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ABSTRACT Image matching has been an active research area in the computer vision community over

the past decades. Significant advances in image matching algorithms have attracted attention from many

emerging applications. However, aerial image matching remains demanding due to the variety of airborne

platforms and onboard electro-optic sensors, long operational ranges, limited datasets and resources,

and constrained operating environments. We present two contributions in this work to overcome these

challenges: a) an upgraded cross-platform image dataset built over images taken from an aircraft and

satellite and b) a two-step cross-platform image matching framework. Our dataset considers several practical

scenarios in cross-platform matching and semantic segmentation. The first step in our two-step matching

framework performs coarse-matching using a lightweight convolutional neural network (CNN) with help

from aircraft instantaneous parameters. In the second step, we fine-tune standard off-the-shelf image

matching algorithms by exploiting spectral, temporal and flow features followed by cluster analysis. We

validate our proposed matching framework over our dataset, two publicly available aerial cross-platform

datasets, and a derived dataset using various standard evaluation methodologies. Specifically, we show that

both steps in our proposed two-step framework help to improve the matching performance in the cross-

platform image matching scenario.

I. INTRODUCTION

Remotely-piloted aircraft systems (RPAS) are evolving

rapidly for commercial applications due to relaxations from

regulatory authorities. Remotely-piloted aircraft include Un-

manned Aerial Vehicles (UAV) and drones in general. The

role of UAVs has extended from reconnaissance and surveil-

lance purposes to remote sensing, search and rescue (SAR)

operations, combat missions, and so on. UAVs are classified

into tactical, medium-altitude long-endurance (MALE), and

high altitude long-endurance (HALE) categories. However,

drones are relatively lightweight and capable of flying at

low altitudes and for a short duration. UAVs and drones

are divided operationally in terms of Visual Line of Sight

(VLOS), Extended Visual Line of Sight (EVLOS), and Be-

yond Visual Line of Sight (BVLOS). The latter two typically

need assistance from a radio link or satellite terminal for

navigation. Navigation sensors are of utmost importance for

long-range UAVs. However, navigation sensors suffer from

drift issues depending upon the type or class of sensors. This

drift could lead to a deviation from the intended path that

could have catastrophic consequences during long endurance

flights at high speeds. This drift impact is contained with

Global Positioning System (GPS) input at regular intervals. A

typical navigation strategy for path correction is to use GPS

input at regular intervals.

However, GPS signals become unavailable or unreliable

due to electromagnetic interference, atmospheric effects,

jamming, or countermeasures in hostile territories. GPS loss

is a common phenomenon in the urban environment due to

the interference caused by tall buildings and plenty of radia-

tion. With these constraints, there is a need for alternate nav-

igation (NAV) systems that are self-contained and passive.

Image-guided NAV systems that rely on high-resolution cam-

eras are ideal candidates under these constraints. This choice

is further substantiated by recent advancements in computing

resources, vision algorithms, and sensors that provide close
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to all-day weather capabilities. This work focuses on the

aerial image matching problem for color images of the visible

spectrum. Aerial images suffer from quality issues such as

blurring, smearing, etc., caused by relative motion/angular

disturbances of the acquisition platform and various atmo-

spheric effects. These quality issues are mitigated to a certain

extent by the high shutter speed offered by Charge-Coupled

Device (CCD) cameras and the low integration time offered

by Infra-Red (IR) cameras. However, these disturbances be-

come more troublesome for high maneuvering aircraft and

lightweight drones. A stabilized platform is required to con-

tain these disturbances. Typical stabilization systems are built

over a gimbal platform using gyros/inertial measurement unit

(IMU), leading to drift over and above aircraft navigation

sensors. The impact of the resultant drift is not linear. Control

class gyros have higher drift than navigational class due to

more accuracy requirements for the former than the latter.

Image matching, therefore, becomes more challenging due

to the variabilities in the acquisition platform (i.e., speed,

attitude), disturbances (i.e., linear, angular), viewpoints (i.e.,

range, translation, rotation), multiple drifts, sensor charac-

teristics, environmental conditions, time of acquisition, etc.

It directs to the need for a self-reliant, robust, and efficient

image matching technique.

Therefore, automatic image-based aerial NAV systems

become very important, whose performance is dependent

on robust and automatic real-time image matching. A few

template images of the destination are required to guide

the automatic aerial NAV systems. Ideally, these templates

should have been acquired by another aircraft or aerial vehi-

cle using an identical image sensor at the same atmospheric

conditions/appearance and viewpoint. This constraint is chal-

lenging to meet in the case of remote or inaccessible locations

and factors beyond our control. This difficulty is overcome by

using widely available satellite images for template collec-

tion. However, there are a few challenges when working with

satellite image templates. The critical challenges involved

while matching a satellite image with live video (acquired

using a belly-mounted camera on an aircraft) are the varia-

tions in view angle, atmospheric conditions, time-of-day, out-

of-date images, and cross-platform (sensor) data, to name a

few. Further, mismatches in the sensor wavelength and scene

changes motivate us to address this as a cross-platform image

matching problem.

To solve this problem, we present two contributions to this

work. The first contribution is an enhanced cross-platform

HD dataset with multiple image data galleries envisaging real

scenarios and manually labeled ground truth. We present a

methodology to augment an existing single platform aerial

dataset with cross-platform imagery in addition to an efficient

storage/retrieval mechanism. Our second contribution is a

two-step robust aerial image matching framework consist-

ing of coarse and fine stages. Coarse-matching builds over

a modified pre-trained CNN with novel use of metadata.

In contrast, fine-matching builds over state-of-the-art image

matching methods to address the associated cross-platform

matching challenges. We show that the proposed framework,

though simple, can significantly improve the performance

of image matching algorithms on our dataset, a derived

dataset, and recently released cross-platform datasets. We

demonstrate the efficacy of the matching framework using

several standard metrics.

The rest of the paper is organized as follows: related

work is discussed in Section II, and the enhanced dataset

is presented in Section III. The proposed two-step matching

framework is presented in Section IV. Results are deliberated

in Section V, followed by concluding remarks in Section VI.

II. RELATED WORK

We briefly survey aerial image datasets and analyze state-of-

art image matching approaches.

A. AERIAL IMAGE DATASETS

1) General-purpose Aerial Image Datasets

A few popular and publicly available aerial image datasets

include HRSC2016 [1], DOTA [2], VHR-10 [3], SSDD [4]

and so on. These datasets are built using satellite imagery [5]

and address the object detection problem. INRIA [6], Eu-

roSAT [7] and Drone datasets [8] are aerial semantic datasets

with 2, 10 and 20+ semantic class labels respectively.

2) Geo-localization Aerial Image Datasets

Recently, there has been significant attention towards geo-

localization of street view images. It implies the warping

of aerial and satellite images over street view images. To

improvise this process and accelerate the development of

deep learning algorithms, several datasets are proposed in the

literature [9]–[13]. Datasets covering the urban environment

for such geo-localization tasks include the Zurich city [9], the

Toronto city [10] and the work by Tian et al. [11]. We want

to mention that these datasets are built over aerial or satellite

imagery with slight cross-domain or cross-platform associa-

tion. We address this shortcoming by proposing an enhanced

version of our cross-platform path planning dataset [14].

Piasco et al. [15] explored the benefits of multiple types of

heterogeneous data such as optical, geometric, and semantic.

Our proposed dataset has multiple galleries, manual points

correspondence, and semantic labels to represent each as-

pect [15] respectively.

3) Cross-Platform Aerial Image Datasets

Recently, Mughal et al. [16] and Zheng et al. [17] have

released cross-platform Aerial Template Matching and

University-1652 datasets, respectively, in the public domain.

Mughal et al. [16] has created a multi-modal orthomosaic

map by stitching aerial imagery acquired from low altitude

MAV platform using a low-frame-rate camera in nadir view.

The dataset comprises 2052 low-resolution aerial images

(224 × 336) over 3 locations with multiple rounds. Authors

[16] retrieved equivalent cross-platform satellite ortho map

images from Bing. The dataset proposed by Mughal et

al. [16] is similar in scope and aim to our proposed enhanced
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dataset of this work. However, University-1652 dataset [17]

is intended to bridge the gap between ground-view and

satellite-view by an intermediate aerial view for viewpoint-

invariant feature learning. A synthetic drone-view camera

simulates accurate flight, while images of 1652 buildings

of 72 universities are extracted from the 3D Google Earth

Engine (GEE [5]). The synthetic view camera retrieves 54

images of a building with three spiral rounds while the height

descends gradually from 256 meters to 121.5 meters.

B. IMAGE MATCHING ALGORITHMS

With the advent of multiple types of aerial platforms and

satellite imagery, as discussed above, visual place recognition

(VPR) has become more challenging than image-retrieval

due to the increased dimension of appearance and view-

points and perceptual aliasing constraints. A comprehensive

review of VPR and where is your place can be found in

the literature [18], [19]. In the human visual system, place

recognition happens by the firing of place-cells [18] or spatial

view cells [19], which get triggered by sensory cues and

self-motion. VPR [18] contains three major components, an

image processing module to interpret incoming visual data

(live query), a map to maintain representation (reference

template), and a belief generation module (match algorithm).

In this work, aerial DTV images constitute the live query

followed by SAT target galleries which serve as the map

reference template and the two-step matching framework, as

the three major components in the same order [18].

To envisage path-planning objective, Courbon et al. [20]

proposed a vision-based navigation strategy for vertical take-

off and landing of UAVs using a single fish-eye camera

and tested for indoor environments. It involves three steps,

the first of which is building a memory of key image se-

quences followed by points detection using Harris corner

detector [21]. Matching is carried out using a zero normalized

correlation coefficient (ZNCC) around detected points. The

authors [20] find the best fit actual image and follow the

visual route in real-time. The similarity score is in proportion

to the number of points detected by the corner detector.

Martinez et al. [22] generated visual memory by simulating

the navigation mission/path. A virtual model is generated

using a robotic arm with a camera placed over a scene printed

on a tarpaulin sheet. The matching of the onboard image and

a desired virtual image is carried out using two quantitative

metrics: the sum of squared differences (SSD) and mutual in-

formation (MI). Qualitative performance over the texture-less

zone and outdated model is also discussed in this work. The

authors [22] evaluated performance over different times of

the day and ten-year-old scenes similar to proposed datasets

dawn-dusk and historical galleries, respectively.

1) Classical Image Matching Methods

Several sparse and dense keypoint matching methodologies

can be classified as traditional methods. There are keypoints

detectors based on gradient, intensity, and blob. Harris [21]

and Shi-Thomasi [23] corner detectors are gradient-based

while FAST [24] is intensity-based. The efficiency of FAST

and reliability of Harris detector formulate ORB detec-

tor [25]. The well-known SIFT [26] and SURF [27] algo-

rithms are based on blob features exploiting second-order

partial derivative (DoG). SIFT features [26] allow robust

matching across different scene/object appearances, while

discontinuity-preserving spatial mechanism allows matching

of objects located at different parts of the scene. SURF is

inspired partly by SIFT and is more robust under image

transformations. SURF speeds up implementation by ap-

proximating Laplacian of Gaussian with a box filter and

square-shaped filter for integral images. The SURF feature

descriptor is built with the sum of the Haar wavelet response

around the point of interest.

Classical feature-based descriptors are divided into local

and global descriptors. SIFT, SURF, and FAST are exam-

ples of local descriptors, while color-histograms, HOG [28],

GIST [29] are global descriptors. GIST uses Gabor filters

at different orientations and frequencies to extract the ‘gist’

of the scene. Feature-based methods are relatively more effi-

cient and can comfortably handle deformation up to a certain

level. It requires a detection phase to indicate part of the

image containing a detection tuned descriptor. Representa-

tive sparse keypoint detection algorithms include SIFT [26],

SURF [27] and ORB [25]. Keypoints (or image features)

are detected independently in the images, and corresponding

keypoints are paired using the minimum distance between

their features. Outliers are removed using the M-estimator

SAmple and Consensus (MSAC) algorithm [30]. Geometri-

cally transformed parameters are generated using the inliers

or retained points. These geometric transformation matrices

are used to warp one image over the other and calculate

overlap parameters.

A good keypoint descriptor must be reliable, repeatable,

and unique. Further, it must be invariant to rotation and

variations in illumination. Traditional image matching relies

on a local feature descriptor, global descriptor, or both.

Global descriptors are more pose-dependent, while local de-

scriptors are affected by lighting conditions. Matching local

features [18] of one image with features of another is an

inefficient approach. A bag of features technique is adopted

for image retrieval inspired by the document search domain.

Instead of using actual words/pictures, this method uses a

bag of features/visual words to describe a document/image.

A bag of words (BoW) captures each feature in a word form

ignoring geometric or spatial structure, thereby representing

it in reduced form. Bag-of-visual-word (BoVW) improves

efficiency by quantizing SIFT or SURF descriptors into a

vocabulary comprised of a finite number of visual words. Im-

ages with BoW description can be efficiently compared with

well-established Hamming distance or histogram comparison

methodologies. Further, an inverted index describing images

improves storage efficiency. Additionally, topological maps

with metric information – distance, direction, or both further

improve retrieval performance.

Sivic et al. [31] proposed the Video Google concept in line
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with the standard text retrieval approach for object matching

in videos. A set of viewpoint-invariant region descriptors

represents an object in the video. It is analogous to text

retrieval, where descriptors are pre-computed (vector quan-

tized using K-means clustering) using inverted file systems. It

reduces the impact of vector quantization and sealing. Philbin

et al. [32] proposed a novel quantization method based

on randomized trees using an efficient spatial verification

stage to re-rank the results returned from the bag-of-words

model derived using a 128-dimensional SIFT descriptor. The

authors have manually labeled considering 11 landmarks

images into good, ok (more than 25% present), junk (less

than 25% present), and absent categories. Authors [32] have

demonstrated improved performance across datasets.

Optical flow [33], SIFT Flow [34], DSP flow [35], Pro-

posal flow [36] are a few well-known dense flow techniques

in the literature. Optical flow [33] allows dense sampling

in the time domain enabling target tracking, whereas dense

sampling in space enables scene alignment. SIFT Flow [34]

matches densely sampled, pixel-wise SIFT features between

two images while preserving spatial discontinuities. DSP

Flow [35] uses a deformable spatial pyramid (DSP) match-

ing algorithm for computing dense pixel correspondences.

Dense matching involves comparing the appearance between

pixels and geometric smoothness between neighboring pix-

els. Unlike semantic flow approaches used in SIFT Flow

and DSP flow, Proposal flow [36] exploits modern object

proposals that exhibit high repeatability at multiple scales

and can take advantage of both local and geometric consis-

tency constraints among proposals. However, dense match

algorithms are computationally very expensive. DeepMatch-

ing(DM) [37], inspired by deep CNN architectures, computes

semi-dense correspondences between images. DM [37] is a

robust technique based on a hierarchical, multi-layer corre-

lation architecture. Further, it can handle non-rigid deforma-

tions and repetitive textures.

2) Deep Learning-based Image Matching Methods

Jiayi et al. [38] presented a detailed survey for image match-

ing from handcrafted to in-depth features. It covers fea-

ture detectors/descriptors to matching methodologies with

applications over Structure from Motion (SfM), Simultane-

ous Localisation and Mapping (SLAM), and image regis-

tration/fusion/retrieval methodologies. Deep learning-based

detectors include LIFT [39] and Superpoint [40]. LIFT [39] is

trained over SIFT with supervision from Structure from Mo-

tion (SfM), while Superpoint explores a fully convolutional

model. The choice of the detector is task-specific. PCA-

SIFT is a learning-based descriptor, whereas deep learning-

based descriptor includes Siamese, triplet, and contrastive

loss. SuperGlue [41] is a neural network that matches two

sets of local features using joint correspondences and re-

jecting non-matchable points. Assignments are estimated by

solving differential optimal transport problems using an at-

tentional graph neural network. Authors [41] have introduced

attention (self and cross) based flexible context aggregation

mechanism. SuperGlue [41] is capable of working well with

classical and learned features. Radiation-variation insensitive

feature transform (RIFT) [42] is a feature matching algorithm

that is robust to large Nonlinear Radiation Distortion (NRD).

It uses phase congruency (PC) map for corner and edge

points detection. RIFT builds feature descriptions using max-

imum index map (MIM). Finally, RIFT analyses the inherent

influence of rotations over MIM for rotation invariance.

Xingyu et al. [43] presented a progressive filtering ap-

proach for feature matching by gridding the correspondence

space and finding motion vectors. Outliers from the putative

match set are discarded with density estimation of each sam-

ple and convolution of motion vectors. A coarse-fine strategy

is adopted to refine motion vectors iteratively. Jiayi et al. [44]

presented a two-class classification problem termed Learning

for Mismatch Removal (LMR) with merely ten image pairs

supervised. The authors [44] have established a methodology

that is consistent with the consensus of the ratio of length

and angle of motion vectors using an empirically chosen

Gaussian penalty. Ren et al. [45] have proposed a Faster

R-CNN approach for real-time object detection with Region

Proposal Networks (RPN). Region proposals in the target

scene are detected and localized with Faster R-CNN [45].

The Faster R-CNN architecture contains the Fast R-CNN

as a detector network and the RPN as a region proposal

algorithm. An RPN is a fully convolutional network that

simultaneously predicts object bounds and objectness scores

at each position. RPNs trained end-to-end to generate high-

quality region proposals. A Siamese network built for un-

paired and paired buildings using contrastive loss function. A

graph constructed using local and global matches, while the

final output is the mean of matched buildings. SimNet [46]

is a neural network-based approach which exploits end-to-

end trainable network to learn non-metric similarity functions

for image retrieval. Features are extracted in a feed-forward

manner by a pre-trained network. These features are fed to

a visual similarity network for content-based image retrieval

(CBIR).

Basu et al. [47] investigated deep learning methods for

automatically extracting the locations of objects such as

water resources, forests, and urban areas from given aerial

images for applications in urban planning, forest manage-

ment, climate modeling, etc. Weyand et al. [48] introduced

the PlaNet model to achieve geo-localization using images.

The authors [48] trained their model over a database of

126M images with Exif geo-locations mined from the in-

ternet. It performs well with landmark photos and delivers

good performance with subtle geographical cues. The authors

have experimented with sequence-to-sequence modeling us-

ing LSTM variants and reported accuracy improvement by

50%. Yang et al. [49] proposed matching of aerial images

by extracting robust multi-scale feature descriptor using a

CNN. Authors [49] upgraded VGG16 [50] network (e.g., the

grid structure of 8 × 8), with feature extraction from the

second, third, and fourth layers. Inliers are selected gradually

to improve feature point registration.
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A Neighbourhood consensus network (NCNet [51]) is

a consensus network that learns local correspondences for

match points without the need for global geometric con-

straints. It is an end-to-end trainable network built over fea-

tures of ResNet50 [52]. Using an exhaustive pairwise cosine

similarity match, it computes the correlation map (4D corre-

lation tensor). These matches are filtered using soft mutual

nearest neighbor filtering. It trains in a weakly supervised

manner over the PF-Pascal dataset [53]. Recently, Mughal

et al. [16] have proposed a trainable pipeline to localize

aerial images in a pre-stored orthomosaic map. Further, the

authors [16] have extended NCNet [51] a fully connected

network (FCN)-based regressor for matching aerial images

with satellite imagery. Authors [16] developed a framework

mainly for intra-sensorial registration and tested for inter-

sensorial (cross-platform) too. Cross-platform is a specific

type of multi-modality. Jiang et al. [54] surveyed multi-

modal image matching methods from area/feature-based to

learning-based for various applications right from medical

and remote sensing to vision. Authors [54] have explored

18 types of modalities, including cross-spectral (visible Vs.

IR) and cross-temporal (outdated, time-of-the-day, season,

etc.). Performance was evaluated using precision, recall, and

f-score. Kong et al. [55] proposed a cross-domain image

matching technique using deep feature maps.

Recently, Hausler et al. proposed Patch-NetVLAD [56]

which is multi-scale fusion of locally-global descriptors for

place recognition for street-view dataset with viewpoint and

seasonal/time-of-the-day (e.g. dawn, dusk, night) appearance

variation. The authors use the original NetVLAD [57] based

descriptor to retrieve top-k matches and then compute patch

descriptor using IntegralVLAD, followed by reordering of

the initial match. The patch descriptors implicitly contain se-

mantic information of the scene (e.g., building, window, tree,

etc.) by covering a larger area. The authors proposed Rapid

Spatial Scoring, which is an alternative to RANSAC [58]

without the need for sampling.

Our proposed two-step matching strategy, which is a sig-

nificant contribution to this work, is a combination of global

features followed by local features. There are a few similar

contributions in the literature [59]–[62]. Djenouri et al. [59],

[60] proposed Decomposition Convolution Neural Network

and vocabulary Forest (DCNN-vForest), where the first step

does the extraction of regional and global CNN features. In

the second step, these features are clustered using the K-

means algorithm. The vocabulary tree vForest was formu-

lated for each cluster’s GPS-unavailable indoor industrial

environment. Bai et al. [61] introduced a combination of

Bag-of-word and deep neural network (BoWDNN). Yang

et al. [62] proposed Hierarchical Deep Embedding (HDE)

incorporating local features (SIFT), regional and global fea-

tures (CNN) to construct a vocabulary tree of image database.

Sunderhauf et al. [63] utilized ConvNet features as holistic

image descriptors to analyze the robustness of different layers

against appearance and viewpoint variance. The authors [63]

concluded that mid-level features have robustness against

appearance change. This work proposes a two-step matching

framework where the first step uses global features and the

second step exploits local features.

III. PROPOSED ENHANCEMENT OF CROSS-PLATFORM

DATASETS

A. ENHANCEMENTS TO OUR PATH PLANNING

DATASET

We first present the enhancements to our aerial cross-

platform path planning dataset originally proposed in [14].

The reader is referred to [14] for a detailed description of the

data collection experiment and the procedure for generating

cross-platform aerial path planning data. For completeness,

we briefly describe the experiment again, followed by an

analysis of the proposed dataset. We acquired aerial imagery

from a human-crewed aircraft at an altitude of about 4000’–

5000’ with an HD camera mounted at the aircraft’s belly. This

camera can acquire frames at a resolution of 1920× 1080 at

60 frames per second (fps) and record in compressed form.

We mounted navigation sensors to get instantaneous flight

parameters. Instantaneous flight parameters include latitude,

longitude, roll, pitch, heading, and altitude of aircraft. We

use heading and altitude as extrinsic parameters during the

coarse-match step, as will be described in section IV-A. This

trajectory was transmitted to the ground via an RF link.

Due to RF transmission, the data had a few noisy transients

for various parameters. These transients are filtered with the

expected profile of the aircraft sensor parameters. For cross-

platform image generation, these filtered sensor parameters

are used to generate the aircraft’s trajectory that is encoded in

a KML file. Historical data is retrieved from the Google Earth

Engine (GEE) for the desired path. This satellite imagery will

be referred as Satellite (SAT) in the rest of our discussion.

The enhancements to our path planning dataset [14] are

in terms of improved alignment, resolution, and multiple

historical galleries (offset, drift, and dawn/dusk galleries).

These enhancements make the dataset well-suited for clas-

sification/VBL/VPR tasks in the cross-platform setting. We

generated the aircraft trajectory by processing the meta-

data. We extracted corresponding images from GEE for the

years 2009–2020. These historical images capture the effects

of urbanization and atmospheric changes over the period.

Images in the proposed dataset were acquired in the year

2016 by an aerial platform. To confirm this phenomenon

with acquired aerial images from the year 2016, we applied

standard 2D correlation and SSIM index [64] with SAT year-

wise galleries (for grey and color images) as shown in Table

1. However, SSIM values were not consistent due to a lack

of registration in our dataset [14]. The same is rectified

up to a certain extent with fine manual alignment in this

work. To further validate, we apply the keypoint matching

algorithms (NCNet [51], RIFT [42], Patch-NetVLAD [56]).

We report percentage of correct keypoints (PCK) in Table

2 for respective default thresholds (last column). It can be

visualized from both tables 1 and 2 that correlation and PCK

values degrade as we move away from the year of acquisition
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of DTV imagery (which is the year 2016). We describe these

enhancements next.

1) SAT-Year-wise-Warped: Our existing dataset [14] has

a qualitatively (i.e., visually) aligned set of images. In

the existing dataset [14], we have carried out the fine-

grained alignment for a few DTV query images over

the SAT gallery. In this work, we have generated finely

aligned frames for the entire gallery of 2500 images.

We have manually marked points for a set of frames

(DTV and SAT) at an interval of 10 frames. These

points are tracked using a KLT-based points tracker

over the frames and manually verified over each set.

Then, the best five corresponding points are retained

based on minimal re-projection error. The homography

matrix is estimated and used to generate warped im-

ages with these correspondence points. The matching

performance of warped images over the years is pre-

sented in Table 1. The average correlation for warped

images improved significantly from around 0.15 [14]

to 0.6 over the years. Similarly, the average SSIM score

also improved over the years.

2) HD-DTV: This is the HD version of the three VGA

DTV galleries in our path planning dataset [14] with

2500 frames per year.

3) HD-SAT-Yearwise: This is the HD version of SAT-

Year-wise [14] gallery. It is similar to historical or

outdated imagery of [22].

4) HD-Offset: Inertial navigation sensors (e.g., head-

ing/yaw sensor) have bias issues. This gallery envis-

ages positive and negative bias over the flight path. We

have generated this gallery by adding constant shifts of

3.5 micro radians to the latitude. It has a constant offset

with the SAT-Year-wise gallery of our path planning

dataset [14] and the HD-SAT-Yearwise gallery of this

dataset.

5) HD-Dawn-Dusk: Dawn and dusk galleries are rep-

resentative of morning and evening time-of-the-day.

Time-specific reference images are practically not fea-

sible in real scenarios. In the existing dataset [14],

DTV live query images are acquired at noontime, and

it may happen that reference SAT images are available

only for the morning or evening time. To envisage

this scenario, we have created this HD-Dawn-Dusk

gallery. This gallery is in the same spirit as learning

representation from morning to the late afternoon by

Lowry et al. [65].

6) HD-Drift: Gyros suffer from drift issues. Drift has a

trade-off with accuracy/sensitivity, i.e., higher accu-

racy leads to increased drift. This gallery envisages

a typical gyro’s positive and negative drift over the

flight path. We have generated this gallery by adding

incremental shifts to the latitude over the path. We

have maintained a typical drift rate of 0.5 deg per hour

over the SAT-year-wise gallery of our path planning

dataset [14] and the HD version presented in this work.

7) HD-1000-cross-platform: This is a set of 1000 HD

DTV and SAT images. These images are derived from

sequential video frames at regular intervals (every 30

frames), and equivalent SAT images are retrieved and

visually aligned for each DTV query from GEE. We

have carried out manual keypoints correspondence for

each set of images, similar to the generation of warp

gallery for existing dataset images. With this, we can

generate fine aligned warped images. The 30 frames

spacing enables the exploration of path planning for

resource-constrained platforms.

8) HD-1000-segments: Semantic labels are marked man-

ually for DTV and SAT images in 20+ classes. The

labeling method is the same as described in our prior

work [14].

B. ENHANCEMENTS TO THE OPEN-SOURCE UAV123

DATASET

In addition to enhancing our aerial path planning dataset,

we also present improvements to the open-source UAV123

dataset [66]. We work with this dataset since aerial imagery

(which we call DTV) is available from a drone platform

for a known location. It has images of HD ready resolution

(1280 × 720 pixels). This database was originally devel-

oped for tracking applications with over 110K images. It

has nine major classes, including bike, boat, building, car,

person, group of people, truck, UAV and wakerboard. Each

major class (totaling 90) has sub-classes ranging from 3

to 26. The building class has five buildings or sub-folders.

We selected three landmark images and retrieved equivalent

images from GEE for these scenes with historical data for a

few years. These three satellite images become the reference

template for our matching framework. On further analysis of

the dataset, we found that the classes are not independent.

For example, the same scene appears in building and car

categories. This is probably because images are acquired in

the same region, and the dataset was originally meant for

tracking applications where bounding boxes are needed. This

mixed nature of objects makes it hard for image classifi-

cation. Segregating the entire dataset manually for selected

landmarks building is a tedious exercise that becomes even

more difficult due to perceptual aliasing (similar buildings).

We have carried out a semi-automatic procedure to circum-

vent these issues efficiently.

The steps in the semi-automatic procedure are described

next. In these steps, the SAT images (GEE) form the query,

and the DTV images [66] are the target galleries.

1) Manually select landmarks in the DTV target

gallery [66] and retrieve the corresponding query SAT

images from GEE [5].

2) Manually search best proxy match for selected land-

marks in target DTV galleries. This step is manual

due to the failure of automatic cross-platform matching

carried out using algorithms such as RIFT [42] as

shown in Fig. 1.
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TABLE 1: Standard Match of DTV query with SAT-year-wise [14]/Augmented SAT-year-wise warped data. Correlation and

SSIM values improve significantly with warped images and degrade as we move away from year of query DTV acquisition (as

expected).

Metric Year2009 Year2012 Year2016 Year2020 Remarks

Corr2 (grey) 0.100/0.57 0.139/0.63 0.145/0.63 0.083/0.62 Grey scale original images [14]/Warped images using corresponding points

Corr2 (color) 0.103/0.58 0.134/0.65 0.149/0.66 0.088/0.66 Color scale original images [14]/Warped images using corresponding points

SSIM (grey) 0.12/0.3 0.25/0.41 0.18/0.42 0.21/0.38 Grey scale original images [14]/Warped images using corresponding points

SSIM (color) 0.072/0.29 0.13/0.4 0.12/0.38 0.15/0.37 Color scale original images [14]/Warped images using corresponding points

TABLE 2: Performance of keypoint match algorithms over the years. First and second rows have threshold of 10 and 50 pixels

respectively, while third row has both 10/50 pixels. PCK values degrade as move away from year of query DTV acquisition (as

expected).

PCK Year2009 Year2012 Year2016 Year2020 Remarks

RIFT [42] 11.8% 13% 26% 17% Correct threshold 10 pixels

NCNet [51] 53% 69% 93% 79% Correct threshold 50 pixels

Patch-NetVLAD [56] 11.36/34.52% 12.1/39.3% 27.3/64.1% 13.6/47.6% Correct threshold 10/50 pixels

FIGURE 1: Cross-platform – SAT [5] and aerial [66] image

matching [42]. An example of automatic match failure. Green

and red lines imply true and false matches respectively. Best

viewed with zoom and color display.

FIGURE 2: False scene match [42] due to perceptual aliasing

from the UAV123 dataset [66]. Similar building both sides of

center building. Yellow lines indicate locally correct match

but globally incorrect. Best viewed with zoom and color

display.

3) Once the proxy images are found, use an automatic

matching method like RIFT [42] to find the best

matches in the DTV target galleries. Automatic match-

ing works here since images are taken from the same

sensor.

4) Manually segregate the gallery into classes that best

match the query SAT images. This step is manual to

discard adversarial scenes (like similar buildings on

both sides) as shown in Fig. 2.

We provide historical SAT imagery for landmarks. It is a test

case for augmenting a standard dataset to have cross-platform

capability.

C. DATASET ANALYSIS

A summary of the proposed enhancements and improve-

ments over the baseline [14] are given in Tables 3 and 4 re-

spectively. We now analyze the dataset to identify challenges

involved in matching aerial imagery. We generate query-

match profile curves for a few DTV query images manually.

We first manually find the target-bin region for each query

image, i.e., the set of frames in the SAT gallery containing

the scene. A query and target image [66] are shown in

Figures 3a and 3b respectively. We marked corresponding

match points manually (colored dots). We use these points to

find homography and generate the overlap image as shown

in Fig. 3c. This overlap image can be visualized with the

checkerboard in Fig. 3d for patchwise clarity.

(a) Query image ( [66]) (b) Target Image ( [5])

(c) Blended Queryimage (d) Blended (checker board)

FIGURE 3: Manual marking of corresponding points (col-

ored dots) and overlap representation. (a) Query image with

colored manual points (b) Target image with corresponding

manual points (c) Blended query image over target image

(d) Blended image with checker representation. Best viewed

with zoom and color display.

VPR [19] is the ability to recognize the overlap between

two observations/images underlying match threshold con-
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TABLE 3: A summary of the various galleries in the proposed enhancements to the datasets in [14] and [66].

Name Resolution # Images/Galleries Description

SAT-Year-wise-Warped 640× 480 2500 per year Manually marked points for paired sequences [14] of DTVA-Reference
and SAT-Year-wise images (2009-2020)

HD-DTV 1920× 1080 2500× 3 HD sequence of DTVA, DTVB and DTVC sequences
of path planning dataset [14], 3 rounds

HD-SAT-Yearwise 1920× 1080 2500× 3 per year HD sequence of SAT-Yearwise sequences (12 years, 2009–2020)
of path planning dataset [14]

HD-Offset 1920× 1080 2500× 2 per year Historical (12 years, 2009–2020) offset galleries with positive
and negative bias

HD-Dawn-Dusk 1920× 1080 2500× 2 per year Historical (12 years, 2009–2020) Dawn and dusk galleries at 6AM
and 6PM local time respectively

HD-Drift 1920× 1080 2500× 2 per year Historical (12 years, 2009–2020) drift galleries at rate of 0.5 deg per hour
on either side of the ideal path

HD-1000-cross-platform 1920× 1080 1000× 2 Non-sequential (30 frames apart) High resolution
DTV and SAT images with manually aligned match points

HD-1000-segments 1920× 1080 1000 Semantic segmentation labels

UAV123-Cross-Platform-Classification 1280× 720 3 galleries Modified UAV123 dataset images [66] for classification
with cross-domain images

straints. This overlap score for a query image against each

SAT image in the target-bin region forms the query-match

profile (also referred to as "normalized surface overlap" [67]).

An example query-match profile curve with Gaussian fit is

shown in Fig. 4 over the target-bin region. This is similar to

representation of "ok" categorized images [32]. As can be

seen, the best match score is 90% for a DTV query image

over SAT gallery. It is normalized for better interpretation.

An important takeaway from this query-match profile is that

the overlap region varies smoothly over the SAT gallery

frames and falls off almost symmetrically about the best fit.

Query-match profile is normalized overlap over the target-

bin region. Target-bin and query-match are the baselines for

coarse and fine match performance evaluation, respectively.
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FIGURE 4: Query-match profile with Gaussian fit over

target-bin. Normalized overlap curve built over manually

marked corresponding points.

To further analyze the matching complexity of the pro-

posed dataset, we applied various image matching methods

over our SAT target gallery for one DTV query image. The

performance of contemporary traditional and deep learning-

based image matching methods for a DTV query image over

the entire SAT gallery is shown in Fig. 5a and 5b respectively.

Fig. 5a shows the performance of the Bag of visual words

(BoVW) built over traditional descriptors. Fig. 5b represents

the cosine distance between a DTV query and SAT target

galleries. At the same time, the mean absolute error (MAE)

for points deviation in the target-bin region for standard clas-

sical keypoints algorithms is shown in Fig. 5c. The difficulty

with the existing traditional and deep learning methods is

that they all have multiple maxima/minima over the search

region. This necessitates the proposed coarse-fine matching

technique, which exploits both methodologies appropriately.

It provides the primary motivation for the proposed two-step

image matching framework.

D. STORAGE/RETRIEVAL MECHANISM

The proposed dataset has multiple types of SAT galleries with

historical information (12 years). Handling and storing HD

images is very cumbersome. For ease [18], we propose to

compress in video format along with embedding metadata

in a structured manner. Image quality is retained reasonably

with Spatio-temporal compression of sequential frames. We

propose using time-stamp information for each frame indi-

cating the type of gallery, year of acquisition, and frame

number (in turn coordinates). Although, this information is

available as metadata in standard video format (e.g., avi) and

image format (e.g., GeoTIFF) but requires more space and

an add-on utility. There are two components for embedding

in the enhanced dataset: low and high frequencies. The low-

frequency component includes the type of gallery and year

number, while the high-frequency component involves frame

indices. We embed low-frequency components in pixels and

high-frequency components in bar patterns considering com-

pression artifacts. We allocate four contiguous pixels per

bar (per bit). High intensity (grey value of 235) and low

intensity (grey value of 16) represent a logic ’1’ and logic

’0’, respectively. With this embedding, images extracted in

png/jpg/bmp format will contain relevant information to au-

tomate frame processing for path, etc. The same embedding
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TABLE 4: Dataset specific contribution

Parameter Baseline [14] Proposed Upgradation Remark

Coarse Alignment Yes Yes Qualitatively (visually aligned)

Fine Alignment 9 query images over target-bin region 2500× 3 pairs Quantitatively (manual
corresponding points)

Sequential Images Yes (2500) Yes (2500 + 1000 images at an interval of 30
frames)

Inclusive of baseline

Aircraft Path Travel 8km 30km Inclusive of baseline

Frame rate/Duration 60fps/125 Sec 2fps/500 Sec Overlap reduced with low frame
rate

Resolution VGA (640× 480) HD (1920× 1080) Improved resolution

DTV segmentation No Yes Manually labeled segments

Offset gallery No Yes (12 years) Positive and negative offset bias
galleries

Drift gallery Yes (1 year) Yes (12 years) Left and right drifted galleries

Dawn/Dusk Galleries No Yes Aids in improving generalization

Semantic Segments SAT-BM gallery / 2500× 1 (VGA) SAT-Year-wise/2500× 1 (VGA) + 1000 (HD) Semi-automatic label transfer

Storage Image Video
Gallery name, year and index embedded.Retrieval/ordering Image name with frame number Encapsulated within video

Metadata embedding No Yes

UAV123 [66]
cross-platform
enhancement

1) Forward SAT galleries
2) Backward SAT galleries
3) VGA resolution
4) Query image: UAV123 [66]
5) Target galleries: Augmented

SAT

1) Landmarks Aggregation
2) Landmarks historical SAT images
3) HD-ready resolution (1280x720)
4) Query images: Augmented historical

SAT images
5) Target galleries: UAV123 [66]

Generation of SAT target galleries
to SAT historical query images

Applications Path planning/Cross-platform match-
ing

Path planning/Cross-platform match-
ing/classification/Multiple galleries

Enhanced scope

can be extended further for other extrinsic parameters.

IV. PROPOSED TWO-STEP IMAGE MATCHING

FRAMEWORK

The dataset generation process revealed several challenges

in matching aerial imagery across different platforms or

sensors. The most daunting of these include a lack of reg-

istration, mismatches in resolution, luminance, time of the

day, perspective view variation, etc. Further, since the match-

ing is to be done on low-resource aerial vehicles such as

drones, this poses a further practical challenge. As we have

seen in Figures 5a and 5b, the matching performance of

traditional and deep methods, is not convincing. Based on

discussions ( [43], [44], [59]–[63]), global features describe

the entire image and have more pose in-variance in contrast

with local features describing patches (group of pixels). With

this motivation and associated challenges, we present a two-

step image matching framework, the first of which is a fast

coarse-matching stage followed by a fine-matching stage.

The former was built using a pre-trained CNN and the latter

using off-the-shelf state-of-the-art matching methods.

Our two-step matching framework is pictorially repre-

sented in Fig. 6. SAT images and features for the expected

flight path and possible drifted paths are pre-loaded on the

aerial vehicle as shown in the upper part of Fig. 6. SAT

galleries are divided into bins (or temporally contiguous

frames). The real-time query images from the onboard cam-

era (called DTV images) are first fed to the coarse-matching

stage. The coarse-matching stage indicates whether or not

the input DTV query image is similar to the SAT target

image. DTV frames whose classification indices (with the

majority) correspond to the expected target-bin region or

time instant are passed to the fine-matching stage. Standard

keypoints matching algorithms are applied over the target-

bin region to regress over the fine-match region. Outliers

are discarded by exploiting spectral, temporal, and flow

consistencies followed by cluster analysis. We describe this

two-step matching framework in algorithm 1 and each of the

stages in detail in the following sub-sections.

Algorithm 1 Proposed Two-stage Matching Algorithm

Input: Pre-trained model, GEE SAT image gallery of in-

tended flight path, target_bin, and continuous stream

of DTV data and extrinsic parameters.

while input DTV data stream available do

Apply coarse-matching on incoming DTV frame and

extrinsic parameters

current_bin = output of coarse-matching stage

if current_bin = target_bin then

Apply fine-matching stage

Output: Top-M matches and Confidence Score

end if

end while

A. COARSE-MATCHING

The coarse-matching stage is designed to perform two func-

tional tasks – reduce the overall computational complexity

of matching and compare the actual flight path with the

expected flight path. There are no constraints in terms of the

need for very recent SAT imagery [5]. The coarse-matching

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3184328

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Shahid et al.: A Cross-Platform HD Dataset and a Two-Step Framework for Robust Aerial Image Matching

(a) The performance of contemporary traditional BoVW meth-
ods over full gallery.
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(b) The performance of contemporary deep learning image
matching methods over full gallery.
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image matching methods.

FIGURE 5: Performance of existing methods for a DTV

query image over the SAT target gallery. The dashed box

implies the target-bin region. The key takeaway from these

plots is that none of the existing methods show satisfactory

performance. Best viewed with zoom and color display.

step involves two phases – classifier fine-tuning carried out

pre-flight (on the ground or off-line) followed by inference

during the flight (onboard or real-time).

A deep learning classification model is fine-tuned pre-

flight using the expected-flight path over SAT image gal-

leries. These frames are first partitioned into N classes

with M images in each class. Essentially, each class cor-

responds to frames from a temporally contiguous region in

the flight path. We also designate the class(es) that contain

the target or destination image(s) since this information is

available pre-flight. We have experimented with different

architectural modifications over pre-trained VGG16 [50] and

ResNet50 [52] models. The pioneering work [63] concludes

that mid-level CNN features exhibit robustness against ap-

pearance changes. In contrast, high-level features carry more

semantics information and are more robust against changes

in viewpoint. With this motivation of robustness against ap-

pearance changes and viewpoint, we empirically found that

fine-tuning ResNet50 [52] with four appended dense layers

(i.e., towards the end) and matching with features of a dense

layer (fourth from last) performs reasonably well. The block

diagram is shown in Fig. 7. Upper and lower branches of

Fig. 7 represent pre-flight (ground-based or off-line) training

activity and live (onboard or real-time) inference activity,

respectively. The number of classes N is chosen so that

each class has a sufficiently unique set of frames. In our

experiments, we have chosen N to be 125 while the total

number of images in the SAT gallery is 2500 (i.e., M = 20).

The choice of N is dependent on factors including the flight

speed and the frame rate. Once the fine-tuning is complete,

we perform coarse-matching in the feature space of this fine-

tuned model. The input DTV query image (onboard or real-

time) is matched with a stored sequence of satellite images

by extracting the features from the first appended dense

layer. The mean square error (MSE) between the input DTV

query image features and the satellite image features is then

computed.

To further improve performance, we incorporate the real-

time camera’s extrinsic parameters available from the aircraft

into our coarse-matching process as shown in Fig. 8. As

discussed earlier, the DTV/airborne video is acquired along

with extrinsic parameters (e.g., metadata) in real-time. The

extrinsic parameters (altitude and rotation) complement the

image level information. It is essential to consider this infor-

mation to make the proposed approach more robust. We first

relate the intrinsic parameters to the extrinsic parameters. To

relate the camera field of view (FoV) to altitude, we generate

an image for a typical altitude (with fixed known FoV). After

that, we simulate incremental altitude in steps of 10m and

generate images from GEE [5]. For typical altitude images

and incremental altitude images, we detect SURF keypoints

followed by standard outlier removal (e.g., RANSAC [58])

and generate the transformation matrix and the scale factor.

This procedure generates an altitude to scale factor (zoom

number) for the typical altitude. Similarly, rotation is the

function of camera mounting and aircraft heading. We fol-
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FIGURE 6: Proposed overall coarse-fine matching approach. Solid blue and dashed black lines imply expected and drifted

trajectories, respectively. Coarse classifier-E fine-tuned over expected paths while coarse classifier-L/R are fine-tuned over left

and right drifted paths, respectively. Fine-matching has points analysis followed by cluster analysis. Best viewed with zoom

and color display.

FIGURE 7: Proposed coarse-matching method with a modi-

fied ResNet50 [52] architecture (4 dense layers). Features are

taken from first dense layer for testing.

lowed the same procedure as the altitude to scale factor for

generating heading to rotation angle. Therefore, we have

two extrinsic parameters per frame: altitude and rotation.

For these extrinsic parameters to be effective, we found that

they need to be projected to a higher dimension. This is

found empirically using a dense network that progressively

increases the dimension from 2 to 256. Specifically, this

network has two hidden layers of sizes four and sixteen,

followed by an output layer of size 256. We concatenate

these extrinsic parameters along with the features from the

pre-trained ResNet50 model [52] to fine-tune the model

further. The block diagram of the proposed coarse-matching

approach is shown in Fig. 8. The performance of the coarse-

matching without and with extrinsic parameters is discussed

in the next section.

B. FINE-MATCHING

The coarse-matching stage achieves two goals – one of

checking the flight’s expected trajectory and the other of

identifying the target-bin region. Once the coarse-matching

stage classifies the input frames as belonging to the target-

bin region, all such frames are passed to the fine-matching

stage. Additional checks are applied to such frames by com-

paring them with all SAT frames in the target-bin before

declaring an overall match. The steps in the fine-matching

stage include identifying corresponding match keypoints us-

ing a baseline method, performing consistency checks on

the matched keypoints, clustering, and finally, confidence

scoring. The fine-matching stage fundamentally leverages the

temporal correlation in the gallery of images in the target-

bin to prune out extraneous matching points. It helps the
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FIGURE 8: Proposed coarse-matching method (with extrin-

sic parameters). A combination of modified ResNet50 [52]

architecture and extrinsic parameters are fine-tuned. Coarse-

matching happens in the feature domain using MSE between

the input DTV query image and target images of SAT gallery

image features.

proposed method deliver match indices consistently and with

higher confidence. We describe each of these steps next.

1) Key Points Matching

As the first step to finding matching keypoints, we apply

the DeepMatching (DM) algorithm [37] to the DTV query

image and the SAT images in the target-bin region of the

SAT target gallery. Specifically, we find matching keypoints

over five channels of the input image pair. These are the three

color channels (Red, Green, and Blue), the average color

channels, and luminance. DM [37], a semi-dense matching

algorithm is applied to the corresponding pair of channels.

DM [37] match for luminance channel are shown in the first

column (1) of Fig. 9. We work with the semi-dense matching

results to clearly illustrate the proposed pruning strategy.

The semi-dense matching can easily be replaced by sparse

matching methods such as SuperGlue [41] or RIFT [42] to

find a sparser set of matching keypoints. We can even use a

dense matching method like Deep Flow [68]. However, we

have not tested the proposed strategy with dense matching

methods given the resource-constrained environment where

we expect our algorithm to be deployed. The semi-dense

keypoints match correspondence becomes the input to the

consistency check stage of our pruning strategy.

2) Points Analysis

We apply a series of consistency checks to prune further the

keypoints identified by the semi-dense matching algorithm.

The first of these is a check for spectral consistency. We

hypothesize that for a keypoint to be consistent, it has to

appear in a majority of the channels. In other words, a

keypoint is declared to be consistent if it appears in at least

three of the five channels over which DM [37] is applied.

The resulting keypoints are used to create a mask which is

then applied to the luminance channel keypoints. This set

of masked luminance channel keypoints is used for further

processing. Spectrally consistent points are shown in the

second column (2) of Fig. 9.

We then apply a temporal check, which is based on the

fact that matching keypoints must appear in the gallery for

an expected number of frames depending on the speed of the

aircraft, altitude, camera field of view (FoV), and the look

angle of the acquisition platform. In our experiments, the

vertical FoV of the camera is 25 deg and is looking down with

a tilt of around 60 deg from the horizon due to mounting con-

straints (as stated earlier) with a target slant range of around

4000’. The aircraft speed is approximately 60 m per second,

leading to the temporal displacement of around 1 m per frame

at a camera frame rate of 60 fps. Due to resource constraint

environment, we have down-sampled to VGA resolution [14]

leading to a displacement of 2-3 pixels per frame. The same

displacement is ascertained while finding a match between

sequential frames. This displacement indicates scene or point

appearance for 2.5 seconds on an average of 150 frames (at

60 fps). These 150 frames form the target-bin regions for the

scene. In the target-bin region, a spectrally consistent point

is expected to be appearing for at least 50% of the target-

bin region temporally. All keypoints that do not satisfy this

condition are pruned. Temporally consistent points are shown

in the third column (3) of Fig. 9.

After the spectral and temporal checks, we apply a local

motion check that is somewhat similar in essence [43], [44].

These works [43], [44] discard putative matches in the neigh-

borhood by gridding correspondence space and consensus

of length/angle using an empirical penalty, respectively. We

claim that the optical flow at keypoints must be consistent

with the average flow in their local neighborhood and propose

a simple check for it. The optical flow of the entire set of

satellite images in the target-bin is found a priori. The mean

and variance of the optical flow magnitude (denoted µr, σ
2
r )

and phase (denoted µθ, σ
2
θ ) around each pixel is then found

over a voxel of size 8×8×8. We find consistency in voxel in

contrast with [44]. For every keypoint in the DTV image, we

check if the flow vector at the corresponding match keypoint

in the SAT image is consistent. By consistent, we mean that

the magnitude and phase at the keypoint must lie within

µr ± 6σr and µθ ± 6σθ respectively. All keypoints that fail

this check are pruned. Flow consistent points are shown in

the fourth column (4) of Fig. 9.

The corresponding improvements over the sequence of

frames are shown in Fig. 10. Points analysis exploits spec-

tral, temporal, and flow consistencies. The total number of

consistent points and the accuracy over the frames at each

stage is shown in Fig. 10 respectively. The number of match

points reduces as we go away from the best match index due

to the common region on either side. Base algorithm [37]

has maximum points over the frames and reduces relatively

with spectral/temporal/flow stages as shown in Fig. 10. The

efficacy of remaining points, in target-bin region (i.e. frame

no 135-255) is lowest over the frames for base algorithm [37]
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(1) DM [37] → (2) Spectral → (3) Temporal → (4) Flow → (5) Clustering → (6) Intra → (7) Inter

FIGURE 9: Image matching outputs at various stages of the proposed algorithm. The algorithm proceeds sequentially from left

to right. The top row corresponds to DTV images, and the bottom row corresponds to satellite images. Note the progressive

improvement in the matching output along with the reduction in spurious matches. Best viewed with zoom and color display.

than spectral/temporal/flow consistent stages as shown in Fig.

10.

3) Cluster Analysis

The matching keypoints identified as consistent in the pre-

vious stage are clustered in the DTV query image using k-

means Clustering. Clustering is motivated by the fact that

matches will occur in a bunch of patches (specific features

etc.) due to changes (appearance and viewpoints) over the

period. We have empirically chosen the number of clusters

to be 15 for our DTV query image in this stage. Consistent

match keypoints in the SAT image are chosen to form another

set of clusters (without applying k-means). Clustered points

are shown in the fifth column (5) of Fig. 9.

Let the cluster index be denoted by c, number of keypoints

in this cluster be Nc, and the keypoint locations in each DTV

cluster be denoted by the matrix K
c = [kc

1, . . . ,k
c
Nc

] where

k
c
i is the ith 2D keypoint location in the cth cluster. Further,

let the centroid of this cluster be k̄
c. Similarly, let the corre-

sponding SAT keypoint locations be denoted by the matrix

K
′c = [k′c

1, . . . ,k
′c
Nc

] and the centroid of this cluster be k̄′
c
.

Also, let Dc = [dc
1, . . . ,d

c
Nc

] = [(kc
1− k̄

c), . . . , (kc
Nc

− k̄
c)]

be the displacement matrix composed of the displacement

vector of each keypoint in the DTV cluster relative to its

centroid. The displacement matrix D
′c is defined in an identi-

cal fashion for the corresponding SAT image keypoints. The

error matrix is defined to be E
c = D

c − D
′c. This matrix

captures the error between the displacement vectors corre-

sponding to the DTV query and SAT target image keypoints.

In the ideal case, this should be a matrix with all zero entries

for every cluster c. However, this ideal case is very rare for

oblique aerial and top-view outdated satellite imagery.

We propose the following strategy to identify the best

matching keypoints clusters. The eigenvalues λc
max, λ

c
min of

the covariance matrix corresponding to the error vectors

in E
c are found for each cluster c. We then pick those

clusters c whose minimum eigenvalue λc
min is lower than a

threshold τ that is found by applying the Otsu’s algorithm

over the set of minimum eigenvalues {λ1
min, . . . , λ

15
min}. This

choice is guided by the fact that the minimum eigenvalue

determines the ill-conditioning of a symmetric matrix and

that the skewed displacement error matrix condition results in

a highly ill-conditioned covariance matrix. Otsu’s threshold

is used since it helps in finding clusters that have minimum

intra-class variance or, equivalently, maximum inter-class

variance. Intra-cluster consistent points are shown in the

sixth column (6) of Fig. 9. Once the best matching clusters

are found, the corresponding keypoints are used to find the

homography between the DTV query image and the SAT

target image. The amount of overlap between the registered

DTV image and the SAT image is the final matching score

output by the proposed framework.

4) Confidence Score

We now present our approach to find the confidence score

of the proposed matching framework. As discussed earlier,

each query image has a target-bin region and a non-target-bin

region in the SAT gallery. The confidence score is expected

to be higher for the target-bin than the non-target-bin region.

The keypoints passed from the previous step are used to find

the confidence score. We cluster all passed keypoints into

a few clusters in the DTV query image and corresponding

group points in the SAT target image. The centroid of each

cluster forms the vertex for the polygons in both images, as

shown in the last column (7)of Fig. 9. We analyze across

clusters (inter cluster analysis) by forming polygons in both

the images. The polygons are unfolded [69] to calculate the

turning radius [70]. The turning radius provides the mean

squared error for the unfolded polygon but suffers from the

issue of upper bound limit [70]. We experimented with a few

ways of finding the score of turning radius and found that the

weighted sum of the cosine of difference of turning angles,

as shown in Eq. 1, outperformed the baseline [70] as shown

in Table 5.

Score =
1

M

M
∑

i=1

Wi ∗ cos(θci − θ
′c
i ), (1)

where θci , θ
′c
i are the turning angles for the DTV and SAT

cluster i; weight Wi: Points proportion for ith cluster; M

is the total number of clusters. Cosine of difference of sub-

tended turning angles are weighed with points proportion of
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FIGURE 10: Improvements with proposed consistency anal-

ysis. (U) Number of consistent points over the frames. (D)

Accuracy over the frames. We observe improvement in the

accuracy over the baseline due to spectral/temporal/flow

based filtering.

each cluster. This weighted sum is normalized for the number

of clusters. From table 5, we can see an improvement in

confidence score for the passed points over target-bin region

than non-target-bin region. This significant improvement is

due to false points being discarded by our procedure as

described above.

V. RESULTS AND DISCUSSION

The proposed two-step aerial image matching framework

is applied over the frames from the incoming DTV video

sequence described previously. Given that our framework’s

first stage (coarse-match) performs standard image retrieval,

it is evaluated using traditional image retrieval metrics (e.g.,

Top@N, mAP). The second stage, however, proposes meth-

ods to reduce outliers in state-of-the-art matching algorithms

( [37], [41], [42], [56]). Therefore, we measure the perfor-

mance of the second stage in terms of the improvement

over baseline state-of-the-art matching methods (Naive/with

RANSAC [58]). Further, the sequential aerial image match-

ing application imposes additional matching requirements

such as the percentage of overlap for the match and the

Spatio-temporal accuracy of the match. Since there are no

readily available metrics to measure this performance, we

have adopted evaluation metrics [40] typically used in image

matching and quality assessment. These evaluation metrics

are briefly described as follows:

1) Top@N: Top N images retrieved for an input query

image is widely used in the content-based image re-

trieval (CBIR) literature. It implies at least one correct

match among the top N matching results from the SAT

gallery. It is an increasing and monotonic function of

N .

2) Mean average precision (mAP): mAP is the average

precision over a bin. This is calculated over the full

SAT target gallery.

3) F-score: Precision and recall represent the probability

of correct detection for a class. High precision and

recall are desired in matching algorithms. The F-score

provides a combination of precision and recalls for

unbalanced classes (i.e., target-bin region smaller than

non-target region), and a higher F-score implies better

performance. Searching for an image or short clip in a

long video makes our classes imbalanced.

4) Percentage of correct keypoints (PCK): PCK is the

standard way to designate the probability of correct

keypoint [41], [71] on a set of matching images. It

makes the underlying assumption of the threshold of

correct match (e.g., the number of pixels/euclidean

distance = α ∗ max(width, height). α is a constant. A

transformation matrix derived using the manual labeled

keypoints is used as ground truth. PCK5 and PCK10 is

described in Eq. 2 for x = 5 and 10 pixels respectively.

This methodology is similar to Repeatability [40], [42].

PCKx =

∣

∣

{
∥

∥Q1
i −HS2

i

∥

∥ < x
}ni

i=1

∣

∣

N
, (2)
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TABLE 5: Performance of passed points using proposed methodology

Method Full gallery (2500 pairs) Target-bin non-target-bin Remark

Arkin et al. [70] (0 is best) 0.39 0.38 0.4
Target-bin region separation improved from 5% to 96%

Modified (1 is best) 0.12 0.998 0.046

where H is the manually determined ground truth

transformation between query Q and search S images;

Q1
i and S2

i are the output paired coordinates of match-

ing algorithm. N is a total number of paired points, and

ni is the pair index.

5) Mean Absolute Error (MAE): Li et al. [42] have used

MAE for quantitative evaluation. It is the deviation

concerning the homogeneous matrix. It is formulated

in Eq. 3 with the transformation matrix built over

manually marked correspondence points.

MAEj =

∑N

i=1

∣

∣Q1
i −HjS

2
i

∣

∣

N
, (3)

where, Hj is manual transformation matrix for query

image with jth index image in target SAT gallery. Q1
i

and S2
i are the output paired coordinates of matching

algorithm. N is the total number of paired points and

i is the pair index. This methodology is similar to

Localisation error [40].

6) Ratio-metrics (RM): Ratio-metrics [42] is calculated

over the match pairs temporally. It describes the ratio

of the number of image pairs with correct match pairs

above 50% (PCK threshold of 10) over the entire

gallery. It is described in Eq. 4. It gives a quick idea

about the performance of a query image over the target-

bin region (the majority of correct matches in image

pairs).

RM, rPCKx>50% =

∣

∣

∣
{PCKx > 50%}

NG

1

∣

∣

∣

NG

, (4)

where NG is no of images in target-bin region of a

gallery and x is 10 pixels.

7) Overlap: The amount of overlap [72] between query

and target image is another way of evaluation. This

overlap is derived from the homography of matched

points. This methodology is similar to homography

estimation [40]. Query-specific query-match profile

curve is the ground truth. The overlap is quantified

using the following metrics.

a) Positional accuracy (PA): PA represents how

close the match index (i.e., time instant) is to

the peak of the query-match profile curve (Best-

Match index) as shown in Fig. 4. This curve is

the basis for finding the score for the given index.

Predicted indices close to the peak of the query-

match profile will have better positional accuracy.

b) Pearson’s Linear Correlation Coefficient (PLCC):

PLCC indicates a linear correlation between two

sets of values. It is also termed the normalized

correlation coefficient. It varies between +1 and

-1. Correlation between predicted query-match

profile in the SAT gallery is compared with man-

ual query-match profile curve (Ground truth as

shown in Fig. 4).

c) Spearman Rank Ordered Correlation Coefficient

(SROCC): SROCC is the non-parametric mea-

sure of rank correlation. It measures the temporal

relation between predicted and ground truth data.

It finds a correlation in the rank order given by

the matching algorithm against the query-match

profile. Higher SROCC is indicative of better

performance.

A. RESULTS

We present the results of our proposed matching frame-

work in a stage-wise manner with coarse-matching results

followed by those for fine-matching. We have divided the

SAT galleries into two parts, target-bin region (query image

available - OK [32]) and non-target-bin region (no match

feasible with the query - Absent [32]). Coarse-matching

performance is evaluated over the entire SAT gallery (i.e.,

2500 frames) consisting of both regions. In contrast, fine-

matching performance is evaluated over a target-bin region

as indicated by the dashed box in Fig. 5a and 5b.

1) Performance over entire gallery

We evaluate the performance of the proposed coarse classifier

with state-of-the-art methods. These contemporary methods

have demonstrated excellent Performance on several standard

image matching datasets. We evaluate Performance using

standard matching methodologies as described earlier. A

match is considered valid when the Match index from the

matching algorithm lies in the target-bin region of the query

image.

Specifically, we carried out a standard image search ex-

periment (Fig. 5) for a few query images (DTV) in several

example target galleries (SAT). We have considered a few

state-of-the-art image matching algorithms for comparison.

These include both conventional and recent deep methods.

For conventional methods bag of visual words with descrip-

tors, [25]–[27] are used for comparison. Pretrained models

(VGG16 [50] and ResNet50 [52]) are used in the inference

mode to find the difference between the query and target

images. For SimNet [46] and CNN-registration [49], we used

the available online implementations.

Top@1, Top@5, Top@10, Top@20 and mean Average

Precision (mAP) for the proposed and contemporary methods

are summarized in Table 6. We have used 9 DTV query

images and tested with SAT year-wise target galleries [14].
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TABLE 6: Performance of Coarse-matching over SAT-year-wise galleries (Higher is better)

No. Method Top@1 Top@5 Top@10 Top@20 mAP

1. BoVW (SIFT [26]) 22.2 27.8 27.8 33.3 19.95

2. BoVW (SURF [27]) 19.4 47.2 55 69 21

3. BoVW (ORB [25]) 19.4 38.8 41.6 44.4 15.28

4. BoG Spatial [31], [32] 22.2 [14] 38.8 41.6 50 23.9

5. CNN-registration [49] 7 [14] 50 50 71 15

6. SimNet [46] 27.5 [14] 38.4 49.5 57.75 14.4

7. Pretrained VGG16 [50] 27.7 [14] 36.1 41.6 42 23.1

8. Pretrained ResNet50 [52] 16.6 [14] 19.4 22.2 30 18

9. Proposed fine-tuned Classifier 41.4 50 55.5 55.5 22.3

10. Proposed fine-tuned Classifier with Extrinsic Parameters 44.4 52.7 58.3 61.1 23.4

The mAP is calculated for Recall 1. Performance of BoVW

vocabulary built over local features ( [25]–[27]) and global

features ( [31], [32]). BoG spatial ( [31], [32]) performs a bit

better in terms of mAP but poor for all Top@N retrievals.

Baseline, VGG16 [50] pretrained network performs better

than ResNet50 [52] for all parameters. CNN-registration [49]

and SimNet [46] work reasonably well for Top@10 and

Top@20 but have low mAP. The proposed classifier with ex-

trinsic parameters demonstrates consistent improvement con-

cerning Top@N retrievals and mAP. As stated in the coarse-

matching description (section IV-A), we empirically found

that fine-tuning ResNet50 architecture [52] performed well.

The proposed fine-tuned architecture without/with extrinsic

parameters performs considerably better than the baseline

model. Recall and F-score curves for Top@N retrieved in-

dices considering baseline, fine-tuned architecture without

and with extrinsic parameters are shown in Fig. 11a and

11c respectively. Similarly, Precision-Recall showed in Fig.

11b. The fine-tuned architecture is better than the baseline,

and it further improves with extrinsic parameters. Extrinsic

parameters are readily available (metadata) for any aerial

journey, and the role of extrinsic parameters in improving

overall performance is clear from these results.

2) Performance over target-bin region

With clues from coarse-matching stage, fine-matching is

carried out over expected target-bin region as shown in Fig.

6. The former outputs a few probable frames (i.e. indices)

which are validated by the latter one. As stated, we built

over standard matching algorithms (DeepMatch [37], Super-

Glue [41], RIFT [42], Patch-NetVLAD [56]). We compare

against baseline ( [37], [41], [42], [56]) without/with standard

outlier [58].

To evaluate the performance of the fine-matching stage, we

test it over the target-bin region and apply standard metrics

like PCK, MAE, ratio-metric (RM), etc. In the entire target-

bin region, the query image is assumed to be available at least

partially (i.e., OK [32]). PCK5 and PCK10 imply designated

deviation within 5 and 10 pixels, respectively, from the

ground truth correspondence. Fine-matching performance

over target-bin region is tabulated in table 7. We notice a clear

improvement in PCK5 and PCK10 over the baseline and with

standard outlier (RANSAC [58]) implementation. PCK10 is

expected to be better than PCK5. The same is validated

from columns 3 and 4 of table 7 for base methods ( [37],

[41], [42], [56]), along with RANSAC [58] and proposed

outlier removal methodology. The mean deviation error for

matched points is shown in Fig. 12a for DTV query image in

SAT target gallery [14]. This deviation increases as we go

away from Best-Match index in the target-bin region. For

SuperGlue [41], baseline deviation error increases further

with RANSAC outlier as depicted with PCK values reduction

in table 7. For the proposed outlier removal, the mean devi-

ation curve is reasonably low and flat for the entire target-

bin region, as shown in Fig. 12a. Matched points precision

for varying euclidean distance threshold is shown in Fig.

12b. Precision is a monotonically increasing function with

an increase in the threshold for all methods as expected. Im-

provement is clear for proposed methodology over multiple

baselines( [37], [41], [42], [56]).

Matchpoints (pairs) are used to generate overlap using ho-

mography. A higher overlap is indicative of a better match. To

search a DTV query image in a target SAT gallery, the ideal

output should have an inverted ‘V’ shape, i.e., a clear peak

(corresponding to the highest overlap) at the correct matching

location. It should quickly taper off as we move away from

this ideal location. The proposed method is compared with

contemporary methods in terms of overlap percentage over

the target-bin region as shown in Fig. 12c. From this figure,

we see that baselines ( [37], [41], [42], [56]) overlap and

have multiple peaks/valleys towards the endpoint (right side

of curves), which is subdued by the proposed outlier removal

approach. Additionally, the inverted ’V’ shape output (query-

match profile) with a peak close to the Best-Match index is

also very evident for the proposed method. We use PLCC

and SROCC to quantify this overlap performance relative

to the manual ground truth (query-match profile as shown

in Fig. 4) quantitatively. Despite the poor performance of

SuperGlue [41] with RANSAC [58] in terms of PCK, it

performs well in terms of PLCC and SROCC. PA relates

predicted best frame (i.e., time instant) deviation from Best-

Match index as shown in Fig. 5b,12a,12c. PA for DM [37]

with RANSAC [58] is reasonably high relative to the other

methods.

The points passed by the proposed approach for a query

image in the target-bin region are shown in Figures 13a,

13b, 13c, 13d over standard methods [37], [41], [42], [56]

respectively. True and false matches are represented with
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TABLE 7: Fine-matching performance over the target-bin region. Bold numbers imply the best performance for the given

baseline. Except for the last column, higher is better.

No. Method PCK5 (%) PCK10 (%) PLCC SROCC PA RM MAE

1. DeepMatching [37] (Baseline) 18.8 35.9 0.23 0.26 68.1 18.42 79.3

2. DeepMatching [37] + RANSAC [58] 10.4 21.4 0.43 0.43 80.4 14.10 159.8

3. DeepMatching [37] + Proposed 25.3 42.4 0.76 0.76 73.07 28.21 76.9

4. SuperGlue [41](Baseline) 2.17 8.03 0.59 0.66 60.9 3.39 159.7

5. SuperGlue [41] + RANSAC [58] 1.03 4.46 0.62 0.6 73.2 0.99 217.1

6. SuperGlue [41] + Proposed 7.55 23.8 0.63 0.6 82.8 10.02 132.6

7. RIFT [42] (Baseline) 1.1 3.52 0.55 0.58 77.6 1.24 146.8

8. RIFT [42] + RANSAC [58] 1.3 4.17 0.57 0.57 77.8 1.35 164.2

9. RIFT [42] + Proposed 18.35 35.79 0.72 0.62 83.2 36.29 55.13

10. Patch-NetVLAD [56] (Baseline) 0.81 3.01 0.32 0.32 60.07 0.92 214.4

11. Patch-NetVLAD [56] + RANSAC [58] 0.62 2.19 0.52 0.52 67.4 0.73 276.08

12. Patch-NetVLAD [56] + Proposed 10.3 31.9 0.56 0.58 77.3 59.8 10.9

TABLE 8: Matching performance over the UAV123 dataset [66]. Bold numbers imply the best performance for the given

baseline. Except for the last column, higher is better.

No. Method PCK5(%) PCK10(%) PLCC SROCC PA(%) RM MAE

1. DeepMatching [37] (Baseline) 22.9 49.2 0.2 0.36 53 22.5 57

2. DeepMatching [37] + RANSAC [58] 8.9 22.3 0.56 0.59 70 9.9 37

3. DeepMatching [37] + Proposed 32.9 63.1 0.27 0.15 64 23.8 26

4. SuperGlue [41] (Baseline) 3.5 11.2 0.51 0.61 82 0.38 99

5. SuperGlue [41] + RANSAC [58] 10.9 12.3 0.71 0.69 60 0.97 193

6. SuperGlue [41] + Proposed 10.8 15.8 0.84 0.78 81 10.5 34

7. RIFT [42] (Baseline) 2.0 4.8 0.48 0.36 64 0.2 201

8. RIFT [42] + RANSAC [58] 2.1 5.3 0.42 0.55 64 0.21 200

9. RIFT [42] + Proposed 2.69 6.8 0.25 0.15 81 3.4 45

TABLE 9: Computational complexity break-up of the coarse and fine matching stages of the proposed algorithm

Coarse-match (Inference)
Fine-match

Remark
Standard matching method ( [37] / [41] / [42]) Points analysis (Spectral / Temporal / Flow) Cluster analysis

80 mSec 9 s / 3 s / 7 s 0.2 s / 0.7 s / 0.8 s 78 mSec CPU

green and red colors, respectively, to visualize the efficacy

of the proposed approach for a query image in the target-

bin region. These figures show that the remaining (leftover)

false matches (PCK5 constraints) are very few. False matches

(red color) are further reduced with PCK10 constraints as

expected. The performance of the proposed and contem-

porary methods can be visualized qualitatively in Fig. 14

and Fig. 15 for Top@1 retrieved image of coarse-match

and fine-match respectively over the years. Coarse-matching

retrieved images are distributed all over the gallery, and the

same is depicted from the Fig. 14. These figures show that

the retrieved images for a query image over the years are

relatively consistent with the proposed approach. Fig. 15

represents a fine-match performance over the target-bin re-

gion, and therefore, the retrieved images are pretty similar

for all methods. It is clear again that retrieval performance

improved for the proposed outlier rejection over the years.

This improvement is relatively hard to visualize since the

retrieval is within the target-bin region. From these figures

and scores, it is clear that the proposed coarse-fine matching

method delivers improved performance.

Further, we evaluate the proposed approach over the mod-

ified [14] UAV123 dataset [66] and report the performance

in table 8. We want to reiterate that the query image is

SAT, and the target image is DTV [66] here. Generated

forward and backward galleries [14] have only target-bin

region; hence only fine-matching performance is evaluated.

Table 9 quantifies the typical computational complexity of

various associated modules. The computational efficiency of

the proposed approach can be seen from these numbers for

coarse and fine match components.

TABLE 10: Matching performance over the Aerial Template

Matching dataset [16]. Except for the last column, higher is

better.

Method PCK5 PCK10 RM MAE

RIFT [42] (Baseline) 6.17 15.43 7.22 38.63

RIFT [42] + RANSAC [58] 4 6.17 7.22 40.4

RIFT [42] + Proposed 14.81 41.9 17.39 21.08

TABLE 11: Matching performance over the University

dataset [17]. Except for the last column, higher is better.

Method PCK5 PCK10 RM MAE

RIFT [42] (Baseline) 34.08 63.1 23 12.4

RIFT [42] + RANSAC [58] 29.06 56.4 19 13.39

RIFT [42] + Proposed 36.1 64.8 26 11.7

For further validation, we have carried out initial exper-

iments with a recent Aerial Template Matching [16] and

VOLUME 4, 2016 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3184328

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Shahid et al.: A Cross-Platform HD Dataset and a Two-Step Framework for Robust Aerial Image Matching

TABLE 12: Cross-platform dataset comparison

Dataset Images Resolution Platform Video Type Application Altitude Variation Coverage

University-1652 [17] 1,46,593 512× 512 GEE, GEE-
3D

No Synthetic Classification 121.5-256
m

54 views 1652
buildings

Aerial Template
Matching [16]

2052 336× 224 Bing, Aerial Yes Real Recognition 2000 ft 3 areas 2 km
2

Path Planning [14] 25028 640× 480 GEE, Aerial Yes Real Recognition 5000 ft Historical
galleries

8 km

Cross-platform HD 32000 1920 ×

1080

GEE, Aerial Yes Real Recognition,
Classification

5000 ft Multiple gal-
leries

30 km

synthetic dataset [17]. As discussed earlier, dataset [16] has

low resolution and low frame rate aerial images (DTV). The

target-bin region contains 4 or 5 frames. Originally, the SAT

image [16] was a map from Bing, whereas we retrieved

SAT image for the same area from GEE and named it a

query SAT image. The aerial images from [16] are named

as target images/galleries. As discussed earlier, we marked

corresponding points manually for the target-bin region (4-5

frames) to generate a query-match profile. Due to the small

target-bin region, we apply the proposed cluster-analysis of

the fine-match step using RIFT [42]. The University-1652

dataset has many buildings with 54 views for each in a syn-

thesized manner. We manually marked corresponding points

for a few buildings. As above, we apply cluster analysis

of proposed fine-matching using RIFT [42]. Performance is

evaluated against baseline [42] without and with standard

outlier [58], for aerial template [16] and university [17]

datasets in table 10 and 11 respectively. Improvement is clear

from these tables regarding PCK, MAE, and RM.

B. DISCUSSION

This section briefly discusses our dataset enhancement and

the two-step matching framework. We enhanced the dataset

with more realistic scenarios (HD images, manual labels,

drift, offset, and dawn/dusk galleries) as summarized in Table

3. Enhancements over our earlier dataset [14] is presented in

Table 4 to clearly highlight the contributions of this work.

Offset and drift galleries are generated by adding latitude

since aircraft had to travel longitudinally (runway "East-

West" constraints). We have compared proposed enhance-

ment with publicly available cross-platform aerial datasets

( [16], [17]) in Table 12.

The corresponding sets of images are finely aligned with

manual point marking, and its efficacy is shown in Table

1. Due to the aligned nature of SAT-Year-wise-Warped and

HD-Dawn-Dusk galleries, the same can be used to train the

network [65] to generate unseen galleries. From Figs. 14

and 15, we see that the proposed dataset covers urban-

ization over the period, atmospheric distortions (for e.g.,

small clouds) and so on. As an improvement, the dataset can

be further enhanced with topological-metric [18] describing

objects and their interrelations. Seasonal and night galleries

may be further appended. For storage and retrieval, semantic

compression with metadata embeds and inverted matrix [31]

shall be explored.

VPR research is challenging due to the lack of a stan-

dard definition of ‘place’ and various datasets with vary-

ing metrics. Typically, the VPR problem revolves around

landscape/landmark/place while missing the aerial image

aspect. The proposed two-step matching framework presents

a coarse-fine approach for aerial image matching. The CNN-

based coarse-matching stage is fast, efficient, and accurate

and is ideally suited for the low resources feasible onboard

platforms. The tunable parameters include the number of

classes N and the number of bins M (and, therefore, the

number of images K in a bin). These parameters can be

chosen based on the speed and altitude of the aircraft.

Extrinsic parameters are a step toward multi-sensor data

fusion for real-time applications. We have built over a stable,

popular, and well-accepted network [52] as a baseline. It

can be further improved by using the latest models. Optimal

arbitration logic to use indices of multiple classifiers shall

be explored. The fine-matching stage builds on state-of-the-

art image matching methods ( [37], [41], [42], [56]). We

leverage over the points and cluster analysis to improve

matching performance. We exploited 3D information for

outlier removal in contrast with 2D based [43], [44]. We

have demonstrated the efficacy of both stages using several

evaluation metrics. Instead of sticking to image features [16],

we have leveraged spectral, temporal, and flow features. The

state-of-art datasets [16], [17] have been tested as an initial

step using one matching algorithm [42] as a baseline. We

plan to extend this for the entire framework with multiple

matching algorithms. Additionally, 3D scene modeling along

with metadata shall be explored. Matching a satellite image

with a thermal image is another line of research (due to

drastic texture variation) for practical applications (day-night

applications). Aircraft with gimballed cameras give flexibil-

ity to focused surveillance, but nonlinear combination results

in a wide variation of instantaneous scale and rotation factors.

Further, methodologies can be explored to use it as metadata

appropriately.

VI. CONCLUSIONS

We presented two contributions in this work – enhance-

ments to the cross-platform aerial Path-planning dataset and

a two-step framework for robust aerial image matching. Our

proposed enhancements address several shortcomings in the

literature, such as the lack of cross-platform aligned scenes,

multiple types of historical galleries, points correspondence,

semantic segmentation, etc. The proposed enhanced dataset

is very helpful for the evolution of aerial image matching
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FIGURE 11: Recall, Precision-Recall and F-score curves.

Comparison of baseline, proposed fine-tuned without/with

extrinsic parameters. The improvement due to the proposed

method is clear from all the curves.
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(c) Overlap curves.

FIGURE 12: Points performance curves for a DTV query

image within an SAT gallery in the same order as table

7. The proposed fine-matching stage improves the overall

performance of the considered metrics – MAE, PCK, and

Overlap. Italic legend implies the proposed approach. Best

viewed with zoom and color display.
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(a) Proposed approach built over DeepMatching [37].

(b) Proposed approach built over SuperGlue [41].

(c) Proposed approach built over RIFT [42].

(d) Proposed approach built over Patch-NetVLAD [56].

FIGURE 13: An illustration of the fine-matching stage ap-

plied to various baseline methods. Green and red lines imply

inliers and outliers, respectively. Best viewed with zoom and

color display.

algorithms. Additionally, we demonstrated a test case of

augmenting an open-source aerial dataset for cross-platform

classification. It includes a semi-automatic approach to data

segregation and enhancing it with cross-platform historical

satellite images. We plan to make our enhanced dataset

available at https://www.iith.ac.in/~lfovia/downloads.html as

part of this publication.

Our two-step framework for robust aerial image matching

employs a CNN-based light-weight first step that reduces

the load on the fine-matching and helps in tracking the

flight path. We developed a methodology for augmenting

non-imaging sensor information called metadata or extrinsic

parameters. In the second step of the framework, we leverage

the spectral, temporal, and flow consistencies followed by

cluster analysis for outlier removal for robust matching. We

have tested the proposed framework over our dataset, a recent

Aerial Template Matching dataset, a synthetic university

dataset, and the derived dataset. We have shown efficacy over

standard baselines (without and with standard outlier). In

summary, we have qualitatively and quantitatively compared

our framework against conventional and deep learning-based

matching methods and shown that our framework is more

effective. We perceive that it is a timely contribution given

the increased use of UAVs for a wide variety of applications.
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FIGURE 14: Qualitative performance of the coarse-matching approach. Top@1 searches in dataset for DTVCity query (round

2). Rows are in the same order as table 6. The last row shows the matching results for the proposed approach. The results in

this row are consistently better than most of the other methods in this comparison. Best viewed with zoom and color display.
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FIGURE 15: Qualitative performance of the fine-matching approach. Top@1 searches in dataset for DTVBlue query. Rows are

in the same order as table 7. Italic numbered text rows display output of proposed outlier/fine-match approach. Best viewed

with zoom and color display.
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