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A REPRESENTATION OF HYPONORMAL ABSOLUTELY
NORM ATTAINING OPERATORS

NEERU BALA AND RAMESH G.

ABSTRACT. In this article, we characterize absolutely norm attaining
normal operators in terms of the essential spectrum. Later we prove a
structure theorem for hyponormal absolutely norm attaining (or AN-
operators in short) and deduce conditions for the normality of the op-
erator.

1. INTRODUCTION

The class of hyponormal operators is an important class of non-normal
operators. The problem ”when is a hyponormal operator normal?” is studied
by several researchers. It is known that a compact hyponormal operator is
normal (see [1, 5] for more details). We refer [14] for several other such
sufficient conditions. One more important result in this direction is that
a hyponormal operator whose spectrum has zero area measure is normal,
which follows by Putnam’s inequality [17, Theorem 1].

In this article, we consider similar questions by weakening the above men-
tioned conditions. More precisely we replace the compact operator by an
operator in the bigger class, namely AN-class of operators. Another im-
portant result we prove is that a hyponormal AN -operator whose essential
spectrum and the Weyl spectrum coincide must be normal. To prove these
results we first establish a representation of hyponormal AN -operators.

Let H be a complex Hilbert space and T be a bounded linear operator
on H. Then T is called norm attaining if there exist x € H, ||z| = 1 such
that |[Tz| = |T||, and absolutely norm attaining or AN-operator, if for any
closed subspace M of H, the operator T'|ps : M — H is norm attaining, that
is there exist x € M, |z| = 1 such that |T'|pz| = |Tx| = |T|a]. The set of
absolutely norm attaining operators is a subclass of norm attaining opera-
tors and contains the space of all compact operators, isometries. In general,
it contains partial isometries with finite-dimensional null space. This class
was first studied by Carvajal and Neves in [6]. Structure of positive abso-
lutely norm attaining operators has been studied in [16, 18, 20]. In [20], a
characterization of normal and self-adjoint AN -operators are studied. In
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general, the adjoint of an AN-operator need not be AN (see [6] for more
details), but when the operator is normal, this is indeed true.

In this article, first we study a characterization of normal AN -operators
in terms of the essential spectrum. Later we prove a structure theorem for
hyponormal AN -operators and as a consequence, we deduce that a compact
hyponormal operator is normal. In the end, we prove that if an AN -operator
and its adjoint are paranormal then the operator must be normal.

In the remaining part of this section, we introduce basic notions and nota-
tions used in the article. In the second section, we give a characterization of
normal AN-operators. In the last section, we prove a representation theo-
rem for the hyponormal AN -operators and deduce important consequences.

1.1. Preliminaries. We denote the space of all bounded linear operators
from Hj to Hy by B(H1, Ha). For T € B(Hy, Hz), R(T) and N(T') denote the
range and null space of T, respectively. If R(T) is finite dimensional, then
T is called a finite-rank operator. A bounded linear operator T is said to be
compact, if T maps every bounded set in H; into a pre-compact set in Ho.
The set of all finite-rank operators and compact operators in B(Hy, Hs) are
denoted by F(H1, He) and KC(H;, Ha), respectively. In particular F(H) :=
F(H,H) and K(H) := K(H, H).

If T e B(Hy, H), then the adjoint operator T* : Hy — H; is a bounded
linear operator satistying (T'z,y) = (x,T*y), Vx € Hy, y € Ho.

For T e B(H), p(T') = {\ € C: T — Al is invertible in B(H)} is called the
resolvent set of T and o(T') = C\p(T) is called the spectrum of T.

An operator T' € B(H) is said to be Fredholm, if R(T) is closed, N(T)
and N(T™) are finite dimensional. In this case, the index of T is defined by

ind(T) = dim N(T) — dim N (T*).
The essential spectrum, and the Weyl spectrum of T are defined by

Oess(T) :={A € C: T — A is not Fredholm},
w(T) :={A e C:T — A is not Fredholm of index 0},

respectively. We define
moo(T) = {A € o(T) : \is an isolated eigenvalue with finite multiplicity}.

The quantity me(T) := inf{\ : X\ € 0¢ss(|T|)} is called the essential minimum
modulus of T. For more details about Fredholm theory and the essential
spectrum, we refer to [4, 15, 19].

If M is a closed subspace of H, then the unit sphere in M is denoted by
Sy ={xreM:|z|=1}. For T € B(H), M is said to be invariant under
T if TM < M. For a non-negative real number r, the open disc and circle
with centre 0 and radius r are denoted by D(0,r) := {z € C: |z| < r} and
C(0,r):={z € C: |z| =r}, respectively.

ForT € B(H), m(T) := inf {|Tx|;x € Hy, |z| = 1} is called the minimum
modulus of T. For more details, we refer to [7, 9].
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Let T € B(H). Then T is said to be normal if T*T = TT*, self-adjoint
if T* =T and positive if (T'z,z) >0, Vx € H.

Definition 1.1. Let T'e B(H). Then T is called
(1) hyponormal, if TT* < T*T.
(2) paranormal, if |Tx|? < |T?z||z|, Vz € H.

Note that every hyponormal operator is paranormal.

Theorem 1.2. [1, 5] Every compact hyponormal operator T € B(H) is
normal.

The above result is true for paranormal operators as well, see [12, Theorem
2] for more details.

Lemma 1.3. [13, Theorem 3] Suppose T € B(H) is a paranormal norm
attaining operator. Then N(|T| — |T|I) is an invariant subspace for T'.

An operator T' € B(H) is called absolutely norm attaining if for every
closed subspace M < H, T|j; is norm attaining. We denote the set of
all absolutely norm attaining operators in B(Hy, Hy) by AN (H1, Hy) and
AN (H) := AN (H,H).

First we recall a few important results related to positive AN -operators
which we need to prove our results. For positive absolutely norm attaining
operators, we have the following characterizations.

Theorem 1.4. [16, Theorem 5.1] Let H be a complex Hilbert space of ar-
bitrary dimension and let P be a positive operator on H. Then P is an
AN -operator if and only if P is of the form P = ol + K + F, where a > 0,
K is a positive compact operator and F is a self-adjoint finite rank operator.

We remark that the representation in Theorem 1.4 can be made unique
and the value of a can be found out to be m.(T"), the essential minimum
modulus of T'. For full details, we refer to [20].

In [18] the following representation for normal AN-operators is proved.

Theorem 1.5. [18, Theorem 3.9, Theorem 3.13] Let T € AN(H) be a
normal operator. Then there exist (Hg, Ugs)geo (1)) Such that

(1) Hg is a reducing subspace for T,

(2) Ug € B(Hg) is a unitary operator.

such that
1) H= @ Hg,
? j Bea(IT1) ’
2) T = ) 6U ’
pea(IT) ’
(3) o(T)< o _ BT, where T ={zeC:|z| =1}.
Bea(IT1)

In the above theorem, precisely Hz = N(|T| — 3I). The above theorem
implies that every normal AN-operator is direct sum of scalar multiple of
unitary operators.
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Theorem 1.6. [18, Theorem 2.4] Let H be an infinite dimensional Hilbert
space and T € B(H) be positive. Then T € AN (H) if and only if oess(T)
is singleton set and [m(T'),m¢(T)) contains at most finitely many points of
o(T).

2. NORMAL AN-OPERATORS

Here we give a spectral characterization of normal absolutely norm at-
taining operators in terms of the essential spectrum.

Theorem 2.1. Let H be an infinite-dimensional Hilbert space and T € B(H)
be a normal operator. Then the following are equivalent.
(1) T € AN (H).
(2) There exists a non-negative real number o = 0 such that o.s5(T) S
C(0,a) and D(0,a) contains at most finitely many points of o(T).

Proof. (1)=(2) Let T € AN (H). By Theorem 1.5, T' can be represented as

Bea(IT1)
where Ug is unitary operator on Hz = N(|T| — 8I). Since T'€ AN (H), we
get |T'| € AN (H) by [16, Lemma 6.2] and consequently oess(|T]) is singleton
set by Theorem 1.6. Thus Hpg is finite-dimensional subspace of H for all
B # me(|T|) (that is B # m(T')). Let us write o« = m(T'). As Ug is a finite
rank operator for every 3 # a, it follows that o.ss(T) < C(0, @).

Also, o(T') < 5 \dT‘)J(ﬁUB). As 0(Upg) is finite for 8 # o and by The-
€o

orem 1.6 there are at most finitely many 8 € o(|T|) such that 5 < «, say
B1, P2, ... Bm (see [18, Theorem 3.9] for details), which imply

D(0,0) " o(T) = 8 [0(8:Us) no(T)] < U io(Us,).

For 1 < i < m, Ug, is a finite-rank operator, which implies .@1/87;0-<Uﬁi) is
1=

finite and consequently D(0, ) n o(T) is a finite subset of C.

(2)=(1) Let D(0,0)no(T) = {y1,72, - - - Yno} for no € NU{0} and |v;| = r;
for 1 < ¢ < mg. By the continuous functional calculus, we know that A € o(T)
implies |\| € o(|T|). Therefore r1,72,...7, € o(|T]). Also note that by
definition m.(T) = .

We claim that o(|T']) N [0, ) = {ri,72,...7n,}. If there exist some r < «
such that r € o(|T|), then again by the functional calculus C'(0,7) N o (T) #
. So, r should be one of these r;, 1 < i < ny.

Finally, we have that o.ss(|T|) = {a} and [0,a) n o(|T) is a finite set,
namely {r,72,...7n,}. By Theorem 1.6, |T'| € AN (H) and consequently
T e AN(H) by [16, Lemma 6.2]. O

Remark 2.2. For non-normal AN operators part (2) of Theorem 2.1 need
not hold. The following example illustrates this.
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Example 2.3. Consider the right shift operator R : £2(N) — ¢?(N) defined
by R(x1,22,...) = (0,21,22,...), V(z,) € 2(N). As R is an isometry, it
is an AN-operator. We know that o(R) = D(0,1), oess(R) = C(0,1) and
me(R) = 1. It is easy to observe that D(0,1) contains uncountably many
points of o(R). Though R € AN ((*(N)), it does not satisfy part (2) of
Theorem 2.1.

By [20, Proposition 3.4], we know that if T'= T* € AN (H), then the es-
sential spectrum of T’ contains at most two points. Here, in fact by Theorem
2.1 we can characterize self-adjoint AN-operators. A different characteriza-

tion of self-adjoint AN -operators is given in Theorem 3.3 and Corollary 4.5
of [20].

Corollary 2.4. Let T € B(H) be a self-adjoint operator. Then T € AN (H)
if and only if there exists a = 0 such that oess(T) € {—a, a} and (—a, o) N
o(T) is at most finite.

Proof. From Theorem 2.1, T € AN(H) if and only if there exists o > 0 such
that oess(T) < 0D(0, ) and D(0, ) no(T') is at most finite. Since T' = T,
we have o(T') < [—|T||, |T']]- In this case D(0,a) no(T) = (—a, ) no(T)
is at most finite and o¢45(T) S {—a, a}. O

We conclude this section with a comment on absolutely minimum attain-
ing operators. Recall that T' € B(H1, Hs) is called minimum attaining, if
there exists © € Hy with |z| = 1 such that |[Tz| = m(T). An operator T
is said to be absolutely minimum attaining (or AM-operator, in short) if
for every non zero closed subspace M of H, the operator T|y; : M — H
is minimum attaining. We refer [7, 9, 10] and references therein for more
detail about AM-operators. The structure of multiplication AM-operators
as well as normal AM-operators are discussed in [3].

By imitating the proof of Theorem 2.1 and using [3, Theorem 4.4], we
can get the following characterization for normal AM-operators.

Theorem 2.5. Let T € B(H) be a normal operator. The following are
equivalent.
(1) Te AM(H).
(2) There exists a real number B = 0 such that Ann(0; 5, |T|) contains
at most finitely many points of o(T) and o.ss(T) < C(0,3), where
Ann(0; 8,[T) :={z e C: 8 < |2] < [T}

Remark 2.6. The spectral decomposition of positive AM-operators is es-
tablished in [3].
3. HYPONORMAL AN -OPERATORS

In this section, we prove a structure theorem for hyponormal AN -operators
and deduce a few important consequences.
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Lemma 3.1. Let T € B(H) be a non-zero norm attaining hyponormal oper-
ator. If N (|T| — |T'|I) is finite dimensional, then it is a reducing subspace
for T. Moreover T|n(r—jrir) = |TI|U, where U € B(N(|T| — |T[I)) is a
unitary operator.

Proof. Let M := N (|T|—||T|I). By Lemma 1.3, we know that M is an

invariant subspace for 7" and HTTH is an isometry on M. But as M is finite

dimensional, we have that ”T—” is unitary on M, denote it by U. Hence
T|m = |T|U.

Since M is an invariant subspace for T', T" has the following matrix rep-

resentation;
_ Tl A
r=[' 5]

where A € B(M*, M), B e B(M*'). Since T is hyponormal, we have
—AA* (T'|p)*A — AB*
A*T |y — BA* A*A+ B*B — BB*
By the positivity of operator matrix, we get —AA* > 0, which imply A = 0.
Hence

(3.1) T = [T‘M O]

O<T*T—TT*—{

0 B
That is, M is a reducing subspace for T O

Remark 3.2. Note that B is hyponormal in the above representation (3.1).
In fact, T" is normal if and only if B is normal.

Proposition 3.3. Let T € B(H) be a non-zero hyponormal AN -operator
with oess(|T]) = {|T|}. If moo(|T|) is non-empty and moo(|T'|) = {Ni}i2 for
some mgy € N, then

(1) H = Hy ® Hy, where Hy = N(|T| — |T|I), Hy = @ N(|T| — \I).
i=1
(2) T has the following representation with respect to Hy @ Ha.

H, Hy
7 _(IT1So A\ H
0 B ) Hy

where
(a) So € B(Hy) is an isomtery.
(b) A, B are finite-rank operators with SfA =0 and (A+ B)*(A+
mo
B) = Z,('zBl)‘?[N(\TF)\iI)-
If moo(T') is an empty set then T = |T'||So.
Proof. Without loss of generality, we assume that 7' = S|T'|, where S € B(H)

is an isometry. To see this, let T = V|T'| be the polar decomposition of T,
where V' is a partial isometry with the initial space N(T)* and the final
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space R(T). As T is hyponormal we have that N(T) < N(T*) = R(T)*, so
there exist a partial isometry W with the initial space N(T') and the final
space R(T)*. Then S :=V + W is an isometry on H and T = S|T|.

Note that as |T'| € AN(H), we have |T'| € 0,(|T|). Since oess(|T]) =
{IIT|}, it is clear that N(|T| — |7T'||I) is infinite dimensional subspace of H.
By [18, Lemma 3.4], N (|T| — |T|I) = N(T*T — |T|*I) is invariant under
T. We observe from the following equation that N (|T'| — |T'|I) is invariant
under S;

STz Tz

=_——¢€
1Tl T
Since |T| € AN (H), it follows that mo(|T'|) is at most finite by Theorem
1.6. If moo(|T'|) is empty set, then Hy = {0}, H = Hy and T = |T||S.
Now, we assume that mo(|7|) is non-empty and equal to {\;};2% for some
mo € N, where \; < |T'||. Thus we have

St = N(T|=|T|I), Yo e N (IT| = [T|I).

H, Hy
_(Slm, S\ Hi
3.2 S = 1
3.2 <0 52>H

Note that S1 = Py, S|m, and Se = Pp,S|g,. Also

_ T e, 0

where F' = @ Niln, and M; = N(|T| — A1) is finite dimensional subspace

of H. From thls we conclude that

o | Sla St T ey O _ | ITIS|e Si1F
0 S9 0 F 0 SoF' |

Now we write A := S1F, B := SoF and Sy = S|g,. As T is hyponormal
operator, we have

o<T*T -1TT*
_ [ITIPIH, — |T|?Presy) — AA* [T S§A — AB*
|7 A*Sy — BA* A*A+ B*B — BB* |

Thus AA* < [T Pp(g,)+, which gives R(A) = R(AA*) = R(So)* = N(S).
Consequenlty S¢A = 0. We have A+B = (S1+52)F, thus (A+B)*(A+B) =

mo

(—B N1y, as S§S1 + SiSy = Iy, by equation (3.2). O

Corollary 3.4. The operator T in Proposition 3.3 is normal if and only if
So is unitary.

Proof. If Sy is unitary then by the condition S§A = 0, we have A = 0. In
this case, B is a hyponormal operator. As it is finite-rank operator, it must
be normal by Theorem 1.2. Hence T is normal.
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Conversely assume that 7" is a normal operator. Then N(|T'| — ||T'|]) =
N(T*T — |T|*I) = N(TT* — ||T|?I) is a reducing subspace for T, that is
H is a reducing subspace for T'. Let T' = S|T'|, where S is as in Proposition
3.3. Since T is normal, we can easily prove that S|T'| = |T'|S. From this and
the fact that H; reduces T, we can conclude that H; is reducing for S also.

Hence we have g
_ S0 0
- [ i 52] |

As aresult A = 0-F = 0 and the normality of T forces that Sy to be
unitary. O
Theorem 3.5. Let T € AN (H) be a hyponormal operator. Then

(1) there exists closed subspaces Hy, Hy, Hy with dim(Hjy) < o0 such that
H=Hy® H ® H>.
(2) T has the following representation with respect to Hy@® Hi @ Ha;

Hy H; Hp

So 0 0\ Hy
TZ( 0 S A)Hl )

0 0 So/ Hy

where oess(|T|) = {A}, for some A € R and

(a) So = 'glgl)\iUi for some unitary operator U; € B(N (|T| — \1)),
if MITN) no(IT]) = {N\i}2, for some ng e N U {0} or Sy =0
if M| TN noe(|T)) is empty set.

(b) S1 € B(Hy) is an isometry.

(c) A, Sy are finite-rank operators with STA =0 and

mo
(A+8)"(A+82) = & In(ri-5,1)

if [0,A) no(|T) = {0; : 1 < j < mg} for some mg € N.

Proof. Let T € AN (H). Then |T| € AN (H) and hence o.4s(|T']) is singleton,
say {A\} and o(|T|) is countable, by Theorem 1.6. Again using Theorem 1.6,
we know that [0, ) contains at most finitely many points of o(|T|) and
(A, |T||] contains at most countably many points of o(|7]).

First, we assume that A < ||T'| and consequently (A, |T'||]] » o(|T|) is non-
empty and (A, |T'[|]] n o(|T'|) = {\i};2, for some ng € N U {oo}. Now, define
Hy= @ N (T — A\I) and Hy = N(|T| — AI).

i=1

Without loss of generality, we assume that A; = ||7’|. By Lemma 3.1,
N(|IT| = ||T'|I) is reducing subspace for T" and T'|n (-7 = |IT|U for
some unitary operator U € B(N(|T| — |T|I)). Again T|(N(\T|—HTHI))L is
hyponormal AN -operator. Now repeating the same procedure, we get Sp :=

n
T\u, = @ AiU;, where U; € B(N(|T| — \iI)) is unitary operator for every
i=1
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As Hy is a reducing subspace for T', we get T| HE is a hyponormal AN-
operator and |7 HE | < A. Now, it is enough to look at the structure of
T| HE

We consider the following four cases which exhaust all possibilities.

Case (1): A is an eigenvalue of |T'| with infinite multiplicity but not a
limit point of o(|T):

In this case (A, |T|]] n o(|T|) is a finite set by [16, Theorem 3.8] and con-
sequently ng € N. In this case HT‘Hd_ | = |\ and {A} = 0'558<T|H3_). Using

Proposition 3.3, we get HOL = H{ ® Hy, where Hy is a finite dimensional
space and Hy = N(|T| — AI). Hence we have

AS1 A
Tlag = [ 0 SQ]’

where S1, A and S, satisfy conditions (b) and (¢). Therefore T' has the
following representation satisfying (a), (b), (c).

Hy H, H;

So 0 0\ Hy
TZ( 0 )\51 A)Hl .

0 0 So/ Hy

Case (2): A is not an eigenvalue of |T'| but it is a limit point of o(|T):
In this case, (A, |T|]] n o(|T|) = {A1,A2,A3,...} is an infinite set by [16,
Theorem 3.8], and H; = {0}. As ) is not an eigenvalue of T', we get HT‘Hd_ | <
A If o(|T]) n [0, A) is empty, then Hy = {0} and T = Sp.

If [0,A) n o(]T']) is non-empty and is equal to {J;}}2°; for some mg € N,

then take Hy = %OlN(|T| —6;I) and

_[So O
=[5 sl
where Sy = %)15]-\/]- and Vj € B(N(|T| — 0,1)) is a unitary operator.
§=

Case (3): A is neither an eigenvalue of |T'| nor a limit point of o(|T|):
Then (A, [|T]] n o(|T]) is a finite set by [16, Theorem 3.8], thus ng € N and
H, = {0}.

If [0,\) no(|T]) is empty set, then H = Hy and T' = Sp.

If [0,A) no(|T]) is non-empty and equal to {01, d2, ... dn,} for some mg €
N, then H = Hy @ Hs is finite dimensional Hilbert space, where Hy =

%;N(\ﬂ —6;I). As Hy is a reducing subspace for T', thus we have

[Tlg, 0
T_[ 0 T|H0L]'
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Both T'|g, and T gl are hyponormal finite rank operators, hence normal.
By Theorem 1.5

no mo
T\, = @1)\iUi and T|H0l = @153"/3',
1= =

where U; € B(N(|T| — A\iI)) and V; € B(N(|T| — 6;I)) are unitary opera-
tors.

Case (4)) A is an eigenvalue of |T| also it is a limit point of o(|7T|):
Here (\,||T||]] n o(|T|) is an infinite set, say {\1, \2,...} by [16, Theorem
3.8]. In this case HT|HOLH =\

If [0,A) no(|T]) is non-empty and equal to {41, d2, ... I, } for some mg €
N, then take Hy := TEL—BolN(|T| — 9;I) and we have

So 0 O
T=]10 XS A
0 0 5

Using Lemma 3.1 and Proposition 3.3, we get either Sy is unitary or isometry
depending on the multiplicity of the eigenvalue A. Note that A = 0 if \ is
of finite multiplicity but it need not be the zero operator, if A is of infinite
multiplicity.

If [0,\) no(|T]) is empty set, then Hy = {0} and

~[So O
= [o )\51]'
If A = ||T, then the result follows from Proposition 3.3 O

Corollary 3.6. Let T € B(H) satisfy the assumptions of Theorem 3.5. Then
T is normal if and only if S is a unitary operator.

Proof. Let S; be a unitary operator. As STA = 0 and S; is unitary, we
get A = 0. In this case, S is a hyponormal operator. As it is finite-rank
operator, it must be normal by Theorem 1.2. Hence 7' is normal.
Conversely, suppose that T is a normal operator. As Hj is a reducing
subspace for T', this implies 7| it is normal and satisfy the assumptions of
Corollary 3.4. Hence S; is a unitary operator and A = 0. O

Remark 3.7. Let T € AN(H) be a hyponormal operator. From Theorem

3.5, we observe that o(T") < D(0,\) u <@1C(O, )\i)>, where o5 (|T]) = {A\}
and (N, T[] no(|T]) = {A1, A2, ... Ay}, for some ng € N U {oo}.
Now, we demonstrate Theorem 3.5 with an example.

Example 3.8. Define T : /?(N) — ¢%(N) by

xT T
T(a:l,arg,. . ) = <71,0, 72,%3,%4,. . > y V(xl,xg, .. ) € gz(N)
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Then

Tl T3

T*(ml,xg,...) = (7,7,1’54,...) s V(azl,xg,...) € 62(N)

Clearly |T*(x,)| < |T(zn)|,V (x,) € £3(N), hence T is hyponormal. By
simple computation, we get
1 T2
T*T = (2
(z1,29,...) TR
It is easy to see that T*T = I — F', where
3 3
Flan) = (22,222 0. ), ¥ (2n) € 2(N).
4 4
By Theorem 1.4, we conclude that T*T is AN and hence T is AN by [20,
Corollary 2.11]. Now choose Hy := Span{es, eq4,...} and Hy = span{eq,es},
then T can be represented as

Hy Hy
/R | A\ H
)
0 0 0/ H,

where R(x3,24,...) = (0,23, 24,...) and A(z1,x2) = (22/2,0,...).

The following examples illustrates the fact that the Theorem 3.5 can be
improved in terms of the unitary operators for some particular cases but not
in general.

Example 3.9. Define T}, T : £2(N) — ¢2(N) by
T1(:E1,l‘2,l‘3,l‘4,. . ) =(0,l‘1,l‘2,2$3,2l‘4,. . .), V(l‘n) € fz(N)
To(z1, 72,73, T4, . . .) =(21,272,0,323,324,...), ¥ (2,) € £2(N).

Let {e, }nen be the standard orthonormal basis for £2(N). For H; := Span{es, ey, ...}
and Hy = span {ej, ez}, we have

H, H H, H
n-(5 &) i =m0 5)m
where
Ry(z3,x4,...) =(0, xg,x4,...), V (23, 24,...) € Hy,
Aq(z1,22) =(22,0,0,...), V(x1,22) € Ha,
B (z1,22) =(0, xl) (a:l,a:g) € Ho,

By (1, 22) =(x1,222), V (21, 22) € Ha.

Note that By = Iipy @214, Observe that By is nilpotent and By is the
direct sum of scalar multiple of unitary operators.
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We deduce the following well known result from Theorem 3.5.

Corollary 3.10. Let T € K(H) be a hyponormal operator. Then T is
normal
Proof. If T is compact, then A = 0 in Theorem 3.5. Hence S = 0. So

T=25)= '1(1—901)\,-U,- for ng € N U {oo}, which is clearly a normal operator. [

Corollary 3.11. If T' e AN (H) is a hyponormal operator with oess(T) =
w(T), then T must be normal.

Proof. By Theorem 3.5, we can write 1" as

Hy Hy H;

So 0 0\ Ho
T —( 0 A5 A)Hl 5

0 0 S2/ Hy

where Sp, 51,59, A and A are as defined in Theorem 3.5. Note that

So 0 0 0 0 0 0 0 O
T=10 XS O0[+|0 0 A|+(0 0O O].
0O 0 0 0 0 0 0 0 S

Write

This implies that o..s(T) < o(T) < 0(Sp) U a(\S1) U {0} and consequently
Area(o.ss(T)) < Area(a(Sp)) + Area(a(A\S1)) by [17]. Here Area(A) is the
planar Lebesgue measure of A.

Since A and Sy are finite-rank operators, we have o.s5(7) = aess(T) and
w(T) = w(T), 50 0ess(T) = w(T). Also note that ind(T — 6I) = ind(\S; —
0Ip,) for every § € C. We know that Uess(f) = w(T) thus o.ss(AS1) =
w(AS7). Since Sy is the direct sum of scalar multiple of unitary operators,
we have 0¢s5(Sp) = w(Sp). As both Sy and AS; are hyponormal operators,
by [8, Theorem 3.1] we have o(Sp)\w(Sp) = mo0(So) and o(AS1)\w(\S1) =
7T00()\Sl).

Since 0es5(50), Tess(AS1) < C(0, A), we have

Area(o(Sy)) =Area(w(Sy)) = Area(oess(Sp)) = 0 and
Area(o(AS7)) =Area(w(AS7)) = Area(oess(AS1)) = 0.

Again by [8, Theorem 3.1], we know that o(T")\w(T") = moo(T) and it follows
that

Area(o(T)) = Area(w(T')) = Area(oess(T')) = Area(oess(T))
< Area(o(Sp)) + Area(a(AS1))
=0.
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Since T is hyponormal operator, by [17, Theorem 1] we have
|T*T —TT*| < %Area(a(T)) =0.
Hence T is normal. (]

In [18, Question 3.12], it is asked that when a paranormal AN -operator is
normal? In the same paper, sufficient conditions are given for this problem.
Here we prove that we can drop some conditions and still we get normality.
It is to be mentioned that in [22, Corollary 3] proved that the paranormality
of T'and T* imply that T is normal. Here we give a direct proof by assuming
extra condition, namely the AN -property.

Theorem 3.12. Let T,T* be paranormal and T € AN (H). Then T is
normal.

Proof. If |T'| has no eigenvalue with infinite multiplicity, then by [18, Theo-
rem 3.13], 7' must be normal.

Next assume, that |T'| has eigenvalue with infinite multiplicity. By [18,
Theorem 3.9], T' can be represented as

T=| @ BUs|®BAUs,
Bea(|T))
B#Bo
where o¢45(|T'|) = {Bo}. Here Ug is unitary for all 5 # f.

Since |T'| has an eigenvalue with infinite multiplicity, then it must be
Bo. In this case Ug, is an isometry and Hg, = N(|T'| — pol) is a reducing
subspace for T. Moreover, T Hyy = BoUg,. To show T' is normal, it is
enough to prove that Ug, is unitary. As yUg, = T| Hs, and the restriction
of a paranormal operator to any invariant subspace is also paranormal, thus
both the operators Ug, and U EO are paranormal. By [11, Theorem 1], we
conclude that Upg, is unitary and hence 7" is normal. g
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