Y ×U(1)hidden. The

SM fields are neutral under U(1)hidden. The U(1)hidden will be

broken at around the electroweak scale to a surviving Z2 sym-

metry under which S is odd while rest of the fields, including
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FIG. 3: Positron flux extracted from Fermi and PAMELA compared

to the annihilation of DM to µ+µ−. The required boost factor is

5.3×103 for a DM mass MDM = 3 TeV.
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FIG. 4: e− + e+ flux from DM annihilation to τ+τ−. The boost

factor is 6.7×103 and the DM mass (MDM) is 3 TeV. We have used

the reduced background (5).

the SM fields, are even. As a result S can be a candidate for

a DM [45]. Several models have been considered in the lit-

erature [46]. Here we assume the mass of S to be a few TeV,

while the masses of χ and φ to be of O(100)GeV and O(100)
MeV respectively. The hidden sector is allowed to interact

with the SM via the Higgs portal with universal renormalis-

able couplings. The relevant Lagrangian is then given by

L ⊇ fportalH
†H
(

S†S+φ†φ+χ†χ+φ†χ
)

+ fSφS†Sφ†φ+ fSχS†Sχ†χ+ fSχφS†Sχ†φ+ h.c. (13)

Below 100 GeV χ acquires a vacuum expectation value (vev)

and breaks U(1)hidden to a surviving Z2 symmetry under which
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FIG. 5: Positron flux extracted from Fermi and PAMELA compared

to the annihilation of DM to τ+τ−. The required boost factor is 5.3×
103 for a DM mass MDM = 3 TeV.

S is odd. It also gives a mixing between H and φ through the

interaction term H†Hφ†χ. As a result φ can potentially anni-

hilate to muon pairs. Since φ gets a mass through the vev of

H, the O(100) MeV scale mass of φ demands the universal

coupling of Higgs to hidden sector to be of O(10−6). How-

ever, we have to make sure that with this coupling S should be

in thermal equilibrium above its mass scale. This implies that

fportal
>
∼ 8.36× 10−7

(

MS

1TeV

)1/2

. (14)

First S will freeze-out at a temperature TS ∼MS/20. However,

the corresponding annihilation cross-section is known to be

O(10−26) cm3/sec. The current annihilation of S can be en-

hanced through the interaction: S†Sχ†φ. This interaction can

generate an attractive force between S particles through the

exchange of φ. The enhanced Sommerfeld annihilation cross-

section then requires Mφ <
∼ αMS [48], where α = λ2/4π, the

effective coupling λ fSχφ〈χ〉/MS. This gives the constraint on

the coupling constant to be:

fSχφ >
∼ 0.5

(

Mφ

200MeV

)1/2(
MS

1TeV

)1/2(
100GeV

〈χ〉

)

. (15)

Thus we see that for fSχφ >
∼ 0.5 we can get an enhanced an-

nihilation cross-section to explain the current anomalies at

PAMELA and Fermi through S annihilation to muons. The

coupling fportal ≪ fSχφ ensures that antiproton fluxes from S†S

annihilation are suppressed.

IV. CONCLUSIONS

In this paper we disentangled the absolute electron and

positron fluxes by combining the current data from PAMELA
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and Fermi. The electron and positron spectra are found to

follow the power laws: E−3.06 and E−2.65 respectively. We

showed that there is a clean excess of positron flux above 50

GeV even if the propagation uncertainty of positron is added

to the background. This implies that we still have enough mo-

tivation for considering DM annihilation for the explanation

of current cosmic ray anomalies at PAMELA and Fermi. We

then considered a variant of the model of Ref. [37] based on

universal Higgs coupling to the hidden sector which can give

rise to muon pairs from the annihilation of the dark matter

particles.
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