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Abstract Signature-based algorithms have become a standard approach for Gröbner basis computations for poly-

nomial systems over fields, but how to extend these techniques to coefficients in general rings is not yet as well

understood. In this paper, we present a proof-of-concept signature-based algorithm for computing Gröbner bases

over commutative integral domains. It is adapted from a general version of Möller’s algorithm (J Symb Comput

6(2–3), 345–359, 1988) which considers reductions by multiple polynomials at each step. This algorithm performs

reductions with non-decreasing signatures, and in particular, signature drops do not occur. When the coefficients are

from a principal ideal domain (e.g. the ring of integers or the ring of univariate polynomials over a field), we prove

correctness and termination of the algorithm, and we show how to use signature properties to implement classic

signature-based criteria to eliminate some redundant reductions. In particular, if the input is a regular sequence, the

algorithm operates without any reduction to 0. We have written a toy implementation of the algorithm in Magma.

Early experimental results suggest that the algorithm might even be correct and terminate in a more general setting,

for polynomials over a unique factorization domain (e.g. the ring of multivariate polynomials over a field or a PID).

Keywords Algorithms · Gröbner bases · Signature-based algorithms · Polynomials over rings · Principal ideal

domains

Mathematics Subject Classification 13P10

1 Introduction

The theory of Gröbner bases was introduced by Buchberger in 1965 [5] and has since become a fundamental

algorithmic tool in computer algebra. Over the past decades, many algorithms have been developed to compute
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Gröbner bases more and more efficiently. The latest iteration of such algorithms is the class of signature-based

algorithms, which introduce the notion of signatures and use it to detect and prevent unnecessary or redundant

reductions. Following early work in [20], the technique of signatures was first formally introduced for Algorithm

F5 [11], allowing to compute a Gröbner basis for a regular sequence without any reduction to zero. Since then,

there have been many research works in this direction [2,7,8,13].

All these algorithms are for ideals in polynomial rings over fields. Gröbner bases can be defined and computed

over commutative rings [1, Ch. 4]. This can be used in many applications, e.g. for polynomials over Z in lattice-based

cryptography [12] or for polynomials over a polynomial ring as an elimination tool [21]. Many other examples are

described in [18].

If the coefficient ring is not a field, there are two ways to define Gröbner bases, namely weak and strong bases.

Strong Gröbner bases ensure that normal forms can be computed as in the case of fields. But a strong Gröbner basis

is in general larger than a weak one, and if the base ring is not a Principal Ideal Domain (PID), then some ideals

exist which do not admit a strong Gröbner basis. On the other hand, weak Gröbner bases, or simply Gröbner bases,

always exist for polynomial ideals over a Noetherian commutative ring. They do not necessarily define a unique

normal form, but they can be used to decide ideal membership. If necessary, over a PID, a post-processing phase

performing coefficient reductions can be used to obtain a strong Gröbner basis.

Recent works have focused on generalizing signature-based techniques to Gröbner basis algorithms over rings.

First steps in this direction, adding signatures to a modified version of Buchberger’s algorithm for strong Gröbner

bases over Euclidean rings [17], were presented in [9]. That paper proves that a signature-based Buchberger’s

algorithm for strong Gröbner bases cannot ensure correctness of the result after encountering a “signature-drop”,

but can nonetheless be used as a prereduction step in order to significantly speed up the computations.

In this paper, we prove that it is possible to compute a weak signature-Gröbner bases of polynomial ideals

over PIDs (including Euclidean rings) using signature-based techniques. The proof-of-concept algorithm that we

present is adapted from the weak Gröbner basis algorithm due to Möller [19] [1, Sec. 4.2], which is designed to

compute a basis for a polynomial ideal over any ring, and does so by considering combinations and reductions by

multiple polynomials at once. The main difference with the results of [9] is that we use a stricter definition of regular

reductions, effectively preventing more reductions from happening, and at the same time adding more polynomials

to the basis.

This ensures that no reductions leading to signature-drops can happen in the algorithm, and as a consequence,

we prove that the algorithm terminates and computes a signature Gröbner basis with elements ordered with non-

decreasing signatures. This property allows us to examine classic signature-based criteria, such as the syzygy

criterion, the F5 criterion and the singular criterion, and show how they can be adapted to the case of PIDs. In

particular, when the input forms a regular sequence, the algorithm performs no reductions to zero. To the best of

our knowledge, this is the first algorithm that, given a regular sequence of polynomials with coefficients in a PID,

can compute a Gröbner basis of the corresponding ideal without any reduction to zero.

Möller also presented an efficient algorithm that computes (strong) Gröbner basis for polynomial ideals where

the coefficients are from Principal Ideal Rings [19, Sec. 4]. That algorithm skips the combinatorial bottleneck of

computing saturated sets. Instead, it uses two polynomials to build S-polynomials and makes use of Gebauer–Möller

criteria [15], previously introduced for fields, to discard redundant S-polynomials.

Whenever necessary, for clarity, we shall refer to that algorithm as Möller’s strong algorithm. The algorithm at

the center of our focus, computing weak Gröbner bases, will be referred to as Möller’s weak algorithm, or simply

Möller’s algorithm.

We have written a toy implementation of the algorithms presented, with the F5 and the singular criteria, in the

Magma Computational Algebra System [4], and compared its efficiency, in terms of number of excluded pairs, with

Möller’s strong algorithm. Experimentally, on all considered examples, Möller’s (weak) algorithm with signatures

does compute and reduce fewer S-polynomials than Möller’s strong algorithm.

Möller’s (weak) algorithm, without signatures, works for polynomial systems over any Noetherian commutative

ring. The signature-based algorithm is only proved to be correct and to terminate for PIDs, but with very few changes,

it can be made to accommodate inputs with coefficients in a more general ring. Interestingly, early experimental
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data with coefficients in a multivariate polynomial ring (a Unique Factorization Domain but not a PID) suggest that

the signature-based algorithm might work over more general rings than just PIDs. For that reason, and because it

does not over-complicate the exposition, we choose to present Möller’s algorithms, with and without signatures, in

their most general form, accepting input over any Noetherian commutative ring.

1.1 Previous Works

Signature-based Gröbner basis algorithms over fields have been extensively studied, and an excellent survey of those

works can be found in [6]. The technical details of most proofs can be found in [10,22]. The theory of Gröbner bases

for polynomials over Noetherian commutative rings dates back to the 1970s [19,23] and a good exposition of these

approaches can be found in [1]. Algorithms exist for both flavors of Gröbner bases: Buchberger’s algorithm [5]

computes weak Gröbner bases over a PID, and Möller’s weak algorithm [19] extends this approach to Noetherian

commutative rings. As for strong Gröbner bases, they can be computed using an adapted version of Buchberger’s

algorithm [16] or Möller’s strong algorithm [19]. Algorithms for computing signature Gröbner bases over Euclidean

rings have been investigated in [9].

2 Notations

Let R be a Noetherian integral domain, which is assumed to have a unit and be commutative. Let A = R[x1, . . . , xn]

be the polynomial ring in n indeterminates x1, . . . , xn over R. A monomial in A is xa = x
a1

1 . . . x
an
n where

a = (a1, . . . , an) ∈ Nn . A term is kxa , where k ∈ R and k �= 0. We will denote all the terms in A by Ter(A) and

all the monomials in A by Mon(A). We use the notation a for polynomial ideals in A = R[x1, . . . , xn] and I for

ideals in the coefficient ring R.

The notion of monomial order can be directly extended from K[x1, . . . , xn] to A. In the rest of the paper, we

assume that A is endowed with an implicit monomial order ≺, and we define as usual the leading monomial LM,

the leading term LT and the leading coefficient LC of a given polynomial.

Given a tuple of polynomials (g1, . . . , gs) and i ∈ {1, . . . , s}, we will frequently denote, for brevity, M(i) =

LM(gi ), C(i) = LC(gi ) and T (i) = LT(gi ) = C(i)M(i).

3 Gröbner Bases in Polynomial Rings over R

For more details about the contents of this section, one can refer to [1, Chapter 4].

3.1 Computations in R

We assume that our coefficient ring R is effective in the following sense.

(1) There are algorithms for arithmetic operations (+, ∗, zero test) in R.

(2) There is an algorithm LinDecomp:

• Input: {k1, . . . , ks} ⊂ R, k ∈ R

• Output: TRUE iff k ∈ 〈k1, . . . , ks〉 and if yes, l1, . . . , ls ∈ R such that k = k1l1 + · · · + ksls .

(3) There is an algorithm SatIdeal:

• Input: {k1, . . . , ks} ⊂ R, k ∈ R

• Output: {l1, . . . , lr } ⊂ R generators of the saturated ideal 〈k1, . . . , ks〉 : 〈k〉.
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The condition that an algorithm LinDecomp exists is called linear equations being solvable in R in [1, Def. 4.1.5].

Example Euclidean rings are effective, because one can implement those algorithms using GCD computations and

Euclidean reductions. For example over Z, LinDecomp({4}, 12) is (TRUE, {3}), since 12 is in the ideal 〈4〉 and

12 = 3 · 4. The output of SatIdeal({4}, 6) is {2} since 〈4〉 : 〈6〉 = 1
6
(〈4〉 ∩ 〈6〉) = 1

6
〈12〉 = 〈2〉.

The ring of multivariate polynomials over a field is also effective, using Gröbner bases and normal forms to

perform the same ideal computations.

3.2 Weak Gröbner Bases over Rings

For reduction in fields it is enough to check if the leading term of f is divisible by the leading monomial of g even

though the actual reduction happens with the leading term of g. Clearly, in rings this is not a sufficient condition :

LC(g) may not divide LC( f ) even if LM(g) divides LM( f ). Requiring that LT(g) divide LT( f ) leads to the notion

of strong Gröbner basis, more details can be found in [1, Sec. 4.5].

Here we are interested in computing weak Gröbner bases, and we recall the main definitions in this section. First,

following [1,19], we expand the definition of reduction to allow for a linear combination of reducers. We define

saturated sets [1, Def.4.2.4] (called maximal sets in [19]).

Definition 3.1 Given a tuple of monomials (xa1 , . . . , xas ), the saturated set for a monomial xb w.r.t. (xa1 , . . . , xas )

is defined as

Sat(xb; xa1 , . . . , xas ) = {i ∈ {1, . . . , s} : xai | xb}.

A set J ⊆ {1, . . . , s} is said to be saturated w.r.t. (xa1 , . . . , xas ) if J = Sat(M(J ); xa1 , . . . , xas ) where M(J ) =

lcm(xai : i ∈ J ). When clear from the context, we shall omit the list of monomials and write Jxb = Sat(xb).

Given a tuple of polynomials ( f1, . . . , fs) and a set of indices J ⊂ {1, . . . , s}, we denote by IJ the ideal of R

defined as IJ := 〈LC( fi ) : i ∈ J 〉 and we define M(J ) = lcm(LM( f1), . . . , LM( fs)).

Definition 3.2 Let f ∈ A. Let f1, . . . , fs ∈ A and xa1 , . . . , xas ∈ Mon(A) be such that xai LM( fi ) = LM( f ) for

all i . We say that we can weakly top reduce f by f1, . . . , fs ∈ A if there exist l1, . . . , ls in R such that

LT( f ) =

s
∑

i=1

li xai LT( fi ).

In our setting we will only perform top reductions, so we will simply call them weak reductions.

The outcome of the total reduction step is g = f −
∑s

i=1 li xai fi and the fi ’s are called the weak reducers. A

polynomial f ∈ A is weakly reducible if it can be weakly reduced, otherwise it is weakly reduced.

If g is the outcome of reducing f , then LM(g) ≺ LM( f ).

Example Consider the polynomial ring Z[x, y] with the lex ordering y ≺ x , and consider the set F =

{ f1, f2, f3, f4, f5} in Z[x, y], with f1 = 4xy + x, f2 = 3x2 + y, f3 = 5x, f4 = 4y2 + y, f5 = 5y. Let

f = 2xy + 13y − 5. We have LT( f ) = 2xy = (2y)LT( f3) − (2)LT( f1). This implies we can weakly reduce f

with f1, f3 to get g = f − (2y f3 − 2 f1) = 2x + 13y − 5.

We are now prepared to give the definition of (weak) Gröbner bases for an ideal in A.

Definition 3.3 Let a be an ideal in A and G = {g1, . . . , gt } be a finite set of nonzero polynomials in a. The set G

is called a weak Gröbner basis of a in A if it satisfies the following equivalent properties.
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1. 〈LT(G)〉 = 〈LT(a)〉;

2. for any f ∈ a, f is weakly reducible modulo G;

3. for any f ∈ A, f ∈ a if and only if f weakly reduces to 0 modulo G.

Remark 3.4 Even though the notion of weak Gröbner bases is a weaker notion than that of strong Gröbner bases,

one can use weak polynomial reductions to test for ideal membership. One can also define normal forms modulo

a polynomial ideal. However, for those normal forms to be unique, one needs to perform further reductions on the

coefficients, to “coset representative form”, and one needs to perform reductions on non-leading coefficients as

well [1, Th. 4.3.3]. Finally, note that, over a PID, one can easily recover a strong basis from a weak one [19, Th. 4].

3.3 Möller’s Algorithm for General Rings

In this section, we present Möller’s (weak) algorithm [19] for computing Gröbner bases over rings satisfying the

conditions of Sect. 3.1. This algorithm is analogous to Buchberger’s algorithm for rings, where the polynomial

reduction is as defined above and S-polynomials are replaced with linear combinations of several (possibly more

than 2) polynomials, defined in the following sense.

Consider a set {g1, . . . , gt } of polynomials. For i ∈ {1, . . . , t}, let M(i) = LM(gi ), C(i) = LC(gi ) and T (i) =

LT(gi ). Let J be a saturated subset of {1, . . . , t} w.r.t. {M(1), . . . , M(t)}. Recall that M(J ) = lcm(M( j) : j ∈ J ).

By definition, for all j ∈ J , M( j) divides M(J ) and J is maximal with this property.

Let s ∈ J and J ∗ = J\{s}. Similar to the idea behind S-polynomials, we want to eliminate the leading

term C(s)M(J ) of M(J )
M(s)

gs . This can only be done if we multiply M(J )
M(s)

gs by an element of the saturated ideal

〈C(i) : i ∈ J, i �= s〉 : 〈C(s)〉. We want to consider all such multipliers, so we need to consider generators of this

saturated ideal.

Let c be such a generator, by definition cC(s) ∈ 〈C(i) : i ∈ J, i �= s〉 so there exists (bi )i∈J∗ ∈ R such that

cC(s) =
∑

i∈J∗ bi C(i). The (weak) S-polynomial associated with J , s and c, for some suitable (bi ), is defined as

S-Pol((gi )i∈J∗; gs; c) = c
M(J )

M(s)
gs −

∑

i∈J∗

bi

M(J )

M(i)
gi .

If the ring R is a PID, the saturated ideal 〈C(i) : i ∈ J, i �= s〉 : 〈C(s)〉 admits a unique generator c and we

define

C(J ; s) = LC(cgs) = cC(s) = lcm(gcd({C( j) : j ∈ J ∗}), C(s))

T (J ; s) = LT(cgs) = C(J ; s)M(J ).

Then the S-polynomial associated with J , s, c, for some suitable (bi ), can be written in the following form

S-Pol((gi )i∈J∗; gs) =
T (J ; s)

T (s)
gs −

∑

i∈J∗

bi

M(J )

M(i)
gi .

Using this definition of S-polynomials, we recall Möller’s algorithm (Algorithm 1) for computing a Gröbner

basis of an ideal given by a set of generators over R. The correctness and termination of this algorithm are shown

in [1, Th. 4.2.8 and Th. 4.2.9].

4 Signatures in A
m

We consider the free A-module Am with basis e1, . . . , em . A term (resp. monomial) in Am is kxaei (resp. xaei ) for

some k ∈ R\{0}, xa ∈ Mon(A), i ∈ {1, . . . , m}. In this paper, terms in Am are ordered using the Position Over
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Algorithm 1 Möller’s algorithm [1, Algo. 4.2.2], [19]

Input F = { f1, . . . , fm} ⊆ A\{0}, ≺ a monomial order on A

Output G = {g1, . . . , gt }, a Gröbner basis of 〈F〉

G ← F , σ ← 1, s ← m

while σ �= s do

S ←
{

subsets of {1, . . . , σ } saturated w.r.t. LM(g1), . . . , LM(gσ ) which contain σ
}

for each J ∈ S do

M(J ) ← lcm(LM(g j ) : j ∈ J )

J ∗ ← J\{σ }

{c1, . . . , cµ} ← SatIdeal({LC(g j ) : j ∈ J ∗}, LC(gσ ))

{〈c1, . . . , cµ〉 = 〈C( j) : j ∈ J ∗〉 : 〈C(σ )〉}

for i ∈ {1, . . . , µ} do {For PIDs, µ = 1}

p ← S-Pol((g j ) j∈J∗ ; gσ ; ci )

r ← Reduce(p, G)

if r �= 0 then

gs+1 ← r , G ← G ∪ {gs+1}, s ← s + 1

σ ← σ + 1

return G

Algorithm 2 Reduce (Definition 3.2)

Input G = {g1, . . . , gs} ⊆ A\{0}, ≺ a monomial order on A

Output r result of reducing p modulo G

reducible ← TRUE, r ← p

while reducible is TRUE do

J ← { j ∈ {1, . . . , s} : LM(g j ) | LM(r)}

reducible, (k j ) j∈J ← LinDecomp({LC(g j ) : j ∈ J }, LC(r))

{If reducible is TRUE, then LC(r) =
∑

j∈J k j LC(g j )}

if reducible then

r ← r −
∑

j∈J k j
LM(r)
LM(g j

g j

return r

Term (POT) order, defined by

kxaei ≺ lxbe j ⇐⇒ i � j ( or i = j and xa ≺ xb).

Given two terms kxaei and lxbe j in Am , we write kxaei ≃ lxbe j if they are incomparable, i.e. if a = b and i = j .

Given a set of polynomials f1, . . . , fm ∈ A, elements of Am encode elements of the ideal 〈 f1, . . . , fm〉 through

the A-module homomorphism ·̄ : Am → A, defined by setting ei = fi and extending linearly to Am . In particular,
∑m

i=1 pi ei =
∑m

i=1 pi fi .

We recall the concept of signatures in Am . Let p =
∑m

i=1 pi ei be a module element. Under the POT ordering,

the signature of p is s(p) = LT(pi )ei where i is such that pi+1= . . . =pm = 0 and pi �= 0. Signatures are of the

form kxaei , where k ∈ R, xa ∈ Mon(A) and ei is a standard basis vector.

Note that we have two ways of comparing two similar signatures s(α) = kxaei and s(β) = lxbe j . We write

s(α) = s(β) if k = l, a = b and i = j , and we write s(α) ≃ s(β) if a = b and i = j , k and l being possibly

different. If R is a field, one can assume that the coefficient is 1, and so this distinction is not important.

Note also that when we order signatures, we only compare the corresponding module monomials, and disregard

the coefficients. This is a different approach from the one used in [9], where both signatures and coefficients are

ordered.

Given a tuple (α1, . . . ,αs) of module elements in Am and i, j ∈ {1, . . . , s}, we shall frequently denote S(i) =

s(αi ) for brevity.

In order to keep track of signatures we modify Definition 3.2 to introduce the notion of s-reduction.
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Definition 4.1 Let p ∈ Am . We say that we can signature-reduce (or s-reduce) p by β1, . . . ,βs ∈ Am if we can

reduce p by β1, . . . ,βs (in the sense of Definition 3.2) and s(xai β i ) � s(p) for all i = 1, . . . , s, where xai =
LM(p)

LM(βi )
.

We can define similarly s-reduced module elements.

If s(xai β i ) ≃ s(p) for some i in the above s-reduction, then it is called a singular s-reduction step. Otherwise

it is called a regular s-reduction step.

If s(xai β i ) ≃ s(p) for exactly one i and it is actually an equality s(li xai β i ) = s(p), it is called a 1-singular

s-reduction step.

Remark 4.2 For simplicity, we only carry out weak top reductions, and in particular all s-reductions are weak top

s-reductions. But performing regular s-reduction to eliminate trailing terms does not affect the correctness of the

algorithm.

Just like s-reduction over fields, one can interpret s-reduction as polynomial reduction with an extra condition

on the signature of the reducers. The difference with fields is that in R[x1, . . . , xn] polynomial reduction is defined

differently from the classic polynomial reduction. Additionally, in the case of fields, all singular s-reductions are

1-singular.

The outcome q of s-reducing p is such that LT(q) ≺ LT(p) and s(q) � s(p). If q is the result of a regular

s-reduction, then s(q) = s(p). In signature-based algorithms, in order to keep track of the signatures of the basis

elements, we only allow regular s-reductions. Later, we will also prove that elements which are 1-singular s-reducible

can be discarded.

Remark 4.3 In [9, Ex. 2], a signature drop appears when s-reducing an element of signature 6ye2 with an element

of signature ye2 causing the signature to “drop” to 5ye2. With our definition, since we only compare the module

monomial part of the signatures, this is a (forbidden) singular s-reduction.

Definition 4.4 Let a = 〈 f1, . . . , fm〉 be an ideal in A. A finite subset G of Am is a (weak) signature Gröbner basis

(or s-GB for short) of a if all u ∈ Am
s-reduce to zero mod G.

Given a signature T, we say that G is a (partial) signature Gröbner basis up to T if all u ∈ Am with signature

≺ T s-reduce to 0 mod G.

Using this definition, we can give the following characterization of 1-singular reducibility, which allows for an

easy algorithmic test.

Lemma 4.5 (Characterization of 1-singular s-reducibility) Let G = {α1, . . . ,αs} ⊂ Am and p ∈ Am such that

G is a signature Gröbner basis up to signature s(p). Then p is 1-singular s-reducible if and only if there exist

j ∈ {1, . . . , s} and k ∈ R and a monomial xa in A such that LM(xaα j ) = LM(p) and kxa
s(α j ) = s(p).

Proof If p is 1-singular s-reducible, then such j , k and xa exist by definition. Conversely, given such j , k and

xa , if kxaLT(α j ) = LT(p), then p is 1-singular s-reducible. If not, then LM(p − kxaα j ) = LM(p). Furthermore,

s(p−kxaα j ) ≺ s(p), so p−kxaα j s-reduces to 0. In particular, there exist (µi )i∈{1,...,s} terms in A such that for all i

withµi �= 0, LM(µiαi ) = LM(p−kxaα j ), LT(p−kxaα j ) =
∑s

i=1 µi LT(αi ) andµis(αi ) � s(p−kxaα j ) ≺ s(p).

So putting together the two s-reductions, we obtain that

LT(p) = kxaLT(α j ) +

s
∑

i=1

µi LT(αi )

and this is a 1-singular s-reduction of p. ⊓⊔

We now define (weak) semi-strong signature Gröbner bases, which form a subclass of weak s-Gröbner bases.

In the case of rings, it is easier to compute them than to directly compute weak s-Gröbner bases.
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Definition 4.6 Let a = 〈 f1, . . . , fm〉 be an ideal in A. A finite subset G of Am is a semi-strong signature Gröbner

basis (or s-s s-GB for short) of a if, for all u ∈ Am ,

• either u is (weakly) regular s-reducible modulo G;

• or u is 1-singular s-reducible modulo G;

• or u = 0.

Given a signature T, semi-strong signature Gröbner bases up to T are defined similarly by only considering module

elements with signature ≺ T.

Lemma 4.7 ([6, Lem. 4.6]) Let a = 〈 f1, . . . , fm〉 be an ideal in A and let G ⊂ Am . Then

1. If G is a s-s s-GB of a, then G is a s-GB of a.

2. If G is a s-GB of a, then {α : α ∈ G} is a Gröbner basis of a.

Proof The definition of a semi-strong Gröbner basis implies that all u ∈ Am with u �= 0 are s-reducible modulo G,

and so such s-reductions form a chain which can only terminate at 0.

The proof that a signature Gröbner basis is a Gröbner basis is classical [6, Lem. 4.1]. ⊓⊔

In order to compute signature Gröbner bases, similar to the case of fields, we will restrict the computations to

regular S-polynomials. For this purpose, we first introduce the signature of a set of indices, and regular sets.

Definition 4.8 Let G = (α1, . . . ,αt ) be a tuple of module elements in Am and a set J ⊆ {1, . . . , t}. For i ∈

{1, . . . , t}, let M(i) = LM(αi ), and S(i) = s(αi ). The presignature of J is defined as

SJ = max
s∈J

{

M(J )

M(s)
S(s)

}

.

We say that J is a regular set if there exists exactly one s ∈ J such that SJ ≃
M(J )
M(s)

s(αs). The index s is called

the signature index of J . We say that J is a regular saturated set if J\{s} contains all j such that M( j) | M(J ) and
M(J )
M( j)

S( j) ≺ SJ .

Note that given a regular set J , one can always compute a regular saturated set J ′ containing J , by adding those

indices j such that M( j) | M(J ) and M(J )
M( j)

S( j) ≺ SJ .

Definition 4.9 Let (α1, . . . ,αt ) be a tuple of module elements in Am . For i ∈ {1, . . . , t}, let M(i) = LM(αi ),

C(i) = LC(αi ) and S(i) = s(αi ). Let J ⊂ {1, . . . , t} be a regular saturated set with signature index s, and let

J ∗ = J\{s}. Let c be an element of a family of generators of 〈C( j) : j ∈ J ∗〉 : 〈C(s)〉.

Let (b j ) j∈J∗ be a tuple of elements of R such that cC(s) =
∑

j∈J∗ b j C( j). Then the (weak) S-polynomial

associated with J and c is defined as

S-Pol((g j ) j∈J ; c) = c
M(J )

M(s)
αs −

∑

j∈J∗

b j

M(J )

M( j)
α j .

Its signature is

S(J ; c) = s(S-Pol((g j ) j∈J ; c)) = cSJ = c
M(J )

M(s)
S(s).

Remark 4.10 When dealing with regular saturated sets, unlike in Sect. 3.2, we do not need to specify which s ∈ J

is singled out when computing the S-polynomial: the only possible s is the signature index of J .

Remark 4.11 If the coefficient ring is a PID, the ideal 〈C( j) : j ∈ J ∗〉 : 〈C(s)〉 is principal, and c is uniquely

determined up to an invertible factor. As such, it can be omitted, and in that case we shall simply write S-Pol(J ) for

the S-polynomial, and S(J ) for its signature. The signature can then be written as S(J ) =
C(J )
C(s)

SJ =
C(J )
C(s)

M(J )
M(s)

S(s).
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5 Adding Signatures to Möller’s Weak Algorithm

Recall that all s-reductions are weak top s-reductions. In this section, all S-polynomials are weak S-polynomials.

5.1 Algorithms

Algorithm SigMöller (Algorithm 3) is a signature-based version of Möller’s algorithm which, given an ideal a in

R[x1, . . . , xn] where R is a PID, computes a signature Gröbner basis of a.

The algorithm proceeds by maintaining a list of regular saturated sets P and computing weak S-polynomials

obtained from these saturated sets. At each step, it selects the next regular saturated set J ∈ P such that J has

minimal presignature amongst elements of P . This ensures that the algorithm computes new elements for the

signature Gröbner basis with nondecreasing signatures (Prop. 5.2).

The algorithm then regular s-reduces these S-polynomials w.r.t. the previous elements, and adds to the basis

those which are not equal to 0 and are not 1-singular s-reducible. Signature-based Gröbner basis algorithms over

fields typically discard all new elements which are singular s-reducible, but this may be too restrictive for rings. On

the other hand, the proof of Lemma 5.4 justifies that 1-singular s-reducible module elements can be safely discarded

in the computations. The correctness of the criterion for 1-singular s-reducibility (Algorithm 4) was justified in

Lemma 4.5. The correctness and termination of Algorithm SigMöller are proved in Th. 5.5 and Th. 5.6 respectively.

Algorithm 3 Signature-based Möller’s algorithm (SigMöller)

Input F = { f1, . . . , fm} ⊆ A\{0}, ≺ a monomial order on A

Output G = {α1, . . . ,αt } a semi-strong signature-Gröbner basis of 〈F〉

G ← ∅, σ ← 0

for i ∈ {1, . . . , m} do

e′
i ← RegularReduce(ei , G)

if e′
i �= 0 then

G = G ∪ {e′
i }, s ← |G| {αs = e′

i }

P ← {Regular saturated sets of {1, . . . , s} containing s}

while P �= ∅ do

Pick and remove from P a regular saturated set with minimal presignature SJ

M(J ) ← lcm(LM(α j ) : j ∈ J )

τ ← signature index of J

J ∗ ← J\{τ }

{c1, . . . , cµ} ← SatIdeal({LC(α j ) : j ∈ J ∗}, LC(ατ ))

for i ∈ {1, . . . , µ} do {For PIDs, µ = 1}

p ← S-Pol((g j ) j∈J ; ci )

r ← RegularReduce(p, G)

if r �= 0 and not 1-SingularReducible(r, G) then

αs+1 ← r {αs+1 has signature S(J ) = ci SJ }

G ← G ∪ {αs+1}

P ← P ∪ {Regular saturated sets of {1, . . . , s + 1} containing s + 1}

s ← s + 1

return G

Due to space constraints, the subroutine RegularReduce is not explicitly written. It implements regular s-

reduction of a module element p w.r.t. a set of module elements {α1, . . . ,αs}. It is a straightforward transposition

of Reduce (Algorithm 2), with the additional condition that we only consider as reducers of r those α j with

LM(α j ) | LM(r) and LM(r)
LM(α j )

s(α j ) ≺ s(r).

Remark 5.1 Note that the algorithms, as presented, perform computations on module elements. However, for

practical implementations, this represents a significant overhead. On the other hand, for any module element α,
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we only need its polynomial value α and its signature s(α). Hence the algorithm only needs to keep track of the

signatures of elements, which is made possible by the restriction to regular S-polynomials and regular s-reductions.

Example An example run of Algorithm 3 is available online.1

5.2 Proof of Correctness

In this section we prove the correctness of the algorithms presented in Sect. 5.1. The first result states that Algorithm

SigMöller computes elements of the signature Gröbner basis in nondecreasing order on their signatures.

Proposition 5.2 Let (α1, . . . ,αt ) be the value of G at any point in the course of Algorithm SigMöller. Then

s(α1) � s(α2) � · · · � s(αt ).

Proof Assume that this is not the case, and let i be the smallest index such that s(αi ) ≻ s(αi+1). Let Ji (resp. Ji+1)

be the saturated set used to compute αi (resp. αi+1). Note that s(αi ) ≃ S(Ji ) and s(αi+1) ≃ S(Ji+1).

If i /∈ Ji+1, then Ji+1 was already in the queue P when Ji was selected, and so, by the selection criterion in the

algorithm, S(Ji ) � S(Ji+1).

If i ∈ Ji+1, then S(Ji+1) � x Ji+1

LM(αi )
s(αi ) � s(αi ). ⊓⊔

The following useful lemma gives consequences of the fact that two regular s-reduced elements share the same

signature.

Lemma 5.3 Let G = (α1, . . . ,αs) be a signature Gröbner basis up to signature L.

Let p, q ∈ Am such that s(p) = s(q) = L, and p and q are regular s-reduced. Then LM(p) = LM(q) and either

LT(p) = LT(q), or LC(p − q) lies in the ideal

C :=
〈

LC(α j ) : LM(α j ) | m and
m

LM(α j )
s(α j ) �≃ s(p)

〉

.

Proof Let r = p − q. Since s(p) = s(q), we have s(r) ≺ s(p) = L, and so r s-reduces to 0 modulo G. Assume

first that LM(p) �= LM(q), then w.l.o.g. we may assume that LM(p) ≻ LM(q), so LM(r) = LM(p). Since r is

regular s-reducible, p is s-reducible. This is a contradiction with the assumption that p is s-reduced.

So LM(p) = LM(q) =: m. If LT(p) �= LT(q), C is the ideal of leading coefficients of polynomials which can

eliminate m, and since r is s-reducible, LC(p) − LC(q) ∈ C . ⊓⊔

Algorithm 4 Test of 1-singular s-reducibility modulo a partial s-GB (1-SingularReducible)

Input G = {α1, . . . ,αs} ⊂ Am and p ∈ Am such that p is regular s-reduced w.r.t. G and G is a signature Gröbner basis up to s(p)

Output TRUE iff p is 1-singular s-reducible modulo G

J ←
{

j ∈ {1, . . . , s} : LM(α j ) | LM(p) and
LM(p)

LM(α j )
s(α j ) � s(p)

}

return ∃ j ∈ J, ∃k j ∈ R, k j
LM(p)

LM(α j )
s(α j ) = s(p)

We now prove the correctness of Algorithm SigMöller. The proof follows the structure of the proof in the case

of fields [22], and adapts it to Möller’s algorithm over PIDs. In particular, it takes into account weak s-reductions

instead of classical s-reductions. The algorithm ensures that all regular S-polynomials up to a given signature T

s-reduce to 0, and proving the correctness of the algorithm requires proving that this implies that all module elements

with signature ≺ T s-reduce to 0.

The key lemma of the proof is the following.

1 https://github.com/ThibautVerron/SignatureMoller/blob/master/ACA18_example.pdf.

https://github.com/ThibautVerron/SignatureMoller/blob/master/ACA18_example.pdf
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Lemma 5.4 Let G = (α1, . . . ,αs) ⊆ Am . Let u ∈ Am\{0} be s-reduced such that u �= 0. Assume that G is a s-s

s-GB basis up to signature s(u). Then there exists an S-polynomial p w.r.t. G, such that:

1. the signature of p divides the signature of u: kxa
s(p) = s(u) with k ∈ R and xa ∈ Mon(A);

2. if p′ is the result of regular s-reducing p w.r.t. G, then kxap′ is regular s-reduced.

Proof The proof is in two steps: first, we construct a S-polynomial p whose signature divides s(u), and then, starting

from p, we show that there exists an S-polynomial satisfying the conditions of the lemma.

In the remainder of the proof, for i ∈ {1, . . . , s}, let M(i) = LM(αi ), C(i) = LC(αi ), T (i) = LT(αi ) and

S(i) = s(αi ).

Existence of a S-polynomial satisfying 1 For the first step, let s(u) be lxbei for some l ∈ R, xb a monomial and

ei a basis vector. Let e′
i be the result of regular s-reducing ei . If e′

i = 0, then u regular s-reduces to 0, which is a

contradiction since we assumed u to be s-reduced and u �= 0. Let L = lxbe′
i , it has signature lxbei . Then u − L

has a smaller signature than u, so it s-reduces to zero and in particular it is s-reducible. Also, L is s-reducible by

e′
i . Consider the sum (u − L) + L = u. It is not s-reducible, which implies that LT(u − L) = −LT(L).

Let JLM(L) be the maximal regular saturated set J with M(J ) | LM(L). Since u − L s-reduces to zero, there

exists (m j ) j∈JLM(L)
monomials in A, and (k j ) j∈JLM(L)

coefficients in R such that

LT(u − L) =
∑

j∈JLM(L)

k j m j T ( j) (5.1)

with m j M( j) = LM(u − L) and s(k j m jα j ) = k j m j S( j) � s(u − L) ≺ s(u) for all i such that k j �= 0. Let σ

be the index of e′
i in G, that is ασ = e′

i . Consider the set J ′ = { j : m j �= 0} ∪ {σ } ⊆ JLM(L), it is regular by

construction.

Let J be a regular saturated set containing J ′. Then, since for all j ∈ J ′, M( j) | LM(L) = xb M(σ ), M(J ) =

lcm
{

M( j) : j ∈ J ′
}

| xb M(σ ). Furthermore, looking at the leading coefficients in Eq. (5.1), we have

l C(σ ) = −
∑

j∈J ′

k j C( j)

and so l ∈ 〈C( j) : j ∈ J, j �= σ 〉 : 〈C(σ )〉. Since R is a PID, this ideal is principal. Let bJ be its generator,

then bJ | l. Let p be the S-polynomial corresponding to J and bJ . It is regular by construction since J is a regular

saturated set, and its signature is s(p) = bJ
M(J )
M(σ )

S(σ ) = bJ
M(J )

LM(e′
i )

ei . Since bJ divides l and M(J ) divides xb M(σ ),

s(p) divides lxbse′
i = s(L) = s(u).

Existence of a S-polynomial satisfying 1. and 2 Let p be an S-polynomial whose signature divides s(u), and let

p′ be the regular s-reduced form of p. Write s(u) = s(kxap), where k ∈ R and xa is a monomial.

We can assume that kxap′ is regular s-reducible or else we are done. We then construct an S-polynomial q such

that s(lxbq) = s(u) and LM(kxap) ≻ LM(lxbq). If lxbq′, where q′ is obtained by regular s-reducing q, is not

regular s-reducible then we are done. Otherwise we can do the same process again and get a third S-polynomial

with the same properties and keep repeating. Since the initial terms are strictly decreasing and we have a well order

there are only finitely many such S-polynomials.

First, we show that we can assume that xa ≻ 1. Indeed, assume that a = 0 and kp′ is regular s-reducible. Since R

is an integral domain, LM(kp′) = LM(p′). Let JLM(p′) be the maximal regular saturated set J with M(J ) | LM(p′).

Then kLC(p′) lies in the ideal 〈LC(α j ) : j ∈ JLM(p′)〉. Since R is a PID, this ideal is principal, let bJLM(p′)
be

its generator, then bJLM(p′)
| k. Let q be the S-polynomial corresponding to the regular saturated set JLM(p′) and

the generator bJLM(p′)
, its signature divides s(u) and is strictly divisible by s(p). Repeating the process as needed,

we obtain a strictly increasing sequence of elements dividing the coefficient of s(u), and since R is a PID and in

particular a unique-factorization domain, this sequence has to be finite. So we can assume that xa ≻ 1.
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We will construct two reductions of LT(kxap′), which taken together will give the S-polynomial q. For the first

reduction, the module element p′ ∈ Am is regular s-reduced modulo the s-s s-GB G, and its signature is smaller

than s(u). Furthermore, by assumption kxap′ is not regular s-reduced, so p′ cannot be 0. So, by definition of a s-s

s-GB, p′ is 1-singular s-reducible. So there exists (t
(1)
i )i∈J1 terms in A, with J1 ⊂ {1, . . . , s} and for all i ∈ J1,

t
(1)
i �= 0, and such that

LT(p′) =
∑

i∈J1

t
(1)
i LT(αi ) =

∑

i∈J1

t
(1)
i T (i) (5.2)

with for all i ∈ J1, LM(t
(1)
i αi ) = LM(t

(1)
i )M(i) = LM(p′). Furthermore, there exists τ in J1, t

(1)
τ S(τ ) = s(p) and

for all i ∈ J1\{τ }, t
(1)
i S(i) ≺ s(p).

We now build the second reduction. Since kxap′ is regular s-reducible, there exists (t
(2)
i )i∈J2 terms in A, with

J2 ⊂ {1, . . . , s} and for all i ∈ J2, t
(2)
i �= 0, such that

LT(kxap′) =
∑

i∈J2

t
(2)
i LT(αi ) =

∑

i∈J2

t
(2)
i T (i), (5.3)

and for all j ∈ J2, LM(t
(2)
j )M( j) = LM(kxap′) and t

(2)
j S( j) ≺ s(kxap′).

Now let J = J1 ∪ J2, and let t
(1)
i = 0 if i ∈ J2\J1, t

(2)
j = 0 if j ∈ J1\J2. Note that τ /∈ J2, so t

(2)
τ = 0.

Combining Eqs. (5.2) and (5.3), we obtain a decomposition of kxa tτ T (τ ) as

kxa tτ T (τ ) = −
∑

i∈J\{τ }

ti T (i). (5.4)

where for all i ∈ J , ti = kxa t
(1)
i −t

(2)
i . Furthermore, for all i ∈ J\{τ }, LM(ti )M(i) = LM(xap′) = LM(xa tτ )M(τ )

and ti S(i) ≺ s(p) = kxa tτ S(τ ).

The same argument as the one used, in the first part of the proof, to construct an S-polynomial based on Eq. (5.1)

yields an S-polynomial q such that s(q) divides s(u), say lxb
s(q) = s(u). Furthermore, since the leading term is

eliminated in the construction of an S-polynomial, LT(lxbq) ≺ LT(kxap′), which concludes the proof. ⊓⊔

Theorem 5.5 (Correctness of Algorithm SigMöller) Let T be a term of Am and let G = (α1, . . . ,αs) ⊆ Am be a

finite basis as computed by Algorithm 3. Assume that all regular S-polynomials p with s(p) ≺ T s-reduce to 0 w.r.t.

G. Then G is a semi-strong signature-Gröbner basis up to signature T.

Proof To get a contradiction assume there exists a u ∈ Am with s(u) ≺ T such that u does not s-reduce to zero.

Assume w.l.o.g. that s(u) is ≺-minimal such that u does not s-reduce to zero and also that u is regular s-reduced.

By Lemma 5.4 there is an S-polynomial p with s(kxap) = s(u) with k ∈ R, xa ∈ Mon(A). Also, kxap′ is

regular s-reduced where p′ is the result of regular s-reducing p.

Let JLM(u) be the maximal regular saturated set J with M(J ) | LM(u). Since s(kxap) = s(u) and both kxap′

and u are regular s-reduced, we have by Lemma 5.3 that LM(kxap′) = LM(u), and either LT(kxap′) = LT(u), or

LC(u − kxap′) ∈
〈

LC(α j ) : j ∈ JLM(u)

〉

.

So in either case, there exists (ti )i∈JLM(u)
terms in A, possibly all zero, such that

LT(u) − LT(kxap′) =
∑

i∈JLM(u)

ti LT(αi )
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and ti LM(αi ) = LM(r) = LM(u) for all i such that ti �= 0.

Since p′ is a regular S-polynomial with s(p′) � s(u) ≺ T, p′ is s-reducible, and so kxap′ is s-reducible. So there

exists (τi )i∈JLM(u)
terms in A such that

LT(kxap′) =
∑

i∈JLM(u)

τi LT(αi ),

and τi LM(αi ) = LM(kxap′) = LM(u) for all i such that τi �= 0. So

LT(u) =
(

LT(u) − LT(kxap′)
)

+ LT(kxap′) =
∑

i∈JLM(u)

(ti + τi )LT(αi ),

and u is s-reducible which is a contradiction. ⊓⊔

5.3 Proof of Termination

The usual proofs of termination of signature-based Gröbner basis algorithms (e.g. [22, Th. 11]) rely on the fact that

all elements which are singular s-reducible are discarded in the computations. Algorithm SigMöller only discards

those which are 1-singular s-reducible. For this reason, we adapt the proof of termination of Algorithm RB [10,

Th. 20], which handles singular s-reducible elements in a different way.

Theorem 5.6 Algorithm SigMöller terminates.

Proof Let G = (α1, . . . ,αt , . . .) be the sequence of basis elements computed by SigMöller. By construction, for

all t ≥ 1, αt is not s-reducible by Gt−1 := {α1, . . . ,αt−1}, and all v ∈ Am with s(v) ≺ s(αt ) s-reduce to zero w.r.t.

Gt−1.

For i ≥ 1, let M(i) = LM(αi ), T (i) = LT(αi ). We define the sig-lead ratio r(αi ) of αi as s(αi )
M(i)

. Those ratios

are ordered naturally by s
m

≺ s′

m′ ⇐⇒ sm′ ≺ s′m.

We partition G into subsets Gr = {αi | r(αi ) ≃ r}, where ≃ denotes equality up to a coefficient in R. We prove

that only finitely many Gr are non-empty, and that they are all finite, hence G is finite.

First, we prove that only finitely many Gr are non-empty. We do so by counting minimal basis elements, where αi

is minimal if and only if there is no α j ∈ G with s(α j ) | s(αi ) and T ( j) | T (i). A non-minimal module element αi

is s-reducible by {α1, . . . ,αi−1} [22, Lem. 12], and since all basis elements are regular s-reduced by construction,

αi is singular s-reducible. In particular, there exists at least one α j , j < i and a monomial m with s(mα j ) ≃ s(αi )

and m M( j) = M(i), so αi and α j lie in the same subset Gr . Hence there are at most as many non-empty Gr ’s as

there are minimal basis elements. This is finitely many because A and Am are Noetherian.

Then we prove by induction on the finitely many non-empty sets Gr that each Gr is finite. Let r be a sig-lead ratio,

assume that for all r ′ < r , Gr ′ is finite. Let αt ∈ Gr . If αt is ei for some i , then it only counts for one. Otherwise, let

J be the regular saturated set, and p the corresponding S-polynomial, that SigMöller regular s-reduced to obtain αt .

Then p =
∑

j∈J b j
M(J )
M( j)

α j for b j ∈ R, and there exists τ ∈ J such that for all j ∈ J\{τ }, M(J )
M( j)

s(α j ) ≺
M(J )
M(τ )

s(ατ ).

Also T (t) ≺ LT(
M(J )
M(τ )

ατ ) and s(αt ) =
M(J )
M(τ )

s(ατ ). So r =
s(αt )
M(t)

≻
s(ατ )
M(τ )

≻
s(α j )

M( j)
for j ∈ J\{τ }. Hence all α j ,

j ∈ J are in some Gr j
with r j < r , so for computing elements of Gr , the algorithm will consider at most as many

saturated subsets as there are subsets of
⋃

r ′<r Gr , which is finite by induction. Furthermore, since R is a PID

and in particular Noetherian, with each saturated subset J , the algorithm only builds finitely many S-polynomials

(actually, it only builds one). So overall, we find that Gr is finite, which concludes the proof by induction. ⊓⊔
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5.4 Eliminating S-Polynomials

It is well known in the case of fields that additional criteria can be implemented to detect that a regular S-pair will

lead to an element which s-reduces to 0. In this section, we show how we can implement three such criteria, namely

the syzygy criterion, the F5 criterion and the singular criterion.

5.4.1 Syzygy Criterion

Syzygy criteria rely on the fact that, if the signature of an S-polynomial can be written as a linear combination of

signatures of syzygies, then this S-polynomial would be a syzygy itself. Signatures of syzygies can be identified in

two ways:

• the Koszul syzygy between basis elements p and q such that s(p) = mpei , s(q) = mqe j , i < j is pq − qp, and

it has signature LT(p)s(q);

• if a regular S-polynomial p s-reduces to 0, then s(p) and its multiples are signatures of syzygies; thus, the

algorithm may maintain a set of generators of signatures of syzygies by adding to this set s(p) for each S-

polynomial p s-reducing to 0.

For regular sequences, all syzygies are Koszul syzygies.

Proposition 5.7 (Syzygy criterion) Assume that T is a signature such that all module elements with signature less

than T s-reduce to 0. Let p ∈ Am be such that there exist syzygies z1, . . . , zk and terms m1, . . . , mk in A with

s(p) =
∑k

i=1 mis(zi ), and s(p) � T. Then p regular s-reduces to 0.

Proof Let r = p −
∑k

i=1 mi zi , then s(r) ≺ s(p) � T so r s-reduces to 0. But r = p −
∑k

i=1 mi zi = p, so p also

s-reduces to 0 with reducers of signature at most s(r) ≺ s(p). ⊓⊔

Koszul syzygies can be eliminated with the same technique, but it is more efficient to use the F5 criterion [22,

Sect. 3.3].

Proposition 5.8 (F5 criterion, [3,11]) Let p ∈ Am with signature µ ei , and let {α1, . . . ,αt } be a signature Gröbner

basis of 〈 f1, . . . , fi−1〉. Then p is a Koszul syzygy if and only if µ is s-reducible modulo {α1, . . . ,αt }.

Proof By definition, p is a Koszul syzygy if and only if m ∈ LT(〈 f1, . . . , fi−1〉), and the conclusion follows by

definition of a weak Gröbner basis. ⊓⊔

5.4.2 Singular Criterion

The singular criterion states that the algorithm only needs to consider one S-polynomial with a given signature. So

when computing a new S-polynomial, if there already exists a s-reduced module element with the same signature,

we may discard the current S-polynomial without performing any s-reduction.

Proposition 5.9 (Singular criterion) Let G = {α1, . . . ,αs} be a signature Gröbner basis up to signature T. Let

p ∈ Am be such that there exists αi ∈ G with s(αi ) = s(p) and s(p) = s(T). Then p s-reduces to 0.

Proof Let p′ be the result of regular s-reducing p w.r.t. G. By construction, the basis element αi is regular s-reduced

w.r.t. G. So by Lemma 5.3, LM(p′) = LM(αi ), and applying Lemma 4.5, with k = 1 and xa = 1, shows that p′ is

1-singular s-reducible. The result of that s-reduction has signature ≺ s(p) = T, so it s-reduces to 0. ⊓⊔
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Table 1 Computation of a grevlex GB of the Katsura-2 system in Z[X1, X2, X3]

Algorithm Pairs/sat. sets S-polynomials Reductions to 0

Möller strong 78 20 7

SigMöller (with criteria) 170 13 0

Table 2 Computation of a grevlex GB of the Katsura-3 system in Z[X1, X2, X3, X4]

Algorithm Pairs/sat. sets S-polynomials Reductions to 0

Möller strong 861 246 159

SigMöller (with criteria) 2227 51 0

6 Experimental Results and Future Work

We have written a toy implementation of Algorithm SigMöller,2 with the F5 and Singular criteria. We provide

functions LinDecomp and SatIdeal for Euclidean rings, fields and multivariate polynomial rings.

Since our focus is on the feasibility of signature-compatible computations and not their efficiency, we give data

about the number of considered S-polynomials, saturated sets and reductions to 0, when computing Gröbner bases

over Z for the polynomial systems Katsura-2 (Table 1) and Katsura-3 (Table 2). The statistics are compared with a

run of Möller’s strong algorithm [19]. Even though the proposed algorithm, adapted from Möller’s weak algorithm,

considers more saturated sets than Möller’s strong algorithm, thanks to the signatures, it ends up computing and

reducing significantly less S-polynomials, and no reductions to zero appear.

Running Algorithm SigMöller on larger examples would require optimizations, but it appears that the most

expensive step is the generation of the saturated sets, which takes time exponential in the size of the current basis.

This step may be accelerated in different ways. First, it is known that in the case of PIDs, the reductions of Möller’s

algorithm can be recovered from those of Möller’s strong algorithm [1, Sec. 4.4], which may allow to run the

algorithms considering only pairs instead of arbitrary tuples of polynomials. Additionally, Gebauer and Möller’s

criteria for fields can be used to make Möller’s strong algorithm over PIDs more efficient [19]. We will investigate

whether it is possible to prove that these algorithms are compatible with signatures in the future. Finally, future

research will be focused on further signature-based criteria, such as the cover criterion described in [14] and the

more general rewriting criteria.

The algorithm accepts as input polynomials over any ring, provided that the necessary routines are defined. In

particular, our implementation can run the algorithms on polynomials on the base ring K[y1, . . . , yk]. On small

examples in this setting, it appears that the algorithm terminates and returns a correct output. Understanding the

behavior of SigMöller over UFDs or even more general rings will also be the focus of future research.
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