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A Performance Study on Configurational Force
and Spring-Analogy Based Mesh Optimization Schemes

A. Rajagopal, R. Gangadharan, and S. M. Sivakumar
Indian Institute of Technology, Madras, Chennai, India

Assessment of r -adaption algorithms based on configurational
force method and spring analogy approach is made. Assessment is
made based on qualitative and quantitative aspects of error esti-
mates, convergence rates and mesh quality. Appropriate modifica-
tions to node relocation procedures are proposed for enhanced per-
formance. A simple linear projection technique is used to improve
convergence characteristics of thematerial force node relocation al-
gorithm. Performingmesh adaption on initialmesh results in a con-
siderable reduction in gradients of strain energy. Assessment based
on suitability of mesh adaption algorithms for structured and un-
structured initial meshes has been performed. It has been observed
that the configurational force method is more robust. Comparitive
study indicates the superiority of the configurational force method.
Theproposed enhancement to themeshadaption is based on config-
uration force method for r -adaption together with weighted Lapla-
cian smoothing and mesh enrichment through h-refinement based
on estimated discretization error in energy norm. A further re-
duction in the potential energy and the relative error norm of the
system is found to be achieved with combined r-adaption andmesh
enrichment (in the form of h-refinement). Numerical study con-
firms that the proposed combined r−h adaption is more efficient
than a purely h-adaptive approach and more flexible than a purely
r -adaptive approach with better convergence characteristics.

Keywords r-Adaption, Material Forces, Spring Analogy, Discretiza-
tion Error

1. INTRODUCTION

There has been a considerable focus on theoretical and com-

putational aspects of adaptive finite element analysis since the

earliest works by [2, 23]. The computed error could be based on

a-priori or a-posteriori estimators. The latter has gained more

popularity because of its robustness. In order to obtain required

accuracy of finite element solution with minimum cost, an op-

Received 24 September 2004; in final form 2 June 2005.
Address correspondence to S. M. Sivakumar, Associate Professor,

Department of Applied Mechanics, Indian Institute of Technology,
Madras, Chennai 600036, India. E-mail: mssiva@iitm.ac.in

timal mesh has to be designed. Such a mesh has minimum po-

tential energy and minimal degrees of freedom for a specified

accuracy. The degrees of freedom are distributed in such a man-

ner that error distribution is uniform, indicating a flexible dis-

cretization.

Several mesh adaptive techniques, such as h, p, r and

s-versions that are widely reported, are designed to optimize a

spatial discretization. There have been reports on use of a com-

bination of these methods for better performance [8]. A number

of remeshing strategies have been developed to account for the

multiple length scale effects, which are caused due to strong dis-

continuities in solution and steep gradients due to mathematical

singularities. Most of these remeshing strategies include error

estimation and mesh-to-mesh transfer. Mesh-to-mesh transfer

involves interpolation errors during transfer of fields from old

mesh to newmesh. Also, the fields on the newmesh are not guar-

anteed to satisfy nodal force equilibrium. Further, thesemethods

do not possess precise mesh optimality criterion and may not

provide optimal mesh. The error associated with mesh-to-mesh

transfer coupled with nodal force non-equilibrium may cause

numerical instability of the simulation. This has led to the scope

of arriving at efficient mesh adaption techniques.

In the r -version of refinement strategy, henceforth called

r -adaption technique, the nodes of the discretized domain are

relocated iteratively in order tominimize the discretization error,

while preserving the number of unknowns and order of approxi-

mation of thefield variable. Typically, themeshdensity increases

near the regions of steeper gradients of the field variable as a re-

sult. The adaptation criteria for r -adaption as per [15] may be

classified according to the procedure used for node relocation.

Procedures based on hierarchical error estimators and based on

configurational equilibrium concepts form the two broad classi-

fications of r-adaptive procedures.

The r -adaption procedures based on hierarchical estimators

consist in formulating the mesh adaptation problem, by using

a higher order interpolation to evaluate local errors [15]. The

error estimated from the current solution is transformed into

a spatial distribution of the mesh parameters, which are used
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242 A. RAJAGOPAL ET AL.

to generate adapted mesh for the problem under investigation

[16].

In the r -adaption procedure based on configurational equi-

librium, mesh optimality is accomplished by minimizing the

potential energy in the static case and stationarity of discrete

action sum in the dynamic case [19]. The potential energy of the

system is dependent on nodal coordinates in addition to the dis-

placement field [3]. Configurational or material driving forces

are defined as the conjugate forces to the nodal motion with re-

spect to the potential energy [5, 12] and these forces vanishwhen

the potential energy is a minimum. Further, the minimization of

the potential energy reduces error norm due to the orthogonality

of error with respect to solution space for linear problems [20].

There has been considerable work on the use of material forces

and their equilibrium in a computational setting such as the fi-

nite element method [12, 14]. The material force imbalance is

due to presence of nodes (nodes can be argued to be discrete

defects as they break the translational symmetry of potential en-

ergy with respect to translations in reference coordinates). For a

homogeneous body in continuous case, linear momentum bal-

ance implies material force balance. However, introducing dis-

cretization causes non-zero material forces at the inter-element

boundaries. In this work, a formulation of nodal errors that is

consistent with material force equilibrium has been derived.

Thenode relocationprocedure formsavital part of r -adaption.

The adaption for heuristic estimators is based on the classical

spring analogy approach [15] where the finite element mesh is

considered as a network of elastic springs with the stiffness co-

efficients depending on the estimated error on each edge. The

nodes are moved until the spring system is in equilibrium. This

essentially results in equidistribution of errors at the nodes. The

node relocation procedure for configurational force method is

based on minimization of potential energy. In literature simple

relaxation-type iterative procedures have been used [14, 21]. An

improved procedure by using a standard Polak-Rebiere conju-

gate gradient algorithm was proposed by Thoutireddy and Ortiz

[18]. In this work, a modification is introduced to this algorithm

for faster convergence.

Optimality of an adapted mesh is intimately linked to accu-

racy with the criterion for node relocation defined with respect

to a given norm or measure of error. An efficient node reloca-

tion method is thus required for use with sufficient poise as a

whole or part of an adaptive refinement strategy. In the present

context we have node relocation procedures that have two dif-

ferent bases for computing the optimal mesh and hence there is

a need to establish the preeminence of one technique over the

other.

In the present work, the above-mentioned two r-adaption pro-

cedures have been implemented. The evaluation of these two

methods in light of the adaptive refinement strategy forms the

focus of this paper. The qualitative and quantitative aspects of

driving force terms and their respective convergence rates dur-

ing the iteration process form the first basis for comparison. The

quality of adapted mesh in terms of distortion metric together

with relative energy norm of error at the end of node reloca-

tion obtained from the two methods forms the second basis of

comparison.

The evaluation is made based on studies conducted on one-

dimensional and two-dimensional problems. From a quantita-

tive aspect, although both are post-processing techniques, it

is empirically and numerically shown that driving force from

conventional approach is an upper bound to the driving force

arising from configurational force method. From a qualitative

angle the sound mathematical basis of deriving the material

force procedure makes it a reliable indicator, unlike the spring

analogy approach, which is heuristic and involves approxima-

tion errors. Further, the configurational force method provides

a better physical insight into the problem. From a convergence

point of view, the standard Polak-Rebiere conjugate gradient

algorithm has been found to be efficient. The proposed two-

step linear projection technique improves conventional itera-

tive procedure. For a given discretization, the spring analogy

approach has slow convergence. Mesh adaption by configura-

tional forcemethod results in amore flexiblemore discretization

because of increased potential energy than the spring analogy

approach.

In the spring analogy approach, at lower node relocation iter-

ations the amount of element distortion and energy norm of dis-

cretization error is less. The method poses limitations at higher

node relocation iterations in terms of highly distorted meshes

and increased energy norm of discretization error. Furthermore,

even for lower node relocation iterations the method requires

proper choice of correction factors.

The comparative study presented here thus emphasizes the

use of an r adaption procedure based on material forces. The

suitability of this method has been studied for structured and un-

structured meshes together with a weighted Laplacian smooth-

ing. The study shows that a combined r − h strategy resolves

the unhealthy mesh distortions and provides better convergence

of the solution.

The paper is arranged as follows: The following section de-

scribes the two procedures— spring analogy approach and con-

figurational force approachwith appropriate algorithms for node

relocation. This includes the modifications in derivations and al-

gorithms proposed in the present study. A general assessment of

the two techniques is done in a subsequent section. The equiva-

lence of the two techniques for one-dimensional problems and

comparison of the two methods in terms of computed driving

force and convergence rates studied are also reported in this sec-

tion. The last section deals with the discussion of the results

obtained in implementation of the above methods for one- and

two-dimensional problems leading to a scope for combined r−h
refinement strategy.

2. DESCRIPTION OF r-ADAPTION TECHNIQUES

The essence of performing the r -adaption is to predict the

characteristics of the optimal mesh where the number of degrees
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STUDY ON MESH OPTIMIZATION SCHEMES 243

of freedom is distributed in such a manner that accuracy of so-

lution obtained is the highest possible [15, 17]. The errors due

to discretization or approximation occurring at the nodes are

typically equally distributed for better solution over the entire

domain. Two recent methods of r -adaption are analyzed and

compared. One is a direct approach, which seeks to equally dis-

tribute the error metric based on energy norm associated with

the Hessian of the displacement field, while the other seeks to

achievematerial force equilibrium. Henceforth, the first one will

be termed as spring analogy method and the other as configura-

tional force method.

2.1. Spring Analogy Approach

The adaption procedure based on the classical spring anal-

ogy approach considers the finite element mesh as a network of

elastic springswith stiffness coefficients depending on estimated

error on each edge. The error is assumed to be proportional to

the Hessian of the interpolation function. Various procedures

for computation of the Hessian based on recovery of derivatives

are presented. Using this assumption, an adaption criterion that

achieves an equidistribution of error along the edges of the ele-

ments is adopted. Considering the equilibrium of springs at each

node, the driving force and direction of node movement is eval-

uated (see Figure 1). The discretization error over each element

arising due to approximation is given by e(x) = u(x) − uh(x),

where u(x) is the exact solution and uh(x) is the piecewise con-

tinuous approximation of the displacement. The estimator here

is said to be hierarchical in the sense that the error e(x) can be

estimated as the difference between a smoothed or recovered

higher order approximation ûh(x) and finite element approxi-

mation uh(x).

Consider a domain denoted by� (Figure 2 (a)) and bounded

by ŴD and ŴN such that ŴD ∩ ŴN = 0 and ŴD ∪ ŴN = Ŵ. Let a

partial differential equation be defined in� as−∇T (a∇u)+ f +
bu = 0.Where∇is the Laplacian operator and u is the unknown
function; b and fmay be constants or functions depending upon

the nature of problem to be modeled. The geometric or Dirichlet

boundary conditions take the form u = ū = 0 onŴD and natural

or Von Neumann boundary conditions are defined as a ∂u
∂n

= q

on ŴN . Considering a specific case of the above equation with

a(x) = E A and b(x) = 0, the governing equation takes the form

− d
dx
( du
dx
) = q(x)

AE
, with boundary conditions u(x = 0) = 0 and

du
dx
(x = l) = 0. Physically, this equation represents a bar fixed

at one end (x = 0) and stretched by a body force q(x).

Consider a discretized model consisting of the standard two

degrees of freedom bar element. Let us assume that area A,

elastic moduli E are constant and that the load is integrated

consistently. It is seen that (Figure (2b)) the solution at the nodes

is exact and hence the error at the nodes is zero (although the

exact solution in general is not piecewise linear and there is error

between the nodes). A quadratic approximation of the error over

the element can thus be constructed on each element once the

value of the second derivative is known. The variation of error

FIG. 1. Steps in node displacement procedure — spring analogy.

over the element length h can be expressed as

e(z) = −
1

2
(xi − z)2e′′(z) (1)
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244 A. RAJAGOPAL ET AL.

FIG. 2. (a) Solid in reference and deformed configuration. (b) Behavior of error in a uniform bar under distributed axial load.

Where z is any point within the element closer to nodal coordi-

nate xi than xi+1, i.e. |z − xi | ≤ hi/2. It is seen from the above

equation that the error norms are proportional to the second

derivatives (Hessian H) of u(x) and must be determined with

special care to obtain meaningful results.

Thus we have

‖e‖αh2i
∂2u

∂x2

∣

∣

∣

|z−xi |∈[0,hi ]
(2)

We can obtain an upper bound to themaximum error (pointwise)

in a given element as

|e(x̄)| ≤

(

h2i

8

)

[ max
xi≤x≤xi+1

|u′′(x)|] (3)

The first derivative of the computed solution is piecewise con-

stant and discontinuous across element boundaries. Therefore

straightforward differentiation of uh(x) leads to a second deriva-

tive, which is zero inside each element and is not defined at

element boundaries. The methodology for computing Hessian

is made as per convenience. In the analytical derivation given
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STUDY ON MESH OPTIMIZATION SCHEMES 245

TABLE 1

Method of recovery of the second derivatives

Weighted expression Variational method

∂2 uh
∂xi ∂x j

∣

∣

∣

k
=

∫

�k

∂η

∂xi

∂ uh
∂x j

d�k
∫

�k
ηd�k

=

∫

�k

∂Nk
∂xi

∂ uh
∂x j

d�k
∫

�k
Nkd�k

∂u
∂xi

∣

∣

k
= 〈P(x1k, x2k)〉[A]

−1
∑m

i=1 {P(x1, x2)} ∂ uh
∂xi

∣

∣

∣

cg

�k is bounded domain =
∑ne

e=1 �e

ne = number of elements connected to interior node k

Nk = Test function—Basis of ηk
�e = Domain of element-element volume

[A] =
∑nc

e=1{P(x1e, x2e)}〈P(x1e, x2e)〉
i and j = 1, 2, 〈P(x1, x2)〉 = 〈1 x〉
∂ uh
∂xi

= derivative of finite element displacement

Computed at barycenter of element

P = Polynomial fit of desired order for the patch considered

A =Matrix of unknown coefficients

in Appendix I the Hessian matrix at any node k is obtained by

following a weighted expression of second derivatives and in

numerical computation the Hessian is evaluated by computing

the local value of the gradient by ensuring a least square fit of

this to the set of super convergent sampling points existing in

the bounded domain (Table 1).

In two dimensions the adaption criterion is looked upon as

requirement of a mesh that achieves an equidistribution of ap-

propriate error e(x) along the finite element edges E . If τE is

the unit tangent to edge E , the second derivative along the τE -

direction is given by ∂2u

∂τ 2E
= τ TE HτE . The error along any edge

E is given by

ekl =
(

hTklHhkl
)
1
2 (4)

where hkl = xk − xl is the length of the edge E with vertices

xk and xl . When the Hessian matrix is not semi-positive definite

the spectral decomposition of Hessian is considered [15].

2.1.1. Node Relocation Procedure

For the mesh movement algorithm, the element sides are

considered as springs of prescribed stiffness and the nodes are

moved until the spring system is in equilibrium. The stiffness

constants proportional to the edge based errors are given by

Ki (x j ) =
e(x i − x j )

‖x i − x j‖
(5)

where x i are the coordinates of the node i among the n nodes
connected to the node j with coordinate x j . The ideal position of
the node x j is computed from a non linear energy minimization
problem and is given by

∑

i

Fi (x j ) =
n

∑

i=1

(x i − x j )K̄ i (x j ),

where

K̄ i (x j ) =
1

n

∑n
i=1 e(x i − x j )

‖x i − x j‖
(6)

The nonlinear problem defined by the above equation is solved

using an iterative procedure algorithm as shown in Figure 1,

which starts from an initial guess xoldj and xnewj is given

by

xnewj = xoldj + ̟

∑n
i=1

(

x i − xoldj
)[

Ki

(

xoldj
)

− K̄ i

(

xoldj
)]

∑n
i=1 Ki

(

xoldj
)

(7)

where ̟ is a relaxation parameter that controls the

convergence.

2.2. Configurational Force Method

The adaption procedure based on configurational forces con-

siders the imbalance in material equilibrium as a measure of

error. The departure from material equilibrium is reduced by

minimization of the potential with respect to nodal coordinates.

This is accomplished by relocating nodes in a finite element

mesh. Considering material force equilibrium results in defin-

ing energy momentum tensor in material space [3]. The compo-

nents of the energy momentum tensor represent the change of

total potential energy of a deformed body produced by unit ma-

terial translation. For a homogeneous body, in the continuous

case, force balance implies material force balance. However,

in the discrete case nodal force balance does not imply nodal

material force balance due to the presence of nodes and hence

element interface. Thus in a discretized form considering the

material force equilibrium, the non-vanishing of the divergence

of energy momentum tensor at the inter element boundaries is

taken as an error indicator [10].

In this section the error indicator is derived by considering

the material force equilibrium in a similar manner as is done

in physical equilibrium. The displacement vector for a solid in

the region �0 ∈ ℜ3 (see Figure 2a) in referential description is

given as ui = xi−X i . The deformationmapping for a lagrangian

description is defined as

xi = xi (X1, X2, X3, t) ⇒ xi = xi (X I )or ⇒ 
(ui , X A) (8)
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246 A. RAJAGOPAL ET AL.

FIG. 3. Jump in driving force at interelement boundaries.

With the deformation gradient in�0 given by Fi A = δiA + ui,A.

The deformation mapping takes on prescribed values 
̄ over the

displacement part ofŴ(Ŵ = ŴD∪ŴN ) of the undeformed bound-

ary. The strain energy density per unit volume of the undeformed

elastic material is given by

W = W
(

x ij , X
K
)

or W = W (ui, j , X
K ) (9)

for an isotropic materialW = 1
2
σijεij, where σij is the stress ten-

sor and εij is the strain tensor. The physical equilibrium equation

is given by σij, j + fi = 0, where fi is the body force. The mate-

rial gradient of strain energy results in the configurational force

equilibrium and is given by

Ckj, j + gk = 0 (10)

where the configurational stress tensor is given byCkj = Wδkj−
σijui,k and the configurational force arising due to body forces

are given by gk = − fiui,k . It is required to compute the discrete

configurational forces arising out of discretization. In the ab-

sence of body forces the weighted residual form of the balance

law equation using a vectorial test function η and integrating

over the domain �0 is given by

∫

�0

Cij, jηid�0 = 0 (11)

The weak form of this equation (Eq. (11)) in the absence of body

forces is obtained by integrating by parts and can be written as

−

∫

�0

Cijηi, jd�0+

∫

Ŵ

Cijn jηidŴ+

∫

Ŵe �⊂Ŵ

Cijn jηidŴ = 0 (12)

As a consequence of considering stationary boundaries, the test

function η vanishes on the boundaries of the domain Ŵ and

hence the second term becomes zero. The divergence of the en-

ergy momentum tensor is zero for a homogeneous body without

body forces. This is used to check the discrete solution obtained

through finite element analysis. As finite element solutions are

approximate solutions, the non-vanishing divergence of the en-

ergy momentum tensor provides an error indicator. The discrete

jump in the energy momentum tensor (Figure 3) occurring at the

element boundaries Ŵe (third term of the weak form equation)

is the driving force used as an error measure in the node relo-

cation process. The balance law in its weak form is analogous

to the bilinear form of the governing differential equation with

jump in the energy momentum tensor being similar to the trac-

tion jump occurring at the inter element boundaries [11]. The

discretized form of the above weak form can be written by in-

serting an element–wise interpolation of the test function η and

its gradient. Thus we can write

ηi =
∑

I

N IηIi and ηi, j =
∑

I

N I
, jη

I
i (13)

Thus Eq. (12) reduces to the form

∑

I

[

−

∫

�e

CijN
I
, jd�0 +

∫

Ŵe �⊂Ŵ

Cijn jN
I
i dŴ

]

ηIi = 0 (14)

The second term, which is a traction related to the discontinuity,

is the configuration force of the element that needs to be numer-

ically evaluated. Since ηI are arbitrary, each of the above in the

summation over I should go to zero. Thus, the first term is equal

to the negative of the second that is evaluated as the discrete

configuration force, G I
e , given by

∫

Ŵe �⊂Ŵ

Cijn jN
I
i dŴ =

∫

�e

CijN
I
, jd�0 =

{

G I
e1

G I
e2

}

= G I
e (15)

These configurational forces on assemblage should go to zero in

the domain. This alsomeans that the configurational forces of the

elements are equidistributed for an optimalmesh. The assembled

total configurational force is given by GK =
⋃ne

e=1 G
I
e where ne

spans over the number of elements connected to a particular

node.

2.2.1. Node Relocation Procedure

The interior nodes are updated by an iterative rule such as

XK = XK − cGk [14]. The constant c is chosen sufficiently
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STUDY ON MESH OPTIMIZATION SCHEMES 247

small to achieve convergence (to avoid unhealthy mesh distor-

tions). For better convergence a nonlinear conjugate gradient

method, known as the Polak-Rebiere method [19], for mini-

mization of energy function has been incorporated. The basis of

this method is that for a given iterate xk (weight) and proceed-

ing direction dk (gradient), a line search is performed along

dk to produce Xk+1 = xk + αkdk by an amount αk (learn-

ing rate) in a recursive manner to satisfy equilibrium. Rather

than imposing αk (by learning rate), we choose αk to mini-

mize the potential energy at the new position G(xk + αkdk).

The conjugate gradient algorithm thus performs line search at

iteration for each conjugate direction. Conjugacy of the gra-

dients is through any matrix A such that dTk+1Adk = 0. It is

preferable to use directions, which are conjugate to Hessian

of the function G, i.e., ∇2G = A. For a general error func-

tion it is not possible to determine the Hessian. Hence it is de-

sired to have conjugacy without the Hessian. It is desired to

have

dTk Ad j = 0 for k �= j (16)

The change in gradient at k + 1 iteration is given by

�Gk = Gk+1 − Gk = A�xk

where

�xk = xk+1 − xk = αkdk (17)

This is satisfied if and only if following expressions are satisfied

αkd
T
k Ad j = 0 �xTk Ad j = 0 �GT

k d j = 0 (18)

The first expression in Eq. (17) requires determination ofαk exp-

ressed in termsof theHessian for a pure quadratic asαk =
−GT

k dk

dTk Akdk
.

For a pure quadratic we can write Ak = ∇2G(x)|x=xk =
xTk Axk . The last expression definition doesn’t require Hessian

determination. Thus we start with the initial gradient and we

write d0 = −G0. By line search minimization we can write

dk = −Gk +βk dk−1. We define βk for Polak-Rebiere algorithm

as βk = (
�GT

k−1Gk

GT
k−1Gk

).

The algorithm has been explained in Figure 4. The method

has two levels of iteration. The outer loop is the undeformed co-

ordinate iterative update or nodal coordinate update. The nodal

coordinate iterative loop contains solution for equilibrium solu-

tion for deformed coordinate for a fixed mesh. This ensures that

the configurational forces for the undeformed coordinate update

correspond to the equilibrium solution.

The conventional iterative method of nodal updating in the

configurational force method takes a number of iterations to op-

timize the mesh and hence there is a need to reduce the number

of iterations. It is proposed to use a linear projection method,

which is similar to the successive over relaxation iterative tech-

nique. Here the configurational forces in each node act as an

error and the new nodal position for each node is determined by

enforcing this error to be zero. Moving one node point modifies

FIG. 4. Steps in node displacement procedure-Polak reberie algorithm.

the surrounding elements, hence the node movement strategy

and correction for error is repeated several times throughout the

domain. The process being independent for each node, it is seen

that the error propagates like a wave, which is typical of succes-

sive over relaxation technique. The error wave dies down as the

iteration continues. This method takes a few iterations to obtain

an optimized mesh.

Let Gx1,Gx2,Gx3 be the driving force terms in the succes-

sive iterations 1, 2 and 3, respectively. Let the corresponding

node positions at these iterations be x0, x1, x2, respectively. Us-

ing similar triangles, knowing two preceding values, the driving

force in the third successive iteration is equated to zero and
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248 A. RAJAGOPAL ET AL.

we can evaluate the node position in this iteration as x2 =
( x0∗Gx2−x1∗Gx1

Gx1−Gx2
).

3. ASSESSMENT OF NODE RELOCATION TECHNIQUES

The need to establish the preeminence of one node relocation

technique over the other is important in the context of obtaining

better adaptive finite element solutions. This study is expected

to help in the use of the better method with sufficient poise as a

whole or part of an adaptive refinement strategy. In this section,

analytical and numerical comparisons of the configurational

force method with the spring analogy method are presented.

The assessment is made firstly based on qualitative and quanti-

tative aspects of driving force terms along with their respective

convergence rates in potential energy during the node displace-

ment iteration process. Secondly, the quality of the adaptedmesh

is studied based on the amount of discretization error and the

extent of distortion that has occured. The discretization error is

computed as the relative percentage error in energy norm. The

extent of distortion is measured through a distortion metric.

3.1. Qualitative Analysis

It is presumed and expected that an optimization procedure

considering the nodal coordinates as unknowns in theminimiza-

tion of potential energy results in highly nonlinear equations

and with nonlinear constraints of the nodal coordinates, thus

making the solution tedious and time-consuming. However, the

configurational force method is based on a sound mathematical

basis relating to the material force equilibrium, and the non-

satisfaction of energy momentum tensor at the inter-element

boundaries acts as an error indicator. In a computational setting

the resulting nonlinear equations can be iteratively solved using

a standard nonlinear solution algorithm.

The interpolation based error estimator associated with the

spring analogy approach for node movement is heuristic and

thus involves approximation errors. The recovery of the second

derivatives, which define the Hessian for a given element and

hence its transformation to determine the edge spring stiffness,

is quite an involved procedure. The positive definiteness of the

Hessian is not assured and depends on the location of the element

with respect to the loading and thus further requires spectral

decomposition. Further, the node relocation procedure, although

based on equilibrium of springs, requires the specification of

an error criterion for node movement. The sound mathematical

basis of deriving the material force procedure thus makes it a

reliable procedure.

The governing differential equation of a problem may be

formulated on the basis of the balance laws and constitutive

relations. The significance of balance laws and the correspon-

dence of those in physical (physical equilibrium) and material

space (material force equilibrium) are evident. Thus defining the

energy momentum tensor with its components representing the

change of total potential energy of a deformed body produced

by unit material translation adds to a better understanding of the

problem considered. Thus an adaption procedure considering

non-vanishingof the divergenceof energymomentum tensor due

to inhomogenity as an error indicator gives more physical sense.

3.2. Quantitative Analysis

3.2.1. Driving Force and Convergence

The amount of driving force at a node varies according to the

intensity of loading and geometry of the domain,with higher val-

ues in the regions of stress concentration. Thus, a quantitative

analysis cannot be made for the entire domain but the relative

intensities can be compared at a given nodal point as is done in

the subsequent section. From a quantitative aspect, although the

node relocationmade to achieve equilibrium of spring forces at a

node in the spring analogy approach is analogous to making the

corrections for the driving force arising out of the configurational

force equilibrium, the driving force from the conventional ap-

proach is an upper bound to those from the configurational force

method. This is clear from the derivations for the driving forces

in each of these procedures for a one-dimensional case shown

in Appendix I.

Convergence of Adaption Procedure: Analysis of the rela-

tive convergence is of importance as it reflects the quality of

the adaption achieved through node relocation. The correction

factor c and relaxation parameterω respectively govern the num-

ber of iterations required for the solution to converge in either

method. The quantity of driving force being different in either

method, it is preferred to compare the number of iterations re-

quired for convergence. The standard Polak-Rebiere iterative

algorithm used in the material force method has a faster conver-

gence compared to the conventional iterative technique in terms

of number of iterations required to achieve the prescribed tol-

erance. The convergence rate of the spring analogy approach is

less compared to the configurational force method. Further, the

relaxation parameter ω in the spring analogy approach has to be

carefully chosen to be small enough to avoid unhealthy mesh

distortions.

3.2.2. Mesh Quality

A comparative study on mesh quality is important. Mesh

quality is assessed in terms of flexibility of discretization by

computing the relative amount of change in discretization error

and the amount of distortion that is assessed by computing the

distortion metric.

The flexibility of the system is assessed through the amount

of decrease in potential energy of the system during mesh adap-

tion iterations. The potential energy of the system as obtained

from configurational force method asymptotically reduces more

than the spring analogy approach and reaches a constant value.

Hence a convergence criterion based on potential energy is ide-

ally suited for the configurational force method. In the case of

spring analogy approach, although, there is an initial reduction

in potential energy at lower iterations at higher iterations, there

is a progressive increase in potential energy. The discretization

error during the node relocation iterations is computed based on
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a best guess stress type error estimator. The error in energy norm

is computed as

‖e‖ =

(

∫

�

{eσ }T |C |−1{eσ }d�

)1/2

(19)

where {eσ } = {σ ∗} − {σh}.
{σ }∗ and {σh} are the best guess stress, and finite element

stress, respectively. The best guess stress is obtained through a

simple projection technique as given by [24]. The absolute value

of the error over domain is calculated. The relative percentage

error η is given by

η =
‖e‖

‖u‖
∗ 100 (20)

where ‖e‖ is a suitable error norm and ‖u‖ is the displacement
norm. It is observed that in comparison to spring analogy ap-

proach, although the amount of decrease in relative error norm

percentage during node relocation iterations is less in case of

the configurational force method at initial iterations, there is

a progressive rapid increase in error norm percentages at later

iterations. The error norm percentage based on post-processed

stress does not providemuch information onmesh quality. Since

the topology of the mesh is retained during node relocation, a

better estimate of mesh quality and efficiency of mesh adaption

would be in terms of the extent of the element distortion that

occurs in the node relocation procedure. The distortion metric

is computed based on geometric properties as

D =
n

∑

i=1

n
∑

j=1

M2
ij −

1

n

( n
∑

k=1

Mkk

)2

(21)

whereMij =
1

det |J |

∑n
k=1 Jki Jkj, n= 2 for two-dimensional prob-

lems, J is the Jacobian matrix.

The distortion metric is zero for a square element and in-

creases as a power of four with the aspect ratio or angular dis-

tortion. The one- and two-dimensional examples considered for

numerical comparison of these methods in the next section give

additional insight into the finer issues related to the use of each

of these methods.

3.2.3. Type of Mesh

The suitability of the two mesh adaption procedure for the

type of initial meshes chosen is important. In general a mapped

or structured mesh is more suitable for mesh adaption. Even for

a structured mesh the spring analogy approach results in highly

distorted meshes leading to degeneracy with the steps of node

relocation iterations. The configurational forcemethod performs

well for both structured as well as unstructured mesh. At higher

node relocation iterations the method requires a smoothing pro-

cedure to avoid degeneracy. A weighted Laplacian smoothing

approach has thus been implemented to avoid degeneracy. The

basic idea of the well-known Laplacian smoothing method is to

place a node in the center of its neighboring nodes. The node is

to be repositioned by directly averaging the co-ordinates of the

neighboring nodes. The movement vector is given by

�VL =
1

nnode

nnode
∑

i=1

Vi (22)

where Vi = (xi − x0, yi − y0) and nnode is the number of neigh-

bor nodes surrounding the patch node.

3.2.4. Enhancement by Mesh Enrichment

It is observed that there is no change in the topology of the

domain when corrections are made for configurational forces.

There is only an increase or decrease in the element size hi . The

aim of adaptive post-processing technique is to obtain softer dis-

cretization, along with stationary value of potential and to get

better displacement or stress solution across element boundaries

with a good mesh. The criteria for goodness of mesh are based

upon strain energy, displacement and stress values at selected

critical points of a structure. Mesh adaption tends to result in

bad shape elements and approximation. This is from the under-

standing that the displacement polynomial approximation made

within the element assumes extreme values at the nodes. To get

better finite element solution we need to change the topology of

the domain once the stationary value of the potential is reached

after completion of mesh adaption iterations. Furthermore an

optimal mesh is one in which the number of degrees of freedom

is minimal for a specified accuracy. This can be achieved only

through mesh enrichment. The process of adaption and enrich-

ment may follow one another as one single cycle or may be

repeated in cycles.

4. RESULTS AND DISCUSSIONS

In this section we report the results of numerical tests that

establish the effectiveness of the method of r-adaption. Numer-

ical comparison of the two methods considered give additional

insight into the finer issues related to use of each of these meth-

ods and thus helps in establishing the superiority of one node

relocation technique over the other and thereby obtaining better

adaptive finite element solutions.

4.1. One Dimensional Example

A linear elastic axial rod fixed at the one end, and free at

other end, which is under a uniform body force b as shown in

Figure 5(a), was considered for the implementation and compar-

ison of the configurational force and the spring analogy method

in one dimension. The displacement solution for this axial rod

is given by u(x) = b
E
(x − x2

2
), where E is the Young’s modu-

lus of material. Here we chose E = 1 N/m2 b = 1 N/m. Cor-

responding to this displacement the strain and stress are lin-

ear in x . This suggests that uniform mesh is the optimal mesh

corresponding to this solution. To authenticate this by mesh

adaption, the elastic rod is discretized using linear elements

as shown in Figure 5(b). A set of six nodes were considered
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250 A. RAJAGOPAL ET AL.

FIG. 5. (a) Cantilever beam subjected to uniform traction. (b) Initial mesh of linear elements. (c) Optimal uniform adapted mesh.

with one node at the free end to define geometry and other

nodes clustered near to fixed end. Mesh adaption based on

configurational forces and spring analogy approach was per-

formed with appropriate relaxation, correction factors ̟ and

C, respectively. Figure 5(c) as expected shows the final adapted

optimal uniform mesh. Both the methods result in a uniform

mesh.

Quantitative analysis was made for elastic rod subjected to

uniform body force. Table 2 shows a comparison of the

normalized driving force values obtained at all nodes at the end

of first iteration from the two methods. It is observed that the to-

tal norm of driving force values considering all nodes in spring

analogy method is much higher than that obtained from con-

figurational force method. This is also evident from the deriva-

tion for the two element one-dimensional problem shown in

Appendix 1. The variation of driving force with iterations in

both the methods is different although there is a reduction in

the values with iterations. Various parameters, such as the po-

tential energy, stiffness matrix trace and strain energy, are stud-

ied during mesh adaption to provide a basis for comparison. It

is seen that with iterations the potential energy of the system

reduces and reaches a minimum (Figure 6(a)) with the strain

energy variation being almost complimentary to potential en-

ergy. The driving force is equidistributed between elements at

nodes and the net force at a node is zero. The optimality of mesh

is also justified from the trace of the stiffness matrix, which

reduces and reaches a constant minimum (Figure 6(b)) value,

TABLE 2

Normalized values of driving forces as interior nodes after one

node relocation iteration

Interior node

number 1 2 3 4

Driving Force x1 = 0.1 x2 = 0.2 x3 = 0.3 x4 = 0.4

Configurational

force 1.0 3.2 2.9 3.1525e + 14

Spring Analogy 1.0 1.07 3.695e + 14 1.2e + 14

indicating that the adaption procedure results in a flexible sys-

tem with increased displacement. In the variation of each of

these parameters, the spring analogy approach shows a discrete

jump in the values after some iteration; this may be attributed

to the limitations in recovering the second derivatives at the

boundaries.

For convergence characteristics, different node displacement

procedures studied are configurational force method with con-

ventional iterative correction, configurational forcemethodwith

standard Polak-Rebiere algorithm, configurational forcemethod

with linear projection and spring analogy approach. Figure 7(a)

gives a comparison of convergence for these methods. From the

point of view of number of iterations required to achieve opti-

mality, as expected the Polak-Rebiere algorithm is better than the

conventional iterative algorithm. The incorporation of the linear

projection method gives accelerated convergence. It is observed

that the spring analogy approach has a slow convergence rate

compared to the configurational force method. To have an in-

sight of variation of driving force in the spring analogy method,

the computed value of the Hessian is plotted at all nodal points

along the length of elastic rod as shown in Figure 7(b). It is seen

that with mesh adaption the values progressively reduce to a

constant along the length.

4.2. Two Dimensional Example

4.2.1. Block Under Pressure

A homogeneous square block of linear elastic isotropic ma-

terial with nondimensionalized length of four units with a sym-

metric loading is considered. The vertical displacements on the

bottom edge are fixed. The block is discretized using four noded

bilinear elements. The initial mesh is shown in Figure 8(a). A

plane strain state is assumed. For the given loading and bound-

ary conditions mesh adaption is performed by both the meth-

ods using spring analogy and Polak-Rebiere conjugate gradient

node relocation algorithms, respectively, to get adapted mesh as

shown in Figure 8(b) and Figure 8(c).

A quantitative analysis of the normalized driving force is

made as shown in Figure 8(d). In two dimensions it is observed
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FIG. 6. (a) Comparison of potential energy for various iterations. (b) Comparison of trace of stiffness matrix for various iterations.

that the driving force from the spring analogy is less than the

configurational force method. The normalized driving force re-

duces with iterations in both the methods. The qualitative anal-

ysis here is looked at from the point of variation of potential

energy of the system with iterations (Figure 9(a)). The spring

analogy approach does not result in a flexible system as in

the configurational force method, hence the energy of the sys-

tem is less. This is also evident from the rigid nature of the

adapted mesh obtained from the spring analogy approach. Sim-

ilar to one dimension, the convergence rates are slower and

more care is required in choosing appropriate value of relaxation

parameter.
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FIG. 7. (a) Comparison of convergence rates for various techniques. (b) Plot of Hessian along the length of elastic rod.

The mesh quality is assessed in terms of extent of reduc-

tion in discretization error and distortion of elements. From

Figure 9(b) it is seen that the relative percentage of energy

norm error is less in the case of the spring analogy approach

at initial iterations, but at later iterations owing to large amount

of distortion and subsequent degenracy there is a progressive

increase in the energy norm error. The distortion metric is

computed for each of the individual elements as shown

in Figures 10(a) and 10(b). The distortion metric con-

tours for configurational force based adapted mesh indicate a
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FIG. 8. (a) Block under pressure (initial mesh. (b) Final mesh obtained from configurational force method. (c) Final mesh obtained from spring analogy. (d) Plot

of normalized driving force versus number of iterations.

coencetric distortion of elements close to the applied load

while in the case of the spring analogy approach it is more

distributed.

Themesh adaption has dependency on strain energy. It is thus

important to study the distribution by plotting contours of strain

energy density function, which are called isoenergetics. These

indicate contour shape along which the nodes of an element can

be aligned. A plot of constant strain energy density (isoenerget-

ics) for the block is shown in Figure 11(a) and Figure 11(b). It

is observed that there is a low strain gradient after adaption due

to spreading of contours. As expected, the strain energy den-

sity matches with degree of freedom density in the sense that

the nodes move towards and align themselves on these contours

after adaption. The properties of an optimal adapted mesh can
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FIG. 9. (a) Comparison of potential energy versus number of iterations. (b) Comparison of relative error norm versus iteration.

also be looked at from several other plots, such as isobars (con-

tours of maximum principal stress) and isochromatics (contours

of maximum shear stresses). A plot of the Isochromatics of the

block is plotted as shown in Figure 11(c). Resultant mesh after

adaption has nodal points coinciding with the isochromatics of

the problem.

4.2.2. L-Shaped Domain

A homogeneous L-shaped domain of linear elastic, isotropic

material (Young’s modulus= 70 Gpa and Poisson ratio= 0.33)

is considered with specified dimensions and loading. A plane

stress state is assumed. The domain is discretized using four

noded bilinear elements. For the given loading and boundary
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FIG. 10. (a) Distortion metric and contours — material force method. (b) Dsitortion metric and contours — spring analogy approach.

conditions mesh adaption based on configurational force is per-

formed using Polak-Rebiere conjugate gradient algorithm. The

suitability of the mesh adaption by configurational force method

has been studied for structured and unstructured meshes.

Structured mesh: The initial structured discretization is as

shown in Figure 12(a). The adapted mesh after certain number

of iterations is shown in Figure 12(b). It is reported in literature

and also observed here that themesh adaption results in distorted

and degenerate elements. It is required to continue the adaption

procedure for further minimization of potential at the same time

it is required to avoid degeneracy. In this context a weighted

laplacian smoothing is performed to smooth the elements. This

is highlighted in the next section. The variation of the potential

energy with iterations with an intermediate smoothing is shown

in Figure 13(a).

Unstructuredmesh: The initial unstructuredmesh is as shown

in Figure 14(a). It is seen that the extent of degeneracy

of elements with iterations in unstructured case increases

(Figure 14(b)). To avoid the degeneracy it is more important to

smooth the mesh between the iterations. Figure 14(c) shows the

mesh after weighted laplacian smoothing. Figure 14(e) shows

the potential energy variation with iterations (with an interme-

diate smoothing to avoid mesh degeneracy effects). From the

earlier examples of elastic rod and block under pressure it is

seen that the criterion for convergence decides the number of it-

erations and reflects the quality of estimated driving force during
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FIG. 11. (a) Isoenergetics—strain energy before adaptation. (b) Isoenergetics—strain energy after adaptation. (c) Isochromatics—contours of maximum shear

stress.
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FIG. 12. (a) Initial structured mesh before adaptation. (b) Mesh before smoothing (700 iterations). (c) Mesh after smoothing. (d) Final mesh after all conjugate

gradient iterations. (e) Smoothed and enriched mesh.
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FIG. 13. (a) Potential energy versus number of iterations. (b) Relative error

norm percentage versus number of iterations. (c) Relative G norm percentage

versus number of iterations.

iteration. A modified criterion is required for the following rea-

sons. A tolerance criterion based on configurational forces or

potential energy is stringent and results in large number of it-

erations. Further smoothing or any such procedure during node

relocation is likely to affect the potential energy and the config-

urational forces. A measure to account for variability in initial

meshes for a given problem is thus required. A possible efficient

way is to prescribe the relative percentage change in configura-

tional force given by

relative G norm (%age) ηG =
‖�G i‖

‖G i + �G i‖
× 100% (23)

‖G i‖ is the cumulative elemental value of the configurational
force at the end of every iteration. Similarly we can find the

global value by adding up all the elemental values and can

be denoted as ‖G i‖g . The variation of ηG educes with itera-

tions, indicating that the system reaches a stationary value of

the potential. If η̄G = spicified value of ηG , we get a measure

of tolerance in considering the stationary value of the potential.

We can thus define η̄G = spicified value of ηG for specifying

the shift in equilibrium from the viewpoint of configurational

force mesh adaption. The variation of relative error norm per-

centage and global G norm percentage over the mesh adaption

iterations for the structured mesh are shown in Figure 13(b)

and Figure 13(c) respectively. Figure 14(e) and Figure 14(f)

shows the variation of potential and relative error norm percent-

age with iterations for the unstructured mesh. The relative error

norm percentage decreases initially with adaption owing to the

increase in the flexibility of the system. With adaption there is

progressive distortion of the element and with topology being

preserved, the approximations of the field variable and hence the

recovery based error estimator tends to be bad. This is reflected

through the increase in the value of the error norm percentage

at later iterations. The effect of smoothing mesh is reflected in

the plots of potential and relative error norm percentage (Fig-

ure 14(e) and Figure 14(f)). The smoothing tends to reduce the

error norm percentage and potential. It is thus expected that η

would increase with the iterations made for node relocation.

This is likely in many elements of the initial mesh. It is also

likely that in some elements the relative error norm percentage

reduces.

It is seen that on the whole the extent of distortion is al-

most same in either methods. A closer look indicates that the

spring analogy approach results in stiffer discretization with

elements having less distortion metric values while the con-

figurational force method results in flexible discretization with

elements having higher distortion metric values. Further, since

the intention is to use the suitable adaption technique as a part

of a combined refinement strategy, which may incorporate mesh

enrichment through h-refinement, the efficiency of method on

the basis of distortion metric for elements is less important. The

reduction in error norm percentage is observed when r adap-

tion is followed by mesh enrichment by h-refinement in suc-

cession, the final adapted and enriched meshes for a specified

value of global error norm for both the examples are shown in

Figure 15(a) and Figure 15(b). The plots of convergence charac-

teristics of combined r -h strategy indicates the efficiency of the

method.
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FIG. 14. (a) Initial unstructured mesh. (b) Mesh after 500 CG Iterations (before smoothing). (c) Mesh after 500 CG Iterations (after smoothing). (d) Final mesh

after adaptation. (e) Potential energy vs number of iterations. (f) Relative error norm vs number of iterations.
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FIG. 15. (a) Final enriched mesh and error norm convergence for example of block under pressure. (b) Final enriched mesh and error norm convergence for

example of L-shaped domain.

5. CONCLUSIONS

Assessment of two r -adaption procedures prevalent in the lit-

erature has been made. The evaluation is made based on studies

conducted on one-dimensional and two-dimensional problems.

The qualitative and quantitative aspects of driving force terms

together with their respective convergence rates during the iter-

ation process form the basis for comparison.

From a quantitative aspect, although both are post-processing

techniques, it is empirically and numerically shown that the driv-

ing force from conventional approach is an upper bound to the

driving force arising from configurational energy. From a qual-

itative angle the sound mathematical basis of deriving the ma-

terial force procedure makes it a reliable indicator, unlike the

spring analogy approach, which is heuristic and involves ap-

proximation errors. Further, the configurational force method

provides a more physical insight into the problem. From a con-

vergence point of view, the standard Polak-Rebiere conjugate

gradient algorithm has been found to be efficient. The proposed
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two-step linear projection accelerator improves convergence of

the conventional iterative procedure. The spring analogy ap-

proach has slow convergence.

Although both procedures may result in unhealthy mesh dis-

tortions, in the spring analogy approach the resulting optimal

mesh does not minimize the potential energy to the extent that

can be obtained from the configurational force approach. The

extent of distortion and discretization error is more in the spring

analogy at later iterations. In addition, the spring analogy ap-

proach requires proper choice of correction factors for good

convergence to the optimal mesh. This problem gets magnified,

especially in the case of unstructured meshes. The present work

thus emphasizes the use of an r adaption based on configura-

tional forces. The suitability of this method has been studied

for structured and unstructured meshes along with a weighted

Laplacian smoothing procedure to avoid degeneracy. The study

shows that a combined r -h strategy resolves the unhealthy mesh

distortions and is expected to provide a better convergence of

the solution. It is concluded in this study that a combined r − h

refinement with configuration force method for r -refinement to-

gether with weighted Laplacian smoothing can provide best fi-

nite element solutions for problems that involve high gradients

of stress, such as in fracture mechanics and other singularity

prone problems.
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APPENDIX 1

Comparison of Driving Force in One Dimension (Continued)

Material force based r adaption Heuristic estimators based r-adaption

Polak-Rebiere algorithm for node relocation Spring analogy approach for node relocation

Weak form of the material force equilibrium

−
∫

�0
Cijηi, jd�0 +

∫

Ŵ
Cijn jηidŴ +

∫

Ŵe �⊂Ŵ

Cijn jηidŴ = 0

Test function approximation

ηi =
∑

I N
IηIi and ηi, j =

∑

I N
I
, jη

I
i N = [ 1−x

li

x
li
]

∑

I [−
∫

�e
CijN

I
, jd�0 +

∫

Ŵe �⊂Ŵ
Cijn jN

I
i dŴ]ηIi = 0

∑

I −
∫

�e
CijN

I
, jd�0 =

∑

I

∫

Ŵe �⊂Ŵ
Cijn jN

I
i dŴGK =

⋃ne
e=1 G

I
e

Cij = EMT = ψδkj − σijui,k = 1
2
σε − σε = − E

2

(

∂u
∂x

)2

u = uFE =
∑

I Niuiu, x =
∑

I N,iuiNi = [ 1−x
li

x
li
]

Thus the material force at each of the nodes is given by

− AE
2

[

1
l1

2
(u2 − u1)

2
[

1 2

−1 1

]T

+ 1

l22
(u3 − u2)

2
[

2 3

−1 1

]T
]

Assuming the end nodes to be fixed, the driving

force at the interior node when the spans l1 = l2 = l

are equal are −AE
2l2

[(

u21 − u23
)

+
(

2u3u2 − 2u1u2
)]

Net Force =
∑

i Fi (x j ) =
∑n

i=1(x i − x j )K̄i (x j )
el(x) = aTklHakl akl = xk − xl = length of element

where K̄i (x j ) = 1
n

∑n
i=1 e(x i−x j )

‖x i−x j‖

Hessian H is computed using projection technique

Hij(xk) = ∂2 uh
∂xi ∂x j

∣

∣

k
=

−
∫

�k

∂η

∂xi

∂ uh
∂x j

d�k
∫

�k
ηd�k

=

∫

�k

∂Nk
∂xi

∂ uh
∂x j

d�k
∫

�k
Nkd�k

|

Test function and displacement approximation

u = uFE =
∑

I Niuiu, x =
∑

I N,iuiNi =
[

1−x
li

x
li

]

ηi =
∑

i N
IηIi and ηi, j =

∑

i N
I
, jη

I
i N =

[

1−x
li

x
li

]

The Hessian after assembly is given by

= −AE

[

1
l1
(u2 − u1)

[

1 2

−1 1

]T

+ 1
l2
(u3 − u2)

[

2 3

−1 1

]T
]

K̄ 1(x j ) = −AE
2

(

(u2−u1)
l21

)

/‖l1‖

K̄ 2(x j ) = −AE
2

(

(u3−u2)
l22

)

/‖l2‖

Considering equilibrium of springs the driving force

at the interior node when the spans l1 = l2 = l

we get −AE
2l2
[(u2 − u1)+ u3 − u2]

APPENDIX 2

Nomenclature

e(x), ‖e(x)‖, ekl Error function, norm of error function and

error along an edge kl

u(x) Exact solution for displacement

uh(x) Finite element solution

N Interpolation function used for finite ele-

ment approximation

ûh(x) Smoothed or recovered finite element

solution

hi Element size

hkl Length of the edge kl

xk, xl Coordinates of the vertices points of edge

kl

H Hessian matrix

τE Unit tangent to edge E

Ki (
−→x j ) Spring stiffness of an edge

̟, c Relaxation and correction factors

f, q Body force and traction terms

�, �i Domain and elemental volumes

Ŵ = ŴD ∪ ŴN Domain boundary union of Drichlet and

Von Neumann boundaries


(ui , X A) Deformation mapping function

X A, xa Referential and present coordinates

Fi A Deformation gradient

W (ui, j , xk) Strain energy density

σi j ,Ci j Cauchy stress tensor and energy momen-

tum tensor

gk Configurational body forces

G I
e ,G

k Elemental and assembled nodal configura-

tional force

Gx1,Gx2 Configurational force at successive present

configurations

‖�G i‖ Norm of change in configurational force

ηG, η Relative G norm and Relative error norm

(percentages)

R̄ Domain residual term representing internal

energy

F̄ Boundary residual term

B̄ Interface boundary residual

J (a ∂uh
∂n
) Jump in the traction values at the element

interfaces
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