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Graphene oxide (GO), prepared by chemical oxidation of graphite, serves as a building block for 

developing polymeric nanocomposites. However, their application in electrical conductivity is 

limited by the fact that the oxygen sites on GO trap electrons and impede charge transport. 

Conducting nanocomposites can be developed by reducing GO. Various strategies have been 

adopted to either reduce GO ��� ����,� before the composite preparation, or ��� ���� during the 

development of the nanocomposites. The current state of research on ��� ���� reduction of GO 

during the preparation of conducting polymeric nanocomposites is discussed in this review. The 

mechanism and the efficiency of reduction is discussed with respect to various strategies 

employed during the preparation of the nanocomposite, the type of polymer used, and the 

processing conditions employed etc. Its overall effect on the electrical conductivity of the 

nanocomposites is also discussed and the future outlook in this area is presented.  

�	������� GO; rGO; ������� reduction of GO; polymer composite; shear induced reduction. 
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Graphite’s lamellar structure is made up of individual layers that are held by van der 

Waals forces and are considered to be independent entities (graphene). These independent 

entities are known to possess unique electronic and mechanical properties. Some of the 

remarkable electronic and mechanical properties of graphene reported are ~ 200,000 cm
2
 V

−1
 s

−1 

of charge carrier mobility, high Young’s modulus of ~1100 GPa and extraordinary fracture 

strength of 125 GPa. Apart from high electrical conductivity, they possess very high specific 

surface area of 2,630 m
2
 g

−1
 and interesting transport phenomena such as the quantum Hall  

effect 
1,2

. Besides flexibility in properties, mono layer graphene sheets offers myriad possibilities 

of chemical modification and functionalization 
1, 3

. Thus, graphene can be potentially used as 

energy%storage materials, polymer composites and sensors etc. Yan et al.
4
 reported that graphene 

and few%layer graphene can be utilized for thermal management of advanced electronics wherein 

graphene acts as heat spreaders in transistors. Luo et al.,
5
 summarized various graphene based 

applications in energy storage such as solar cells, lithium ion secondary batteries and 

supercapacitors. In a recent article, Mittal et al.,
6
 reported that graphene exhibits restacking of 

sheets due van der Waals forces and strong π–π stacking effects. The interaction between 

graphene sheets and polymer matrix plays a vital role in achieving high electrical percolation. 

Graphene sheets can also act as a cationic initiator for polymerization of polystyrene (PS) and 

poly(styrene–isoprene)
7
. Graphene polymer composites can be used for tissue engineering 

applications such as osteogenesis in 3D scaffolds
8, 9

, selective gas/vapor sensors
10

 and in removal 

of heavy metal/ pathogenic bacteria from aqueous media
11%14

. GO based composites showed a 

significant surface enhanced Raman scattering (SERS)
15

, which can be useful in developing 

ultrasensitive SERS%based immunosensing platforms
16%18

. 

Graphite to individual 2D graphene conversion is widely carried out by chemical 

oxidation of graphite layer. The formed oxides serve as a precursor for cost%effective and mass 

production of graphene%based materials
2
. These exfoliated layers of graphite sheets with oxygen 

moieties are referred to as graphene oxide (GO). GO offers flexibility in the large scale 

production of graphene based nanocomposite
19

. GO is widely synthesized via Brodie
20

, 

Staudenmaier
21

 and Hummers methods
17, 22

. All these methods focus on the oxidation of 

individual layers using strong acids and oxidants for the introduction of oxide groups such as 

epoxy, hydroxyl or carboxyl
17, 23

. This oxidation results in the disruption of sp
2
 bonding. In 
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addition, these oxygen sites trap electrons that results in electrically insulating materials. High 

electrical conductivity can be achieved by effective removal of oxygen species. Various 

strategies that are reported in the literature for restoring electrical conductivity are chemical 

reduction, thermally reduction, microwave assisted reduction
24

, photocatalysis
2, 17, 25, 26

 and ���

���� reduction of GO during processing. Apart from these techniques, some literature exist that 

utilized UV treatment for further reduction of GO
27

. There are plenty of reviews available on the 

techniques mentioned above
2
. However, the state of research on ������� reduction of GO, during 

the preparation of the nanocomposite, has not received much attention although the field is 

gaining significant interest among the scientific community.  

Given the brevity of this review, we focus here mainly on the ��� ���� reduction of GO 

during the preparation of conducting nanocomposites. The ��������reduction of GO is carried out 

mainly during ��� ���� polymerization or during melt processing
28

. The following section will 

highlight the current state of research on ��� ����� reduction of GO to design and develop 

conducting polymeric nanocomposites from GO as the starting material. 

 �� �������������	��!���������������	�����	����������"#�

The ��� ���� polymerization involves polymerization of polar or hydrophilic monomers that can 

interact and intercalate into the stack of GO sheets. This results in exfoliation and isolation of 

GO sheets. To accomplish this, GO is initially dispersed in a polar solvent by ultrasonication. 

The dispersed GO sheets are then mixed with monomers and subsequently ������� polymerized at 

high temperature and under inert atmosphere. The ��� ���� polymerization at high temperature 

ensures proper dispersion and reduction of GO. Hence, the obtained reduced GO composite 

shows 3%4 orders of higher conductivity compared to GO based composites. This strategy was 

adopted by Liu et al.
29

 in which simultaneous dispersion and thermo%reduction of GO occurs 

during ������� melt polycondensation reaction. GO was initially dispersed in ethylene glycol and 

then the composites were prepared via ������� polymerization of terephthalic acid (PTA) (Figure 

1). Further, it was demonstrated that polyester chains were successfully grafted onto GO sheets 

during polymerization, accompanied by the thermo%reduction from GO to reduced graphene 

oxide. The reported increase in conductivity of the composite is ca. 0.56
 
S m

%1
 in striking contrast 

to GO based composites (7x10
%4

 S m
%1

). They concluded that the chemical bonding between the 

polymer chain and GO is favorable for the improvement of interfacial interactions in the 
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composites. In a recent study, Jin et al.
30

 adopted similar strategy to graft PBS (Poly(butylene 

succinate)) chains onto graphene oxide during ������� polymerization, which is accompanied by 

the thermo%reduction from GO to graphene. In an another recent work
31

, an one%step approach 

was utilized to reduce and functionalize graphene oxide (GO) during the ������� polymerization 

of phenol and formaldehyde. The ��� ���� reduction of graphene oxide provides homogenous 

dispersion of graphene into polymer matrix and additionally improves the electrical and thermal 

conductivity in the composite
32%36

. 

 

 

$����	����The synthesis of reduced polymer composite via ������� melt polycondensation (Liu 

et al.
29

 Reproduced by the permission of The Royal Society of Chemistry). 

�

%�� ���������	����������"#����������������������	���

The ������� reduction of GO during compositing process involves dispersion of GO followed by 

thermal reduction resulting in a composite with monolayer reduced GO. This strategy offers a 

simple fabrication procedure that prevents restacking and aggregation of reduced GO sheets in a 

given polymer matrix. Figure 2 illustrates the method of ��� ���� reduction during compositing 

process. 
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$����	� � 	�������reduction during compositing process (Tang et al.
37

 Reproduced by permission 

of American Chemical Society Copyright © 2012, American Chemical Society ) 

 

Recently, Tang et al.
37

 explored this strategy for poly (vinylidene fluoride) PVDF based GO 

composites, wherein they showed well%isolated reduced GO sheets in PVDF. Initially, they 

dispersed GO in DMF to yield highly exfoliated GO followed by mixing with PVDF. Thus, 

obtained PVDF/GO composites were then hot pressed at 200 °C for 2 h. Hot pressing leads to ���

���� reduction of GO that is evident from the change in color from brown to black. This color 

change is attributed to the efficient removal of oxygen functional groups and partially restoring 

the graphitic structure. From Figure 2, it is evident that PVDF/GO composite was initially brown 

suggesting uniform dispersion of GO in PVDF. However, after reduction, the films turned black. 

Restoring graphitic structure can lead to π%conjugation, which renders electrical conductivity in 

the composites. Further, they demonstrated a three%order increase in conductivity with respect to 

GO composites at a relatively low fraction of 0.16 vol. % of reduced GO. Due to immobilization 

of GO, thin layer of sheets percolate into composites and lead to low percolation threshold. The 

single layer of reduced GO was further confirmed by TEM (as shown in Figure 2) and suggested 

that polymer with higher thermal stability could even enhance the conductivity by complete 

reduction of GO to graphene.  

In another study
38

, PVDF/GO composites were prepared by solution mixing in DMF. The 

resultant composite was coagulated with water. The obtained PVDF/GO mixture was then hot 
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pressed at 200 °C at 50 MPa into sheets of about 0.4 mm thickness. After hot pressing, the color 

of the composite changed from grey to black suggesting thermal reduction of GO into reduced 

GO. These sheets were used as master batch for the preparation of PVDF/GO composites using a 

melt compounder. They demonstrated a significant improvement in conductivity of the 

composite i.e. ca. 3x10
%7

 S cm
%1 

at a loading of 0.17 vol. % of reduced GO. Further, at 1 vol. % of 

reduced GO, a conductivity of 2 × 10−3 S cm
%1

 was obtained and the change in conductivity with 

processing temperature was studied. The processing temperature affects the percolation threshold 

of TRG. For instance, PVDF%TRG composite processed (hot pressed) at 200 °C exhibited a 

percolation threshold of 0.12 ± 0.02 vol.% (as shown in figure 3) in contrast to the composite 

processed at 190 and 210 °C which showed similar percolation thresholds of 0.17 ± 0.02 vol.% 

and 0.17 ± 0.01 vol.%, respectively.  

 

 $����	� %��Conductivity plot of PVDF with various vol.% of TRG%PVDF (He et al.
38

 

Reproduced by the permission of The Royal Society of Chemistry) 

�

�

�
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&���	��� Critical percolation threshold and electrical conductivity of reduced GO%PVDF 

composites hot%pressed at different temperature
38

 (Reproduced by the permission of The Royal 

Society of Chemistry) 

&	��	�����	�'()*� )��������+	���������'+�*�'
����,*� )������
����'��*�'-���
��
*�

190 0.17 ± 0.02 75.29  ± 16.23 

200 0.12 ± 0.02 1496  ± 136.38 

210 0.17 ± 0.02 573.74 ± 63.54 

 

The reduction of GO ��������during compression molding was also studied by Ding%Xiang et al.
39

 

wherein they distributed GO on the surface of ultra%high molecular weight poly(ethylene) 

(UHMWPE) particles followed by compression molding. It is evident that GO sheets are 

distributed at the interface of UHMWPE particles and further reduction of GO was assisted by 

hot pressing at 280 °C and 10 MPa pressure for 30 min. Hot pressing ensured reduction of GO to 

reduced GO ��� ����. The distribution of reduced GO sheets at the interface yielded a low 

percolation threshold of 0.66 vol. % in UHMWPE and an electrical conductivity of ca. 3.4 S m
%1

.  
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$����	�.� Schematic of ��������reduction of GO in PS and its composite preparation with optical, 

TEM micrograph of rGO layers at interface of PS and Conductivity with varying ������� reduced 

GO in PS (Yan et al.
40

 Reproduced by permission of John Wiley and Sons, Copyright © 2014 

Wiley Ltd. All rights reserved). 

Yan et al.
40

 utilized segregated architectures to distribute reduced GO at the interface of polymer 

granules rather than distributing in volume in the matrix. These segregated architectures lead to 

reduction of percolation threshold hence resulting in an increase in electrical conductivity. They 

utilized polystyrene (PS) of different particle size and observed PS with higher particle size to 

yield lower percolation threshold. They reported percolation threshold of 0.09 vol. % in PS and 

conductivity of order of c.a 10
%2

 S m
%1 

at ~1 vol. % of reduced GO (Figure 4).  

In another study by Shen et al.
41

, GO was mixed with poly(vinyl pyrrolidone) (PVP) and glucose 

(which acts as a reducing agent). GO%PVP and GO%glucose was then mixed with poly(lactic 

acid) (PLA) in DMF. The resultant solution containing GO%PVP and GO%glucose was then 

coagulated using methanol. The formed precipitate was dried, transferred to a mold and hot 

pressed at 210 °C. This process results in the reduction of GO facilitated by both thermal and 

chemical processes. The resultant composite with 1.25 vol. % of GO%glucose showed a 

significant high conductivity of 2.2 S m
%1

 in striking contrast to neat PLA (10
%15

 S m
%1

). The high 

electrical conductivity was attributed to the improved exfoliation and dispersion of reduced GO 
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glucose further facilitating in the formation of interconnected conducting network within the 

PLA matrix. Figure 5 shows the electrical conductivity as a function of particle concentration for 

different PLA composites. 

 

 $����	�/� Plots of electrical conductivity versus filler loading for PLA composites (Shen 

et al.
41

 Reproduced by permission of Elsevier, Copyright © 2012 Elsevier Ltd.) 

Zhu et al.
42

 reported reduction of GO by dispersing in propylene carbonate (PC) at pH 3 by bath 

sonication. The obtained PC solution was heat treated at 150 °C for 12 h resulting in reduced 

GO. Composite samples were dried in vacuum at 80 °C, and resulted in a conductivity of 2100 

and 1800 S m
%1 

for the samples, which were heat treated at 150 and 200 °C, respectively. Further, 

vacuum annealing at 250 °C for 12 h resulted in a conductivity of 5230 S m
%1 

and 2640 S m
%1  

for 

the samples which were subjected to heat treatment at 150 and 200 °C, respectively. In this work, 

they also discussed the dispersion of GO in the PC matrix, and observed that the dispersion of 

GO in PC may not be due to electrostatic repulsion but can be due to the high dipole moment of 

PC. Figure 6 shows the state of dispersion of GO in PC as well as in the solvent. 
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$����	� 0� (a) Optical images of a graphene oxide suspension in PC (top) before and 

(bottom) after heating at 150 °C for 12 h. (b) SEM image of graphene oxide platelets deposited 

on a Si substrate. (Zhu et al.
42

 Reproduced by permission of American Chemical Society 

Copyright © 2010, American Chemical Society) 

In a recent study, ��� ���� reduction of GO was reported during the compositing process in the 

presence of  surface functionalized octadecylamine (ODA)
43

. The presence of long octadecyl 

chain resulted in the hydrophobicity in GO and also facilitated in its efficient reduction. Further, 

by hot pressing at 210 °C in the presence of PS matrix, electrically conducting samples were 

obtained. Thermal reduction in presence of PS resulted in a sharp transition from insulator to 

conductor. The GO%ODA showed 2 orders of higher electrical conductivity when subjected to 

thermal treatment as displayed in Figure 7. Hence, it can be concluded that surface modification 

of GO along with thermal reduction may assist in both improved dispersion and simultaneous 

increase in electrical conductivity.  
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$����	� 1�� The electrical conductivities of GO and GO–ODA before and after the thermal 

treatment. (Li et al.
43

 Reproduced by permission of Elsevier, Copyright 2011 Elsevier Ltd.)�

Another strategy commonly used to reduce GO is by changing polymer chemistry. The latter can 

play an important role in assisting thermal reduction of GO during hot pressing. Glover et al
44

. 

studied the ��� ���� reduction of GO in poly(vinyl pyrrolidone), poly (vinyl acetate), and poly 

(vinyl pyrrolidone/vinyl acetate) and they demonstrated that the chemical architecture exhibited 

by these polymer had strong influence on the extent of thermal reduction. They compared 

time/temperature relationship for GO reduction in air and in dimethylformamide under the same 

temperature conditions. The efficiency of reduction was reported based on the change in the C/O 

(carbon/oxygen) ratio (see Table 2). They showed that reduction of GO depends on 

time/temperature history and also on the polymer chemistry. They reported an increase in 

electrical conductivity by 2 orders in all the composites  

.�� �	
������������������	��
���������	������
�	��	
����������
�������������������	���

The thermal gravimetric analysis (TGA) of GO is characterized by three transitions which can be 

attributed to vaporization of hydroxyl group (< 100 °C) and loss of carbonyl group as CO or CO2 

at 120%150 °C and 200%260 °C. From TGA of GO, it is clear that temperature above 200 °C is 

critical for reduction of oxygen moieties on the GO surface and hence a processing temperature 

above 200 °C will result in efficient reduction of GO. It is equally important to select a polymer 

that degrades well above 200 °C. Henceforth, optimum processing time, the thermal stability of 

polymer and the resistivity of the nanocomposites as a function of annealing time is necessary to 

understand the mechanism of thermal reduction of GO. Glover et al.
44

 studied the effect of 

various polymers with respect to the temperatures. The C/O ratio in GO was monitored, as 

described in Table 2.  

�

�

�

�

�

�

�
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&���	� � C/O ratio of GO as a Function of Reduction Time and Temperature (Glover et al.
44

 

Reproduced by permission of American Chemical Society Copyright © 2011, American 

Chemical Society) 

 

&	��	�����	�

'()*�

�������	����	� 2	����� )����	��

',*�

#����	��

',*�

�������)3#�

������

25 % % 56 39 1.9 

55 4 months Water 63 27 3.2 

150 10 min Air 56 39 1.9 

150 240 min Air 60 36 2.2 

175 10 min Air 59 37 2.1 

175 240 min Air 73 23 4.2 

200 10 min Air 69 26 3.5 

200 240 min Air 81 16 6.8 

200 240 min DMF 72 12 8.0 

250 10 min Air 80 20 5.3 

250 240 min DMF 73 12 8.2 

 

In addition, the polymer chemistry i.e. polarity and aromaticity dictates efficient reduction and 

the overall state of dispersion. The exact mechanism of reduction of GO is not yet known, which 

is due to lack of direct measurement of the reduction process and the chemical reactions that take 

place during processing in the melt. However, with the limited results, Ye et al.
45

 arrived at some 

understanding. The decrease in the reducing temperatures in the presence of polymer is related to 

the interactions between GO sheets and the polymer matrix. Further, Rourke et al.
46

 proposed 

that GO are large sheets of graphene with oxidative debris adhered to sheets by π– π stacking or 

van der Waals interactions.  

Figure 8 illustrates schematically the GO sheets and its interaction with the polymer. From figure 

8, it is clear that aromatic polymer such as polystyrene (PS) initially adsorb on the graphene 

sheets by π– π stacking between the continuous phenyl rings and the conjugated basal planes of 

graphene. This adsorption facilitates intercalation of GO sheets. Further, the π%π stacking counter 

balances the interactions between graphene sheets and oxidative debris, thus facilitating strong 

adhesion of polymer chains on the sheets. This adhesion will eliminate the oxidative debris from 
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the surface of the sheet. Both the attachment of polymer chain and the elimination of oxidative 

debris leads to the reduction of GO thermally, and requires low energy and low reducing 

temperatures. It is envisaged that polar polymers, such as PMMA, forms hydrogen bonding with 

the oxidative debris. This further assists in peeling off the oxidative debris from the sheet. As a 

result, the reduction of GO in polar polymers require relatively less energy and reducing 

temperatures.  

 

 

$����	�4� Schematic of GO sheets model and its interaction with polymer. (Ye et al.
45

 

Reproduced by the permission of The Royal Society of Chemistry) 

Apart from enhanced electrical conductivity during ��� ����� reduction of GO, observed to 

compatibilize immiscible poly (methyl methacrylate)/polystyrene (PMMA/PS, 80/20) blends
47

. 

The droplet diameter of the dispersed phase (PS) phase significantly reduced in the presence of 

GO. During processing, at higher temperatures, the ������� thermal reduction of GO renders more 

hydrophobicity in GO and further suppresses the coalescence of PS droplets. However, the 

electrical conductivity of the samples were not reported in this study. 

Recently, Tan et al.
48

, covalently functionalized GO with a copolymer and converted GO to 

reduced GO ��� ���� during molding of PMMA/PS blends. This facile method resulted in 

localization of GO at the interface of PMMA/PS blends and further resulted in low percolation 

threshold of 0.02 vol. %. This is the lowest reported value in context to graphene as a nanofillers. 

Further, from Figure 9, it is evident that the conductivity increased by 2 orders of magnitude for 
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the composite containing P(St%co%MMA) copolymer grafted GO. The TEM image indicated 

localization of GO sheets at the interface.  

 

$����	�5� Schematic of covalent functionalization of GO and Conductivity plot of PS/PMMA 

blend with rGO and P(St%co%MMA) copolymer grafted GO. (Tan et al.
48

 Reproduced by the 

permission of The Royal Society of Chemistry) 

/��-�	�������	�����������	����������"#�

From the above discussion, it is clear that temperature and external forces like compression 

strain can assist in the ��������reduction of GO. However, in practice, heat can be accompanied by 

shear forces for further reduction of GO. In this context, Ye et al. studied
45

 the���������reduction 

of GO in quiescent melt and under shear. They demonstrated that the composites which were 

sheared in the melt had a higher degree of reduction as compared to quiescent condition. They 

observed that the reduction was quite high under low shear, which further confirms the effect of 

shear on reduction of GO. This efficient reduction is associated with enhanced π%π stacking and 

the interaction between graphene sheets and the matrix. Further, they showed that an increase in 

conductivity of ca. 4 orders after shear. This was ascribed to significant reduction of GO during 

melt blending under high shear forces. Moreover, they observed that the central part of the 

composite sample (as shown in Figure 10) exhibited higher reduction than the outer part by 

monitoring the enthalpy. This change in enthalpy was attributed to energy consumption required 
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for the reduction of GO. As the outer part of the sample experiences higher shear force than the 

central part, the degree of reduction is higher at the center.  

 
 

$����	��6� Shows (a) schematic of DSC scans of GO in various zones (b) exhibits conductivity 

of neat polystyrene composite, quiescent and sheared polystyrene composite (Ye et al. 
45

 

Reproduced by the permission of The Royal Society of Chemistry) 

Another less explored strategy for ������� reduction of GO is the use of materbatch. You et al.
49

 

prepared a master batch of graphene oxide with styrene–ethylene/butylene–styrene (SEBS) 

triblock copolymer by melt mixing at 225 °C and they obtained a high degree of reduction. The 

resultant master batch was further diluted with polystyrene in the subsequent melt mixing 

process for improving mechanical properties. They reported three orders of magnitude increase 

in conductivity in reduced GO that was extracted from SEBS as shown schematically in Figure 

11.  

 

$����	���� 	������ reduction of GO via mater batch in polystyrene (You et al.
49

 Reproduced by 

(a) 
(b) 
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permission of John Wiley and Sons, Copyright © 2014 Wiley Ltd. All rights reserved) 

�

0��)������������#�����7�

Recent advances in ��� ���� reduction of GO during the preparation of conducting polymeric 

nanocomposites has been reviewed here. The effect of presence of oxygen species on the overall 

electrical properties of the nanocomposites is juxtaposed to highlight and compare the efficacy of 

the various strategies employed to reduce GO. Several strategies such as ��������polymerization, 

hot press, and shear are critically assessed here. 	�� ���� polymerization and simultaneous 

reduction of GO in polymer matrix, demonstrate homogeneous dispersion of reduced GO which 

results in lower electrical percolation threshold. From the existing literature, it is evident that hot 

press is not sufficient for complete reduction of GO but the efficacy of reduction can be 

enhanced many folds if coupled with shear forces. Among the different strategies, shear in 

combination with heat was observed to be the most effective strategy. This opens new avenues in 

designing GO based conducting nanocomposites. Figure 12 outlines various strategies involving 

������� reduction of GO and Table 3 highlights the electrical conductivities achieved by ��������

reduction of GO. The effect of polymer chemistry on the ��������reduction of GO is scarce and 

need to be explored more. Figure 13 shows a pie chart of various strategies adopted for ������� 

reduction of GO. It is interesting to note that ������� polymerization and simultaneous reduction 

of GO provide a homogeneous dispersion and reduce the electrical percolation threshold. Shear 

induced reduction of GO shows promising reduction of GO and this method needs to explored in 

detail in future. 

From the existing literature concerning the reduction of GO it is apparent that ������� reduction of 

GO to design highly conducting polymer composites is a better way as compared to ��� ���� 

reduction processes which often involves harsh treatments. More emphasis should be given in 

this direction and more research should be pursued towards ������� reduction of GO during the 

composite preparation.  
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$����	�� � Outline of various strategies to reduce GO  

 

$����	��%� Pie chart of various strategies to reduce GO ������� 

�

� �

In situ 

Polymerization 

and Reduction 

of GO

45%

In situ 

reduction of 

GO in 

composite
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&���	� %. Various polymer composites involving ��� ����� reduction of GO and their electrical 

conductivity
39

. 

2������ 8	���	��"#�

���	��'
����,*�

8	�������2	����� )������
����

'-��
��
*�

8	�	�	�	�

%% 100 %% 750 
39

 

UHMWPE 0.66 Compression Molding 3.4 
39

 

PVDF 0.75 Compression Molding 0.02 
50

 

PVDF 1.70 Solar Electromagnetic 

Radiation 

0.04 
51

 

PVDF 2.75 Compression Molding 0.0002 
37

 

PA6 1.07 	������ polymerization 0.028 
52

 

PMMA 2.79 Compression Molding 0.94 
45

 

SEBS 2.13 Compression Molding 0.34 
45

 

PET 17.4 	������ polymerization 0.56 
29
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