We theoretically propose a novel liquid filled suspended core photonic crystal fiber as a new class of microstructure optical fiber for ultrabroad supercontinuum generation. We emphasize the advantage of liquid infiltration in enhancing the fiber nonlinearity. To further enhance the nonlinearity of the liquid-infiltrated fibers, we introduce a suspended liquid core photonic crystal fiber which significantly elevates the fiber nonlinearity through reduced effective area. A comparative study on the continuum generated in conventional microstructured optical fiber (without suspension effect) and the suspended core microstructured optical fiber is performed. A broad continuum is numerically demonstrated through the suspended core fiber, which is substantially broader than the fiber without suspension effect. Thus, we propose a new means to enhance the nonlinearity beyond the intrinsic material dependence. The underlined suspended liquid core photonic crystal fiber can be a new class of fibers for next generation of broadband laser sources. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.