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Traditional architectures for solving computer vision problems and the degree of success
they enjoyed have been heavily reliant on hand-crafted features. However, of late, deep
learning techniques have offered a compelling alternative – that of automatically learning
problem-specific features. With this new paradigm, every problem in computer vision
is now being re-examined from a deep learning perspective. Therefore, it has become
important to understand what kind of deep networks are suitable for a given problem.
Although general surveys of this fast-moving paradigm (i.e., deep-networks) exist, a
survey specific to computer vision is missing. We specifically consider one form of deep
networks widely used in computer vision – convolutional neural networks (CNNs). We
start with “AlexNet” as our base CNN and then examine the broad variations proposed
over time to suit different applications. We hope that our recipe-style survey will serve as
a guide, particularly for novice practitioners intending to use deep-learning techniques for
computer vision.

Keywords: deep learning, convolutional neural networks, object classification, recurrent neural networks,
supervised learning

1. INTRODUCTION

Computer vision problems, such as image classification and object detection, have traditionally
been approached using hand-engineered features, such as SIFT by Lowe (2004) and HoG by Dalal
and Triggs (2005). Representations based on the Bag-of-visual-words descriptor (see Yang et al.,
2007), in particular, enjoyed success in image classification. These were usually followed by learning
algorithms like support vector machines (SVMs). As a result, the performance of these algorithms
relied crucially on the features used. This meant that progress in computer vision was based on
hand-engineering better sets of features. With time, these features started becoming more and
more complex – resulting in a difficulty with coming up better, more complex features. From the
perspective of the computer vision practitioner, there were two steps to be followed: feature design
and learning algorithm design, both of which were largely independent.

Meanwhile, some researchers in the machine learning community had been working on learning
models that incorporated learning of features from raw images. These models typically consisted of
multiple layers of non-linearity. This property was considered to be very important – and this lead
to the development of the first deep learning models. Early examples, such as Restricted Boltzmann
Machines (Hinton, 2002), Deep Belief Networks (Hinton et al., 2006) and Stacked Autoencoders
(Vincent et al., 2010), showed promise on small datasets. The primary idea behind these works was
to leverage the vast amount of unlabeled data to trainmodels. This was called the “unsupervised pre-
training” stage. It was believed that these “pre-trained” models would serve as a good initialization
for further supervised tasks, such as image classification. Efforts to scale these algorithms on larger
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datasets culminated in 2012 during the ILSVRC competition (see
Russakovsky et al., 2015), which involved, among other things –
the task of classifying an image into 1 of 1000 categories. For
the first time, a convolutional neural network (CNN)-based deep
learnt model by Krizhevsky et al. (2012) brought down the error
rate on that task by half, beating traditional hand-engineered
approaches. Surprisingly, this could be achieved by performing
end-to-end supervised training, without the need for unsuper-
vised pre-training. Over the next couple of years, “Imagenet clas-
sification using deep neural networks” by Krizhevsky et al. (2012)
became one of the most influential papers in computer vision.
Convolutional neural networks, a particular form of deep learning
models, have since been widely adopted by the vision community.
In particular, the network trained by Alex Krizhevsky, popularly
called “AlexNet” has been used and modified for various vision
problems. Hence, in this article, we primarily discuss CNNs, as
they are more relevant to the vision community.With the plethora
of deep convolutional networks that exist for solving different
tasks, we feel the time is right to summarize CNNs for a survey.
This article can also serve as a guide for beginning practitioners
in deep learning/computer vision.

The paper is organized as follows. We first develop the gen-
eral principles behind CNNs (see Introduction to Convolutional
Neural Networks), and then discuss various modifications to suit
different problems (see CNN Flavors). Finally, we discuss some
open problems (see Open Problems) and directions for further
research.

2. INTRODUCTION TO CONVOLUTIONAL
NEURAL NETWORKS

The idea of a convolutional neural network (CNN) is not new.
This model had been shown to work well for hand-written digit
recognition by LeCun et al. (1998). However, due to the inability
of these networks to scale to much larger images, they slowly fell
out of favor. This was largely due to memory and hardware con-
straints, and the unavailability of large amounts of training data.
With increase in computational power thanks to wide availability
of GPUs, and the introduction of large-scale datasets, such as
the ImageNet (see Russakovsky et al., 2015) and the MIT Places

dataset (see Zhou et al., 2014), it was possible to train larger, more
complex models. This was first shown by the popular AlexNet
model that was discussed earlier. This largely kick-started the
usage of deep networks in computer vision.

2.1. Building Blocks of CNNs
In this section, we shall look at the basic building blocks of CNNs
in general. This assumes that the reader is familiar with traditional
neural networks, which we shall call “fully connected layers” in
this article. Figure 1 shows a representation of the weights in the
AlexNet model. While the first five layers are convolutional, the
last three are fully connected layers.

2.1.1. Why Convolutions?
Using traditional neural networks for real-world image classi-
fication is impractical for the following reason: Consider a 2D
image of size 200× 200 for which we would have 40,000 input
nodes. If the hidden layer has 20,000 nodes, the size of the matrix
of input weights would be 40,000× 20,000= 800 Million. This
is just for the first layer – as we increase the number of layers,
this number increases even more rapidly. Besides, vectorizing an
image completely ignores the complex 2D spatial structure of
the image. How do we build a system that overcomes both these
disadvantages?

One way is to use 2D convolutions instead of matrix mul-
tiplications. Learning a set of convolutional filters (each of
11× 11, say) is much more tractable than learning a large matrix
(40000× 20000). 2D convolutions also naturally take the 2D
structure of images into account. Alternately, convolutions can
also be thought of as regular neural networks with two constraints
(see Bishop, 2006).

• Local connectivity: this comes from the fact that we use a
convolutional filter with dimensions much smaller than the
image it operates on. This contrasts with the global connectivity
paradigm typically relevant to vectorized images.

• Weight sharing: this comes from the fact that we perform
convolutions, i.e., we apply the same filter across the image. This
means that we use the same local filters onmany locations in the
image. In other words, the weights between all these filters are
shared.

FIGURE 1 | An illustration of the weights in the AlexNet model. Note that after every layer, there is an implicit ReLU non-linearity. The number inside curly
braces represents the number of filters with dimensions mentioned above it.
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There is also evidence from visual neuroscience for similar
computations within the human brain. Hubel and Wiesel (1962)
found two types of cells in the primary visual cortex – the simple
cells and the complex cells. The simple cell responded primarily
to oriented edges and gratings – which are reminiscent of Gabor
filters, a special class of convolutional filters. The complex cells
were also sensitive to these edges and grating. However, they
exhibited spatial invariance as well. This motivated the Neocogni-
tron model by Fukushima (1980), which proposed the learning of
convolutional filters in an artificial neural network. This model is
said to have inspired convolutional networks, which are analogous
to the simple cells mentioned above.

In practical CNNs, however, the convolution operations are
not applied in the traditional sense wherein the filter shifts one
position to the right after each multiplication. Instead, it is com-
mon to use larger shifts (commonly referred to as stride). This
is equivalent to performing image down-sampling after regular
convolution.

If we wish to train these networks on RGB images, one would
need to learn multiple multi-channel filters. In the representation
in Figure 1, the numbers 11× 11× 3, along with {96} below C1
indicates that there are 96 filters in the first layers, each of spatial
dimension of 11× 11,with one for each of the threeRGBchannels.

We note that this paradigm of convolution-like operations
(location independent feature-detectors) is not entirely suitable
for registered images. As an example, images of faces require dif-
ferent feature-detectors at different spatial locations. To account
for this, Taigman et al. (2014) consider only locally connected
networks with no weight-sharing. Thus, the choice of layer con-
nectivity depends on the underlying type of problem.

2.1.2. Max-Pooling
The Neocognitron model inspired the modeling of simple cells as
convolutions. Continuing in the same vein, the complex cells can
be modeled as a max-pooling operation. This operation can be
thought of as amax filter, where each n× n region is replaced with
its max value. This operation serves the following two purposes:

1. It picks out the highest activation in a local region, thereby
providing a small degree of spatial invariance. This is analogous
to the operation of complex cells.

2. It reduces the size of the activation for the next layer by a factor
of n2. With a smaller activation size, we need a smaller number
of parameters to be learnt in the later layers.

2.1.3. Non-Linearity
Deep networks usually consist of convolutions followed by a non-
linear operation after each layer. This is necessary because cas-
cading linear systems (like convolutions) is another linear system.
Non-linearities between layers ensure that the model is more
expressive than a linear model.

In theory, no non-linearity has more expressive power than
any other, as long as they are continuous, bounded, and mono-
tonically increasing (see Hornik, 1991). Traditional feedfor-
ward neural networks used the sigmoid

(

σ(x) = 1
1+e−x

)

or

the tanh
(

tanh(x) = ex−e−x

ex+e−x

)

non-linearities. However, modern

convolutional networks use the ReLU (ReLU(x)=max(0,x)) non-
linearity. CNNs with this non-linearity have been found to train
faster, as shown by Nair and Hinton (2010).

Recently, Maas et al. (2013) introduced a new kind of
non-linearity, called the leaky-ReLU. It was defined as Leaky-
ReLU(x)=max(0,x)+αmin(0,x), where α is a pre-determined
parameter. He et al. (2015) improved on this by suggesting that
the α parameter also be learnt, leading to a much richer model.

2.2. Depth
The Universal Approximation theorem by Hornik (1991) states
that a neural network with a single hidden layer is sufficient to
model any continuous function. However, Bengio (2009) showed
that such networks need an exponentially large number of neu-
rons when compared to a neural network with many hidden
layers. Recently, Romero et al. (2014) and Ba and Caruana (2014)
explicitly showed that a deeper neural network can be trained to
perform much better than a comparatively shallow network.

Although the motivation for creating deeper networks was
clear, for a long time, researchers did not have an algorithm
that could efficiently train neural networks with more than three
layers. With the introduction of greedy layerwise pre-training
by Hinton et al. (2006), researchers were able to train much
deeper networks. This played a major role in bringing the so-
called Deep Learning systems into mainstream machine learning.
Modern deep networks, such as AlexNet, have seven layers. More
recent networks, such as VGGnet, by Simonyan and Zisserman
(2014b) and GoogleNet by Szegedy et al. (2014) have 19 and
22 layers, respectively, were shown to perform much better than
AlexNet.

2.3. Learning Algorithm
A powerful, expressive model is of no use without an algorithm to
learn themodel’s parameters efficiently. The greedy layerwise pre-
training approaches in the pre-AlexNet era attempted to create
such an efficient algorithm. However, for computer vision tasks,
it turned out that a simpler supervised training procedure was
enough to learn a powerful model.

Learning is generally performed byminimization of certain loss
functions. Tasks based on classification use the softmax loss func-
tion or the sigmoid cross entropy function, while those involving
regression use the Euclidean error function. In the example of
Figure 1, the output of the FC8 layer is trained to represent 1 of
1000 classes of the dataset.

2.3.1. Gradient-Based Optimization
Neural networks are generally trained using the backpropogation
algorithm (see Rumelhart et al., 1988), which uses the chain rule
to speed up the computation of the gradient for the gradient
descent (GD) algorithm. However, for datasets with thousands
(or more) of data points, using GD is impractical. In such cases,
an approximation called the stochastic gradient descent (SGD) is
used. It has been found that training using SGD generalizes much
better than training using GD. However, one disadvantage is that
SGD is very slow to converge. To counteract this, SGD is typically
used with a mini-batch, where the mini-batch typically contains a
small number of data-points (~100).
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Momentum (see Polyak, 1964) belongs to a family of methods
that aim to speed the convergence of SGD. This is largely used
in practice to train deep networks, and is often considered as
an essential component. Other extensions, such as Adagrad by
Duchi et al. (2011), Nesterov’s accelerated GD by Nesterov (1983),
Adadelta by Zeiler and Fergus (2014) and Adam by Kingma and
Ba (2014) are known towork equally well, if not better than vanilla
momentum in certain cases. For detailed discussion on how these
methods work, the reader is encouraged to read Sutskever et al.
(2013).

2.3.2. Dropout
When training a network with a large number of parameters, an
effective regularization mechanism is essential to combat over-
fitting. Usual approaches such as λ1 or λ2 regularization on the
weights of the neural net have been found to be insufficient in
this aspect. Dropout is a powerful regularization method intro-
duced by Hinton et al. (2012), which has been shown to work
well for large neural nets. To use dropout, we randomly drop
neurons with a probability p during training. As a result, only a
random subset of neurons are trained in a single iteration of SGD.
At test time, we use all neurons, however, we simply multiply
the activation of each neuron with p to account for the scaling.
Hinton et al. (2012) showed that this procedure was equivalent
to training a large ensemble of neural nets with shared param-
eters, and then using their geometric mean to obtain a single
prediction.

Many extensions to dropout such asDropConnect byWan et al.
(2013) and Fast Dropout by Wang and Manning (2013) have been
shown to work better in certain cases.Maxout byGoodfellow et al.
(2013) is a non-linearity that improves performance of a network
that uses dropout.

2.4. Tricks to Increase Performance
While the techniques and components described above are the-
oretically well-grounded, certain tricks are crucial to obtaining
state-of-the-art performance.

It is well known that machine learning models perform better
in the presence of more data. Data augmentation is a process by
which some geometric transforms are applied to training data
to increase their number. Some examples of commonly used
geometric transforms include random cropping, RGB jittering,
image flipping, and small rotations. It has been found that using
augmented data typically boosts performance by about 3% (see
Chatfield et al., 2014).

Alsowell-known is the fact that an ensemble ofmodels perform
better than one. Hence, it is the commonplace to train several
CNNs and average their predictions at test time. Using ensembles
has been found to typically boost accuracy by 1–2% (see Simonyan
and Zisserman, 2014b; Szegedy et al., 2014).

2.5. Putting It All Together: AlexNet
The building blocks discussed above largely describe AlexNet as
a whole. As shown in Figure 1, only layers 1, 2, and 5 contain
max-pooling, while dropout is only applied to the last two fully
connected layers as they contain the most number of parameters.
Layers 1 and 2 also contain local response normalization, which

has not been discussed as Chatfield et al. (2014) showed that its
absence does not impact performance.

This network was trained on the ILSVRC 2012 training data,
which contained 1.2 million training images belonging to 1000
classes. This was trained on two GPUs over the course of 1month.
The same network can be trained today in little under a week
using more powerful GPUs (see Chatfield et al., 2014). The hyper-
parameters of the learning algorithms, such as learning rate,
momentum, dropout, and weight decay, were hand tuned. It is
also interesting to note the trends in the nature of features learnt at
different layers. The earlier layers tend to learn gabor-like oriented
edges and blob-like features, followed by layers that seem to learn
more higher order features like shapes. The very last layers seem
to learn semantic attributes, such as eyes or wheels, which are
crucial parts in several categories. Amethod to visualize these was
provided by Zeiler (2012).

2.6. Using Pre-Trained CNNs
One of the main reasons for the success of the AlexNet model
was that it was possible to directly use the pre-trained model to
do various other tasks, which it was not originally intended for.
It became remarkably easy to download a learnt model, and then
tweak it slightly to suit the application at hand. We describe two
such ways to use models in this manner.

2.6.1. Fine-Tuning
Given a model trained for image classification, how does one
modify it to perform a different (but related) task? The answer is
to just use the trained weights as an initialization and run SGD
again for this new task. Typically, one uses a learning rate much
lower than what was used for learning the original net. If the new
task is very similar to the task of image classification (with similar
categories), then one need not re-learn a lot of layers. The earlier
layers can be fixed and only the later, more semantic layers need
to be re-learnt. However, if the new task is very different, one
ought to either re-learn all layers, or learn everything from scratch.
The number of layers to re-learn also depends on the number
of data points available for training the new task. The more the
data, the higher is the number of layers that can be re-learnt. The
reader is urged to refer to Yosinski et al. (2014) for more thorough
guidelines.

2.6.2. CNN Activations as Features
As remarked earlier, the later layers in AlexNet seem to learn
visually semantic attributes. These intermediate representations
are crucial in performing 1000-way classification. Since these
represent a wide variety of classes, one can use the FC7 activation
of an image as a generic feature descriptor. These features have
been found to be better than hand-crafted features, such as SIFT
or HoG for various computer vision tasks.

Donahue et al. (2013) first introduced the idea of using CNN
activations as features and performed tests to determine their
suitability for various tasks. Babenko et al. (2014) proposed to
use the activations of fully connected layers for image retrieval,
which they dubbed “Neural Codes”. Razavian et al. (2014) used
these activations for various tasks and concluded that off-the-
shelf CNN features can serve as a hard-to-beat baseline for many
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tasks. Hariharan et al. (2014) used activations across layers as
a feature. Specifically, they look at the activations produced by
single-image pixels across the network and pool them together.
They were found to be useful for fine-grained tasks, such as
keypoint localization.

2.7. Improving AlexNet
The performance of AlexNet motivated a number of CNN-
based approaches, all aimed at a performance improvement
over and above that of AlexNet’s. Just as AlexNet was the win-
ner for ILSVRC challenge in 2012, a CNN-based net Overfeat
by Sermanet et al. (2013a) was the top-performer at ILSVRC-
2013. Their key insight was that training a convolutional net-
work to simultaneously classify, locate, and detect objects in
images can boost the classification accuracy and the detec-
tion and localization accuracy of all tasks. Given its multi-
task learning paradigm, we discuss Overfeat when we discuss
hybridCNNs andmulti-task learning in Section “Hybrid Learning
Methods.”

GoogleNet by Szegedy et al. (2014), the top-performer at
ILSVRC-2014, established that very deep networks can translate
to significant gains in classification performance. Since naively
increasing the number of layers results in a large number of
parameters, the authors employ a number of “design tricks.”
One such trick is to have a trivial 1× 1 convolutional layer
after a regular convolutional layer. This has the net effect of
not only reducing the number of parameters but also results
in CNNs with more expressive power. This design trick is laid
out in better detail in the work of Szegedy et al. (2014) where
the authors show that having one or more 1× 1 convolutional
layers is akin to having a multi-layer perceptron network pro-
cessing the outputs of the convolutional layer that precedes it.
Another trick that the authors utilize is to involve inner layers
of the network in the computation of the objective function
instead of the typical final softmax layer (as in AlexNet). The
authors attribute scale invariance as the reason behind this design
decision.

VGG-19 and its variants by Simonyan and Zisserman (2014b)
is another example of a high-performing CNN where the deeper-
is-better philosophy is applied in the net design. An interesting
feature of VGG design is that it forgoes larger sized convolutional
filters for stacks of smaller sized filters. These smaller sized fil-
ters tend to be chosen so that they contain approximately the
same number of parameters as the larger filters they supposedly
replace. The net effect of this design decision is efficiency and
regularization-like effect on parameters due to the smaller size of
the filters involved.

3. CNN FLAVORS

3.1. Region-Based CNNs
Most CNNs trained for image recognition are trained using a
dataset of images containing a single object. At test time, even
in case of multiple objects, the CNN may still predict a single
class. This inherent problem with the design of the CNNs is not
restricted to image classification alone. For example, the problem
of object detection and localization requires not only classifying
the image but also estimating the class and precise location of
the object(s) present in the image. Object detection is challenging
since we potentially want to detect multiple objects with varying
sizes within a single image. It generally requires processing the
image patch-wise, looking for the presence of objects. Neural nets
have been employed in this way for detecting specific objects like
faces in Vaillant et al. (1994) and Rowley et al. (1998) and for
pedestrians by Sermanet et al. (2013c).

Meanwhile, detecting a set of object-like regions in a given
image – also called region proposals or object proposals – has
gained a lot of attention (see Uijlings et al., 2013). These region
proposals are class agnostic and reduce the overhead incurred by
the traditional exhaustive sliding window approach. These region
proposal algorithms operate at low level and output hundreds of
object like image patches at multiple scales. In order to employ
a classification net toward the task of object localization, image
patches of different scales have to be searched one at a time.

Recent work byGirshick et al. (2014) attempt to solve the object
localization problem using a set of region proposals. During test
time, the method generates around 2000 category independent
region proposals using selective search by Uijlings et al. (2013)
from the test image. They employ a simple affine image warping
to feed each of these proposals to a CNN trained for classification.
The CNN then describes each of these regions with a fixed size
high-level semantic feature. Finally, a set of category-specific lin-
ear SVMs classify each region, as shown in Figure 2. This method
achieved the best detection results on the PASCAL VOC 2012
dataset. As this method uses image regions followed by a CNN,
it is dubbed R-CNN (Region-based CNN).

A series of works adapted the R-CNN approach to extract
richer set of features at patch or region level to solve a wide
range of target applications in vision. However, CNN represen-
tations lack robustness to geometric transformations restricting
their usage. Gong et al. (2014a) show empirical evidence that the
global CNN features are sensitive to general transformations, such
as translation, rotation, and scaling. In their experiments, they
report that this inability of global CNN features translates directly
into a loss in the classification accuracy. They proposed a simple

FIGURE 2 | Object detection system of Girshick et al. (2014) using deep features extracted from image regions.
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technique to pool the CNN activations extracted from the local
image patches. The method extracts image patches in an exhaus-
tive sliding-window manner at different scales and describes each
of them using a CNN. The resulting dense CNN features are
pooled using VLAD (see Jégou et al., 2011) in order to result
in a representation that incorporates spatial as well as semantic
information.

Instead of considering the image patches at exhaustive scales
and image locations, Mopuri and Babu (2015) utilize the object-
ness prior to automatically extract the image patches at different
scales. They build a more robust image representation by aggre-
gating the individual CNN features from the patches for an image
search application.

Wei et al. (2014) extended the capability of a CNN that is
trained to output a single label into predicting multiple labels.
They consider an arbitrary number of region proposals in an
image and share a common CNN across all of them in order
to obtain individual predictions. Finally, they employ a simple
pooling technique to produce the final multi-label prediction.

3.2. Fully Convolutional Networks
The success of convolutional neural networks in the tasks of image
classification (see Krizhevsky et al., 2012; Szegedy et al., 2014) and
object detection (see Girshick et al., 2014) has inspired researchers
to use deep networks for more challenging recognition problems,
such as semantic object segmentation and scene parsing. Unlike
image classification, semantic segmentation and scene parsing are
problems of structured prediction where every pixel in the image
grid needs to be assigned a label of the class to which it belongs
(e.g., road, sofa, table, etc.). This problem of per-pixel classifi-
cation has been traditionally approached by generating region-
level (e.g., superpixel) hand crafted features and classifying them
using a support vector machine (SVM) into one of the possible
classes.

Doing away with these engineered features, Farabet et al.
(2013a) used hierarchical learned features from a convolutional
neural net for scene parsing. Their approach comprised of densely
computing multi-scale CNN features for each pixel and aggre-
gating them over image regions upon which they are classified.
However, their method still required the post-processing step
of generating over-segmented regions, such as superpixels, for
obtaining the final segmentation result. Additionally, the CNNs
used for multi-scale feature learning were not very deep with only
three convolution layers.

Later, Long et al. (2015) proposed a fully convolutional network
architecture for learning per-pixel tasks, such as semantic seg-
mentation, in an end-to-end manner. This is shown in Figure 3.
Each layer in the fully convolutional net (FullConvNet) performs
a location invariant operation i.e., a spatial shift of values in the
input to the layer will only result in an equivalent scaled spatial
shift in its outputwhile keeping the values nearly intact. This prop-
erty of translational invariance holds true for the convolutional
and max-pool layers that form the major building blocks of a
FullConvNet. Furthermore, these layers have an output-centered,
fixed-size receptive field on its input blob. These properties of
the layers of FullConv Net allow it to retain the spatial structure
present in the input image in all of its intermediate and final
outputs.

Unlike CNNs used for image classification, a FullConvNet
does not contain any densely connected/inner product layers as
they are not translation invariant. The restriction on the size of
input image to a classification CNN [e.g., 227× 227 for AlexNet
(Krizhevsky et al., 2012), 224× 224 for VGG (Simonyan and
Zisserman, 2014b)] is imposed due to the constraint on the input
size to its inner product layers. Since a FullConvNet does not have
any of these inner product layers, it can essentially operate on
input images of any arbitrary size.

During the design of CNN architectures, one has to make a
trade-off between the number of channels and the spatial dimen-
sions for the data as it passes through each layer. Generally, the
number of channels in the data is made to increase progressively
while bringing down its spatial resolution, by introducing stride in
the convolution and max-pool layers of the net. This is found to
be an effective strategy for generating richer semantic represen-
tations in a hierarchical manner. While this method enables the
net to recognize complex patterns in the data, it also diminishes
the spatial resolution of the data blob progressively after each
layer. While this is not a major concern for classification nets
that require only a single label for the entire image, this results
in per-pixel prediction only at a sub-sampled resolution in case of
FullConvNets. For tackling this problem, Long et al. (2015) have
proposed a deconvolution layer that brings back the spatial resolu-
tion from the sub-sampled output through a learned upsampling
operation. This upsampling operation is performed at intermedi-
ate layers of various spatial dimensions and are concatenated to
obtain pixel-level features at the original resolution.

On the other hand, Chen et al. (2014) adopted amore simplistic
approach for maintaining resolution by removing the stride in

FIGURE 3 | Fully Convolutional Net: AlexNet modified to be fully convolutional for performing semantic object segmentation on PASCAL VOC 2012
dataset with 21 classes.
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the layers of FullConvNet, wherever possible. Following this, the
FullConvNet predicted output ismodeled as a unary term for con-
ditional random field (CRF) constructed over the image grid at its
original resolution. With labeling smoothness constraint enforced
through pair-wise terms, the per-pixel classification task is mod-
eled as a CRF inference problem. While this post-processing of
FullConvNet’s coarse labeling using CRF has been shown to be
effective for pixel-accurate segmentation, Zheng et al. (2015) have
proposed a better approach where the CRF constructed on image
is modeled as a recurrent neural network (RNN). By modeling
the CRF as an RNN, it can be integrated as a part of any Deep
Convolutional Net making the system efficient at both seman-
tic feature extraction and fine-grained structure prediction. This
enables the end-to-end training of the entire FullConvNet+RNN
system using the stochastic gradient descent (SGD) algorithm to
obtain fine pixel-level segmentation.

Visual saliency is another important pixel-level problem con-
sidered by researchers. This task involves predicting the salient
regions of an image given by human eye fixations. Works by
Vig et al. (2014) and Liu et al. (2015) proposed CNN-based
approaches for estimating the saliency score for constituent image
patches using deep features. By contrast, Kruthiventi et al. (2015)
proposed a FullConvNet architecture – DeepFix, which learnt to
predict saliency for the entire image in an end-to-end fashion
and attained a superior performance. Their network character-
ized the multi-scale aspects of the image using inception blocks
and captured the global context using convolutional layers with
large receptive fields. Another work, by Li et al. (2015b), pro-
posed a multi-task FullConvNet architecture – DeepSaliency for
joint saliency detection and semantic object segmentation. Their
work showed that learning features collaboratively for two related
prediction tasks can boost overall performance.

3.3. Multi-Modal Networks
The success of CNNs on standard RGB vision tasks is naturally
extended to works on other perception modalities, such as RGB-
D and motion information in the videos. Recently, there has
been an increasing evidence for the successful adaptation of the
CNNs to learn efficient representations from the depth images.
Socher et al. (2012) exploited the information from color and
depth modalities for addressing the problem of classification. In
their approach, a single layer of CNN extracts low-level features
from both the RGB and depth images separately. These low-
level features from each modality are given to a set of RNNs for
embedding into a lower dimension. Concatenation of the resulting
features forms the input to the final soft-max layer. The work by
Couprie et al. (2013) extended the CNN method of Farabet et al.
(2013b) to label the indoor scenes by treating depth information
as an additional channel to the existing RGB data. Similarly,Wang
et al. (2014a) adapt an unsupervised feature learning approach
to scene labeling using RGB-D input with four channels. Gupta
et al. (2014) proposed an encoding for the depth images that
allows CNNs to learn stronger features than from the depth image
alone. They encode depth image into three channels at each
pixel: horizontal disparity, height above ground, and the angle
the pixel’s local surface normal makes with the inferred gravity
direction. Their approach for object detection and segmentation

processes RGB and the encoded depth channels separately. The
learned features are fused by concatenating and further fed into
a SVM.

Similarly, one can think of extending these works for video rep-
resentation and understanding. When compared to still images,
videos provide important additional information in the form of
motion. However, majority of the early works that attempted to
extend CNNs for video, fed the networks with raw frames. This
makes for a much difficult learning problem. Jhuang et al. (2007)
proposed a biologically inspired model for action recognition in
videos with a predefined set of spatio-temporal filters in the initial
layer. Combined with a similar but spatial HMAX (Hierarchical
model and X) model, Kuehne et al. (2011) proposed spatial and
temporal recognition streams. Ji et al. (2010) addressed an end-
to-end learning of the CNNs for videos for the first time using
3-D convolutions over a bunch of consecutive video frames. A
more recent work by Karpathy et al. (2014) propose a set of
techniques to fuse the appearance information present from a
stack of consecutive frames in a video. However, they report that
the net that processes individual frames performs on par with the
net that operates on a stack of frames. This might suggest that the
learnt spatio-temporal filters are not suitable to capture themotion
patterns efficiently.

A more suitable CNN model to represent videos is proposed in
a contemporaneous work by Simonyan and Zisserman (2014a),
which is called two-stream network approach. Though the model
in Kuehne et al. (2011) is also a two-stream model, the main
difference is that the streams are shallow and implemented with
hand-crafted models. The reason for the success of this approach
is the natural ability of the videos to be separated into spa-
tial and temporal components. The spatial component in the
form of frames captures the appearance information, such as
the objects, present in the video. The temporal component in
the form of motion (optical flow) across the frames captures
the movement of the objects. These optical flow estimates can
be obtained either from classical approaches (see Baker and
Matthews, 2004) or deep-learnt approaches (seeWeinzaepfel et al.,
2013).

This approachmodels the recognition system dividing into two
parallel streams as depicted in Figure 4. Each is implemented by
a dedicated deep CNN, whose predictions are later fused. The net
for the spatial stream is similar to the image recognition CNN and
processes one frame at a time. However, the temporal stream takes
the stacked optical flow of a bunch of consecutive frames as input
and predicts the action. Both the nets are trained separately with
the corresponding input. An alternative motion representation
using the trajectory information similar to Wang and Schmid
(2013) is also observed to perform similar to optical flow.

The most recent methods that followed Simonyan and Zisser-
man (2014a) have similar two-stream architecture. However, their
contribution is to find the most active spatio-temporal volume
for the efficient video representation. Inspired from the recent
progress in the object detection in images, Gkioxari and Malik
(2015) built actionmodels from shape andmotion cues. They start
from the image proposals and select the motion salient subset of
them and extract spatio-temporal features to represent the video
using the CNNs.
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FIGURE 4 | Two-stream architecture for video classification from Simonyan and Zisserman (2014a).

Wang et al. (2015a) employ deep CNNs to learn discriminative
feature maps and conduct trajectory constrained pooling to sum-
marize into an effective video descriptor. The two streams operate
in parallel extracting local deep features for the volumes centered
around the trajectories.

In general, these multi-modal CNNs can be modified and
extended to suit any other kind of modality, such as audio, text
to complement the image data leading to a better representation
of image content.

3.4. CNNs with RNNs
While CNNs have made remarkable progress in various tasks,
they are not very suitable for learning sequences. Learning such
patterns requires memory of previous states and feedback mecha-
nisms that are not present in CNNs. RNNs are neural nets with at
least one feedback connection. This looping structure enables the
RNN to have an internal memory and to learn temporal patterns
in data.

Figure 5 shows the unrolled version of a simple RNN applied
to a toy example of sequence addition. The problem is defined as
follows: let at be a positive number, corresponding to the input at
time t. The output at time t is given by

St =
t

∑

i=1
ai.

We consider a very simple RNN with just one hidden layer. The
RNN can be described by equations below.

ht+1 = fh(Wih × at +Whh × ht)
St+1 = fo(Who × ht+1)

where Wih,Whh,Who are learned weights and fh and fo are non-
linearities. For the toy problem considered above, the weights
learned would result inWih =Whh =Who = 1. Let us consider the
non-linearity to be ReLu. The equations would then become,

ht+1 = ReLu(at + ht)
St+1 = ReLu(ht+1).

FIGURE 5 | Toy RNN example: problem of sequence addition. The
inputs and outputs are shown in blue. The red cells correspond to the hidden
units. An unrolled version of the RNN is shown.

Thus, as shown in Figure 5, the RNN stores previous inputs in
memory and learns to predict the sum of the sequence up to the
current timestep t.

As with CNNs, recurrent neural networks have been trained
with various back propagation techniques. These conventional
methods however, resulted in the vanishing gradient problem,
i.e., the errors sent backward over the network, either grew
very large or vanished leading to problems in convergence.
In 1997, Hochreiter and Schmidhuber (1997) introduced LSTM
(Long Short Term Memory), which succeeded in overcoming the
vanishing gradient problem, by introducing a novel architecture
consisting of units called constant error carousels. LSTMs were,
thus, able to learn very deep RNNs and successfully remembered
important events over long (thousands of steps) durations of time.

Over the next decade, LSTM’s became the network of choice
for several sequence learning problems, especially in the fields
of speech and handwriting recognition (see Graves et al., 2009,
2013). In the sections that follow, we shall discuss applications of
RNNs in various computer vision problems.
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3.4.1. Action Recognition
Recognizing human actions from videos has long been a pivotal
problem in the tasks of video understanding and surveillance.
Actions, being events that take place over a finite length of time,
are excellent candidates for a joint CNN-RNN model.

In particular, we discuss the model proposed by Donahue et al.
(2014). They useRGB as well as optical flow features to jointly train
a variant of Alexnet combined with a single layer of LSTM (256
hidden units). Frames of the video are sampled, passed through
the trained network, and classified individually. The final predic-
tion is obtained by averaging across all the frames. A snapshot of
this model at time t is shown in Figure 6.

3.4.2. Image and Video Captioning
Another important component of scene understanding is the tex-
tual description of images and videos. Relevant textual description
also helps complement image information, as well as form useful
queries for retrieval.

RNNs (LSTMs) have long been used for machine translation
(see Bahdanau et al., 2014; Cho et al., 2014). This has motivated
its use for the purpose of image description. Vinyals et al. (2014)
have developed an end-to-end system, by first encoding an image
using a CNN and then using the encoded image as an input to a
language generating RNN. Karpathy and Fei-Fei (2014) propose a
multimodal deep network that aligns various interesting regions
of the image, represented using a CNN feature, with associated
words. The learned correspondences are then used to train a bi-
directional RNN. This model is able not only to generate descrip-
tions for images, but also to localize different segments of the
sentence to their corresponding image regions. The multimodal
RNN (m-RNN) by Mao et al. (2014) combines the functionalities
of the CNN and RNN by introducing a new multimodal layer,
after the embedding and recurrent layers of the RNN. Mao et al.
(2015) further extend the m-RNN by incorporating a transposed
weight sharing strategy, enabling the network to learn novel visual
concepts from images.

Venugopalan et al. (2014) move beyond images and obtain
a mean-pooled CNN representation for a video. They train an

LSTM to use this input to generate a description for the video.
They further improve upon this task by developing S2VT (Venu-
gopalan et al., 2015) a stacked LSTM model that accounts for both
the RGB as well as flow information available in videos. Pan et al.
(2015) use both 2-D and 3-D CNNs to obtain a video embedding.
They introduced two types of losses that are used to train both the
LSTM and the visual semantic embedding.

3.4.3. Visual Question Answering
Real understanding of an image should enable a system not only
to make a statement about it, but also to answer questions related
to it. Therefore, answering questions based on visual concepts
in an image is the next natural step for machine understanding
algorithms. Doing this, however, requires the system to model
both the textual question and the image representation, before
generating an answer conditioned on both the question and the
image.

A combination of CNN and LSTM has proven to be effective in
this task too, as evidenced by the work of Malinowski et al. (2015)
who train an LSTM layer to accept both the question as well a
CNN representation of the image and generate the answer. Gao
et al. (2015) use two LSTMswith sharedweights alongwith aCNN
for the task. Their experiments are performed on a multilingual
dataset containing Chinese questions and answers along with
its English translation. Antol et al. (2015) provide a dataset for
the task of visual question answering containing both real-world
images and abstract scenes.

3.5. Hybrid Learning Methods
3.5.1. Multi-Task Learning
Multi-task learning is essentially a machine learning paradigm
wherein the objective is to train the learning system to perform
well on multiple tasks. Multi-task learning frameworks tend to
exploit shared representations that exist among the tasks to obtain
a better generalization performance than counterparts developed
for a single task alone.

In CNNs, multi-task learning is realized using different
approaches. One class of approaches utilize a multi-task loss

FIGURE 6 | LRCN: a snapshot of the model at time t. It refers to the frame and OFt the optical flow at t. The video is classified by averaging the output At over all t.
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function with hyper-parameters typically regulating the task
losses. For example, Girshick (2015) employ a multi-task loss
to train their network jointly for classification and bounding-
box regression tasks thereby improving performance for object
detection. Zhang et al. (2014) propose a facial landmark detec-
tion network that adaptively weights auxiliary tasks (e.g., head
pose estimation, gender classification, age estimation) to ensure
that a task that is deemed not beneficial to accurate landmark
detection is prevented from contributing to the network learning.
Devries et al. (2014) demonstrate improved performance for facial
expression recognition task by designing a CNN for simultaneous
landmark localization and facial expression recognition. A hall-
mark of these approaches is the division of tasks into primary task
and auxiliary task(s) wherein the purpose of the latter is typically
to improve the performance of the former (see Figure 7).

Some approaches tend to have significant portions of the
original network modified for multiple tasks. For instance, Ser-
manet et al. (2013b) replace pre-trained layers of a net originally
designed to provide spatial (per-pixel) classification maps with
a regression network and fine-tune the resulting net to achieve
simultaneous classification, localization, and detection of scene
objects.

Another class of multi-task approaches tend to have task-
specific sub-networks as a characteristic feature of CNN design.
Li et al. (2015a) utilize separate sub-networks for the joint point
regression and body part detection tasks. Wang et al. (2015b)
adopt a serially stacked design wherein a localization sub-CNN
and the original object image are fed into a segmentation sub-
CNN to generate its object bounding box and extract its segmen-
tation mask. To solve an unconstrained word image recognition
task, Jaderberg et al. (2014a) propose an architecture consisting of
a character sequence CNN and anN-gram encoding CNN that act
on an input image in parallel and whose outputs are utilized along
with a CRF model to recognize the text content present within the
image.

3.5.2. Similarity Learning
Apart from classification, CNNs can also be used for tasks, such as
metric learning and rank learning. Rather than asking the CNN to
identify objects, we can instead ask it to verify whether two images
contain the same object or not. In other words, we ask the CNN to

learn which images are similar, and which are not. Image retrieval
is one application where such questions are routinely asked.

Structurally, Siamese networks resemble two-stream networks
discussed previously. However, the difference here is that both
“streams” have identical weights. Siamese networks consist of two
separate (but identical) networks, where two images are fed in as
input. Their activations are combined at a later layer, and the out-
put of the network consists of a single number, or a metric, which
is a notion of distance between the images. Training is done so that
images that are considered to be similar have a lower output score
than images that are considered different. Bromley et al. (1993)
separate introduced the idea of Siamese networks and used it for
signature verification. Later on, Chopra et al. (2005) extended
it for face verification. Zagoruyko and Komodakis (2015) fur-
ther extended and generalized this to learning similarity between
image patches.

Triplet networks are extensions of siamese networks used for
rank learning. Wang et al. (2014b) first used this idea for learning
fine-grained image similarity learning.

4. OPEN PROBLEMS

In this section, we briefly mention some open research prob-
lems in deep learning, particularly of interest to computer vision.
Several of these problems are already being tackled in several
works.

• Training CNNs requires tuning of a large number of hyper-
parameters, including those involving the model architecture.
An automated way of tuning such as that by Snoek et al. (2012)
is crucial for practitioners. However, that requires multiple
models to be trained, which can be both time consuming and
impractical for large networks.

• Nguyen et al. (2014) showed that one can generate artificial
images that result in CNNs producing a high confidence false
prediction. In a related line of work, Szegedy et al. (2013)
showed that natural images can bemodified in an imperceptible
manner to produce a completely different classification label.
Although Goodfellow et al. (2014a) attempted to reduce the
effects of such adversarial examples, it remains to be seen
whether that can be completely eliminated.

FIGURE 7 | The facial expression recognition system of Devries et al. (2014) that utilizes facial landmark (shown overlaid on the face toward the right
of the image) recognition as an auxiliary task that helps improve performance on the main task of expression recognition.
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• It is well known (see Gong et al., 2014b) that CNNs are robust
to small geometric transforms. However, we would like them to
be invariant. The study of invariance for extreme deformation
is largely missing.

• Along with using a large number of data points, CNN models
are also large and (relatively) slow to evaluate. While there has
been a lot of work in reducing number of parameters (see Denil
et al., 2013; Collins and Kohli, 2014; Jaderberg et al., 2014b;
Hinton et al., 2015; Srinivas and Babu, 2015), it is not clear how
to train non-redundant models in the first place.

• CNNs are presently trained in a one-shot way. The formulation
of an online method of training would be desirable for robotics
applications.

• Unsupervised learning is one more area where we expect to
deploy deep learning models. This would enable us to leverage
the massive amounts of unlabeled image data on the web.
Classical deep networks, such as autoencoders and restricted
Boltzmannmachines,were formulated as unsupervisedmodels.
While there has been a lot of interesting recent work in the area
(see Bengio et al., 2013; Kingma andWelling, 2013; Goodfellow
et al., 2014b; Kulkarni et al., 2015), a detailed discussion of these
is beyond the scope of this paper.

5. CONCLUDING REMARKS

In this article, we have surveyed the use of deep learning net-
works – convolutional neural networks in particular – for com-
puter vision. This enabled complicated hand-tuned algorithms
being replaced by single monolithic algorithms trained in an end-
to-end manner. However, despite our best efforts, it may not be
possible to capture the entire gamut of deep learning research –
even for computer vision – in this paper. We point the reader to
other reviews, specifically those by Bengio (2009), LeCun et al.
(2015), and Schmidhuber (2015). These reviews are more geared
toward deep learning in general, while ours is more focused on
computer vision. We hope that our article will be useful to vision
researchers beginning to work in deep learning.
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