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[1] Categorical forecasts of streamflow are important for effective water resources
management. Typically, these are obtained by generating ensemble forecasts of
streamflow and counting the proportion of ensembles in the desired category. Here we
develop a simple and direct method to produce categorical streamflow forecasts at
multiple sites. The method involves predicting the probability of the leading mode (or
principal component) of the basin streamflows above a given threshold and subsequently
translating the predicted probabilities to all the sites in the basin. The categorical
probabilistic forecasts are obtained via logistic regression using a set of large-scale climate
predictors. Application to categorical forecasts of the spring (April–June) streamflows at
six locations in the Gunnison River Basin exhibited significant long-lead forecast skill.
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1. Introduction

[2] Many rivers in the western United States are heavily
controlled by water storage structures to provide reliable
water supply for a variety of societal needs. To effectively
manage the scarce water resources, water managers require
the following two elements: (1) skillful forecasts of stream-
flows at several lead times and (2) a decision support system
that incorporates forecasted information and evaluates the
impact of different management strategies. Here we analyze
the first element, streamflow forecasts, which are provided in
two forms according to the water manger’s need: categorical
(probabilities of wet or dry conditions) and volume (monthly
or seasonal streamflows) flow forecasts. A categorical
streamflow forecast provides the probability of occurrence
of a particular event e.g., the chance of having higher
streamflow. A volume flow forecast provides the amount of
streamflows e.g., on daily, monthly, or seasonal timescales.
[3] Two approaches are used to forecast streamflow:

physical and statistical models. In physical models, a
hydrologic model is run using station data up to the start
of the forecast to estimate the basin conditions (e.g.,
snowpack, soil moisture), and is then run into the future,
with an ‘‘ensemble’’ of weather/climate forecasts, to pro-
duce ensemble forecasts of streamflow [e.g., Day, 1985;
Clark and Hay, 2004]. The ensemble of weather/climate
forecasts comprise a finite number of individual realizations
of precipitation and temperature over the next several weeks
or several seasons, which, when used as input to the

hydrologic model, produce the same number of future
realizations of streamflow. Categorical forecasts can be
produced by counting the number of individual ensemble
members that are above a predefined threshold. Statistical
models on the other hand use empirical relations to forecast
streamflow [Garen, 1992]. For example, snow water equiv-
alent on 1 April may be used in a regression model to
predict streamflow averaged over the months April through
September. Uncertainty in the statistical models can be
estimated easily (e.g., using the standard deviation of the
regression residuals), and ensemble forecasts can be pro-
duced by sampling from the distribution of regression
residuals [Grantz et al., 2005; Regonda et al., 2006].
Now, as with the physical models, categorical probabilities
from the regression models can be computed from ensemble
forecasts. Also, there are statistical methods (e.g., discrim-
inant analysis) that directly estimate categorical forecasts for
specific thresholds but require strong distributional assump-
tions, which when not satisfied, often the case with real data
sets, require indirect resampling of errors.
[4] Piechota et al. [1998] developed a categorical fore-

cast framework based on linear discriminant analysis
(LDA). This approach has two main steps. First, probability
density functions (PDFs) of a given predictor (e.g., the
Southern Oscillation index) were estimated for three subsets
of streamflow data (below normal, normal, and above
normal), and the categorical forecast was estimated using
Bayes rule

Pr QijXð Þ ¼
pi fi xð Þ

P

k¼3

i¼1

pi fi xð Þ

ð1Þ

Here Pr(QijX) is the probability of streamflow (Q) in the ith
category, given the predictor X; pi is the prior probability of
the ith category (i.e., the fraction of observations in the ith
category); and fi(x) is the probability of the predictor
variable computed using data from only the ith category.
Piechota et al. [1998] estimated the PDFs in equation (1)
using nonparametric kernel density estimation [Lall, 1995].
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This first step is hence very similar to contingency table
analysis (e.g., estimating the joint probability of X and Q for
different categories of X and Q), except the probability of X,
fi(x), is allowed to vary within each of the k categories of Q.
The second step in the Piechota et al. [1998] method is
extension to multiple predictor variables. Multiple variables
(X1, . . ., Xn) were included by assigning weights to each
potential predictor variable, hence

Pr QijX1; . . . ;Xnð Þ ¼
X

n

j¼1

wj Pr QijXj

� �

; 0 � wj � 1;

X

n

j¼1

wj ¼ 1

ð2Þ

in which wi are the weights assigned to each predictor
variable. The weights were determined by minimizing the
error in historical forecasts.
[5] The Piechota et al. [1998] approach is attractive in

that it provides a direct method to produce categorical
streamflow forecasts. However, the method is somewhat
cumbersome in that it requires both kernel density methods
for estimating the PDF for each forecast category for use in
equation (1), as well as optimization methods for identifying

the weights for use in equation (2). Together equations (1)
and (2) are similar to logistic regression

Pr QijX1; . . . ;Xnð Þ ¼ 1�
1

1þ exp bo þ
P

n

j¼1

bjXj

 ! ð3Þ

where (b0, . . ., bh) are regression coefficients obtained by a
maximum likelihood procedure. Logistic regression offers
potential improvements over LDA as it fits a function
throughout the data and hence does not rely on the likely
noisy ratio of probabilities in the LDA approach. Further,
logistic regression is included in many statistical software
packages.
[6] Apart from the Piechota et al. [1998] studies, almost

all of the current methods used to generate categorical
streamflow forecasts are somewhat indirect. The purpose
of this study is twofold. First, we develop a simple and
direct method to produce categorical streamflow forecasts at
multiple locations. Second, we compare the direct forecast-
ing methods against indirect ensemble-based methods. We
intend our new method to be complementary to the multi-
model ensemble forecasting technique developed by
Regonda et al. [2006] and also an attractive alternative to
the methods of Piechota et al. [1998].

Figure 1. Map of the Gunnison River Basin and six key streamflow locations (shown as circles). Map
was provided by James Pasquotto, University of Colorado, Boulder.
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[7] The proposed framework and its application to the
six key streamflow locations (Figure 1) in the Gunnison
River Basin (GRB) are described in the following sections.
These locations are along the main reservoir system in the
basin, and also points of release of water that satisfy various
basin needs (e.g., agriculture, municipal, and transbasin
diversions).

2. Methodology

[8] The proposed integrated framework has the following
three components: (1) Use principal component analysis
(PCA) to identify the leading modes of spatial variability in
regional streamflow; these modes are also known as the
leading principal components (PCs). (2) Assess relation-
ships between the leading streamflow PCs and global ocean
and atmospheric variables to identify potential predictors.
(3) Use logistic regression to issue categorical streamflow
forecasts. Results from Regonda et al. [2006] are used for
components 1 and 2, while the logistic regression frame-
work is developed in this study. Categorical forecasts are
evaluated using the Brier skill score.
[9] This method was applied to six streamflow locations

in the GRB and, categorical spring streamflow forecasts
were issued on the first of each month from December (i.e.,
4 month lead time) through 1 April in a cross-validated
mode, in which all data from a given year is dropped from
the forecasting framework while predicting in that year. We
describe below the methodology along with the data and the
application.

2.1. Data

[10] The daily discharges at the six streamflow locations
for the period 1949–2004 were obtained from the U.S.
Geological Survey (USGS) (http://water.usgs.gov/). As
expected, the streamflows exhibited a snow driven annual
hydrograph (not shown), which has spring snowmelt
(April–July) resulting in the major contribution (greater
than 70%) of annual flows. Hence we considered spring
seasonal flows (averaged flow during April–July) in this
analysis, and developed spring streamflow time series for
each of the six locations.
[11] Snow water equivalent (SWE) data were obtained

from Natural Resource Conservation Service (NRCS). The
SWE measurements are taken around the beginning of each
month, and records of February, March and April are
considered, respectively, at 10, 14, and 14 locations in the
basin.
[12] Monthly global ocean and atmospheric variables

such as sea surface temperatures, geopotential height, zonal
wind, and meridional wind, and Palmer drought severity
index (an index of soil moisture) were obtained from
the Climate Diagnostic Center Web site (http://www.cdc.
noaa.gov).

2.2. Forecast Method

2.2.1. Step 1: Principal Component Analysis
[13] PCA decomposes the space-time multivariate data

set (time series of streamflows at six locations of the GRB)
into orthogonal space (eigenvectors) and time (principal
components) patterns using eigendecomposition [see e.g.,
Von Storch and Zwiers, 1999]. The space-time patterns are
ordered according to the percentage of data variance

explained (i.e., the first space-time pattern explains most
of the data variance), and the leading PCs, corresponding to
the space-time patterns that explain most of the data
variance, are selected.
[14] PCA on the spring streamflows at the six locations of

the GRB resulted in the first PC explaining 87% of the
variance, and the remaining five explained 13% of the
variance. Clearly, the first PC is the leading mode and
furthermore, it had uniform eigenloadings (not shown) and
high correlation (>= 0.8) with all the six streamflows. This
indicates that the leading PC is a robust indicator of basin-
wide streamflow variability.
2.2.2. Step 2: Predictor Selection
[15] Since the leading PC captures most of the data

variance of the spring streamflows, we searched for pre-
dictors by finding the correlation of the leading PC with
large-scale ocean and atmospheric variables across several
regions of the world, from preceding seasons. The regions
with strong correlations are identified, and predictors are
created by averaging the value of the variables from these
regions. This is done for each lead time. For example,
1 January forecast considers the large scale ocean-
atmospheric variables of November–December season,
and similarly 1 April forecast considers the November–
March season, etc. In addition, the first PC of the monthly
SWE and the average Palmer drought severity index (PDSI)
from the GRB region of the antecedent fall were also added
to the suite of predictors. The variability of SWE in the
basin is quite homogeneous, as can be seen by the fact that
the first PC of SWE captures over 70% of the variance in all
the months (i.e., 73%, 70%, and 70% variances are
explained by 1 February, 1 March, and 1 April SWEs,
respectively) furthermore, the first PC of SWE is highly
correlated (correlation coefficient >0.70) with the first PC of
the spring streamflows (i.e., 0.72, 0.76, and 0.84 respec-
tively for 1 February, 1 March, and 1 April SWEs); hence
the first PC of SWE is a good predictor. The PDSI was
included because drier conditions in the antecedent fall lead
to an increased infiltration in the following spring when the
snow starts to melt, and thus reducing the spring stream-
flows. The details on the diagnostics and selection of the
predictors are given by Regonda et al. [2006, Table 2].
[16] From the suite of predictors identified from the

climate diagnostics, Regonda et al. [2006] developed sev-
eral regression models for the first streamflow PC using a
nonparametric local polynomial framework, for each lead
time. Each of the regression models consists of a different
subset of predictors, and is used to issue ensemble forecasts
of the first PC. Since many models have similar skill, it is
difficult to identify a single ‘‘best’’ model. Consequently,
Regonda et al. [2006] combine predictions from multiple
regression models to obtain multimodel ensemble forecast
of the first streamflow PC, and subsequently back trans-
forms the multimodel ensemble forecast to all the six
locations in the basin, simultaneously. Categorical forecasts
are then issued from the multimodel ensemble forecast.
[17] In this study our goal is to develop and demonstrate

the utility of a logistic regression based framework for
categorical forecasting. For simplicity at each lead time
we used the best predictor set identified by Regonda et al.
[2006] (i.e., predictors of the model with the lowest error)
to produce ensemble streamflow forecasts and the
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corresponding categorical probabilities. That is, the multi-
model forecasts are not used. The same combination of
predictors from the single best local polynomial model is
then used as explanatory variables in the logistic regression
model to estimate categorical forecast probabilities directly.
These predictor sets are described in Table 1 for different
lead times. A more formal approach would be to identify the
best subset of predictors using the logistic regression.
2.2.3. Step 3: Categorical Forecast
Framework—Logistic Regression
[18] As described earlier, the goal of this study is to

develop a framework that issues categorical forecasts of
streamflows. To this end, probabilities corresponding to
events of different threshold values need to be estimated.
This consists of the following steps.
[19] 1. A threshold value, say the 20th percentile, is

chosen for the first PC.
[20] 2. The first PC time series is reduced to a binary (1 if

the PC value exceeds the threshold, 0 otherwise) series.
[21] 3. Logistic regression is employed [Hosmer and

Lemeshow, 1989] to obtain the threshold probabilities. This
method was outlined in the Introduction but is repeated here
for completeness:

Plogit ¼ Pr QijX1; . . . ;Xnð Þ

¼ 1�
1

1þ exp b0 þ b1X1 þ b2X2 þ . . . . . . : : þ bnXnð Þ
ð4Þ

where Plogit is the probability of the event of interest (e.g.,
PC value exceeding the 20th percentile) and (b1, b2, . . . bn)
are regression coefficients for each of the predictor variables
(X1, X2, . . ., Xn). Correspondingly, the probability of
nonexceedance of the threshold value is (1 � Plogit). The
regression coefficients are obtained via maximum like-
lihood estimation procedure (for details see, Hosmer and
Lemeshow [1989]). We used the library ‘‘glm’’ in the free
software R (http://www.r-project.org).
[22] 4. Typically, PCA tends to change the distribution of

the original variables to normal distribution. Thus, if the
distribution of the original variables is nonnormal then this
transformation can lead to incorrect categorical probabili-
ties. We performed a Kolmogorov-Smirnov (KS) test on

spring season streamflows at each location to test the
normality of the distribution. In addition, we also tested
the distributional difference between the first PC and each
of the streamflows. All the spring flows, except Taylor
River, were found to be normally distributed also, the
distribution of all the seasonal streamflows were found to
be as that of the first PC, at 95% confidence level. These
tests suggest that the PC analysis retained the distributional
properties of the original data consequently, the rank prob-
ability as well. Furthermore, the first PC was found to be
highly positively correlated with the streamflows in the
basin and explains 87% of the variance. These diagnostics
indicate that we can translate the probabilistic forecast of the
PC directly to the streamflows at all the six locations. Thus
the Plogit value obtained from equation (4) (step 3) for a
given threshold (say the 20th percentile of the PC value) is
interpreted as the probabilistic forecast of same threshold
(i.e., 20th percentile) exceedance of the streamflows.
[23] 5. Steps 1–4 are repeated for several thresholds.
[24] This framework is applied in a cross-validated mode

to obtain the probabilistic streamflow forecasts for all the
years at the six locations for different lead times.
[25] An alternative approach would be to fit logistic

regression models to each individual streamflow gauge in
the GRB. The PCA step of Regonda et al. [2006] has
important advantages, as it preserves the spatial correlation
structure over the basin when forecasts of the PC are
disaggregated to individual stream gauges. In the logistic
regression model developed in this paper, the probability for
the PC is distributed uniformly over the basin, and we hence
lose the capabilities for spatial disaggregation in the original
Regonda et al. [2006] method. Nevertheless, use of the PC
has other advantages, as it filters the data and reduces noise
in the predictand variable. Moreover, use of the PC for
logistic regression provides scope to compare the logistic
regression approach with the original Regonda et al. [2006]
method.

2.3. Forecast Evaluation

[26] The performance of the categorical probabilistic
forecasts issued from the logistic regression framework is
evaluated using the Brier skill score (BSS). This is a widely
used measure to verify categorical probabilistic forecasts
[Wilks, 1995]. The BSS is computed for each threshold and
is defined as [Wilks, 1995]:

BSS ¼ 1�
BSforecast

BSclim
ð5Þ

where BSforecast and BSclim are the Brier score (BS)
corresponding to the logistic regression (or best model
ensemble) forecast and climatology, respectively. The BS is
the mean squared difference of forecasted probabilities and
observations (equation (6)) and is defined as

BS ¼

P

N

i¼1

pi � oið Þ2

N
ð6Þ

where pi refers to the forecast probabilities for a given
threshold value (i.e., either estimated from equation (4) or

Table 1. Best Predictor Set for the Logistic Regression at

Different Lead Timesa

Forecast Date Number of Predictors Predictor 1 Predictor 2

1 Dec 1 SSTDec1 NA
1 Jan 2 ZWJan1 PDSI
1 Feb 1 SWEFeb1 NA
1 Mar 2 SWEMar1 SSTMar1

1 Apr 1 SWEApr1 NA

aSSTDec1 is the averaged sea surface temperature anomalies difference
between (14.3�–41.0�N, 71.2�–39.4�W) and (42.9�–52.4�N, 176.2�E–
150.0�W) for 1 December; SSTMar1 is between (21.9�–42.9�N, 60.0�–
30.0�W) and (23.8�–10.5�S, 110.6�–78.8�W) for 1 March. ZW Jan1 is the
averaged zonal wind difference between (50.0�–60.0�N, 125.0�–100.0�W)
and (60.0�–65.0�N, 155.0�–142.5� W) for 1 January. PDSI is August–
October Palmer drought severity index of preceding year averaged over
climate division 2 (which includes the GRB) of Colorado; SWEFeb1

corresponds to the first PC of snow water equivalent in the basin on
1 February (and similarly for SWEMar1 and SWEApr1).
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from the best model ensemble); oi refers to the outcomes; oi
is 1 if the observed flow exceeds the threshold volumes and
0 otherwise; N is number of forecasts, in this case the
number of years. Replacing pi with climatological prob-
ability in equation (6) results in the BSclim; for example, the
climatological probability of 20th percentile exceedance
will be 0.8. The BSS values range from negative infinity to
1; negative values of BSS indicate forecast performance
worse than climatology, and positive values indicate
forecast performance better than climatology. A BSS of
‘‘0’’ implies that the forecast accuracy is the same as that for
climatological forecasts. In contrast, a BSS of 1 can only
occur for perfect forecasts.

3. Results

[27] We estimated the cross-validated BSS for the cate-
gorical streamflow forecasts issued from the logistic regres-

sion framework developed in this paper and also from the
best model ensemble of Regonda et al. [2006], at all the six
locations and at different lead times. Figure 2 displays
the BSS values for the forecasts issued on 1 January and
1 April. It can be seen that the BSS values from both the
approaches are greater than climatology, suggesting skillful
long-lead forecasts. Forecasts issued on 1 April show better
performance relative to those issued on 1 January. This
increase in performance with a decrease in lead time is to be
expected; on 1 April, almost all of the seasonal snow is
present on the ground in the basin, thus providing accurate
information of the resulting streamflow from the melt.
Lower forecast performance is observed at higher threshold
values at both lead times. This is because of fewer (rare)
events, which results in fewer data points making the
logistic regression unstable [Bradley et al., 2003; Clark
and Slater, 2006]. The skill from both methods is compa-
rable. However, the logistic regression framework can

Figure 2. BSS of forecasts from the logistic regression (LR) framework (circles) and the ‘‘best model’’
(BM) ensemble of Regonda et al. [2006] (triangles), issued on 1 January (open circles and open triangles)
and 1 April (solid circles and solid triangles) at the six locations in the GRB. Exceedance percentiles and
BSS are plotted on x and y axes, respectively.
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directly provide the categorical forecast at less computation
cost which makes it quite attractive.

4. Summary

[28] We developed a simple and direct method to produce
probabilistic categorical streamflow forecasts. In this, the
categorical forecasts of the leading mode (or principal
component) of the spatial streamflow at different thresholds
is estimated via logistic regression. Large-scale climate
features are used to obtain the predictors, and used in the
logistic regression. These categorical forecasts are then
uniformly transferred to the corresponding categorical fore-
cast of streamflows at all the locations. The framework was
applied to categorical forecasts of the April–June (spring)
streamflows in the GRB at several month lead times starting
from 1 December. The forecasts exhibited significant skill
even at long lead times. Furthermore, the skills were
comparable or better in some cases to those obtained from
a best model nonparametric regression based forecasts of
Regonda et al. [2006]. We also estimated skill scores from
the multimodel ensemble forecasts of Regonda et al. [2006]
and comparable results were observed. Both these
approaches, we feel are complimentary and serve different
purposes: The logistic regression method will be useful if a
quick categorical forecast is required, while the ensemble
approach can provide the entire probability density function
of the streamflows that can be used to drive decision support
models.
[29] The framework developed in this research is flexible

and simple to implement. It works very well if the leading
mode captures most of the data variance, and has uniform
Eigenloadings and high correlations with all the basin
streamflows, such as the case in the application to the
GRB that we demonstrated. If there are more than one
leading PC that capture a significant part of the spatial
variance, then this framework can be applied to all the
significant leading PCs and the estimated categorical fore-
casts from each of the PCs optimally combined following
Rajagopalan et al. [2002]. Other potential improvements
could include optimally combining categorical forecasts
from multimodels and also using the nonparametric logistic
regression [Loader, 1999] method.
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