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Abstract

The present work deals with the problem of recovering a local image from localised
projections using the concept of approximation identity. It is based on the observation that
the Hilbert transform of an approximation identity taken from a certain class of compactly
supported functions with sufficiently many zero moments has no significant spread of
support. The associated algorithm uses data pertaining to the local region along with a
small amount of data from its vicinity. The main features of the algorithm are simplicity
and similarity with standard filtered back projection (FBP) along with the economic use of
data.

1. Introduction

The problem of recovering a local image from localised projections in X-ray tomog-
raphy has acquired importance so that the radiation dosage as well as the time of
exposure can be reduced. The problems relating to uniqueness, well-posedness etc.

associated with local inversion of the Radon transform are well known [14]. Recently,
wavelet-based methods have proved quite promising for the purpose of Region-Of-
Interest (ROI) tomography [7,15]. One method based on angular harmonics [18]
uses projections, exponentially sampled in radial directions, whereby finer sampling
is achieved in the ROI and coarser sampling outside it. Nonetheless, this is not a local
reconstruction in the true sense, as full length projections are required along certain
directions and the computations involve interpolations. Several other wavelet-based
methods are also available [5,7,15], which use a reasonably small amount of neigh-
bourhood data in addition to ROI data. The amount of additional data depends on the
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choice of wavelets used.
The aim of the present work is to propose a filtered back projection (FBP)-type

formula for ROI reconstruction using the concept of an approximation identity. The
work of Rieder et al. [16,17] is conceptually related to the present work although the
purpose and details are different. The proposed algorithm, using an approximation
identity taken from a class of compactly supported functions, has the following main
advantages: (i) it does not use exponential radial sampling and is therefore simple
to implement; (ii) it allows uniform exposure at all angles as in [15]; and (iii) it
is analogous to the standard FBP algorithm and hence can use several readymade
well-developed procedures for implementations [2].

The present work is organised into the following six sections. In Section 2, we
present some standard notation, the basic reconstruction technique and make some
observations about the nonlocality of the Hilbert transform. In Section 3, we consider
the local reconstruction technique using the concept of an approximation identity.
Since the idea is simple, we have tried to derive the representation formula directly
without referring to any other technical notation. Section 4 deals with the error
estimate depending upon the parameter of the approximation identity and the zero
moments satisfied by the corresponding function. In Section 5, we construct some
examples of the approximation identity. In Section 6, we study the error arising from
the use of localised data from interior regions. Section 7 deals with a comparison of
the results of this paper with those of Faridani et al. [8-10], Rieder et al. [16,17],
A. K. Louis [11] and other wavelet-based methods [5,7,15]. In the last section, we
consider some simulation results indicating how to use the right parameters.

2. Preliminaries and the reconstruction techniques

Before developing the reconstruction algorithm, we state some basic definitions
and provide information regarding the Hilbert transform, to be used subsequently.

2.1. Basic reconstruction formula Let L2(fR2) and Ha(R2) denote respectively
the space of all square integrable functions and the Sobolev space of order a on I 2 .
Then the norm of the function/ e Ha(R2) [1] is given by

a \ 1 / 2

Jf (co)\\l + \\co\\2)" da>) <oo. (2.1)
The Fourier transform of/ is defined by

f(a>)= f f(x)e-2nl^a')dx. (2.2)
•/or
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[3] A convolution back projection algorithm for local tomography 343

Here {x, co) stands for the inner product of x and a> in OS2. The Radon transform (Ref)

of a sufficiently regular function / on R2 is given for 0 e [0, 2n) and / e (-oo, oo)
by the formula

-L(RefXt)= f(tug + svg)ds, (2.3)
J

where ue = (cos0, sin0) and ve = ue+n/2.

The basic objective in tomography is to reconstruct from the projection data Ref

the density function / : R2 —» OS having support in a disc of radius R centred at
the origin in R2. The basic reconstruction technique is based on the following result
called the slice theorem [14]:

(ReT)(co)=f\a>ue), (2.4)

expressing the Fourier transform of/ in terms of the Fourier transforms of (Rgf ) for
0 ^ G < In.

Using the Fourier inversion formula in polar form and the slice theorem, the
function / is reconstructed from the Radon projection data (Ref) by

f [ (2.5)
Jo Ja

Equation (2.5) is called the back projection formula.

2.2. Effect of nonlocality In (2.5) the Fourier transform of Ref is multiplied by |<u|.
In the spatial domain this product can be written in terms of the Hilbert transform as
follows:

• I W ) ) ( O = Hd(RgfKt) := (AefHt). (2.6)

In fact, for any sufficiently regular univariable function g we have

Hdgin) = (Ag){n). (2.7)

It can be seen that
-r-~- sgnjat)
(Hg)(a>) = :—g(co).

i

Hence the Fourier transform of a function with nonzero average value has discontinuity
at the origin. The presence of discontinuity at the origin in the frequency domain has
the effect of spreading the support of the Hilbert transform of a compactly supported
function [14]. However, the essential support of the filtered function does not spread
if the function has a sufficient number of zero moments [14,15]. Next we come to the
main reconstruction formula of the present paper.
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3. CBP based on an approximation identity

We start with the following simple lemma on an approximation identity (see for
example [3, Theorem 2.8]).

LEMMA 3.1. Let (j> be a compactly supported continuous function such that

I(f>{t)dt = l

and let g e L'(IR), then at any point x of continuity of g

lim (g * <t>j)(x) = g(x), where <pj = 2J(p(2J).
J—OO

Now we recollect that Aef stands for Hd(R$f). In view of the above lemma, at
the points of continuity 't' of (A 9 / )

y-oo

Using the definitions given in (2.6) and (2.7), we obtain the following important
identity, which is basic to our later considerations.

[(A9f) *cPj] = IFT[(5£7)| • \4j]= (^/)*IFT(| • |0y) = (Ref) * (A0y). (3.1)

In the above, IFT stands for the inverse Fourier transform operation. From the standard
back projection formula and (3.1), we have the following approximate reconstruction
formula for sufficiently large J:

/ ( * ) = I (AefK{x,Uo))d6* f [(.Aef)*4>j]({x,ue))d6
Jo Jo

[
Jo

= 2J f [(Rgf)*(Acp)j]((x,ug))d9=UJ(x) (say). (3.2)
Jo

Here we have used the easily verifiable relations (A4>j)(s) = 22J(A<p)(2Js) and
gj(s) = 2Jg(2Js). We note that/,,,, (x) stands for

Jo
[(Ref)*(Ar,)jK(x,ug))d9. (3.3)
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REMARK 1. Since the function <f> is a mollifier, its scale parameter J acts as a
regularisation parameter and the method in (3.2) is a regularisation method. When
the function <f> has no significant spread of support after ramp filtering, the above
formula gives a local reconstruction procedure. Although taking larger values for J
reduces the excess (outside the ROI) data commensurately, it also results in spreading
the support of the ramp function and the consequent magnification of noise due to
the ramp function. On the other hand taking smaller values for J leads to higher
approximation errors in (3.2) in the act of approximating (Agf) by (A<,/) • (f>j. In
view of this, a balanced value of J has to be used. We discuss this point while
analysing simulation results.

REMARK 2. Since 0(0) = 1, the action of the approximation identity on / may
result in the low-bandpass-filtered version of/. Now, suppose that \j/ is a compactly
supported, smooth function such that ^(0) = 0. Then the function 0 = 0 + k\Js still
acts as an approximation identity and hence 0 in (3.2) can be replaced by 0. The
parameter A. may be used as a control parameter for the enhancement of the image.
Inserting 0 in place of <f> in (3.2) and using the linearity of the convolution operation
we get

ij(x) = 2J f
JoJ f

Jo

(3-4)

The second part in (3.4) may be regarded as a high-bandpass-filtered version of/.
So far the choices of ty and 0 have been independent. In fact, it is possible to choose
several V's like ^ i . ^2i • • • . typ and get a more generalised expression for (3.4).

When the function f considered is oscillatory and orthogonal to 0, that is,
(0, \jr) = 0, the function f^,j captures information that is complementary to that
captured by the </>-part in the sense that the oscillations are better captured by rj/.

There is, however, no heuristic rule for the determination of the parameter k.

In the next section we present an estimate of the error arising due to a finite choice

ofy.

4. Error estimate

As noted above, finding proper values of J is an important aspect to be dealt with.
One has to balance the conflicting effects on the approximation error of the small value
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of J and the spread of frequency support and consequent dominance of high frequency
noise for large values of J. In this section we provide an estimate which helps in some
measure to choose the proper values for J. We assume that the function (j> besides
satisfying the aforementioned properties has support in [—a, a] and possesses M zero
moments, that is,

[ s'4>(s)ds=0, i = l , 2 M.

Jo.

For t e [-R, R], let E(t) be the error arising due to the approximation of {Aef )(f)
by [(A 9 / ) * <pj](t). Then taking a Taylor series expansion up to N terms (where
TV — 1 < M) and using the zero moment property of </> we have

= [(Aef)*<t>j](t)-(AefKt)

= f[(Aef)(t-s)-(Agf)(t)]c{>j(s)ds [using f <P(s)ds = ll

N-l

_ /—o

= / „, dN(AefKcJ
sl)ct>(S)ds= / l——i-dN(Aef)(c

J
st)<i>(s)ds,

where we have used that supp</> = [—a, a] and N — I < M. Taking the modulus on
both sides of the above equation, we have

2~JN fa

\E(t)\ <-jjTj \dN{Aef)(c
J
sl)\\s

N<t>(s)\ds

2~JN

< - ^ - U ( - ) ' V | I L . ( K ) sup \dN(Aef)\. (4.1)

Since (A,/)(5) = /„ (**/)(/)Me2""</*, we have

= f
JR

and hence

< (2nf [ |(^7)(r)||*r+1 rfr. (4.2)
./R

Now, using (4.1), (4.2) and (2.4) we get

\E((x,ug))\d9 < -^-||(-)/V«/>ll/.'(R)(2jr)A' / / \(Rgf)(t)\\t\
N+ldtde

N\ Jo 7R

2
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Now, estimating the last integral in the last line of the above inequality and using (2.1),
we get

In the above inequality e is any positive quantity. In particular, when we take € — 1/2,
we get

f
Jo

E((x,ue))d911/ -/*./lk<» = ess sup

Thus we conclude that

11/ - / • . / I k - = 0 ^ — J provided / € HN+\RZ). (4.3)

REMARK 3. Note that the function f$%J given in (3.2) can be written as

/ Ri /^y = f*<t>
J
 = $R#(SK/ • A0y), (4.4)

where 5R# is the adjoint of the Radon transform operator 91 and 4>y stands for 5H*A0y.
It may be observed that <I>-/(f) = 0/(||f ||) and hence <t>J satisfies /R2 <t>J(x)dx = 1
and zero moments as <p. Consequently, estimates of the type

11/ - / * <II«-(«') < Cy'Wf \\H~HV) (4.5)

hold as shown in [16, Example 3.4]. In (4.5), en
y is a radial mollifier defined as

(l/j/2)£"(l/y) for y > 0, where the function e" has zero moments as shown in [16,
Example 3.4].

The estimate proved in (4.5), like the estimate (4.3) proved in this section, shows
faster convergence provided / has a sufficient degree of smoothness. The L°° error
present in (4.3) captures the localised error better than any other error estimate. For
example, any slight shift in the pixel values of the reconstructed image is better
identified by the L°° error than by the error involving a Sobolev norm in (4.5).
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Generally in applications, we reconstruct pictures that are smooth except for some
jumps and such simple pictures relate to density functions in //1/2 [14], the Sobolev
space of order 1/2. However, in view of the above estimates to achieve faster conver-
gence, one requires a higher degree of smoothness for / and sufficiently many zero
moments of <p. From (4.3), it is evident that higher order smoothness for/ (that is,
larger values of N) can compensate the lower values of 7, in order to achieve a similar
error estimate. Since the function <f> has higher order zero moments and is sufficiently
smooth, it decays faster in the frequency domain as well, and as a result <j> acts as a
low pass filter. Consequently, a smaller / may be helpful in interpolating the data
function with fewer samples.

An estimate of type (4.3) holds even when we use <j> = (f> + Xxfr in (3.2) with
<p, y\r satisfying the following zero moment conditions: f^s'<p(s)ds = <5,i0 and
f s = O , i = O, 1 , . . . ,M.

5. Examples of <f>

It is well known (see [6]) that coiflets and their corresponding scaling functions
satisfy zero moment properties. It is also known [14] that the Hilbert transforms of
sufficiently regular functions possessing zero moments of sufficient order do not show
spread in support. Similarly if wavelet functions of sufficient regularity satisfy the
zero moment property, then the supports of H\j/ and \f/ are not essentially different.
However, the scaling functions have unit mean value and hence do not satisfy this
property in general. Nevertheless, for certain classes of scaling functions, the function
A<p is approximately finitely supported (in the sense that A</> takes negligible values
outside some finite interval) as documented in [15]. The interval over which A0 takes
significant values is called the essential support of A</>. In computation the essential
support is normally taken based on some error criterion, which is discussed in later
sections. The coiflet scaling functions satisfy the stated desirable properties.

Although the coiflet scaling function is a suitable candidate for <p, it lacks closed
form. If one wants to use <p with a closed form, one can construct it in the following
way. Since the procedure given in the present work is not a wavelet-based method
and one can use any (f>, xfr satisfying the conditions assumed for them, it should be
remarked that the use of the f part is not a requirement of the procedure. In the
following, we present the construction of a <p having closed form.

We start with symmetric, compactly supported and sufficiently smooth functions
Si, for i = I,..., L, for some L. We define the desired function <p to be
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FIGURE 1. Thick line for Si, ' ' line for ASi, continuous line for 0 and ' ' line for A</> in both the
cases where the 4> used is based on (a) (5.3), (b) (5.4) and (c) a coiflet (coiO). Vertical lines represent the
support margins of <p and S\.
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TABLE 1. Coefficients c,- in (p and the spread of the function outside the support after the A operation in
different cases.

Coeff.

(c,)

Spread

Coeff.

(c,)

Spread

Cubic Spline

L = 1

1.0

19.6

L = 3

1.0683
-10.9493

17.3653

3.4363

L = 4

-0.7219
16.0089

-68.5788
72.8282

2.1845

L = 5

0.4286
-17.2165
142.8965

-376.4922
300.7969

1.6030

Polynomial

L = 1

1.23

15.8

L = 3

1.3747
-10.4066

12.3246

2.9277

L = 4

-0.8592
14.9595

-47.7579
37.9638

1.9165

L = 5

0.4564
-15.5829

98.5007
-194.5645

116.5074

1.3928

The constants c, are determined from the following moment conditions:

x2i<j>(x)dx = 5,,0, i = 0, . . . , L - 1 . (5.2)

In (5.2), we consider only the even order zero moments as the odd order moments are
trivially zero for symmetric <f>. Now the function <j) is compactly supported, smooth
and has higher zero moments up to order 2L — 2. As examples, we consider S\ to be
the cubic B-spline (5.3) and a finitely supported polynomial-like function (5.4):

5 , ( 0 = •

5,(0 =

r2/2,

-(2r2 -6t + 3)/2, —1/2 < f < 1/2,

(r2 - 6r + 9)/2, 1/2 < t < 3/2,

0, " elsewhere,

(1 - t2)*, - 1 < t < 1,

0, elsewhere.

(5.3)

(5.4)

It may be observed that in (5.4) as an example we have considered the fourth degree
in the definition of S] to ensure higher order smoothness for Si. In both cases, we
consider S, = S[ for i = 1, 2, . . . , L. In order to show the usefulness of these
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[11] A convolution back projection algorithm for local tomography 351

functions for our purpose, we compute the spread of energy of A# outside the support
of 0 as a fraction of total energy expressed in percentage terms:

These, are tabulated in Table 1 along with the corresponding c, for L = 1,3, 4, 5.
From Table 1, it can be concluded that the spread decreases as the number of zero
(higher) moments of 4> increases. The spread corresponding to the coiflet wavelet
(coif3) is 0.8080%. In view of the above, we conclude that any one of these functions
can be used for the purpose of local reconstruction.

6. Error analysis for the localisation of data

As we have stated at the beginning of this paper, our objective in the present work
is to reconstruct the interior portion or ROI using localised data (that is, the data from
that interior region plus some neighbouring data from outside the ROI). The region
from which the data is collected and used for interior reconstruction is called the
Region-Of-Exposure or ROE. The present section deals with finding the ROE for a
given ROI.

The estimate proved in Section 4 is an estimate for determining the approximation
error when finite J is in use and which works only for full data. However, we need an
estimate of the error within the ROI as the ROE increases. In this section, we find an
upper bound for the error incurred due to the localisation of the data to a small ROE in
the reconstruction of the image in the ROI. Let r, and re denote the radii of discs centred
at the origin of the ROI and ROE respectively. Let [—a, a] be the essential support
of the functions A<f> and A^ (note that Arj is symmetric whenever the function r) is).
Then the extent of data needed to recover the local region is re = r, + a/21, which
corresponds to the maximum possible overlap of supports of (Rgf) and (A</>)y with
IkII 5 r,. Analogous consideration holds for the part involving \j/. In the following
we prove an estimate that relates the error arising due to the use of localised data and
the extent of localised data (re). From (3.3), we have

[ Ref(t)Ar,j((x, ue) - t)dtdO= f
J0

[

= [ (f +[ )Ref(t)Ar,j((x,ue)-t)dtde.
J0 \J\l\<r, J\t\>r,J

Let us define the error function Enj(x) to be

En.j(x)=fv.j(x)- f [ Ref(t)Ar}j{{x,ue)-t)dtde. (6.1)
JO J\l\<r,
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Using the fact that/ has compact support in the disc of radius R, \Rgf (t)\ < 2/?|j/ ||oo-
When x belongs to the circle centred around the origin of radius r,, \{x,ug)\ < r,.
From the definition of A, Ar)j(t) = 22J Arj(2J t). Using all these relations, we get

\En,j(x)\ = \f [ R$f(t)AiiA^,ue)-t)dtd0
\Jo J R>\t\>r,

<2nR\\f\\oof f \Ar)j«x,ug)-t)\dtde
Jo JR>U\>T,

= 2nR\\f\\oof [ \Ar)j{t)\dtde
Jo jR>\t-{x.ue)\>r,

<2nR2J\\f\\0O [ f \Ar,(t)\dtde
Jo J2'(R+r,)>\t\>2'(r,-ri)

<2n2R2J\\f\\oo! lA^OI^. (6.2)
J\l\>2J(r.-n)

In (6.2), the fourth step follows from the third step due to the following reasons. The
relations \(x, ug)\ < r, and R > \t — (A:, ue)\ > re imply 7? + r, > |f| > re — r,. Since
{t : R > \t — (x, ue)\ > re] c [t : R + r, > \t\ > re — r,}, the inequality symbol
follows in the fourth step. Using the relation Arjj = 22J Arj(2Jt) and replacing 2Jt

with t, we get the fourth step. Finally, with <p in the place of r), we have

<27T22y / \A<p(t)\dt. (6.3)

Observe that the right-hand side of the above inequality is independent of/. From the
above inequality, it may be concluded that at a given J, as re increases, the right-hand
side of (6.3) decreases. The decay of the right-hand side of (6.3) against the increase
in (re — r,) is shown in Figure 2 using the functions <p constructed based on (5.3), (5.4)
at L = 3 (5.1) and the coiflet (coif3). From the graphs, which are independent of r,
and the test image/, it may be concluded that when re = r, + a/2J for a > 4.5 (in the
first case), a > 3 (in the second case) and a > 10 (in the third case), the error arising
out of localisation of data to the interior region becomes exceedingly small. There is
yet another type of error due to the discretisation of data. It is, however, quite standard
to take care of it by sampling the data using Nyquist sampling rates (as dictated by the
essential band limit of </>).

Although from the above error analysis we get information about the radius of the
region of exposure, in the simulation part, we start with a 0 with support [—a, a]

(say). Then we assume that A<j> has essential support [-v, v] with increasing values
of v starting with a. We see how the error and quality of the reconstructed local image
change in the course of simulation.
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[13] A convolution back projection algorithm for local tomography 353

(a)

FIGURE 2. Plot between (re — rfi and the right-hand side of (6.3). The function <j> used is based on
(a)(5.3), (b)(5.4), and (c) a coiflet (coif3). In all three cases, we use a continuous line for J = 3,a ' '
line for J =2, and a ' ' line for J = 1.

7. Some comparisons

Although the algorithm presented in this section is not wavelet based, nevertheless,
a comparison of it with the algorithm promoted by Faridani et al. in [8-10] seems
worthwhile as both the methods in some way use approximation identities for certain
functions. The A F operator

= --}-AM»mf(x) = — ~~~ I
4?r JO

d2(RefK(x,ug))d9 (7.1)

studied by Faridani et al. is local and is aimed at capturing a certain high frequency
part of/. In (7.1), A represents the Laplace operator. According to the authors of
[8-10], in practical applications of A-tomography, they do not compute AFf, but
rather attempt to reconstruct AF(rjf • / ) ( * ) [13,17] for some approximation identity
rje(x) = e~2i](x/e), e > 0, where r\ is an integrable function with total integral one.
Now for a good choice of e, AFf (x) is computed via

AFf(x)

(7.2)

In the above, e( = e~i(AFr))e and ve = ASRee. Finally, ee * / is computed via the
back projection method. In the end, the image that one gets is not an approximation
of the original image, but of the high frequency part of / . To include the missing low
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frequency part of AFf, another operator Lf given by

Lf := AFf + nA?f (7.3)

has been studied and analysed in [9] and [10]. The operator A^1 included in L

represents the inverse of the operator AF and (see [13]) is given by

A}1 f(x) = J-9i#5H/(;t) = - / - / " (Ref)((x, ue))d9. (7.4)

Here again the function Lf is a local function which does not represent / but a
related function [10]. The authors of [9] and [10] have studied and demonstrated the
effects of A/r and AJ?1 and have considered the coefficient /x by trial and error in their
experiments. Although we also introduce a parameter A. with a view to enhancing
the reconstructed image, we observe that the role of k is marginal when we consider
larger values of J. We discuss this aspect in the section dealing with simulation. But
most importantly, the inclusion of k (or the i^-part) is not mandatory in our procedure
for reconstruction. Hence no question of comparison between the roles of k in (3.4)
and (j. in (7.3) arises.

The method established by A. K. Louis [11] uses the concept of approximate
identity for the purpose of regularisation. In [11], the method involves solving the
equation R*v = e for a mollifier (approximate identity) e with f e(x) dx — 1 by
v = (2n)~lARe. The method is then given as

fy(x) = Rf *Dyxv,

where Dy-Xv(6, t) = y~2u(0, (/ - (x, u9))/y).

Although the method proposed in the present work uses the properties of approx-
imation identities of certain classes of functions, it differs in its objective from the
other algorithms using the same concept. The basic intention in the present work is
the reconstruction of the original local image as accurately as possible using local data
by using a CBP like procedure.

The approximate computation of AFf and the estimation of associated approxima-
tion errors have been the subject of study by Rieder et al. in [17]. The basic objective
of the authors in [17] is to investigate the properties of a compactly supported v, where
v = AJHe in (7.2) and AFf »s / * ef. An error estimate is derived by taking a zero
moment condition for v for even integers (that is, f s^vis) ds — 0, for k = 0, 1).

In (4.4), A0 plays the same role as v in (7.2). Although, for symmetric 0, Acp

satisfies the same zero mean and zero moment conditions as v, it lacks compact
support. Hence the estimate given in [17] is not applicable in the present context.

Basically, the method given here involves one level and the methods involving
wavelet decompositions use a hierarchy of levels [5,7,15]. In addition the wavelet-
based decompositions involve translations which also add to the computations.
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(a) (b) (c)

FIGURE 3. (a) /*,0, (b) 5ff.o and (c) f^0 + f+fl.

(a) (b) (c)

FIGURE4. (a)/# , i , (b) 5/V,, and(c)/*,, + /V,i.

(a) (b)

FIGURE 5. (a) / # - 2 > (b) 5/V,2 and (c) fta

(c)

FIGURE 6 ,5 and (b) original test image.
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8. Results of simulation

[16]

As stated earlier, a wide variety of <f> and xj/ can be used in simulation. Since the
inclusion of xjr is not at all compulsory in (3.4), one can carry out the simulations using
the </> functions alone constructed in Section 5. However, we present in the following
the results obtained using the coiflet pair <f> and x/f and study the usefulness of the
xjr-part when the \\r considered is orthogonal to 0.

We have carried out computations using the coiflet ('coif3') wavelet and scaling
functions for different J. Reconstructions of the Shepp-Logan head phantom have
been executed on 256 x 256 pixel grids using 256 projections collected at 256 uniformly
spaced angles over [0, n) and the reconstructed images are shown in Figures 3-6. It
may be observed that these figures are displayed by discarding the portion lying outside
the outer ellipse to make the changes occurring in the main part more visible. In all
of Figures 3-5, the wavelet part is shown with A. = 5 to emphasise the nature of the
contribution of f ^ j t o / . We have computed the L°°, L2 errors in % terms using the
formula

I I / - ;
L" error (in %) =

11/U
x 100, p = 2, oo, (8.1)

for the cases 4> = <j> as well as (j> = <j> + yfr (that is, X = 1). Here, f, stands for the
reconstructed image. The errors computed are shown in Table 2. It may be observed
from Table 2 that the ^ part does not change the errors significantly for J > 3 and
the L°° error comes below 1% for J > 6.

TABLE 2. Lp, p = 2, oo, errors in % with 0, <p + \jr in place of 4> at different values of J.

J

0

1

2

3

4

5

6

7

8

9

10

L°°(%) : <(>

221.36

232.34

131.09

47.187

12.945

3.3125

0.8330

0.2085

0.0522

0.0130

0.0033

L°°(%) : 0 + f
221.23

230.53

130.71

47.179

12.945

3.3125

0.8330

0.2085
0.0522

0.0130

0.0033

L
2
(%) : 0
79.67

44.84

12.71

1.618

0.124

0.008
5.197 x lO"4

3.2591 x 10"5

2.0386 x 10"6

1.2744 x 10"7

7.9655 x 10"9

L
2
(%) : <(> + $

75.13

44.14

12.64

1.617

0.124

0.008

5.197 x 10-4

3.2591 x 10"5

2.0386 x 10-6

1.2744 x 10~7

7.9655 x 10~9

When the 'coif3' wavelet is in use for local reconstruction, the excess (outside the

ROI) data to be used amounts to just 6 pixels only for J = 0 (that is, the radius of the
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TABLE 3. Lp, p = 2, oo, errors in % with constant and zero extensions of data outside the ROE at
different values of J.

J

0

0

0

1

1

1

2

2

2

3

3

4

4

4

5

5

5

6

6

6

6

6

6

6

Nonlocal

data(pixels)

6+0

6+6

6+10

3+0

3+6

3+10

2+0

2+6

2+10

1+0

1+10

1+0

1+6

1+10

1+0

1+6

1+10

1+4

1+6

1+8

1+10

1+15

1+20

1+25

L°°(%)

Const. Ext.

86.556

85.309

84.295

64.612

64.115

63.169

45.349

45.279

44.304

28.813

28.379

21.564

21.769

20.751

21.092

21.211

19.911

21.404

21.139

20.593

19.839

18.192

16.552

16.602

L°°(%)

Zero Ext.

85.831

68.755

61.537

83.466

65.883

60.349

78.145

56.222

48.417

72.293

35.945

71.229

42.266

31.169

71.438

42.112

30.954

49.668

42.189

36.086

31.013

21.282

14.739

9.779

L
2
(%)

Const. Ext.

46.540

43.572

41.153

31.547

30.458

28.067

25.419

25.601

23.265

22.511

21.785

22.183

23.509

21.455

22.154

23.480

21.427

23.909

23.478

22.642

21.412

18.495

15.311

14.831

L\%)

Zero Ext.

105.811

57.268

41.902

127.103

58.285

36.694

137.145

59.6701

35.408

155.977

38.136

155.229

65.4887

37.785

155.089

65.441

37.752

86.526

65.435

49.664

37.740

18.854

9.029

3.930

ROE is the radius of the ROI + 9 for J =0) . Lower numbers for the ROE can possibly
be achieved using several other suitable pairs given in [4]. In all the computations,
the ROI is the central 1/4 portion of the full image (that is, radius = 32 pixels). We
have made computations for local reconstructions at different values of J. To avoid
the artifacts caused due to the truncation of data to the ROE, we have considered a
constant extension of the data outside the ROE as expressed through the equation

= (Ref)(re) for all \t\ > re and 9. (8.2)

Otherwise, the sharp cut off (discontinuities) introduced into the data function may
have an adverse impact on the quality of the outputs due to Gibb's phenomenon.
However, in computations, we have estimated the errors on the ROI both with the
constant as well as with zero extension of data outside the ROE and the recordings
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(a) (b)

FIGURE 7. Reconstruction on the ROI of radius 32 pixels at / = 0, that is,/^,0 with (a) constant extension,
(b) zero extension of data outside the ROE.

(b)

FIGURE 8. Reconstruction on the ROI of radius 32 pixels at J = 3, that is,/#,3 with (a) constant extension,
(b) zero extension of data outside the ROE.

are shown in Table 3. In the second column of Table 3, we have shown the nonlocal
data in 'p + q" form, where 'p' denotes the overlap of supports of (Rgf) and the
ramp function outside the ROI (that is, a/2J in terms of pixels—as stated in the last
paragraph of Section 5) and 'q' stands for the excess data that we supply to reduce
the errors. From Table 3 it may be observed that the L°° error (in % terms) shows a
very slow decline in value when we increase the ROE after J = 4.

As was pointed out in [12], the interior reconstruction procedures give a constant
shift in the absolute value of the density function to be found. We have observed
that a removal of a constant bias with value —0.14 from the reconstructed image at
J = 4 and ROE=11 pixels results in a fall in L°° error to 3% from nearly 20%. The
reconstructed ROI images shown in Figures 7-9 suggest that with an excess margin
of 11 pixels one can have good local images. It may be observed that the ^-part in
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\ . <

(a) (b) (c)

FIGURE 9. Reconstruction on the ROI of radius 32 pixels at J = 4, (a) before removing constant bias and

(b) after removing constant bias (c) original local image obtained via the CBP procedure.

FIGURE 10. 5ff.j at (a) J = - 1 and (b) J = - 2 .

the coiflet case gives negligible contribution to / . We have observed the errors for
different J's and A.'s (that is, <f> = 4> + W) a nd our conclusion is that for positive
J•> ./V./s role is negligible. However, for negative J, f^j captures edge information
as shown in Figure 10. Hence the inclusion of the ^•-part with negative j into the
representation, that is, with <j> = <pj+\\{r-j for some appropriate./ and X, may enhance
the edges present in the images. Since the choice of j and A. is case dependent for
image enhancement problems, we will not go into the details of computational work
in this regard. It is theoretically justified that the 4> functions constructed in Section 5
work well for local reconstructions. We have observed similar results, as presented
in these sections, using the <p constructed in Section 5. To avoid presenting too many
results, we omit them here.

9. Conclusion

The algorithm proposed in the present work uses space and frequency localisation
properties of certain functions having zero moments. These functions form an ap-
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proximation identity and remain essentially compactly supported after ramp filtering.
The algorithm retains the structure of the filtered back projection (FBP) procedure and
admits faster and standard ways of implementation using a relatively small amount of
data for recovering local regions.
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