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Abstract

The regularity lemma of Szemerédi asserts that one can partition every graph into a bounded

number of quasi-random bipartite graphs. In some applications however, one would like to have

a strong control on how quasi-random these bipartite graphs are. Alon, Fischer, Krivelevich

and Szegedy obtained a powerful variant of the regularity lemma, which allows one to have an

arbitrary control on this measure of quasi-randomness. However, their proof only guaranteed to

produce a partition where the number of parts is given by the Wowzer function, which is the

iterated version of the Tower function. We show here that a bound of this type is unavoidable

by constructing a graph H , with the property that even if one wants a very mild control on the

quasi-randomness of a regular partition, then the number of parts in any such partition of H

must be given by a Wowzer-type function.

1 Introduction

The regularity lemma of Szemerédi [23] is one of the most widely used tools in extremal combina-

torics. The lemma was originally devised as part of Szemerédi’s proof of his (eponymous) theorem

[22] on arithmetic progressions in dense sets of integers. Since then it has turned into a fundamen-

tal tool in extremal combinatorics, with applications in diverse areas such as theoretical computer

science, additive number theory, discrete geometry and of course graph theory. We refer the reader

to [14] and its references for more details on the rich history and applications of the regularity

lemma.

Let us turn to formally state the regularity lemma. For a graph G = (V,E) and two disjoint

vertex sets A and B, we denote by eG(A,B) the number of edges of G with one vertex in A and

one in B. The density dG(A,B) of the pair (A,B) in the graph G is
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dG(A,B) = eG(A,B)/|A||B| , (1)

that is, dG(A,B) is the fraction of pairs (x, y) ∈ A×B such that (x, y) is an edge of G. For γ > 0,

we say that the pair (A,B) in a graph G is γ-regular if for any choice of A′ ⊆ A of size at least

γ|A| and B′ ⊆ B of size at least γ|B|, we have |dG(A′, B′) − dG(A,B)| ≤ γ. Note that a large

random bipartite graph is γ-regular for all γ > 0. Thus we can think of γ as measuring the quasi-

randomness of the bipartite graph connecting A and B; the smaller γ is the more quasi-random

the graph is. We will sometimes drop the subscript G in the above notations when the graph G we

are referring to is clear from context.

Let Z = {Z1, . . . , Zk} be a partition of V (G) into k sets. Throughout the paper, we will only

consider partitions into sets Zi of equal size1. We will refer to each Z ∈ Z as a cluster of the

partition Z. The order of a partition is the number of clusters it has (k above). We will sometimes

use |Z| to denote the order of Z. We say that a partition Z = {Z1, . . . , Zk} refines another partition

Z ′ = {Z ′
1, . . . , Z

′
k′} if each cluster of Z is contained in one of the clusters of Z ′.

A partition Z = {Z1, . . . , Zk} of V (G) is said to be γ-regular if all but γk2 of the pairs (Zi, Zj)

are γ-regular. Szemerédi’s regularity lemma can be formulated as follows:

Theorem 1. (Szemerédi [23]) For any γ > 0 and t there is an integer K = K(t, γ) with the

following property; given a graph G and a partition A of V (G) of order t, one can find a γ-regular

partition B of V (G) which refines A and satisfies |B| ≤ K.

Let T (x) be the function satisfying T (0) = 1 and T (x) = 2T (x−1) for x ≥ 1. So T (x) is a tower

of 2’s of height x. Szemerédi’s proof of the regularity lemma [23] showed that the function K(t, γ)

can be bounded from above2 by T (1/γ5). For a long time it was not clear if one could obtain

better upper bounds for K(t, γ). Besides being a natural problem, further motivation came from

the fact that some fundamental results, such as Roth’s Theorem [19, 20], could be proved using

the regularity lemma. Hence improved upper bounds for K(t, γ) might have resulted in improved

bounds for several other fundamental problems. In a major breakthrough, Gowers [9] proved that

the Tower-type dependence is indeed necessary. He showed that for any γ > 0 there is a graph

where any γ-regular partition must have size at least T (1/γ1/16).

Gowers’ lower bound [9] can be stated as saying that if one wants a regular partition of order k,

then there are graphs in which the best quasi-randomness measure one can hope to obtain is merely

1/(log∗(k))16. Suppose however that for some f : N 7→ (0, 1), we would like to find a partition of a

graph of order k that will be “close” to being f(k)-regular. Alon, Fischer, Krivelevich and Szegedy

[1] formulated the following notion of being close to f(k)-regular.

1In some papers partitions of this type are called equipartitions.
2We note that in essentially any application of Theorem 1, one takes t to be (at least) 1/γ so some papers simply

consider the function K′(γ) = K(1/γ, γ). The reason is that one wants to avoid “degenerate” regular partitions into

a very small number of parts, where most of the graph’s edges will belong to the sets Vi where one has no control on

the edge distribution.
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Definition 1.1. ((ǫ, f)-regular partition) Let f be a function f : N 7→ (0, 1). An (ǫ, f)-regular

partition of a graph G is a pair of partitions A = {Vi : 1 ≤ i ≤ k} and B = {Ui,i′ : 1 ≤ i ≤
k, 1 ≤ i′ ≤ ℓ} of V (G), where B is a refinement of A (with Ui,i′ ⊆ Vi), satisfying the following:

1. B is f(k)-regular.

2. Say that a pair (Vi, Vj) of clusters of A is good if all but at most ǫℓ2 of pairs 1 ≤ i′, j′ ≤ ℓ

satisfy |d(Ui,i′ , Uj,j′)− d(Vi, Vj)| < ǫ. Then, at least (1− ǫ)
(k
2

)

of the pairs (Vi, Vj) are good.

One useful way of thinking about the above notion is to “forget” for a moment about the

partition B and just treat partition A as an f(k)-regular partition. One then tries to extract some

useful information from the assumption that A itself is f(k)-regular. Finally, one uses the second

property of Definition 1.1, which says that the two partitions are similar, in order to show that the

information deduced from the assumption that A is f(k)-regular can actually be deduced from the

fact that B is f(k)-regular.

One of the main results of [1] was that given a graph G and any function f , one can construct

an (ǫ, f)-regular partition of G of bounded size. This version of the regularity lemma is sometimes

referred to as the strong regularity lemma. As we have mentioned above, in order to avoid degenerate

partitions we will assume henceforth that an (ǫ, f)-regular partition has order at least 1/ǫ.

Theorem 2. (Alon et al. [1]) For every ǫ > 0 and f : N 7→ (0, 1), there is an integer S = S(ǫ, f)

such that any graph G = (V,E) has an (ǫ, f)-regular partition (A,B) where 1/ǫ ≤ |A|, |B| ≤ S.

Let us describe two cases where one needs to have a better control of the measure of quasi-

randomness of a regular partition. A first example is when proving certain variants of the graph

removal lemma [20]. In such a scenario we are given a regular partition and would like to be

able to say that since the partition behaves in a quasi-random way, then we can find “small”

subgraphs that we expect to find in a truly random graph. The only problem is that as the “small”

structure we are trying to find becomes larger, we need the measure of quasi-randomness to decrease

with it. Some examples where Theorem 2 was used to overcome such difficulties can be found in

[1, 2, 4, 5, 13, 21]. We note that in some of these papers, Theorem 2 was used with functions f that

go to zero extremely fast, so the ability to apply the theorem with arbitrary functions was crucial.

Another example when one wants a better control of the measure of quasi-randomness is when

the graph we are trying to partition is very sparse. It is not hard to see that for the notion of

γ-regularity to make sense, the graph should have density at least γ. A well known case where one

is faced with increasingly sparse graphs is in the proofs of the hypergraph regularity lemma, that

were obtained independently by Gowers [11], by Rödl et al. [8, 17, 18] and later also by Tao [24]. In

those proofs, one is partitioning not only the vertices of the hypergraph (as in Theorem 1) but also

the pairs of vertices into quasi-random bipartite graphs. However, in the process these bipartite

graphs become sparser so one needs to control their quasi-randomness as a function of their density.

Out of the aforementioned proofs of the hypergraph regularity lemma, Tao’s proof actually uses
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Theorem 2 in order to address this issue. See the survey of Gowers [11] for an excellent account of

this.

We finally note that the strong regularity lemma is also related to the notion of the limit of

convergent graph sequences defined and studied in [7]. Without defining these notions explicitly,

we just mention that many of the results mentioned above which were proved using Theorem 2,

were later reproved using graph limits, see e.g. Lovász and Szegedy [16]. Furthermore, some of

the important properties of the limit of a convergent graph sequence, such as its uniqueness [15],

also hold for (ǫ, f)-regular partitions, see [4]. Hence, one can view an (ǫ, f)-regular partition as the

discrete analogue of the (analytic) limit of a convergent graph sequence.

Let W (x) be the function satisfying W (0) = 1 and W (x) = T (W (x − 1)) for x ≥ 1. So

the function W is an iterated version of the Tower function T (x). The function W is sometimes

referred to as the Wowzer3 function (for obvious reasons). The proof of Theorem 2 in [1] gave a

W -type upper bound for the function S(ǫ, f) in Theorem 2. As we have mentioned above, in some

applications of this lemma one uses functions f that go to zero extremely fast. But in some cases,

as was the case in [1], one uses moderate functions like f(x) = 1/x2. However, even when the

function f is f(x) = 1/x, the upper bound given in [1] for the function S(ǫ, f) is (roughly) W (1/ǫ).

Hence it is natural to ask if better bounds can be obtained for such versions of Theorem 2. Our

main result here is that a W -type dependence is unavoidable even in this case.

Theorem 3. Set f(x) = 1/x. For every small enough ǫ ≤ c0 there is a graph H with the

following property: If (A,B) is an (ǫ, f)-regular partition of H, and4 |A| ≥ 1/ǫ, then |A| ≥
W (
√

log(1/ǫ)/100).

An interesting aspect of our proof is that it gives the same lower bound even if one considers

a much weaker condition than the second condition in Definition 1.1. What we show is that the

lower bound of Theorem 2 holds even if one wants only ǫ1/10k2 of the pairs (Vi, Vj) to be good.

Observe that Definition 1.1 asks5 for (1− ǫ)
(k
2

)

good pairs! In other words, the lower bound holds

even if one is interested in having a very weak similarity6 between the partitions A and B.
Another interesting aspect of the proof of Theorem 3 is that by resetting the parameters appro-

priately, one can get W -type lower bounds for (ǫ, f)-regularity for any function f : N 7→ (0, 1) going

to zero faster that 1/ log∗(x). Observe that this is not a caveat of the proof; when f(x) = 1/ log∗(x),

Theorem 1 can be formulated as saying that any graph has an (ǫ, f)-regular partition of order

3This name was coined by Graham, Rothschild and Spencer [12].
4As we have mentioned before, in order to rule out degenerate partitions (such as taking a partition into 1 set)

we assume that |A| ≥ 1/ǫ. A similar assumption was used in [1], where they assume that f(x) ≤ ǫ. These two

assumptions are basically equivalent (recall that f(x) = 1/x), but the one we use makes the notation somewhat

simpler.
5We note that the application of Theorem 2 in [1] (as well as in most other papers) critically relied on the partition

having (1− ǫ)
(

k
2

)

good pairs.
6Recall the discussion following Definition 1.1.
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T (1/ǫ5). Hence, one cannot obtain a W -type lower bound for f of this type. So we see that even

if one wants to have a very weak relation between the order of A and the regularity measure of B
(say, 1/ log log(k)) one would still have to use a partition of size given by a W -type function7.

The ideas we use here in order to prove Theorem 3 appear to be useful also for proving W -type

lower bounds for the hypergraph regularity lemma [8, 10, 11, 17, 18, 24]. As we explained above,

in this case also one is faced with the need to control a measure of quasi-randomness approaching

0, and this seems to be the main reason why the current bounds for this lemma are of W -type.

This investigation is part of a joint work of the second author with Dellamonica and Rödl.

Organization: The rest of the paper is organized as follows. In the following section we describe

the graph H which we use in proving Theorem 3. In Section 3 we give an overview of the proof,

state the two key lemmas that are needed to prove Theorem 3 and then derive Theorem 3 from

them. In Section 4 we prove several preliminary lemmas that we would later use in the proofs of

the two key Lemmas. In Sections 5 and 6 we prove the key lemmas stated in Section 3.

2 A Hard Graph for the Strong Regularity Lemma

In this section we describe the graph H which will have the properties asserted in Theorem 3. The

description will be somewhat terse; the reader can find in Section 3 an overview of the proof of

Theorem 3, which includes some intuition/motivation for the way we define H.

2.1 A weighted reformulation of Theorem 3

Suppose P is a weighted complete graph, where each edge (x, y) is assigned a weight dP (x, y) ∈ [0, 1].

For two sets A,B define the weighted density between A,B

dP (A,B) =
∑

x∈A,y∈B
dP (x, y)/|A||B| . (2)

Note that if we think of a graph as a weighted complete graph with 0/1 weights then the above

definition coincides with the definition of dG(A,B) given in (1). Also note that when A = {x},
B = {y} are just two vertices then dP (A,B) is just the weight dP (x, y) assigned to (x, y) as above.

The following simple claim follows immediately from a standard application of Chernoff’s inequality.

Claim 2.1. Let ζ > 0. Suppose P is a weighted complete graph with weights in [0, 1], and H is a

random graph, where each edge (x, y) is chosen independently to be included in H with probability

dP (x, y). Then with probability at least 1/2 we have

|dH(A,B)− dP (A,B)| ≤ ζ ,

for all sets A,B of size at least 20ζ−2 log(n).

7But in such cases the bound might become W (log log(1/ǫ)) or some other W -type function.
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It is clear that we can prove Theorem 3 by constructing an arbitrarily large graph, such that the

number of vertices n will be much larger than all the constants involved. Hence, by the above claim,

we see that in order to prove Theorem 3 it is enough to construct a weighted graph H satisfying

the condition of the theorem with respect to the notion of d(A,B) defined in (2). The reason is

that by Claim 2.1, if we have a weighted graph H satisfying Theorem 3, then a random graph

generated as in Claim 2.1 will satisfy the assertion of Theorem 3 with high probability. Therefore,

from this point and throughout the paper we will focus on the construction of a weighted graph H

satisfying the condition of Theorem 3. Hence, from now on, whenever we talk about d(A,B) we

will be referring to the weighted density between A,B as in (2).

2.2 A preliminary construction

In this subsection we describe the first step in defining the graph H of Theorem 3. This graph will

be a variant of the graph used by Gowers in [9]. We start with the following definition.

Definition 2.2. (Balanced Partitions) Let M be an integer and suppose we have a sequence

(Ai, Bi)
m
i=1 of (not necessarily distinct) partitions of [M ]. We call this sequence of partitions bal-

anced if for any distinct j, j′ ∈ [M ], the number of 1 ≤ i ≤ m for which j and j′ lie in the same

set of the partition (Ai, Bi) is at most 3m/4.

The following claim appears in [9]. For completeness, we will reproduce a simple proof later on

in the paper (see Section 4).

Claim 2.3. Let φ(m) = 2⌈m/16⌉. Then for every m ≥ 1 there exists a sequence of m balanced

partitions of φ(m).

Let T φ(x) be the function satisfying T φ(0) = 1 and T φ(x) = T φ(x− 1)φ(T φ(x− 1)) for x ≥ 1,

where φ(x) = 2⌈x/16⌉ is the function defined in Claim 2.3. It is not hard to see that T φ is a

Tower-type function, and that in fact T φ(x) ≥ T (⌊x/2⌋) (see Section 4).

Let us define a sequence of integers as follows. We set

w(1) = ⌊log log(1/ǫ)⌋ , (3)

and define inductively

w(x+ 1) = ⌊log log(T φ(w(x)))⌋ . (4)

It is also not hard to see that w(x) has a W -type dependence on x. Specifically we will later (see

Section 4) observe that:

Claim 2.4. For every integer x ≥ 1, we have w(x) ≥ W (⌊x/2⌋).

We now turn to define a graph G, which we will later modify in order to get the actual graph H

that will satisfy the assertion of Theorem 3. In order to define G we will first define a sequence of

6



partitions of the vertex set of G. For simplicity we will identify the n vertices of G with the integers

[n]. So let n ∈ N and set s = w( 1
48

√

log(1/ǫ)), where w(x) is the function defined in (4). We set

m0 = 1 and for 1 ≤ r ≤ s, let mr = mr−1φ(mr−1). For each 0 ≤ r ≤ s, let X
(r)
1 ,X

(r)
2 , . . . ,X

(r)
mr be

a partition of [n] into mr intervals of integers of equal size8. We will later refer to this partition as

canonical partition Pr. Thus at level r, we have a canonical partition Pr consisting of mr clusters.

So P0 is just the entire vertex set of G. Note that using the notation we introduced above we have

|Pr| = mr = T φ(r) . (5)

A crucial observation that will be used repeatedly in the paper is that for every r < r′, partition

Pr′ refines partition Pr.

We finally arrive at the actual definition of G. We will start with the graph G where each pair

of vertices (x, y) has weight 0. We will then go over the partitions P1,P2, . . . ,Ps one after the

other, and in each case increase the weight between some of the pairs (x, y).

Consider some r ≥ 1 and focus on Pr and Pr−1. Let us simplify the notation a bit and set

m = mr−1, M = φ(m) and mr = Mm. So m is the number of clusters of Pr−1, M is the number

of clusters of Pr inside each cluster of Pr−1, and mM is the number of clusters of Pr. Let us use

X1, . . . ,Xm to denote the m clusters of Pr−1. Also, for each 1 ≤ i ≤ m we use Xi,1, . . . ,Xi,M to

denote the M clusters of Pr inside Xi. Now, for each 1 ≤ i ≤ m, let (A′
i,j, B

′
i,j)

m
j=1 be a sequence of

balanced partitions of [M ]. Such a collection exists since M = φ(m) so Claim 2.3 can be used here.

One can think of each of these partitions as partitioning the clusters of Pr within cluster Xi. Let

Ai,j = ∪t∈A′
i,j
Xi,t and Bi,j = ∪t∈B′

i,j
Xi,t = Xi\Ai,j . We now update the weights of G as follows: If

(x, y) ∈ Xi ×Xj , then we increase dG(x, y) by 4−r/4
√

log(1/ǫ) if and only if (x, y) ∈ Ai,j × Aj,i or

(x, y) ∈ Bi,j ×Bj,i. We will later refer several times to the following observation.

Fact 2.5. For any x, y ∈ V (G) we have dG(x, y) ≤ 4−
√

log(1/ǫ).

2.3 Adding Traps to G

We will now need to modify the graph G defined above in order to obtain the graphH from Theorem

3. To this end we will need to define certain quasi-random graphs. Let b′ < b and consider two of

the canonical partitions Pb′ and Pb defined in the previous subsection. Suppose Pb has order mb

and let V be a set of mb vertices, where we identify vertex i ∈ V with cluster Xi ∈ Pb. Note that

with this interpretation in mind, one can think of a cluster U ∈ Pb′ as a subset of vertices U ′ ⊆ V ,

where vertex j belongs to U ′ if and only if cluster Xj ∈ Pb is a subset of U . It follows that for every

b′ < b, partition Pb′ defines a natural partition of V into mb′ subsets U
b′
1 , . . . , U b′

mb′
corresponding

to its mb′ clusters.

8We assume that n is such that it can be divided into equal sized parts of size mr for all 0 ≤ r ≤ s.
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We now arrive at a critical definition. We will use e(R,R′) to denote the number of edges in a

graph with one vertex in R and another in R′, where edges in R ∩R′ are counted twice9.

Definition 2.6. (Trap) Let Pb, mb, V and the partitions U b′
1 , . . . , U b′

mb′
be as above. Let O = (V,E)

be an mb-vertex graph on V . Then O is said to be a trap if it satisfies the following two conditions:

• For every pair of sets R,R′ ⊆ V (O) of size ⌈√mb/4⌉ we have

∣

∣

∣

∣

e(R,R′)− 1

2
|R||R′|

∣

∣

∣

∣

≤ 1

4
|R||R′| .

• For every b′ < b, for every 1 ≤ i, j ≤ mb′ , every choice of 200 ≤ k ≤ log(mb), every choice of

R ⊆ U b′
i of size k6 and every choice of R′ ⊆ U b′

j of size ⌈|U b′
j |/k⌉, we have

∣

∣

∣

∣

e(R,R′)− 1

2
|R||R′|

∣

∣

∣

∣

≤ 1

k2
|R||R′| .

We will later prove the following (see Section 4).

Claim 2.7. There is a constant C, such that for every m > C, there exists a trap on m vertices.

We are now ready to describe the modifications needed to turn G into the graph H. We do the

following for every integer 1 ≤ g ≤ 1
48

√

log(1/ǫ); let b = w(g) be the integer defined in (4), let mb

be the order of Pb and let Ob = (V,E) be10 a trap on a vertex set V of size mb. Recall that we

identify vertex i ∈ V with cluster Xi ∈ Pb. We now modify G as follows; for every pair of clusters

(Xi,Xj), if (i, j) ∈ E(Ob) we increase by 4−g the weight of every pair of vertices (x, y) ∈ Xi ×Xj .

If (i, j) 6∈ E(Ob) we do not increase the weight of (x, y). Let us state the following fact to which

we will later refer.

Fact 2.8. The smallest weight used when placing a trap in H is 4−
1
48

√
log(1/ǫ).

Later on in the paper we will say that we have placed a trap on partition Pb if b is one of the

integers w(1), . . . , w( 1
48

√

log(1/ǫ)). If a trap was placed on Pb and (i, j) is an edge of the graph

Ob that was used in the previous paragraph, then we will say that the pair (Xi,Xj) belongs to the

trap placed on Pb. Also, if b = w(g), then we will refer to the trap placed on Pb as the gth trap

placed in H. Finally, if (x, y) ∈ Xi ×Xj and (Xi,Xj) belongs to the trap placed on Pw(g) then we

will say that (x, y) received an extra weight of 4−g from the gth trap placed in H.

9Note that this definition is compatible with the definition of e(A,B) we used earlier, where we assumed that the

sets A,B are disjoint.
10Note that since we only ask Theorem 3 to hold for small enough ǫ, we can assume that ǫ is small enough so

that already mw(1) = T φ(w(1)) would be larger than C, thus allowing us to pick a trap via Claim 2.7 (where w(1) is

defined in (3)).
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Using the above jargon, we can thus say that in order to obtain the graph H from the graph

G we do the following for every 1 ≤ g ≤ 1
48

√

log(1/ǫ); setting b = w(g), we place the gth trap on

partition Pb, by increasing the weight of (x, y) by 4−g if and only if (x, y) ∈ Xi ×Xj and (Xi,Xj)

belongs to the trap.

Let us draw some distinction between the way we assigned weights to edges in G and the

way we have done so when modifying G to obtain H. When defining G we looked at each of

the partitions Pr, and for every Xi,Xj ∈ Pr−1 added weight 4−r/4
√

log(1/ǫ) only to some of the

pairs (x, y) ∈ Xi × Xj . More specifically, we considered the partitions of Xi = Ai,j ∪ Bi,j and

Xj = Aj,i ∪ Bj,i and only added the weight 4−r/4
√

log(1/ǫ) when either (x, y) ∈ Ai,j × Aj,i or

(x, y) ∈ Bi,j ×Bj,i. When adding the traps, we have only added weights to some of the partitions

Pb, that is, those for which b = w(g) for some 1 ≤ g ≤ 1
48

√

log(1/ǫ). Moreover, when placing a

trap on Pb we added weight 4−g only to pairs (x, y) connecting some of the pairs (Xi,Xj) (those

that belong to the trap). Finally, for each such pair (Xi,Xj) we either added more weights to all

the pairs (x, y) ∈ Xi ×Xj or to none of them.

Another important distinction is the following; suppose b = w(g). Then in G, the weight that

was added to Pb was 4−b/4
√

log(1/ǫ) while the weight we added when placing a trap on Pb is 4−g.

Since w is a W -type function we see that the weights assigned in G to a specific partition Pb are

extremely small compared to those assigned to Pb when placing a trap on it (assuming a trap was

placed on Pb).

We also observe that for every pair of vertices (x, y) of H, the total weight it can receive from

all the traps we placed is bounded by 1/4 + 1/16 + . . . < 1/3. We also recall Fact 2.5 stating

that the total weight assigned to a pair (x, y) in G is bounded by 1/4
√

log(1/ǫ). This means that

dH(x, y) ≤ 1, as needed for the application of Claim 2.1.

3 Proof Overview, Key Lemmas and Proof of Theorem 3

Our goal in this section is fourfold; give an overview of the proof of Theorem 3, describe the

main intuition behind the construction of H, state the two key lemmas that will be used to prove

Theorem 3 and finally derive Theorem 3 from these two lemmas.

Perhaps the best way to approach our construction of H is to first consider the proof of Theorem

2 in [1]. For simplicity, let us consider the case f(x) = 1/x; we start by taking A1 to be an arbitrary

partition of G of order 1/ǫ, and then apply Theorem 1 in order to find a 1/|A1|-regular partition,
B1, of G which refines A1. Note that by definition, A1 and B1 satisfy the first condition of Definition

1.1, so if they also satisfy the second, then we are done. If they do not, then we set A2 to be B1

and use Theorem 1 to find a 1/|A2|-regular partition, B2, of G which refines A2. Note that A2 and

B2 satisfy the first property, so if they satisfy the second we are done. The process thus goes on till

we end up with a pair of partitions Ai, Bi which satisfy the second condition. The main argument

in [1] shows that this process must stop after (about) 1/ǫ steps with a pair Ai, Bi which satisfies
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the second condition, and also (by definition) the first condition. Since the above proof applies

Theorem 1 repeatedly, where each time we take 1/γ to be the order of the previous partition, the

bound we obtain is of W -type.

Of course, if we want to have any chance of proving Theorem 3, we need to come up with a

graph for which the proof of Theorem 2 will produce a partition of W -size. Given the overview of

this proof described above, the graph H needs to have two properties: (1) For every γ > 0, any

γ-regular partition of H has size given by a Tower-type function; (2) one needs to iteratively apply

Theorem 1 a super-constant11 number of times in order to get two partitions A and B satisfying

the second condition of Definition 1.1. The first property will guarantee that each time we apply

Theorem 1 we get a Tower-type increase in the size of Ai while the second condition will guarantee

that we will have to repeat this sufficiently many times.

Let us describe how to get a graph satisfying property (1) mentioned above. Recall that Gowers

showed [9] that for every γ there exists a graph with the property that any γ-regular partition has

a size T (1/γ1/16). It is not hard to see that by a minor “tweak” of his construction12 one can get a

single graph that works for all γ bounded away from 0. This is basically13 the graph G we defined

in Subsection 2.2. For completeness let us describe the intuition behind Gowers’ construction.

Let us explain why the partitions Pr used in the construction of G cannot be used as γ-regular

partitions of G. Recall that at each iteration, we take every pair of sets Xi,Xj ∈ Pr−1 split them

as Xi = Ai,j ∪Bi,j and Xj = Aj,i∪Bj,i and increase the weight between Ai,j, Aj,i and Bi,j, Bj,i. So,

in some sense, each partition Pr is used in order to rule out the possibility of using the previous

partition Pr−1 as a γ-regular partition. We note that when one comes about to actually prove that

no other (small) partition can be γ-regular one relies critically on the fact that the weights assigned

to the partitions Pr in G decrease exponentially (as a function of r). This makes sure that any

irregularity found in level r cannot be canceled by weights assigned to levels r′ > r.

Let us describe how to get a graph satisfying property (2) mentioned above. Recall that G was

defined over a sequence of partitions Pr. Suppose we want to make sure that two specific partitions

in this sequence Pr and Pr′ , with Pr′ refining Pr, will not satisfy the second property of Definition

1.1. Then we can do the following; we take a random graph O whose vertices are the clusters of

Pr′ , and for every edge (i′, j′) ∈ E(O) increase the weight of all pairs (x, y) ∈ Ui′ × Uj′ , where

Ui′ , Uj′ ∈ Pr′ . This is just the trap we used in Subsection 2.3. Since we use a random graph, we

expect all pairs of clusters (Xi,Xj) of Pr to not be good (in the sense of Definition 1.1) since close

to half of the clusters (Ui′ , Uj′) with Ui′ ⊆ Xi, Uj′ ⊆ Xj , will get an extra weight while the other

half will not. Now it is not hard to see that for this to work we do not actually have to put the

11To be precise, in order to get a W -type lower bound the number of iterations needs to be larger than W−1(1/ǫ).
12In fact, we will be tweaking the construction of Gowers [9] which gives a slightly weaker lower bound of

T (log(1/γ)), and is much simpler to analyze. Since we are trying to prove W -type lower bounds it makes little

difference if we are iterating the function T (x) or T (log(x)).
13If we were only interested in getting a graph that for all γ > 0 had only γ-regular partitions of Tower-size, then

we could have used the weights 4−r instead of 4−r/4
√

log(1/ǫ) like we do.
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trap on Pr′ ; it is enough to do that on some partition Pb with r ≤ b ≤ r′. Since we will make sure

that a γ-regular partition must be huge, in order to satisfy the first condition of Definition 1.1 one

would have to pick two partitions Pr′ , Pr with r′ being much larger than r. Therefore, in order to

make sure that all pairs Pr′ , Pr will fail the second condition, it is enough to place the traps only

on very few partitions Pb, where by few we mean that there will be a Tower-type jump between

their indices.

So with one serious caveat, if one wants to construct an (ǫ, f)-regular partition by taking A
and B to be two of the canonical partitions Pr,Pr′ , then one is forced to take two partitions that

refine the last trap we have placed in H. The reason is that by property (1) the integers r and r′

must be very far apart, and the way we have placed the traps will guarantee that there will be a

trap in between them which will then make sure that they do not satisfy the second property of

Definition 1.1. The caveat we are referring to is the fact that once we have added the traps to G, we

have destroyed the critical feature of the graph G, which is that the weights decrease exponentially

(recall the observation we made above and the discussion at the end of Subsection 2.3). Hence,

it is no longer true that once we find a discrepancy in some partition Pr, this discrepancy cannot

be canceled by lower levels. In terms of analyzing Gowers’ example, it might be the case that

some pairs which were not γ-regular in G, might become γ-regular in H. Actually, there will be

such pairs. This might completely ruin our ability to prove the H has only γ-regular partitions of

Tower-size.

We overcome the above problem by proving that it cannot happen very often. Namely, since

the trap we have added originates from a random graph, then at least on average we expect it to

contribute the same density to all pairs of vertex sets. So on average, we do not expect a trap

to cancel a discrepancy caused by partitions that are refined by it. This is of course only true on

average. To turn this into a deterministic statement, we formulate a condition that holds in random

graphs, and show that if too many pairs that were supposed to be not γ-regular somehow turn out

to be γ-regular, then we get a violation of the property we assume the trap to satisfy. Turning

this intuition into formality is probably the most challenging part of this paper. One of the main

reasons is that we cannot run this argument over all the pairs; instead we need to somehow “pack”

them together and then argue about each of these packaged pairs. See Lemmas 6.4 and 6.5.

We now turn to the key lemmas of the paper. To state them we will need to define the notion

of β-refinement. We briefly mention that this notion is crucial in overcoming another assumption

we have used in the above discussion, that one is trying to construct an (ǫ, f)-regular partition by

using only the canonical partitions Pr. Using the notion of β-refinement we will show that one

actually has to approximately use only such partitions.

Let 0 ≤ β < 1/2. Given two sets Z and X, we write Z ⊂β X, to denote the fact that

|Z ∩X| ≥ (1− β)|Z|. We will sometimes also say that X β-contains Z or that Z is β-contained in

X to refer to the fact that Z ⊂β X. Note that since we assume that β < 1/2, there can be at most

one set X which β-contains a set Z. Given two partitions P = {X1, . . . ,Xm} and Z = {Z1, . . . , Zk}
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of V (H) and 0 ≤ β < 1/2, we shall say that Z is a β-refinement of P if for at least (1− β)k values

of t, there exists i such that Zt ⊂β Xi. Observe that if β = 0, then β-refinement coincides with the

standard notion of one partition refining another one, that we discussed earlier.

In what follows, when we refer to the graph H we mean the graph H defined in the previous

section. We now state the two key lemmas we will prove later on in the paper. Getting back to the

intuitive discussion above, one can think of the first lemma as formalizing condition (1) mentioned

above, which we wanted H to satisfy.

Lemma 3.1. Let f(x) = 1/x. Suppose A and B form an (ǫ, f)-regular partition of H. If |A| =
k ≥ 1/ǫ then B is an ǫ1/5-refinement of P2 log log k.

Note that if β < 1/2 and partition A is a β-refinement of Pr then the order of A is at least

half the order of Pr. Hence the above lemma (implicitly) says that partition B, which must be

1/k-regular, must have order at least half times the order of P2 log log k. Recalling (5), this means

that |B| ≥ (1/2) ·T φ(2 log log k). We note however, that knowing that B must have Tower size is not

enough for our proof to work. We actually need to know that B is a good refinement of partition

P2 log log k. This is needed in order to show that if a trap was placed between A and B then they

will indeed fail to satisfy the second property of Definition 1.1. This is exactly where the notion of

β-refinement becomes useful, as we state in the second key lemma, which formalizes property (2)

mentioned above that we wanted H to satisfy.

Lemma 3.2. Suppose A, B are two partitions of H with the following properties

• B is a refinement of A.

• |A| = k and H has a trap on a canonical partition Pb whose order is at least k2.

• B is an ǫ1/5-refinement of Pb.

Then A and B do not satisfy the second condition of Definition 1.1. In particular they do not form

an (ǫ, f)-regular partition of H.

We end this section with the derivation of Theorem 3 from Lemma 3.1 and Lemma 3.2.

Proof of Theorem 3: Suppose A and B form an (ǫ, f)-regular partition of H, where |A| = k ≥
1/ǫ. Let ms denote the order of Ps, which is the largest partition on which we have placed a trap.

Recall that s = w( 1
48

√

log(1/ǫ)) and that ms ≥ s (in fact, ms = T φ(s)). Hence, by Claim 2.4

we have ms ≥ W ( 1
96

√

log(1/ǫ)). Therefore, if k ≥ √
ms we are done since

√

W ( 1
96

√

log(1/ǫ)) >

W ( 1
100

√

log(1/ǫ)) (with a lot of room to spare).

We can thus assume that |A| = k ≤ √
ms, and choose b to be the smallest index of a partition

Pb, on which we have placed a trap satisfying |Pb| ≥ k2. If we could show that B forms an ǫ1/5-

refinement of Pb, then an application of Lemma 3.2 would give that A and B do not form an
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(ǫ, f)-regular partition of H, which would be a contradiction. Now, Lemma 3.1 tells us that B is

an ǫ1/5-refinement of P2 log log k. Note that if B is an ǫ1/5-refinement on P2 log log k then it is also an

ǫ1/5-refinement of any partition that is refined by P2 log log k. In other words, it is enough14 that we

show that b ≤ 2 log log(k).

Suppose first that b = w(1), that is, the first trap of size at least k2 is the first trap placed in

H. Then recalling (3) and the fact that k ≥ 1/ǫ, we have

b = w(1) = ⌊log log(1/ǫ)⌋ ≤ 2 log log(k) ,

as needed. Suppose now that b = w(g+1) for some g ≥ 1 and that the trap with largest order smaller

than k2 was placed on Pb′ where b′ = w(g). Then recalling (4) we see that b = ⌊log log(T φ(b′))⌋.
We also recall (5) stating that |Pb′ | = T φ(b′). We thus infer that

T φ(b′) = |Pb′ | ≤ k2 ,

implying that

b = ⌊log log(T φ(b′))⌋ ≤ log log(k2) ≤ 2 log log(k) ,

thus completing the proof. �

As one can see from our proof of Theorem 3, what we show is not only that an (ǫ, f)-regular

partition must be large, but that the only way to get such a partition is to basically take A and

B to be refinements of partition Ps in H. Recall that we started this section by saying that one

should design H in a way that will make sure that at least the proof of Theorem 2 will produce a

large partition. The fact that the only way to get an (ǫ, f)-regular partition is to take partition Ps,

can be interpreted as saying that the only way to prove Theorem 2 is to go through the process

described at the beginning of this section.

4 Some Preliminary Lemmas

In this section we prove some simple lemmas that will be used later on in the paper. But we start

with proving the claims that were stated without proof in the previous sections. From this point

on, when we write something like x ≤(3) y, we mean that the fact that x ≤ y follows from the

facts stated in equation (3). As the reader will inevitably notice, we will be very loose in many

of the proofs. The main reason is that as we are dealing with W -type and Tower-type functions,

many “improvements” make absolutely no difference even on the quantitative bounds one obtains.

Hence, we opted for statements that are simpler to state and apply.

Proof of Claim 2.3: First, notice that for any m ≥ 1, we can simply repeat the partition

Ai = {1}, Bi = {2}, a total of m times to get m partitions of the set {1, 2} such that there is no i

14Recall that each partition Pr is a refinement of all the partitions Pr′ with r′ ≤ r.
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for which (distinct) j, j′ appear in the same part. Since for 1 ≤ m ≤ 16, we have φ(m) = 2⌈m/16⌉ = 2,

the claim holds for these values of m.

Suppose now thatm ≥ 17, setM = φ(m) = 2⌈m/16⌉ and consider a randomly generated sequence

(Ai, Bi)
m
i=1 of partitions of [M ] obtained as follows; for each 1 ≤ i ≤ m and each 1 ≤ j ≤ M we

assign element j to Ai with probability 1/2 (all mM choices being independent). Fix a pair of

distinct elements j, j′ ∈ [M ]. Clearly the number of i such that j, j′ belong to the same class in

(Ai, Bi) is distributed as the binomial random variable B(m, 1/2). Hence, we get from a standard

application of Chernoff’s inequality that the probability that the number of these i is larger than

3m/4 is bounded by e−m/6. Hence, the probability that some pair of distinct j, j′ ∈ [M ] belong to

the same part in more than 3m/4 of the partitions is bounded by
(M
2

)

e−m/6 < 1 so the required

sequence of partitions exists. �

Proof of Claim 2.4: Let us start by proving that

T φ(x) ≥ T (⌊x/2⌋) , (6)

as we have previously claimed. We first notice that when x ≥ 256 we have 2x/16 ≥ 16x, implying

that in this case we have

φ(φ(t)) ≥ 22
t/16/16 ≥ 2t . (7)

Now, one can verify that (6) holds when 1 ≤ x ≤ 10 and that T (x) ≥ 256 when x ≥ 4. Thus, when

x ≥ 11, we have

T φ(x) ≥ φ(φ(T φ(x− 2))) ≥(6) φ(φ(T (⌊x/2⌋ − 1))) ≥(7) 2
T (⌊x/2⌋−1) = T (⌊x/2⌋) .

We now recall (3) which implies that since we can assume that ǫ is small enough, we can also

assume that w(1) is large enough. In particular we have w(1) ≫ W (1) = T (1) = 2. Let us denote

T̂ (t) = ⌊log log(T φ(t))⌋. So w(i) is just T̂ iterated i times with w(1) = ⌊log log(1/ǫ)⌋. Now we shall

show that for any large enough t, T̂ (T̂ (t)) > T (t). Using induction, it would follow that for all

i ≥ 1, w(i) > W (⌊i/2⌋), thus completing the proof. Now

T̂ (T̂ (t)) = ⌊log log(T φ(⌊log log(T φ(t))⌋))⌋

≥ 1

4
log log

(

T

(

1

4
log log (T (t/4))

))

≥ 1

4
T

(

1

4
T (t/4− 2)− 2

)

≥ 1

4
T

(

1

5
T

(

t

5

))

≥ T (t) ,
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where in the first inequality we apply (6), in the second we use the fact that log log(T (x)) = T (x−2),

and the last holds for all large enough t. �

We now turn to the proof of Claim 2.7. Recall that given two sets of vertices R,R′, which are

not necessarily disjoint, we used e(R,R′) to denote the number of edges connecting a vertex in R

to a vertex in R′, where an edge belonging to R ∩R′ is counted twice.

Claim 4.1. There is a constant C, such that if m = mb ≥ C and O is a random graph from

G(m, 1/2), then with probability at least 3/4 it satisfies the first condition of a trap (as stated in

Definition 2.6).

Proof: Fix two sets R,R′ of size r = ⌈√m/4⌉. Given distinct ℓ, ℓ′ let zℓ,ℓ′ be the indicator for the

event that (ℓ, ℓ′) ∈ E(O), and zR,R′ =
∑

ℓ∈R,ℓ′∈R′ zℓ,ℓ′ . Then,

3r2

8
≤
(

r

2

)

≤ E[zR,R′ ] = E[e(R,R′)] =
1

2

(

r2 − |R ∩R′|
)

≤ r2

2
,

for all large enough m. Now observe that zR,R′ is a sum of at least
(r
2

)

indicators zℓ,ℓ′ and each zℓ,ℓ′

can change the value of zR,R′ by at most 2. We thus get from a standard application of Chernoff’s

inequality that

P

[
∣

∣

∣

∣

e(R,R′)− 1

2
r2
∣

∣

∣

∣

≥ 1

4
r2
]

≤ P

[

∣

∣zR,R′ − E[zR,R′ ]
∣

∣ ≥ 1

8
r2
]

≤ e−
r2

100 .

Hence the probability that there is any pair of sets R,R′ satisfying |e(R,R′)− 1
2r

2| > 1
4r

2 is at most

(

m

r

)2

2−
1

100
r2 ≤ m

√
me−m/1600 ≪ 1/4 ,

for all large enough m. �

Claim 4.2. There is a constant C, such that if m = mb ≥ C and O is a random graph from

G(m, 1/2), then with probability at least 3/4, it satisfies the second condition of a trap (as stated

in Definition 2.6).

Proof: Let us start by considering the case b′ = b − 1. Suppose U1, . . . , Umb−1
is the partition

of V (O) induced by the partition Pb−1 (as discussed prior to Definition 2.6). Now recall (see

Subsection 2.2) that the integers mb satisfy the relation

m = mb = mb−1φ(mb−1) = mb−12
⌈mb−1/16⌉ .

This means that

log(m) ≤ mb−1 ≤ 17 log(m) , (8)
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so the size of the sets Ui, which we will denote by hb−1, satisfies

m/17 log(m) ≤ hb−1 = m/mb−1 ≤ m/ log(m) . (9)

Fix now two sets Ui, Uj , an integer 200 ≤ k ≤ log(m), a subset R ⊆ Ui of size k6 and a subset

R′ ⊆ Uj of size ⌈hb−1/k⌉. Given distinct ℓ, ℓ′ with ℓ ∈ R and ℓ′ ∈ R′ let zℓ,ℓ′ be the indicator for

the event that (ℓ, ℓ′) ∈ E(O), and zR,R′ =
∑

ℓ∈R,ℓ′∈R′ zℓ,ℓ′ . Then

|R||R′|
2

≥ E[zR,R′ ] = E[e(R,R′)] =
1

2

(

|R||R′| − |R ∩R′|
)

≥ 1

2
|R||R′| − 1

2
|R|

≥
(

1

2
− 1

2k2

)

|R||R′| .

where in the last inequality we use the facts that k ≤ log(m), that |R′| = ⌈hb−1/k⌉ ≥(9) m/17k log(m) ≥
m/17 log2(m) and that we can pick m to be large enough so that |R′| ≥ k2.

Note that zR,R′ is a sum of at least |R|(|R′| − |R|) ≥ |R||R′|/2 indicators zℓ,ℓ′ (we are using the

fact that |R| ≪ |R′|). Since each of them can change zR,R′ by at most 2, we get from Chernoff’s

inequality, the fact that k ≥ 200, and the estimate for E[zR,R′ ] from the previous paragraph that

P

[
∣

∣

∣

∣

e(R,R′)− 1

2
|R||R′|

∣

∣

∣

∣

≥ 1

k2
|R||R′|

]

≤ P

[

∣

∣zR,R′ − E[zR,R′ ]
∣

∣ ≥ 1

2k2
|R||R′|

]

≤ e−
|R||R′|

64k4

≤ e−khb−1/64

≤ e−2hb−1 .

Now, there are m2
b−1 = O(log2(m)) ways to pick the sets Ui, Uj , O(log(m)) ways to choose k,

(hb−1

k6

)

ways to pick R and
( hb−1

hb−1/k

)

ways to pick R′. Overall, we get from a union bound that the

probability that some choice of Ui, Uj, k, R and R′ will violate the second condition of Definition

2.6 is bounded by

O(log3 m)

(

hb−1

k6

)(

hb−1

hb−1/k

)

e−2hb−1 ≤ m2k6(ek)hb−1/ke−2hb−1 ≤ m2 log6(m)e−hb−1 , (10)

where in the first inequality we use the inequality
(n
k

)

≤ (en/k)k and in the second the fact that

k ≤ log(m).

Let us now consider an arbitrary b′ < b. Note that since mb′ ≤ mb−1, we still have mb′ ≤
17 log(m). Hence there are still only O(log2(m)) many ways to choose the sets U b′

i , U b′
j . This

means that the upper bound obtained in (10) for the probability of partition Pb−1 violating the

condition applies to any given partition Pb′ , with hb−1 replaced by hb′ . But since hb′ ≥ hb−1 the

right hand side of the bound in (10) still holds.
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We finally recall (5) stating that mb = T φ(b). As we noted in (6) we have T φ(b) > T (⌊b/2⌋).
Hence the number of b′ < b we need to consider is only O(log∗(m)). So combining this fact with

the discussion in the previous paragraph we get that the probability of any partition Pb′ violating

the second condition of Definition 2.6 is bounded by

m3 log6(m)e−hb−1 ≪ 1/4

where we apply the fact that hb−1 ≥ m/17 log(m), stated in (9). �

Proof of Claim 2.7: Follows immediately from Claims 4.1 and 4.2. �

We will now prove two lemmas which will somewhat streamline the application of the properties

of traps later on in the paper. Both lemmas will rely on the observation stated in Lemma 4.3 below.

In what follows, we use vS ∈ R
n, with S ⊆ [n] to denote the vector whose ith entry is 1/|S| when

i ∈ S and 0 otherwise. Let Vk = {vS : S ⊆ [n], |S| = k}.

Lemma 4.3. If x ∈ [0, 1/k]n and
∑

xi = 1, then x is a convex combination of the vectors of Vk.

Before we prove this lemma, we need a standard theorem from linear programming theory,

which we state without proof. A polyhedron P ⊆ R
n is the set of points satisfying a finite number

of linear inequalities. P is bounded if there is a constant C such that ‖x‖ ≤ C for all x ∈ P . Finally,

a point x ∈ P is said to be a vertex of P if it cannot be represented as a proper convex combination

of two distinct points x′, x′′ ∈ P .

Theorem 4 ([6]). For every bounded polyhedron P ⊆ R
n and x ∈ P , the point x can be written as

a convex combination of the vertices of P .

Proof of Lemma 4.3: Consider the polyhedron

P =

{

x :
∑

i

xi = 1, and 0 ≤ x1, . . . , xn ≤ 1/k

}

.

Notice that for all x ∈ P , we have ‖x‖ ≤ 1. Let V be the set of vertices of P . By Theorem 4, we

have that any x ∈ P is a convex combination of V. So we need to show that15 V ⊆ Vk.

Suppose u ∈ V. If all its entries are either 0 or 1/k it obviously belongs to Vk. So suppose

that u has an entry ui ∈ (0, 1/k). Then there exists at least one more entry uj ∈ (0, 1/k), because

otherwise the entries cannot sum to 1. Let εu = 1
2 min{ui, uj , 1/k − ui, 1/k − uj}. Let ei denote

the canonical basis vector where the ith entry is 1 and all the other entries are 0. Similarly define

ej . Let u
′ = u+ εuei − εuej and u′′ = u− εuei + εuej . It can be checked that both u′, u′′ ∈ P and

that u′+ u′′ = 2u. So u can be written as the convex combination of two other vectors in P , which

means that u is not a vertex of P . �

15We clearly have Vk ⊆ V but this direction is not needed.
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We now turn to prove two lemmas. The first one will help us in applying the first property of

traps in proving Lemma 3.2, while the second one will help us in applying the second property of

traps in proving Lemma 3.1.

Lemma 4.4. Suppose O is the graph that was used when defining the trap on partition Pb (so

|V (O)| = mb and we can assume that O satisfies the first condition of Definition 2.6). Let Q be

the adjacency matrix of O, and suppose x, y ∈ [0, 1]mb satisfy
∑

xi =
∑

yi = g ≥ √
mb/2. Then

we have
∣

∣

∣

∣

xTQy − 1

2
g2
∣

∣

∣

∣

≤ 1

4
g2 .

Proof: The vectors x/g and y/g satisfy the condition of Lemma 4.3 with k = ⌈√mb/4⌉. Hence we
can express x/g and y/g as convex combinations of the vectors of Vk as x/g =

∑

R aRvR and y/g =
∑

R′ bR′vR′ . Observe further that (vR)
TQvR′ = e(R,R′)/|R||R′|. Since |R| = |R′| = k = ⌈√mb/4⌉

and we assume that O satisfies the first condition of being a trap, we can infer that for any R and

R′ we have

1/4 ≤ (vR)
TQvR′ ≤ 3/4 . (11)

We can thus infer from (11) and the fact that
∑

R aRvR and
∑

R′ bR′vR′ are convex combinations

that

(x/g)TQ(y/g) =

(

∑

R

aRvR

)T

Q

(

∑

R′

bR′vR′

)

=
∑

R,R′

aRbR′(vR)
TQvR′

≤ 3

4

∑

R,R′

aRbR′

=
3

4
,

implying that xTQy ≤ 3
4g

2. An identical argument gives xTQy ≥ 1
4g

2, which completes the proof.

�

Lemma 4.5. Suppose O is the graph that was used when defining the trap placed on partition Pb

(so |V (O)| = mb and we can assume that O satisfies the second condition of Definition 2.6). Let

Q be the adjacency matrix of O. Let b′ < b, set m = mb′ and let X1, . . . ,Xm be the partition of

V (O) induced16 by Pb′ . Suppose each of the sets Xi has size h and let Xi,Xj be two of these sets.

Suppose δ and x, y ∈ [0, 1]mb satisfy the following conditions:

16This was defined explicitly just before Definition 2.6. Since we are identifying the clusters of Pb with the vertices

of O we can also identify these clusters with the indices of the adjacency matrix Q. Hence, since we think of Xi as a

subset of vertices of O, we can say (as we will in item 2) that an index of a vector x ∈ [0, 1]mb belongs to Xi.
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1. 1/ log(mb) < δ < 1/200.

2. The vector x has non-zero entries only in Xi and y has non-zero entries only in Xj.

3. For each 1 ≤ p′ ≤ mb we have xp′/(
∑

p xp) < δ6.

4.
∑mb

p=1 yp > 2δh.

Then, setting g1 =
∑

p xp and g2 =
∑

p yp, we have

∣

∣

∣

∣

xTQy − 1

2
g1g2

∣

∣

∣

∣

≤ 2δ2g1g2 . (12)

Proof: Put k = ⌊1/δ⌋. Then item (1) of the lemma guarantees that 200 ≤ k ≤ log(mb). Item (3) of

the lemma guarantees that the vector x/g1 satisfies the condition of Lemma 4.3 with respect to k6.

Hence we can write x/g1 =
∑

R aRvR using the vectors of Vk6 . Moreover, since item (2) guarantees

that x has non-zero entries only in Xi we know that in the convex combination
∑

R aRvR all the

sets R satisfy R ⊆ Xi. Observe now that item (2) guarantees that y has non-zero entries only in

Xj . Item (4) of the lemma guarantees that the vector y/g2 satisfies the condition of Lemma 4.3

with respect to ⌈h/k⌉. Hence we can write y/g2 =
∑

R′ bR′vR′ using the vectors of V⌈h/k⌉. Again,

we know that in this convex combination we are only using sets R′ ⊆ Xj .

Now, (vR)
TQvR′ = e(R,R′)/|R||R′|. Hence, if |R| = k6 and |R′| = ⌈h/k⌉ and R ⊆ Xi, R

′ ⊆ Xj ,

then we can use the assumption that O satisfies the second condition of being a trap, to conclude

that
∣

∣

∣

∣

(vR)
TQvR′ − 1

2

∣

∣

∣

∣

≤ 1/k2 ≤ 2δ2 . (13)

We can thus infer from (13) and the facts that
∑

R aRvR and
∑

R′ bR′vR′ are convex combinations

that

(x/g1)
TQ(y/g2) =

(

∑

R

aRvR

)T

Q

(

∑

R′

bR′vR′

)

=
∑

R,R′

aRbR′(vR)
TQvR′

≤ (1/2 + 2δ2)
∑

R,R′

aRbR′

= (1/2 + 2δ2)

implying that xTQy ≤ (1/2+2δ2)g1g2. An identical argument gives xTQy ≥ (1/2−2δ2)g1g2, which

completes the proof. �
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5 Proof of Lemma 3.2

Suppose A = {Vi : 1 ≤ i ≤ k} and B = {Ui,i′ : 1 ≤ i ≤ k, 1 ≤ i′ ≤ ℓ} (so |B| = kℓ). We will say that

a pair of sets (Vi, Vj) is bad if there are two sets C1, C2 ⊆ [ℓ]× [ℓ], each of size at least ǫℓ2 such that

|d(Ui,i1 , Uj,j1) − d(Ui,i2 , Uj,j2)| ≥ 2ǫ for every (i1, j1) ∈ C1 and (i2, j2) ∈ C2. Note that if (Vi, Vj)

is bad then it cannot be good in the sense of Definition 1.1. Hence, to show that A and B fail to

satisfy the second condition of Definition 1.1 it is enough to show that there are at least ǫ
(k
2

)

bad

pairs (Vi, Vj). As we mentioned after the statement of Theorem 3, we will actually show that there

at least (1− 2ǫ1/10)
(k
2

)

bad pairs.

A set Ui,i′ is called useful if there is an X ∈ Pb such that Ui,i′ ⊂ǫ1/5 X. If Ui,i′ is not useful, we

call it useless. A set Vi is called useful if it contains17 less than ǫ1/10ℓ useless sets Ui,i′ . If Vi is not

useful, we call it useless. Observe that there can be at most ǫ1/10k useless sets Vi, as otherwise B
would not be an ǫ1/5-refinement of Pb, which would contradict the third assumption of the lemma.

Hence, there are at least (1− 2ǫ1/10)
(k
2

)

pairs of useful sets (Vi, Vj). By the previous paragraph, it

is enough to show that every such pair is bad.

So for the rest of the proof, let us fix a pair of useful sets (Vi, Vj). Let us assume that ǫ is small

enough so that ǫ1/5 < 1/2. Given a useful set Ui,i′ ⊂ǫ1/5 X ∈ Pb, we let XPb
(Ui,i′) denote this

(unique) cluster in Pb that ǫ
1/5-contains Ui,i′ . We will later prove the following claim:

Claim 5.1. If Vi and Vj are both useful, then there are D1,D2 ⊆ [ℓ]× [ℓ] satisfying the following:

• D1 and D2 have size at least 1
32ℓ

2.

• For every (i1, j1) ∈ D1 both Ui,i1 and Uj,j1 are useful and the pair (XPb
(Ui,i1),XPb

(Uj,j1))

belongs to the trap placed on Pb.

• For every (i2, j2) ∈ D2 both Ui,i2 and Uj,j2 are useful and the pair (XPb
(Ui,i2),XPb

(Uj,j2))

does not belong to the trap placed on Pb.

In the next subsection we prove the lemma assuming Claim 5.1, in the subsection following it

we will prove this claim.

5.1 Proof of Lemma 3.2 via Claim 5.1

Let α be the weight added to H by the trap that was placed on Pb. Let D1,D2 be the subsets

of [ℓ] × [ℓ] guaranteed by Claim 5.1. Take any pair (i1, j1) ∈ D1 and let X1 = XPb
(Ui,i1) and

X2 = XPb
(Uj,j1). Since (i1, j1) ∈ D1 we know that the pair (X1,X2) was assigned an extra weight

of α by the trap placed on Pb. Now consider the traps with weight larger than α, that is, the traps

that were placed on partitions P ′ which are refined by Pb. Note that (X1,X2) might get an extra

17Recall that each Vi is the union of ℓ sets Ui,i′ .
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weight from a subset of these traps18. But since H contains only 1
48

√

log(1/ǫ) many traps, the

number of ways to choose the subset of the traps with weight larger than α from which (X1,X2)

get an extra weight is bounded by 2
1
48

√
log(1/ǫ) ≪ 1

32ǫ . Hence D1 must have a subset of pairs of size

at least ǫℓ2, denoted D′
1, and set of weights W1 (all larger than α) with the following property; if

α′ > α and P ′ is the partition on which the trap with weight α′ was placed then for any (i1, j1) ∈ D′
1

the pair (XP ′(Ui,i1),XP ′(Uj,j1)) belongs to the trap on P ′ if and only if α′ ∈ W1. We can also define

D′
2 and W2 in the same manner.

We now claim that we can take C1 and C2 (the sets showing that (Vi, Vj) is bad) to be the sets

D′
1 and D′

2. First, as noted above, both D′
1 and D′

2 have size at least ǫℓ2. So to finish the proof we

will have to show that for every (i1, j1) ∈ D′
1 and (i2, j2) ∈ D′

2 we have

|d(Ui,i1 , Uj,j1)− d(Ui,i2 , Uj,j2)| ≥ 2ǫ . (14)

Let α′ be the largest weight that belongs to exactly one of the sets W1 and W2. Assume without

loss of generality that α′ ∈ W1 and α′ 6∈ W2. If there is no such weight (that is, W1 = W2) then

set α′ = α. We now recall Fact 2.8 which tells us that

α′ ≥ 4−
1
48

√
log(1/ǫ) . (15)

Let P ′ be the partition on which the trap with weight α′ was placed. Since traps with weight at

least α are placed on partitions that are refined by Pb, we see that if a set Ui,i′ is useful with respect

to Pb it must also be useful with respect to P ′. This means that for each pair (i1, j1) ∈ D′
1 the trap

at P ′ increases d(Ui,i1 , Uj,j1) by at least

α′
(

1− ǫ1/5
)2

≥ α′(1− 2ǫ1/5) ≥ 0.99α′ .

Similarly, for each pair (i2, j2) ∈ D′
2 the trap at P ′ increases d(Ui,i2 , Uj,j2) by at most

2α′ǫ1/5 ≤ 0.01α′ .

Hence, disregarding for a moment all the other weights that can be assigned to these sets in H, we

see that all the pairs in (i1, j1) ∈ D′
1 are such that d(Ui,i1 , Uj,j1) ≥ 0.99α′ while all (i2, j2) ∈ D′

2 are

such that d(Ui,i2 , Uj,j2) ≤ 0.01α′. We will now show that this discrepancy is (essentially) maintained

even when considering the entire graph H.

First, recall that by Fact 2.5 the total weight assigned to any pair of vertices of H in the graph

G is bounded by 1/4
√

log(1/ǫ). Hence, recalling (15), we see that even after taking into account these

weights, we have d(Ui,i2 , Uj,j2) ≤ 0.02α′ for any (i2, j2) ∈ D′
2. Let us now consider the contribution

of the weights coming from traps that were assigned a weight smaller than α′. Since these weights

18More precisely, if X1 and X2 are subsets of the same cluster X ′ ∈ P ′, then they will never get an extra weight

from the trap placed on P ′. If they belong to different clusters X ′
1, X

′
2 ∈ P ′, then they will receive an extra weight

only if (X ′
1, X

′
2) belong to the trap placed on P ′.
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are α′/4, α′/16, ... their sum is bounded by α′/3, so after taking these weights into account we still

have d(Ui,i2 , Uj,j2) ≤ 0.36α′ for any (i2, j2) ∈ D′
2. Let us now consider the contribution coming

from traps with weight more than α′. Consider any trap with weight α′′ > α′ that was placed on a

partition P ′′. Recall that by definition of W1, W2 and by our choice of α′, either the extra weight

α′′ was added to all pairs (XP ′′(Ui,i′),XP ′′(Uj,j′)) with (i′, j′) ∈ D′
1 ∪D′

2 or to none of them. Since

all the sets Ui,i1 and Uj,j1 are useful we see that for each pair (i1, j1) ∈ D′
1 the pair (Ui,i1 , Uj,j1) gets

from the trap at P ′′ a total weight at least

α′′
(

1− ǫ1/5
)2

≥ α′′(1− 2ǫ1/5) .

Set w to be the sum of the weights in W1 that are larger than α′. Then the above discussion implies

that for each (i1, j1) ∈ D′
1 we have

d(Ui,i1 , Uj,j1) ≥ (1− 2ǫ1/5)w + 0.99α′ ≥ w + 0.99α′ − 2ǫ1/5 . (16)

Consider now a pair (i2, j2) ∈ D′
2; If a weight α′′ ≥ α′ belongs to W2 then it can contribute to

d(Ui,i2 , Uj,j2) a weight of at most α′′, hence such weights contribute to d(Ui,i2 , Uj,j2) a total weight

of at most19 w. As to weights α′′ > α′ that do not belong to W2, we see that since Ui,i2 and Uj,j2

are useful, they can increase d(Ui,i2 , Uj,j2) by at most 2α′′ǫ1/5. As the total sum of weights of all

traps is at most 1, this extra contribution is bounded by 2ǫ1/5. All together, we see that for every

(i2, j2) ∈ D′
2,

d(Ui,i2 , Uj,j2) ≤ w + 0.36α′ + 2ǫ1/5. (17)

Recalling (15), we see that 4ǫ1/5 < 0.1α′. Hence, (16) and (17) imply that

d(Ui,i1 , Uj,j1)− d(Ui,i2 , Uj,j2) > 0.5α′ >(15) 2ǫ

for every choice of (i1, j1) ∈ D′
1 and (i2, j2) ∈ D′

2. This establishes (14), thus completing the proof.

5.2 Proof of Claim 5.1

Let us start with observing that since Vi is assumed to be useful, it contains (more than) 1
2ℓ useful

sets Ui,i′ . Let V
′
i be the union of 1

2ℓ such sets, and define V ′
j is a similar way. From now on we will

focus on V ′
i and V ′

j and their subsets Ui,i′ and Uj,j′ so we will only be talking about sets Ui,i′ and

Uj,j′ that are useful. Recall that for any useful set Ui,i′ there is a (unique) set XPb
(Ui,i′) ∈ Pb such

that Ui,i′ ⊂ǫ1/5 XPb
(Ui,i′).

Suppose Pb has m clusters and recall that we defined the trap on Pb using an m-vertex graph O
satisfying the first condition of Definition 2.6. That is (u, v) is an edge of O if and only if (Xu,Xv)

belongs to the trap on Pb. Define a vector x ∈ [0, 1]m by setting xu = |V ′
i ∩ Xu|/|Xu|. Define

y ∈ [0, 1]m similarly by setting yu = |V ′
j ∩ Xu|/|Xu|. Recall that each of the sets Vi contains a

19Recall that by choice of α′ the sets W1 and W2 contain the same weights larger than α′.
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1/k-fraction of the vertices H (since |A| = k) so |V ′
i | contains a 1/2k-fraction of the vertices of H.

Since Pb has order m (so there are m sets Xu) and we assume that m ≥ k2 (in the second item of

Lemma 3.2) we infer that
∑

u

xu =
∑

u

yu =
m

2k
≥

√
m/2 . (18)

If we take Q to be the adjacency matrix ofO, then by (18) we can apply Lemma 4.4 (with g = m/2k)

to infer that
1

4
(m/2k)2 ≤ xTQy ≤ 3

4
(m/2k)2 . (19)

Given a set Ui,i′ we define a vector xi
′
by setting xi

′

u = |Ui,i′ ∩Xu|/|Xu|. Similarly given a set Uj,j′

we define a vector yj
′
by setting yj

′

u = |Uj,j′ ∩Xu|/|Xu|. Observe that since V ′
i is the union of the

sets Ui,i′ we have x =
∑

i′ x
i′ where the sum ranges over all the ℓ/2 indices i′ for which Ui,i′ ⊆ V ′

i .

Similarly y =
∑

j′ y
j′ where the sum ranges over all the ℓ/2 indices j′ for which Uj,j′ ⊆ V ′

j . Hence,

we get from (19) that
1

4
(m/2k)2 ≤

∑

i′,j′

(xi
′
)TQyj

′ ≤ 3

4
(m/2k)2 . (20)

Consider now any pair i′, j′ in the above sum. Let Xu′ = XPb
(Ui,i′) and Xv′ = XPb

(Uj,j′).

Recall that Ui,i′ contains a 1/kℓ fraction of V (H) while the sets Xu contains a 1/m fraction of

V (H). This means that
∑

u

xi
′

u = m/kℓ ,

and similarly we have
∑

u

yj
′

u = m/kℓ .

Hence

0 ≤ (xi
′
)TQyj

′ ≤ m2/k2ℓ2 . (21)

More importantly, since |Ui,i′ ∩Xu′ | ≥
(

1− ǫ1/5
)

|Ui,i′ | we have

xi
′

u′ = |Ui,i′ ∩Xu′ |/|Xu′ | ≥
(

1− ǫ1/5
)

m/kℓ , (22)

and since |Uj,j′ ∩Xv′ | ≥
(

1− ǫ1/5
)

|Uj,j′| we have

yj
′

v′ = |Uj,j′ ∩Xv′ |/|Xv′ | ≥
(

1− ǫ1/5
)

m/kℓ . (23)

Suppose now that (Xu′ ,Xv′) belong to the trap placed on Pb, that is, that Qu′,v′ = 1. We then

get from (21), (22) and (23) that

0.99m2/k2ℓ2 ≤
(

1− ǫ1/5
)2

m2/k2ℓ2 ≤ (xi
′
)TQyj

′ ≤ m2/k2ℓ2 . (24)

Suppose now that (Xu′ ,Xv′) does not belong to the trap placed on Pb, that is, that Qu′,v′ = 0. We

then get from (21), (22) and (23) that

0 ≤ (xi
′
)TQyj

′ ≤ 2ǫ1/5m2/k2ℓ2 ≤ 0.01m2/k2ℓ2 . (25)
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We thus see from (25) that the total to contribution to (20) of pairs (i′, j′) for which (Xu′ ,Xv′)

does not belong to the trap is bounded by (ℓ/2)2 · 0.01m2/k2ℓ2 = 0.01(m/2k)2 . Combining (20),

(24) and (25) it thus must be the case that there are at least

1
4(m/2k)2 − 0.01(m/2k)2

m2/k2ℓ2
≥ 1

32
ℓ2 ,

pairs (i′, j′) for which (Xu′ ,Xv′) belongs to the trap placed on Pb. Hence we can take D1 to be the

collection of these pairs. Finally, we see from (20), (24) and (25) that the number of pairs (i′, j′)

for which (Xu′ ,Xv′) belongs to the trap on Pb cannot be larger than

3
4(m/2k)2

0.99m2/k2ℓ2
≤ 31

32
ℓ2 ,

so we can take D2 to be the collection of pairs (i′, j′) that do not belong to D1. We thus complete

the proof of Claim 5.1.

6 Proof of Lemma 3.1

We will prove Lemma 3.1 by first performing a series of reductions that will culminate in Lemma

6.5. We will then spend most of this section proving Lemma 6.5. Let us first derive Lemma 3.1

from the following lemma:

Lemma 6.1. Suppose γ ≤ ǫ and Z = {Z1, . . . , Zk} is a γ-regular partition of H. Assume

• r < log(1/γ)

10
√

log(1/ǫ)

• γ1/4 ≤ β ≤ 1/100

Then, if Z is a β-refinement of Pr−1 it is also an 8β-refinement of Pr.

Proof that Lemma 6.1 implies Lemma 3.1: By the definition of (ǫ, f)-regularity, we get that

if |A| = k then B must be 1
k -regular. Since k ≥ 1/ǫ we have 1/k ≤ ǫ. Since B is a refinement of

P0 (recall that P0 is just the entire vertex set of H), it is in particular a (1/k)1/4-refinement of P0.

Hence, starting with β = (1/k)1/4 we can repeatedly apply Lemma 6.1 (with γ = 1/k) as long as

r ≤
√

log(k)

10
≤ log k

10
√

log(1/ǫ)
(26)

and

8r/k1/4 ≤ 1/100 . (27)
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Taking r = 2 log log(k), we thus make sure that both (26) and (27) hold20 with a lot of room to

spare. Hence, after these r = 2 log log k applications of Lemma 6.1 we get that B must be an

82 log log k/k1/4-refinement of P2 log log k. Since

82 log log k/k1/4 ≤ 1/k1/5 ≤ ǫ1/5 ,

we get that B is indeed an ǫ1/5-refinement of P2 log log k. �

Let us now continue with the proof of Lemma 6.1. So throughout the rest of this section we

assume all the conditions that are stated in the lemma. Suppose Pr−1 = {Xi : 1 ≤ i ≤ m} and

Pr = {Xi,i′ : 1 ≤ i ≤ m, 1 ≤ i′ ≤ M}. Recall the sets Ai,j, Bi,j that were used in the construction

of the graph G in Subsection 2.2. With respect to these, we make the following definition:

Definition 6.2. A pair of sets (Zt, Zu) is said to be β-helpful if

1. There are21 1 ≤ i, j ≤ m such that Zt ⊂β Xi and Zu ⊂β Xj (we are not requiring i 6= j).

2. We have min(|Zt ∩Ai,j |, |Zt ∩Bi,j|) ≥ β2|Zt|.

We will need the following lemma, restated from [9].

Lemma 6.3. ([9]) Let M be an integer and let (Aj , Bj)
m
j=1 be a sequence of balanced partitions of

[M ]. Let 0 < ζ ≤ 1/2 and let η, ξ > 0 be such that

(1− η)(1 − 4ξ) > 1− ζ + ζ2 . (28)

Then for every sequence λ = (λ1, . . . , λM ) such that λi′ ≥ 0 for every i′, ‖λ‖1 = 1 and ‖λ‖∞ < 1−ζ,

there are at least ηm values of j for which min(
∑

i′∈Aj
λi′ ,

∑

i′∈Bj
λi′) > ξ.

Lemma 6.4. Suppose Z is a β-refinement of Pr−1. Then, if Zt ⊂β Xi for some i, but there is

no i′ for which Zt ⊂8β Xi,i′ , then there are at least 2βm sets Xj such that each of these sets Xj

β-contains at least k
2m sets Zu such that (Zt, Zu) are β-helpful.

Proof: Let Zt ⊂β Xi and suppose that there is no 1 ≤ i′ ≤ M for which Zt ⊂8β Xi,i′ . Write λi′ for

|Zt ∩Xi,i′ |/|Zt|. Then λi′ ≥ 0 for all i′, ‖λ‖1 ≥ 1 − β (since Zt ⊂β Xi) and ‖λ‖∞ ≤ 1− 8β (since

we assume that there is no i′ for which Zt ⊂8β Xi,i′). Set ζ = 7β/(1 − β) < 1/2 and note that we

have

(1− 6β)(1 − 8β2) > 1− 6β − 8β2 > 1− ζ + ζ2 , (29)

where in the second inequality we use the fact that β < 1/100. Define the vector λ′ = λ/‖λ‖1.
Then ‖λ′‖1 = 1 and

‖λ′‖∞ ≤ (1− 8β)/‖λ‖1 ≤ (1− 8β)/(1 − β) = 1− ζ . (30)

20Recall that k ≥ 1/ǫ. Since Theorem 3 allows us to assume that ǫ is sufficiently small, we can assume that k is

large enough so that 2 log log k <

√
log(k)

10
and that 82 log log k/k1/4 ≤ 1/100.

21Note that since β < 1/2 there is (at most) one choice of Xi and Xj such that Zt ⊂β Xi and Zu ⊂β Xj .
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Since (A′
i,j, B

′
i,j)

m
j=1 are balanced partitions of [M ], we can apply Lemma 6.3 to the vector λ′

(with η = 6β and ξ = 2β2), and conclude that there are at least 6βm values of j, for which

min(
∑

i′∈A′
i,j

λ′
i′ ,
∑

i′∈B′
i,j

λ′
i′) > 2β2. Recalling that λ′ = λ/‖λ‖1 and that ‖λ‖1 ≥ 1− β this means

that for each such j we have min(
∑

i′∈A′
i,j

λi′ ,
∑

i′∈B′
i,j

λi′) > 2β2(1 − β) > β2. Notice that by the

construction of the sets Ai,j , Bi,j, (that is Ai,j = ∪i′∈A′
i,j
Xi,i′ and Bi,j = ∪i′∈B′

i,j
Xi,i′) and by the

definition of λ, these j’s satisfy

min(|Zt ∩Ai,j |, |Zt ∩Bi,j|) ≥ β2|Zt| , (31)

that is, they satisfy the second condition of being β-helpful. This means that if a set Zu is β-

contained in Xj then (Zt, Zu) is β-helpful. So to finish the proof, we need to show that out of the

6βm values of j that satisfy (31), at least 2βm are such that Xj β-contains at least k/2m sets Zu.

Hence, it is enough to show that Pr−1 has at most 4βm sets X that β-contain less than k/2m sets

Z ∈ Z.

Call a vertex v ∈ V (H) bad if it either belongs to a set Z ∈ Z that is not β-contained in

any X ∈ Pr−1 or if it belongs to Z \ X where Z ⊂β X. Note that since we assume that Z is a

β-refinement of Pr−1 then the fraction of H’s vertices that are bad is bounded by 2β. Suppose now

that there are more than 4βm sets X that β-contain less than k/2m sets Z. Recall that each set

X contains a 1/m-fraction of vertices of H, while each Z contains a 1/k-fraction. Therefore, if X

has less than k/2m sets Z that are β-contained in it, then half of its vertices belong to sets Z that

are either β-contained in another set X ′ or that are not β-contained in any set. Hence, if Pr−1 has

more than 4βm such sets X, then more than 2β-fraction of H’s vertices would be bad which is

impossible. �

The main part of the proof of Lemma 6.1 will be the proof of the following lemma

Lemma 6.5. Suppose Z ∈ Z and Xi,Xj ∈ Pr−1. Suppose Z ⊂β Xi and there are k
2m sets Zu ⊂β Xj

such that (Z,Zu) is β-helpful. Then at least k
4m of the sets Zu are such that (Z,Zu) is not γ-regular.

We first derive Lemma 6.1 from Lemmas 6.4 and 6.5.

Proof of Lemma 6.1: By Lemma 6.4 we know that if Zt ⊂β Xi for some i, but there is no i′

for which Zt ⊂8β Xi,i′ , then there is St ⊆ [m] of size at least 2βm such that for any j ∈ St, the set

Xj β-contains at least k/2m sets Zu for which (Zt, Zu) is β-helpful. By Lemma 6.5, each of these

sets Xj β-contains at least k/4m sets Zu such that (Zt, Zu) is not γ-regular. Hence, all together

(that is, when considering all the sets Xj where j ∈ St) there are at least βk/2 sets Zu such that

(Zt, Zu) is not γ-regular. Hence, since β2 > γ and we assume that Z is γ-regular, there cannot be

more than 2βk sets Zt as above.

Since we assume that for at least (1 − β)k of the sets Zt there is a set Xi such that Zt ⊂β Xi,

it follows that for at least (1− 3β)k > (1 − 8β)k of the sets Zt there exists an Xi and i′ such that

Zt ⊂8β Xi,i′ , which means that Z is an 8β-refinement of Pr. �

In the next subsections we complete the proof of Lemma 6.1 by proving Lemma 6.5.
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6.1 Setting the stage for the proof of Lemma 6.5

We start by setting some notation and observing some relations between the parameters involved.

We remind the reader again that we will be assuming the conditions of Lemma 6.1. Also, hereafter

we focus only on the k/2m sets Zu ⊂β Xj such that (Z,Zu) are β-helpful, namely the sets in the

statement of Lemma 6.5.

Let us set A = Z ∩Ai,j and B = Z ∩ Bi,j. Also for each of the sets Zu ⊂β Xj , if |Zu ∩ Aj,i| ≥
|Zu ∩ Bj,i| we set Wu = Zu ∩ Aj,i, otherwise we set Wu = Zu ∩ Bj,i. Since we assume that all the

pairs (Z,Zu) are β-helpful and that β ≥ γ1/4 we can deduce that

min(|A|, |B|) ≥ β2|Z| ≥ γ1/2|Z| , (32)

and for all u we have

|Wu| ≥ (1− β)|Zu|/2 ≥ |Zu|/4 . (33)

Let Pr1 , ...,Prf be the canonical partitions which refine Pr−1 and on which we have placed a

trap. For each 1 ≤ ℓ ≤ f , let αℓ be the weight22 that was added to H when placing a trap on

partition Prℓ . Recall that H contains 1
48

√

log(1/ǫ) many traps so

f ≤ 1

48

√

log(1/ǫ) . (34)

Also recall that by Fact 2.8 we have that all weights α1, . . . , αf satisfy

α1, . . . , αf ≥ 4−
1
48

√
log(1/ǫ) . (35)

Set

δ =
4−r

4
√

log(1/ǫ)
, (36)

and recall that δ is the extra weight we have added to some of the pairs (x, y) in G when considering

partition Pr−1. Since in Theorem 3 we can assume that ǫ is sufficiently small, we get from (34),

(35) and (36) that

δ ≪ 1

f
, α1, . . . , αf . (37)

We also observe that since γ ≤ ǫ, and Lemma 6.1 assumes that r ≤ log(1/γ)

10
√

log(1/ǫ)
we get from (36)

that

γ1/3 ≪ δ . (38)

We now define a set A′ ⊆ A using the following iterative process. We first set A0 = A. If each

of the clusters X ∈ Pr1 is such that |A0∩X| < δ6|A0|, then the process ends with A′ = A0. If there

is a cluster X ∈ Pr1 such that |A0 ∩X| ≥ δ6|A0| then we set A1 = |A0 ∩X|, and continue to the

next phase. If each of the clusters X ∈ Pr2 is such that |A1 ∩X| < δ6|A1|, then the process ends

22So recalling the way we have defined H in Subsection 2.3, we get that if rℓ = b = w(g) then αℓ = 4−g.
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with A′ = A1. If there is a cluster X ∈ Pr2 such that |A1 ∩X| ≤ δ6|A1| then we set A2 = |A2 ∩X|
and move to the next phase. So the process either stops at some level Prt in which none of the

clusters of Prt contains more than a δ6-fraction of At−1, or it goes all the way to Prf .

Let us make two important observations about A′. First, if the process stops at level Prt (where

t ≤ f) then for any t′ > t we have |A′ ∩X| < δ6|A′| for all X ∈ Prt′ . This follows from the fact

that Prt′ refines Prt . Therefore, A
′ has the property, that for each partition Prt the set A′ is either

contained in a single cluster X ∈ Prt or none of the clusters contains more than a δ6-fraction of A′.

The second observation is that at each iteration the process picks a subset Ai satisfying |Ai| ≥
δ6|Ai−1|. Since we have at most f iterations, we get that the final set A′ we end up with satisfies

|A′| ≥ δ6f |A| =
(

4−r

4
√

log(1/ǫ)

)6f

|A| ≥(34)

(

4−r

4
√

log(1/ǫ)

)
6
48

√
log(1/ǫ)

|A| ≥ ǫ1/4γ1/4|A| ≥ γ|Z| , (39)

where the third inequality relies on the assumption of Lemma 6.1 that r ≤ log(1/γ)

10
√

log(1/ǫ)
and the last

uses (32) and the fact that γ ≤ ǫ. We now use the same process to pick a set B′ ⊆ B satisfying the

same properties discussed above, and whose size also satisfies

|B′| ≥ γ|Z| . (40)

Take one of the sets W = Wu and assume without loss of generality that W ⊆ Aj,i. Recall that

by dG(A
′,W ) and dG(B

′,W ) we denote the densities between these sets in the graph G, that is,

before adding the traps to obtain the final graph H. First note that since A′, B′ both belong to

Xi ∈ Pr−1 and W ⊆ Xj , we can infer that exactly the same weight was added in G to d(A′,W ) and

d(B′,W ) by the partitions P that are refined by Pr−1. Now recall that we put weight δ between

all the edges connecting a vertex in Ai,j and a vertex in Aj,i and that we did not do so for edges

connecting a vertex in Bi,j and a vertex in Aj,i. Since A′ ⊆ Ai,j , B
′ ⊆ Bi,j and W ⊆ Aj,i this

means that Pr−1 creates a discrepancy of δ between dG(A
′,W ) and dG(B

′,W ). Now recall that

the weights assigned by G to the partitions P which refine Pr−1 are δ/4, δ/42 , δ/43, . . .. Since the

sum of these weights is at most δ/3 we get that

|dG(A′,W )− dG(B
′,W )| ≥ 2

3
δ ≥(38) γ . (41)

It thus follows from (33) (39), (40) and (41) that if we had not added the traps to G, we would

have thus concluded that every β-helpful pair (Z,Zu) is not γ-regular. So to finish the proof we

need to show that a large number of these β-helpful pairs are not γ-regular in H as well.

Recall that Pr1 , ...,Prf are the partitions which refine Pr−1 and on which we have placed a trap.

For 1 ≤ ℓ ≤ f we let dℓ(A,B) be the weight added to d(A,B) by the trap placed on Prℓ . We thus

have the following claim:

Claim 6.6. If (Z,Zu) is γ-regular, then there is 1 ≤ ℓ ≤ f for which

|dℓ(A′,Wu)− dℓ(B
′,Wu)| > 4δ2 . (42)
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Proof: Recall that since both A′, B′ ⊆ Xi ∈ Pr−1 and Wu ⊆ Xj ∈ Pr−1 we get that dH(A′,Wu)

and dH(B′,Wu) get the same weight from each of the traps placed on partitions Pr′ that are refined

by Pr−1 (that includes the case that a trap was placed on Pr−1). This means that a discrepancy

between dH(A′,Wu) and dH(B′,Wu) can come either from dG(A
′,Wu) and dG(B

′,Wu) or from

traps placed on partitions Pr1 , . . . ,Prf . Thus, if (42) does not hold for all 1 ≤ ℓ ≤ f then we would

have

∣

∣dH(A′,Wu)− dH(B′,Wu)
∣

∣ =

∣

∣

∣

∣

∣

dG(A
′,Wu)− dG(B

′,Wu) +

f
∑

ℓ=1

(dℓ(A
′,Wu)− dℓ(B

′,Wu))

∣

∣

∣

∣

∣

≥
∣

∣dG(A
′,Wu)− dG(B

′,Wu)
∣

∣−
f
∑

ℓ=1

∣

∣(dℓ(A
′,Wu)− dℓ(B

′,Wu))
∣

∣

≥ 2

3
δ − 4fδ2 ≥(37)

1

3
δ ≥(38) γ ,

where in the second inequality we use (41). Recalling (33), (39) and (40) we thus infer that (Z,Zu)

is not γ-regular which is a contradiction. �

Assume that for each u for which (Z,Zu) is γ-regular, we set ℓu to be the smallest integer for

which (42) holds. Recall that αℓu is the weight added by the trap placed on the partition Prℓu
. In

the following subsection we prove Lemma 6.5 via Claim 6.7 (stated below) and in the subsection

following it we prove this claim thus completing the proof of Lemma 6.5.

Claim 6.7. If (Z,Zu) is γ-regular, then either A′ or B′ satisfies the following two conditions (we

write the condition with respect to A′):

• There is no X ∈ Prℓu
such that A′ ⊆ X.

• |dℓu(A′,Wu)− 1
2αℓu | > 2δ2.

6.2 Proof of Lemma 6.5 via Claim 6.7

Once again, let us recall that given Z ⊂β Xi andXj we are focusing only on the k/2m sets Zu ⊂β Xj

such that (Z,Zu) are β-helpful. We need to show that at least k/4m of the sets Zu are such that

(Z,Zu) is not γ-regular.

Suppose to the contrary that there are k/4m sets Zu for which (Z,Zu) is γ-regular. Then by

Claim 6.7, for such Zu either A′ or B′ satisfies the two conditions of Claim 6.7. Suppose without

loss of generality that in at least k/8m of these cases the set is A′. Also, suppose without loss

of generality that out of these k/8m cases, in at least k/16m we have dℓu(A
′,Wu) > αℓu/2 + 2δ2.

Finally, since there are only f traps in the canonical partitions that refine Pr−1, we get that there

must be an integer 1 ≤ ℓ ≤ f for which there are at least k/16mf sets Wu for which the above

holds such that ℓu = ℓ. So for each of these sets we have

dℓ(A
′,Wu) >

1

2
αℓ + 2δ2 . (43)
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For what follows we set S to be the collection of k/16mf values of u for which (43) holds and such

that ℓu = ℓ.

We now make a simple observation which relates dℓ(A
′,Wu), the graph Orℓ that was used to

define the trap which was placed on level Prℓ and the way in which A′ and W are “spread” over the

clusters of Prℓ . Let mrℓ denote the number of clusters of Prℓ (which is also the number of vertices

of Orℓ). Let us use Y1, . . . , Ymrℓ
to denote the clusters of Prℓ . Suppose Xi and Xj each contain h

clusters of Prℓ .

Let xa ∈ [0, 1]mrℓ be the vector satisfying xap = |A′ ∩ Yp|/|Yp| for every 1 ≤ p ≤ mrℓ . Similarly,

let xu ∈ [0, 1]mrℓ be the vector satisfying xup = |Wu ∩ Yp|/|Yp| for every 1 ≤ p ≤ mrℓ . If we take Q

to be the adjacency matrix of Orℓ then

dℓ(A
′,Wu) =

(xa)T (αℓQ)xu

(
∑

p x
a
p)(
∑

p x
u
p)

. (44)

Our plan now is to show that the information we have gathered thus far contradicts Lemma

4.5. Let us start setting the stage for applying this lemma. First, as partition Pb in Lemma 4.5 we

will take partition Prℓ . So we are using mrℓ as mb in Lemma 4.5.

Second, as partition Pb′ in Lemma 4.5 we will take partition Pr−1. Note that here and in

Lemma 4.5 we use m to denote the number of clusters in partitions Pr−1 and Pb′ and that we use

X1, . . . ,Xm to name the m clusters of both partitions. As δ in Lemma 4.5 we use the same δ used

here, that is δ = 4−r/4
√

log(1/ǫ) as defined in (36). We clearly have δ < 1/200. Also, to satisfy the

first condition of Lemma 4.5 we need to make sure that δ > 1/ log(mrℓ), or equivalently that

mrℓ =(5) T
φ(rℓ) ≥(6) T (⌊rℓ/2⌋) > 24

r+
√

log(1/ǫ)
=(36) 2

1/δ , (45)

We need to verify the second inequality. Recall that rℓ ≥ r since we are only considering traps that

were placed on partitions refining Pr−1. Recalling (3) we also have rℓ ≥ log log(1/ǫ) since the first

trap was placed on the partition with this index. It is easy to see that these two facts imply that

the second inequality in (45) indeed holds.

As the vector x in Lemma 4.5 we will take the vector xa defined above, and as the vector y we

take
∑

u∈S xu with S the set defined just after equation (43). Note that since A′ ⊆ Xi and for all

u we have Wu ⊆ Xj , these vectors satisfy the second condition of Lemma 4.5.

Now, by Claim 6.7 there is no cluster23 X ∈ Prℓ such that A′ ⊆ X. By the process we have used

to define A′, this means that each of the clusters of X ∈ Prℓ contains no more than a δ6-fraction of

the vertices of A′. This means that the vector xa defined above satisfies the third item of Lemma

4.5.

Finally, observe that each of the sets Yp contains a 1/mh-fraction of H’s vertices24 while each

set Zu takes a 1/k-fraction. We thus get from (33) that the sum of entries of each of the vectors xu

23Recall that we assume that ℓu = ℓ for the set Wu with u ∈ S. See the discussion at the beginning of this

subsection.
24Since each Xi contains a 1/m fraction of H ’s vertices and we assumed that Xi is partitioned into h sets Yp.

30



is at least mh/4k. Since we assume that there are at least k/16mf sets Wu, we infer that the sum

of entries of y is at least h/64f ≥(37) 2δh. Hence y satisfies the fourth condition of Lemma 4.5.

Since we assume that each of the sets Wu satisfies (43), we can use the formulation of (44) to

infer that

(xa)TQxu > (1/2 + 2δ2)

(

∑

p

xap

)(

∑

p

xup

)

=
(

1/2 + 2δ2
)

g1g
u
2 , (46)

where we set g1 =
∑

p x
a
p and gu2 =

∑

p x
u
p . Now set g2 =

∑

p yp =
∑

u g
u
2 . Summing over all vectors

xu, and applying (46) we have

(xa)TQy = (xa)TQ

(

∑

u

xu

)

>
(

1/2 + 2δ2
)

g1
∑

u

gu2 =
(

1/2 + 2δ2
)

g1g2 ,

which contradicts (12) in Lemma 4.5.

6.3 Proof of Claim 6.7

We recall that we use αℓ to denote the weight added to H when placing a trap on partition Prℓ ,

and that for a set Wu we defined ℓu just before Claim 6.7.

Claim 6.8. Set α = αℓu. If |dℓu(A′,Wu)− dℓu(B
′,Wu)| ≥ 0.4α then (Z,Zu) is not γ-regular.

Proof: Recall that ℓu was chosen to be the smallest integer for which (42) holds. Hence
∣

∣

∣

∣

∣

ℓu−1
∑

ℓ=1

dℓ(A
′,Wu)− dℓ(B

′,Wu)

∣

∣

∣

∣

∣

≤ 4fδ2 ≤(37)
1

100
α .

The assumption of this claim thus gives
∣

∣

∣

∣

∣

ℓu
∑

ℓ=1

dℓ(A
′,Wu)− dℓ(B

′,Wu)

∣

∣

∣

∣

∣

≥ 0.39α .

Since the weights assigned to traps with weight smaller than α are given by α/4, α/16, . . ., after

taking into account all the traps placed on Pr1 , . . . ,Prf we still have
∣

∣

∣

∣

∣

f
∑

ℓ=1

dℓ(A
′,Wu)− dℓ(B

′,Wu)

∣

∣

∣

∣

∣

≥ 0.05α . (47)

As we have noted in the proof of Claim 6.6, the only traps that can create a discrepancy between

dH(A′,Wu) and dH(B′,Wu) are those placed on Pr1 , . . . ,Prf . Hence we can disregard the traps

that were placed on partitions refined by Pr−1, that is partitions other than Pr1 , . . . ,Prf . Thus,

(47) holds even when considering all the traps placed in H. Finally, by Fact 2.5 the total weight

assigned to edges in G is at most 1/4
√

log(1/ǫ) ≤(35) 0.01α. We thus conclude that

|dH(A′,Wu)− dH(B′,Wu)| ≥ 0.04α >(35) ǫ ≥ γ .

Recalling (33), (39) and (40) we can deduce that (Z,Zu) is not γ-regular. �
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Claim 6.9. If there is a cluster X ∈ Prℓ such that A′ ⊆ X and

δ2 ≤ dℓ(A
′,Wu) ≤ αℓ − δ2 , (48)

then (Z,Zu) is not γ-regular25.

Proof: Let us define the vectors xa and xu as we have done just before equation (44). Let us

also use the terminology used when defining these vectors. So X = Yq for some Yq ⊆ Xi implying

that xaq = |A′|/|Yq| and all the other entries of xa are 0. Suppose Y1, . . . , Yh are the clusters of Prℓ

within Xj . Let Orℓ be the graph used when placing the trap on Prℓ , let vq ∈ V (O) be the vertex

corresponding to cluster Yq and let u1, . . . , uh be the vertices corresponding to Y1, . . . , Yh. Finally

set N = {p : (vq, up) ∈ E(O)} to be the indices of the vertices u1, . . . , uh which are neighbors of vq

in O. Then by (44) and (48) we have

δ2 ≤
αℓ
∑

p∈N xup
∑h

p=1 x
u
p

≤ αℓ − δ2 ,

implying that

δ2 ≤
∑

p∈N xup
∑h

p=1 x
u
p

≤ 1− δ2 .

This means that if we take W 1 = Wu ∩ (
⋃

p∈N Yp) then

δ2|Wu| ≤ |W 1| ≤ (1− δ2)|Wu| . (49)

Let W 2 = Wu \W 1 and note that it satisfies (49) as well. A critical observation now is that our

choice of N implies that for all p ∈ N the pair (Yq, Yp) belongs to the trap placed on Prℓ and for

all p 6∈ N the pair (Yq, Yp) does not belong to this trap. This means that dℓ(A
′,W 1) = αℓ while

dℓ(A
′,W 2) = 0.

We will now show that we can find W ′ ⊆ W 1 and W ′′ ⊆ W 2, satisfying |W ′ | ≥ ǫ1/10|W 1|,
|W ′′ | ≥ ǫ1/10|W 2| and

|dH(A′,W ′)− dH(A′,W ′′)| ≥ γ . (50)

Recalling (39), this will imply that (Z,Zu) is not γ-regular as the fact that |W ′| ≥ ǫ1/10|W 1| means

that

|W ′| ≥ ǫ1/10|W 1| ≥(49) ǫ
1/10δ2|Wu| ≥(33)

1

4
ǫ1/10δ2|Zu| ≥

1

4
γ1/10δ2|Zu| ≥(38) γ|Zu| ,

where in the fourth inequality we use the fact that γ ≤ ǫ. A similar derivation would show that

|W ′′| ≥ γ|Zu|.
25Note that in this claim we are not assuming that ℓ = ℓu. That is, the claim is true for all 1 ≤ ℓ ≤ f . However,

we will only apply it with ℓ = ℓu.
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So we are left with picking the sets W ′ and W ′′. Let us focus on W ′. Consider some 1 ≤ ℓ′ < ℓ.

Since we assume that A′ is contained is one of the clusters of Prℓ there must be a cluster Y ′
q ∈ Prℓ′

such that A′ ⊆ Y ′
q . Take some p ∈ N and let Y ′

p ∈ Prℓ′ be the cluster containing Yp. So we see that

for each pair (Yq, Yp), either all the vertices (x, y) ∈ Yq × Yp get an extra weight of αℓ′ from that

trap or none of them do (depending on whether (Y ′
q , Y

′
p) belongs to the trap placed on Prℓ′ ). So for

each pair (Yq, Yp) there is a subset Sp ⊆ [ℓ− 1] representing those traps from which (Yq, Yp) got an

extra weight. Recall now that H contains only 1
48

√

log(1/ǫ) many traps, so there are (much) less

than 1/ǫ1/10 ways to pick a set Sp ⊆ [ℓ− 1]. So there must be a subset N ′ ⊆ N such that Sp = Sp′

for all p, p′ ∈ N ′ and such that |W 1 ∩⋃p∈N ′ Yp| ≥ ǫ1/10|W 1|. We now take W ′ = W 1 ∩⋃p∈N ′ Yp

and take S′ to be the subset of [ℓ− 1] which is common to all p ∈ N ′. Recapping the above, we see

that if ℓ′ ∈ S′ then dℓ′(A
′,W ′) = αℓ′ and if ℓ′ 6∈ S′ then dℓ′(A

′,W ′) = 0. We can now define W ′′ and

S′′ in a similar way, such that if ℓ′ ∈ S′′ then dℓ′(A
′,W ′′) = αℓ′ and if ℓ′ 6∈ S′′ then dℓ′(A

′,W ′′) = 0.

If S′ = S′′ set ℓ′ = ℓ, otherwise, let ℓ′ be the smallest index that appears in exactly one of

the sets S′ and S′′. Also, set α = αℓ′ . Let us now compare dH(A′,W ′) and dH(A′,W ′′). By our

choice of α, the traps with weight larger than α have the same contribution to both dH(A′,W ′)

and dH(A′,W ′′). Using again the way we chose α we get that

∣

∣

∣

∣

∣

ℓ′
∑

ℓ=1

dℓ(A
′,W ′)− dℓ(A

′,W ′′)

∣

∣

∣

∣

∣

= α .

Now observe that the total weight added by traps with weight smaller than α is bounded by

α/4 + α/16... < α/3. So after taking into account all traps Pr1 , . . . ,Prf there is still a discrepancy

of at least
∣

∣

∣

∣

∣

f
∑

ℓ=1

dℓ(A
′,W ′)− dℓ(A

′,W ′′)

∣

∣

∣

∣

∣

≥ α/2 .

As in previous proofs, we do not need to consider the weight coming from traps not placed on

Pr1 , . . . ,Prf (that is, traps placed on partitions refined by Pr−1) since A′ ⊆ Xi ∈ Pr−1 and

Wu ⊆ Xj ∈ Pr−1. Finally, by Fact 2.5 the total weight assigned to edges in G is bounded

by 1/4
√

log(1/ǫ) ≤(35) α/4, so after taking into account all the weights assigned to (A′,W ′) and

(A′,W ′′) in H we still have

|dH(A′,W ′)− dH(A′,W ′′)| ≥ α/4 ≥(35) ǫ ≥ γ .

This proves (50) thus completing the proof. �

Claim 6.10. If there is a cluster X ∈ Prℓu
such that A′ ⊆ X and a cluster Y ∈ Prℓu

such that

B′ ⊆ Y then (Z,Zu) is not γ-regular.

Proof: If either A′ or B′ satisfies (48) then Claim 6.9 implies that (Z,Zu) is not γ-regular. So

suppose both do not satisfy (48). Now note dℓu(A
′,Wu), dℓu(B

′,Wu) ≤ αℓu since αℓ is the maximum
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weight a pair of sets can get from the trap placed on Prℓ . Recall that ℓu is an integer for which

(42) holds hence one of the sets (say A′) satisfies 0 ≤ dℓu(A
′,Wu) ≤ δ2 while the other satisfies

αℓu − δ2 ≤ dℓu(B
′,Wu) ≤ αℓu . But this means that

|dℓu(A′,Wu)− dℓu(B
′,Wu)| ≥ αℓu − 2δ2 ≥(37) αℓu/2 ,

so (Z,Zu) is not γ-regular by Claim 6.8. �

We are now ready to complete the proof of Claim 6.7. We know from Claim 6.10 that one of

the sets A′ or B′ must satisfy the first requirement of the claim. Suppose it is A′. If A′ also satisfies

the second item then we are done, so suppose it does not.

If B′ also satisfies the first requirement of the claim, then since ℓu is chosen to satisfy (42) and

since we assume that A′ does not satisfy the second requirement of the lemma, we get that B′ must

satisfy the second requirement and we are done.

So suppose now that the B′ does not satisfy the first item. If δ2 ≤ dℓu(B
′,Wu) ≤ αℓu − δ2 then

by Claim 6.9 (Z,Zu) is not γ-regular, which contradicts the assumption of Claim 6.7 that (Z,Zu)

is γ-regular. Finally, if either dℓu(B
′,Wu) ≥ αℓu − δ2 or dℓu(B

′,Wu) ≤ δ2 we can combine this with

the assumption that A′ does not satisfy the second requirement of the claim to get that

|dℓu(A′,Wu)− dℓu(B
′,Wu)| ≥

1

2
αℓu − 3δ2 >(37) 0.4αℓu .

Claim 6.8 then implies that (Z,Zu) is not γ-regular which again contradicts the assumption of

Claim 6.7.

Note added. After completing this paper, we learned that D. Conlon and J. Fox have indepen-

dently (and simultaneously) obtained a result similar to the one stated in Theorem 3. Their proof

gives a lower bound of W (1/ǫc) for some c > 0 to the strong regularity lemma.
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[8] P. Frankl and V. Rödl, Extremal problems on set systems, Random Structures and Algorithms

20 (2002), 131-164.

[9] T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal.
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