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Abstract

A complete and rigorously validated open-source Python framework to automate point defect calculations
using density functional theory has been developed. The framework provides an effective and efficient method
for defect structure generation, and creation of simple yet customizable workflows to analyze defect calcu-
lations. The package provides the capability to compute widely-accepted correction schemes to overcome
finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correc-
tion to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities
and validate the methodology.

Keywords: Point defects, High-throughput, Density-functional theory, Finite-size corrections, Materials
Genome Initiative

1. Introduction

In semiconductor materials, point defects play a
vital role in determining their properties and perfor-
mance, particularly in microelectronics [1], optoelec-
tronics [2], and thermoelectrics [3] related applica-
tions. The dominant point defects and their concen-
trations are determined from the defect formation en-
ergies, which can be predicted with reasonable accu-
racy [4] using first-principles methods such as density
functional theory (DFT). Therefore, computational
modeling of point defects is increasingly becoming an
indispensable tool to understand and predict behav-
ior of semiconductors [5, 6, 7]. Modern approaches to
point defect calculations uses DFT and are typically
based on the supercell approach [6, 7]. With the goal
of accelerating the design and discovery of materials
by large-scale deployment of defect calculations, we
have developed a computational framework (Fig. 1)
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Figure 1: Three key components of the computational frame-
work to automate point defect calculations.

to automate supercell-based point defect calculations
with DFT. Our approach successfully addresses two
main challenges of automating point defect calcula-
tions: (1) generation of defects structures including
vacancies, substitutional defects and interstitials, and
(2) application of the finite-size and band gap correc-
tions.

In the context of structure generation, creating
supercells with vacancies and substitutional defects
is relatively straightforward. In contrast, identify-

Preprint submitted to Computational Materials Science December 28, 2016

© 2017. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/



ing likely locations of interstitials is much more chal-
lenging because of the large number of interstitialcy
sites, especially in complex, multinary systems. In
addition, interstitials might adopt complex configu-
rations, including the split or dumbbell where the
interstitial is associated with a off-site lattice atom.
To address these challenges, we have developed an
efficient scheme based on Voronoi tessellation; [8] the
scheme considers corners, edge and face centers of
the Voronoi polyhedra as likely sites for interstitials.
We demonstrate that, upon relaxing the structure,
this scheme successfully discovers both the symmetric
and general Wyckoff positions as well as the split in-
terstitial configurations. Our implementation of this
scheme is independent of pymatgen [9] where Voronoi
tessellation is also employed. Here we will discuss the
algorithm in detail and validate the Voronoi-driven
approach to identify interstitial sites.

Within the supercell approach to calculate the de-
fect formation energies, finite-size artifacts need to be
removed using carefully designed correction schemes.
We have implemented tools to calculate the follow-
ing finite-size corrections: (1) potential alignment,
(2) image-charge correction, and (3) band filling cor-
rection to address Moss-Burstein-type effects. We
follow the widely used and tested approach of Lany
and Zunger [10, 11] out of the several others that ad-
dresses the same issues [12, 13, 14, 15, 16]. However,
the automated framework is highly modular so that
other correction schemes can be easily implemented
including computation of defect formation energies
using series of supercell sizes in order to extrapolate
the values to the infinitely large supercell. In addi-
tion, the framework employs fitted elemental-phase
reference energies (FERE) [17, 18] to compute ele-
mental chemical potentials, which have been shown
to provide accurate predictions of thermodynamic
phase stability.

Beyond the finite-size effects, another source of in-
accuracy arises from the well-known DFT band gap
problem. Accurate band gaps are needed to cor-
rectly describe the formation energy of charged de-
fects as a function of the electronic chemical poten-
tial i.e., Fermi energy. We employ state-of-the-art
GW quasiparticle energy calculations [19] to com-
pute band edge shifts (relative to the DFT-computed

band edges). The band edge shifts are used to correct
the defect formation energy in multiple charge states.
The automated framework is also capable of perform-
ing defect calculations with DFT hybrid functionals
[20, 21]. However, supercell defects calculations with
hybrid functionals have sources of uncertainty arising
from the choice of input parameters (e.g. fraction
of exchange) and have considerable computational
overheads [22]. Therefore, we have implemented a
DFT+GW approach for calculating defect formation
energy that has been shown to be as accurate as cal-
culations with hybrid functionals [22].

Finally, we illustrate and validate the automated
computational framework by considering the set of
three well-studied semiconductor materials, Si, ZnO,
and In2O3 with a total of 17 unique interstitial and
vacancy structures in multiple charged states. We
show that our results on defect formation energies
and charge defect transition levels in Si, ZnO and
In2O3 agree well with the literature. The framework
successfully identifies the known intrinsic interstitial
and vacancy structures in Si, ZnO and In2O3. In
addition, it discovers interstitial structures in In2O3,
with formation energies ∼0.5 eV above that of previ-
ously known interstitial structures.

2. Overview of the Automated Defect Frame-

work

Figure 2(a) presents a workflow of the automated
framework, including generation of defect structures,
relaxation of defect supercells within DFT using the
PyLada framework [23], and determination of finite-
size and band gap corrections to compute the defect
formation energies. In this section, we describe each
component of the framework and provided techni-
cal details. The latest version of the package can
be downloaded from GitHub repository at https:

//github.com/pylada/pylada-defects.

2.1. Generate Defect Structures

The workflow takes the fully-relaxed primitive cell
as an input to create supercells. To create a va-
cancy or substitutional defect in supercell, the oc-
cupied Wyckoff positions (lattice-sites) for all atom
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Figure 2: (a) Workflow to perform defect calculations, and (b) the Voronoi tessellation-based algorithm to find interstitial sites
in a given structure (example shown: ZnO).

types in the supercell are identified. Then the cor-
responding atom is removed or substituted with an
impurity atom, to generate vacancy or substitutional
defect. Finally, the first nearest-neighbor atoms to
the vacancy or substitutional site are randomly dis-
placed (∼ 0.1 Å) to break the underlying site symme-
try and thereby, ensuring the non-symmetric config-
urations of the defects are properly captured. The
Voronoi tesselation [8, 24], scheme is employed to
identify likely interstitial sites. Voronoi region is the
volume that encloses the points p closest to a given
lattice site Pi than to any other lattice site Pj for
i, j ∈ In = {1, ..., n}. Mathematically, it is defined as
[8]

V (Pi) = {p | d(p, Pi) ≤ d(p, Pj)} for j 6= i, j ∈ In
(1)

where, V (Pi) is the Voronoi region associated with Pi,
and d(p, Pi) specifies the minimum distance between
a general point p and Pi. To create an interstitial,
Voronoi regions (Eq. 1) are computed across each
occupied Wyckoff positions, and symmetry inequiv-

alent vertices, face, and edge centers of the Voronoi
regions are chosen as the candidate sites for the in-
terstitials. The number of candidate interstitial sites
depends on the symmetry of the crystal structure.
The lower the symmetry and the more complex the
crystal structure, the larger the number of sites. For
example, in In2O3 (space group Ia-3, 40 atoms in
primitive cell), we find that some of the faces of the
Voronoi region are very small, resulting in sampled
interstitial sites very close to each other. Therefore
a minimum tolerance of 0.5 Å is used while deter-
mining symmetry inequivalent sites. The procedure
is described in Fig. 2(b), with ZnO as an example
structure.

2.2. Perform Defect Calculations

As summarized in Fig. 2(a), the workflow starts
with fully relaxing (volume, cell shape and ionic po-
sitions) the bulk primitive cell. Dielectric constant,
and GW calculations are performed on the relaxed
primitive cell. Point defects are then created in the
bulk supercell followed by relaxation (only ionic po-
sitions) of defect structures in multiple charge states.
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Defect calculations are aimed to use supercell sizes
that are large enough to describe individual defects
as accurately as possible by minimizing the error due
to defect-defect interactions. It has been shown that
these interactions are short-ranged and typically oc-
cur within the distance of 5-10 Å, from the defect
center [7]. Therefore in this work, supercell sizes are
chosen such that spacing between defect and its peri-
odic images are greater than 10 Å, and sizes are not
too large to make them intractable for DFT calcu-
lations. Calculations of interstitial defects are per-
formed in two steps: (1) All candidate interstitials
(shown as starting interstitials in Fig. 3) are relaxed
in the neutral charge state, (2) followed by relaxation
of only unique interstitials (shown as final interstitials
in Fig. 3) in multiple charge states. Unique inter-
stitial structures are determined based on: (1) the
total energy, (2) space group, and (3) the number of
neighboring atoms. The high-throughput DFT cal-
culations are performed using PyLada [23], a Python
framework for the organizing and managing high-
throughput first-principles calculations. PyLada also
offers variety of useful tools for manipulating crystal
structures, extracting output from successfully fin-
ishes calculations, as well as archiving and analyzing
results [25, 26, 27]. Finally, the defect formation en-
ergies are computed as discussed in the next section.
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Figure 3: Number of distinct starting (blue) and final DFT
relaxed (silver) interstitial structures in Si, ZnO, and In2O3.

2.3. Compute Defect Formation Energy

The formation energy of the defect D in the charge
state q is calculated as

∆HD,q(EF , µ) = [ED,q − EH] +
∑

i

niµi + qEF + Ecorr

(2)

where, ED,q and EH are the total DFT energies of
the defect and host supercell, respectively. µi is the
chemical potential of the atom (host or impurity) of
type i added (ni < 0) or removed (ni > 0) from the
host supercell to form the defect. EF is the Fermi
energy, and Ecorr is the term that account for the
finite-size corrections, within the supercell approach.
A schematic of Eq. 2, representing computation of
the defect formation energy from supercell to the di-
lute limit is shown in Fig. 4.

2.3.1. Chemical Potential and Phase Stability

Chemical potentials µi reflect the energy of the
reservoirs for the atoms that are involved in creating
the defect. Numerical values of the chemical poten-
tials (µi = µ0

i + ∆µi) depend on their implicit refer-
ences, µ0

i , which here are obtained from the reference
FERE [17, 18] energies, µ0

i = µFERE
i . FERE ener-

gies are also used to compute the formation enthalpy
(∆Hf ) of all the competing phases which are needed
to determine the thermodynamic limits of the chem-
ical potential ∆µi. Following the FERE approach
[18] the framework provides the necessary results to
determine the valid range of chemical potentials, and
plotting the final results of defect energy versus chem-
ical potential is left to the user. The computed ∆Hf

and µFERE
i values are summarized in table 1. For Si,

µ0
Si = EGGA (Si) = -5.41 eV/atom is used and to de-

termine the limits to the respective elemental chemi-
cal potentials, we apply the following thermodynamic
stability conditions, ∆µZn + ∆µO = ∆Hf (ZnO) and
2∆µIn + 3∆µO = ∆Hf (In2O3), in ZnO and In2O3,
respectively.

2.3.2. Electron Chemical Potential

Fermi energy is the measure of the chemical poten-
tial of electrons. It is defined with respect to the host
valence band maximum (VBM), EF = EHost

VBM+∆EF ,
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Figure 4: Equation to compute charge defect formation energy as function of the chemical potential and Fermi energy.

and is bounded by the conduction band maximum
(CBM). DFT (GGA) band gaps are corrected by de-
termining the band edge shifts, ∆EV for the VBM,
and ∆EC for the CBM, from the GW quasiparticle
energy calculations [22]. The computed band gaps
are also summarized in table 1.

2.3.3. Finite-size Corrections

Finite size corrections are implemented in the
package following the approach of Lany and Zunger
[10, 11]. Correction schemes focusing on single phys-
ical effect are considered [7]. These include:
Potential alignment correction, which restores the

relative position of the host VBM in the calculations
of charged defect (affecting the Fermi energy). Cor-
rection to the defect formation energy due to the po-
tential alignment is given as [10]

EPA(D, q) = q(V r
D,q − V r

H) (3)

where the reference potentials, V r, for the charged
defect (D,q) and the pure host (H) are determined
from the (local) atomic-sphere-averaged electrostatic
potentials at the atomic sites farther away from the
defect [10].
Image-charge correction, is needed to correct for

the spurious electrostatic interactions of the charged
defect (in the presence of homogeneous compensating
background charge) with its periodic images. This is
given as [11]

EIC =

[

1 + csh(1 −
1

ε
)

]

q2αM

2εL
(4)

where L = Ω−1/3 is the linear supercell dimension
(volume, Ω), ε is the static dielectric constant (elec-
tronic + ionic), and αM , csh are the Madelung con-
stant, and shape factor, respectively, for the adopted
supercell geometry.

Band filling correction, correct for the Moss-
Burstein-type band filling effects that appear due
to high defect concentrations in a typical finite-size
supercell calculations [10]. For a given k-point set
(weighted sum, wk) and band occupations, ηn,k, the
correction for the shallow donor is computed as [10]

EBF = −
∑

n,k

wkηn,k
[

en.k − ẽC
]

(5)

and for shallow acceptor

EBF =
∑

n,k

wk(1 − ηn,k)
[

en.k − ẽV
]

(6)

where, en.k are the band energies in the defect calcu-
lation, ẽC is the CBM and ẽV is the VBM energy of
the pure host after potential alignment correction.
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Table 1: Calculated lattice parameters, dielectric constants (electronic, εelec., and ionic εionic), chemical potential, enthalpy of
formation and band gap in Si (Fd-3m, 227), ZnO (P63mc, 186) and In2O3 (Ia-3, 206). Experimental values are also cited.

System Lattice constant Dielectric constant Chemical potential ∆Hf Band Gap (eV)

(Å) εelec. εionic µFERE
i (eV) (eV) GW (GGA)

Si 5.46 13.36 -5.41 1.29 (0.62)

Expt. 1 5.43 11.7 1.17

ZnO a = 3.28, 5.53 5.12 O = -4.76, -3.63 3.25 (0.73)

c = 5.30 Zn = -0.56

Expt. 2 a = 3.25, c = 5.2 3.7 - 3.8 4 - 5.13 -3.62 3.44

In2O3 10.28 4.90 6.47 O = -4.76 -9.45 2.47 (0.96)

In = -2.31

Expt. 3 10.1 4.08 4.8 -9.6 2.67 - 3.1

2.44 Å  

2.47 Å
  

(a) Split (b) Tetrahedral

2.39 Å  

(c) Hexagonal

Symmetric

Non-symmetric

(side view)

Figure 5: Self interstitial structures in Si: (a) split, (b) tetrahedral, and (c) hexagonal geometry. Hexagonal interstitial has
symmetric and non-symmetric ’Cv ’ configuration as shown in the projection along [110] direction in the side view.

3. Examples

3.1. Silicon

Silicon has been the focus of both experimental
[41, 42] and theoretical [43, 44, 45, 46, 47, 48, 49] re-
search on intrinsic point defects over the past decade.
Structure of both silicon vacancies [43, 46, 47, 49] and
self-interstitials [44, 45, 48] has been topic of interest
as they exists in several stable and metastable config-
urations. DFT calculations are performed with the
projector augmented wave (PAW) method [50] as im-
plemented in VASP [51]. The Perdew Burke Ernzer-
hof (PBE) exchange correlation functional [52] is used

in GGA spin-polarized calculations. A plane wave en-
ergy cutoff of 340 eV, and a Monkhorst-Pack k-point
sampling [53] is used. The structures are taken from
the Inorganic Crystal Structure Database (ICSD) [54]
and fully relaxed using the procedure outlined in Ref.
18. Defect calculations are performed on 216 atoms
supercell, as there is significant dispersion of defect
levels in a smaller 64 atoms supercell, which lead to
spurious results. A single Γ point only calculations
are performed. The low-frequency total (electronic
+ ionic) dielectric constant is obtained following the
procedure in Ref. 22. For hybrid functional (HSE06
[55]) calculations, the exchange mixing, α = 0.25 is
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used. GW calculations are performed on the DFT re-
laxed structures, with the unit cell vectors re-scaled
to match the experimental lattice volume [22].

In agreement with the existing literature, we
find three distinct silicon self-interstitial structures
namely, spit, hexagonal and tetrahedral as shown in
Fig. 5, among the starting 7 candidate sites from
the defect generation code. Neutral split interstitial
has the lowest formation energy (3.25 eV), followed
by hexagonal interstitial with energy 0.2 eV higher.
Hexagonal interstitial lies along the [111] direction
and sit symmetrically at the center of the hexagon
formed by six neighboring Si lattice atoms. Hexag-
onal interstitial also exists in a non-symmetric con-
figuration, as shown in the side view in Fig. 5. This
configuration is 5 meV lower in energy than the sym-
metric one, but is unstable and relaxes to tetrahedral
geometry in the charge states 1+ and 2+. Metastable
hexagonal configuration have been reported in pre-
vious DFT calculations [48], referred as ‘displaced
hexagonal’ or by C3v site symmetry. Tetrahedral in-
terstitial in the neutral charge state has the highest
formation energy, about 0.33 eV higher than the split
interstitial. All the distances between the interstitial
and the four neighboring Si lattice sites are same and

are equal to 2.47 Å.

Vacancy structures are analyzed in terms of dis-
tances between the neighboring 4 silicon atoms to
the vacancy site. It has been reported [41] that sili-
con vacancy undergo structure reconstruction in dif-
ferent charge states, and form a Negative-U system
[43, 41]. The negative-U behavior implies an energy
lowering structural distortion by the presence of a
second electron, such that the energy gain more than
compensates the e-e repulsive energy cost [43]. For
the spin-polarized calculations, vacancy in the neu-
tral and 2- charge state relaxes to higher energy con-
figurations, with C2v and D2d point group symmetry,
respectively. The inability of spin-polarized calcula-
tions to reproduce lower energy point group symme-
try of charged vacancies has also been reported in
previous LDA [56] and GGA [49] calculations. We
observe (2+/1+) and (1+/0) charge transitions for
silicon vacancy, instead of the direct (2+/0) charge
transition because the computed neutral Si vacancy
is in the higher energy configuration compared to its
lower energy D2d configuration. However, using spin-
polarized HSE calculations on DFT structures, we
observe direct (2+/0) charge transition.

Among interstitials, tetrahedral structure is most
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Figure 7: Oxygen interstitial structures (in orange) in ZnO: (a) split, (b) split*, and (c) octahedral geometry. Octahedral
oxygen interstitial has symmetric and non-symmetric configuration as shown in projection along [001] Z-axis in the top view.

stable in 2+ charge state, which then transition (-0.27
eV below CBM) to the split structure, which is the
most stable configuration for 0 and 1- charge states.
The computed defect formation energies and charge
transition levels (Fig. 6) for silicon vacancies and
interstitials are in good agreement with the reported
GGA [48, 56, 49] and HSE calculations [57, 49]. How-
ever, their are noticeable difference in the charge de-
fect transition levels between GGA and GGA+GW,
mainly due to the band edge positions predicted by
the self-consistent GW calculation [58]. Similar dif-
ferences in charge transition levels between LDA and
LDA+G0W0 in calculations on silicon interstitials
has been reported by Rinke et al. [48]

3.2. Zinc Oxide

ZnO is a direct band gap semiconductor and oc-
curs in the ground state wurtzite crystal structure
(space group P63mc, 186), with two lattice param-
eters, a and c, in the ratio of c/a = 1.63. Spin-
polarized GGA+U (U(Zn-d)=6eV) calculations are
performed on 96 atoms supercell, with A Γ-centered
2x2x2 k-point mesh. The calculated lattice constants
and band gap for the wurtzite ZnO are in good agree-
ment with the known experimental measurements, as
summarized in table 1. Comprehensive studies of in-
trinsic vacancy and interstitial structures [59, 60] in
ZnO has been done in the past. In the following

discussion we analyze the defect structures predicted
using the automated defect framework and compare
our results with the existing literature.

Figure 7 shows the obtained three distinct oxygen
interstitial structures out of the starting 17 possibil-
ities for the interstitial sites. Among oxygen inter-
stitials, split interstitial (Fig. 7(a)) has the lowest
formation energy. Split interstitial has a metastable
configuration (Fig. 7(b), referred here, and in lit-
erature as split* [61, 59]) which is 0.21 eV higher in
energy than the stable split configuration and relaxes
to stable configuration on further relaxation. Octa-
hedral oxygen interstitial lies in the empty channel
along [001] Z-axis inside the six member ring formed
by O-Zn atoms, Fig. 7(c), and is about 1.8 eV higher
in energy than the neutral split interstitial. We find
two configurations of octahedral oxygen interstitial
as shown in the projection along [001] Z-axis (dashed
box) in Fig. 7. The symmetric configuration is 0.3
eV higher in energy than the non-symmetric config-
uration. The symmetric octahedral is only stable in
the neutral charge state and relaxes to non-symmetric
configuration for positive and negative charge states.
The low energy non-symmetric octahedral configura-
tion has been reported in a previous DFT study [60],
investigating migration path of oxygen interstitials
along [001] direction. With our method we directly
find the non-symmetric configuration as the lowest
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with band edge shift computed from GW calculations.

energy octahedral structure.
Zinc interstitial is stable in the octahedral configu-

ration with interstitial atom symmetrically placed at
the center of the empty channel along [001] Z-axis,
similar to the symmetric octahedral oxygen intersti-
tial. In the relaxed geometry the Zni-O distance is
2.05 Å, and Zni-Zn distance is 2.45Å. Among inter-
stitials split oxygen interstitial is stable in neutral
charge state for the whole range of Fermi Energy (Fig.
8). Oxygen interstitials at the octahedral site act as
deep acceptors, and have relatively high formation
energies compared to Zinc vacancies. Zinc intersti-
tials act as shallow donors, with 2+ charge as the
most stable charge state (Fig. 8). But with forma-
tion energies as high as 2.6 eV at CBM, even under
Zn rich conditions are unlikely to form in substantial
concentration.

Both oxygen and zinc in ZnO occupy the 2b Wyck-
off position, with 4-fold coordinated tetrahedral ge-
ometry. Oxygen vacancy in 2+ charge state shows
relatively large outward relaxation of the neighboring
Zn atoms, as reported in previous DFT calculations
[59]. Oxygen vacancy shows transition from 2+ to
0 charge state, at Fermi energy -0.45 eV below the
CBM (Fig. 8), confirming the reported Negative-U

character [59, 62, 63]. Oxygen vacancy act a deep
donor, with fully occupied neutral defect state inside
the band gap. Zinc vacancy has partially occupied
defect states in the band gap, and act as deep accep-
tor with (0/1-) and (1-/2-) transition level occur at
1.16, and 1.58 eV, respectively above the VBM.

Overall, our approach confirms the known inter-
stitial and vacancy structures in ZnO, and provide a
clear picture of the defect energetics and electronic
structure consistent with the previous defect calcula-
tions. Our next step forward is to investigate the au-
tomated point defect framework against In2O3, a rel-
atively complex crystal structure containing 40 atoms
in the primitive unit cell.

3.3. Indium Oxide

In2O3 is a direct band gap semiconductor which is
widely used as a transparent conducting oxide. In-
trinsic defects in In2O3 have received relatively mod-
erate attention both experimentally [34, 64] and the-
oretically [62, 65, 66] compared to silicon and ZnO.
It crystalizes in ground state cubic bixbyite structure
(space group Ia-3, 206) with indium (Wyckoff posi-
tions 8b and 24d) and oxygen (48e) lattice sites in the
bulk structure as shown in Fig. 9(a). Spin-polarized
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Figure 9: (a) Oxygen site at 48e (top) and Indium sites at 8b and 24d (bottom) Wyckoff positions in bulk In2O3, (b) oxygen
interstitials (orange) in split(48e) , split*(48e) and 4-fold coordinated (48e), (c) Indium interstitial (blue) in 3-fold (16c), 6-fold
(8a), and 4-fold coordinated (24d) configurations.

GGA calculations are performed on 80 atoms super-
cell, with A Γ-centered 2x2x2 k-point mesh.

Figure 9 displays the oxygen and indium intersti-
tials structures realized using the automated defect
framework. We observe three distinct structures for
oxygen interstitials (among the initial set of 22 pos-
sible candidates), all occupying the general 48e (x, y,
z) Wyckoff position in the relaxed structure. Split
oxygen interstitial (Fig. 9(b)) is the lowest energy
configuration. We find a new split interstitial config-
uration (referred as split* in Fig. 9(b)) which is sta-
ble in the neutral charge state and is about 0.67 eV
higher than the lowest energy split interstitial. How-
ever split* configuration is unstable in positive charge
states and relaxes to the split geometry. Oxygen in-
terstitial bonded to 4 neighboring indium atoms (re-
ferred as 4-fold coordinated in Fig. 9(b)) is the high-
est energy configuration, with energy of about 1.0 eV

higher than the split configuration. To our knowledge
only the split and 4-fold coordinated oxygen inter-
stitial configuration has been reported in literature
[62]. This could be due to the fact that, first, such
an exhaustive method to theoretically search inter-
stitials has not been adopted for In2O3, and second,
often only the un-occupied Wyckoff positions (16c
and 8a) are considered to investigate interstitials in
In2O3 [62].

For indium interstitials we also find three distinct
configurations (Fig. 9(c)). Lowest energy configu-
ration correspond to indium atom occupying the 16c
(0.17, 0.17, 0.17) Wyckoff position, which is 3-fold co-
ordinated to neighboring oxygen atoms (bond length
2.15 Å). Interstitial atom displaces the indium atom
originally at the lattice site 8b (with 6-fold coordi-
nation) to a similar 16c (0.83, 0.17, 0.34) Wyckoff
position with 3-fold coordination. Indium interstitial
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Figure 10: Defect formation energy as function of the Fermi energy for intrinsic vacancies and in In2O3 using GGA with band
edge shifts computed from GW calculation.

at 8a (0.5, 0.0, 0.5) Wyckoff position is symmetrically
placed in the empty channel between host indium and
oxygen atoms along [110] type direction. It is bonded
to 6 neighboring oxygen atoms at bond length of 2.24
Å. In neutral charge state its energy is about 0.3 eV
higher than 16c configuration. Third indium inter-
stitial configuration occupy the 24d (0.75, 0.25, 0.50)
Wyckoff position, and is also placed in the empty
channel along [110] type direction. It is bonded to 4
neighboring oxygen atom, two of which are at bond
length 2.05 Å, and the other two at 2.18 Å. 24d con-
figuration is highest in energy, with energy 0.83 eV
than the 16c configuration in the neutral charge state.
To our knowledge, 24d configuration for indium in-
terstitial has never been considered previously, and
though it is high in energy, we believe its existence is
relevant and crucial because of the entropy at growth
temperatures.

In the context of electronic structure, oxygen in-
terstitials has defect states deep inside the band gap,
and so as for the indium vacancies (Fig. 10). In-
dium vacancies have two distinct configurations 8b
(0.75, 0.25, 0.25) and 24d (0.75, 0.5, 0.0) both 6-
fold coordinated to the neighboring oxygen atoms.
Indium interstitials in all structural configurations

act as shallow donors, with defect states formed as
resonance states above the CBM. Indium intersti-
tial occur in 3+ charge state for the Fermi energy
in majority of the band gap, with charge transition
levels occur almost at the CBM (Fig. 10). We ob-
serve shallow donor type defect states for oxygen va-
cancy in DFT with 2+ charge state being the most
stable within the explored range of the Fermi en-
ergy. As discussed previously [67], defect states in
DFT can hybridize strongly with the band edges, and
requires self-consistent band gap corrected method
such as hybrid functional and defect GW to accu-
rately determine oxygen vacancy charge transition
levels. Overall, our results are consistent with pre-
vious DFT calculations [62, 66] in In2O3 and demon-
strate the potential of the employed automated point
defect framework to discover interstitials structures
in complex crystal structures.

4. Summary and future outlook

We have developed an efficient and extensively
validated framework to automate point defect cal-
culations. We applied the framework to Si, ZnO
and In2O3, and recovered the known intrinsic defect
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structures as well as their electronic structure prop-
erties. Our results demonstrate that the automated
defect framework can not only be employed to dis-
cover interstitials in complex crystal structures such
as In2O3, but also predict accurate defect formation
energy of point defects using the implemented finite-
size correction schemes. Regarding application to im-
purities, the present framework is capable of calculat-
ing formation energies of impurities by appropriately
taking into account the chemical identities of the im-
purities. The package is being continuously devel-
oped and is hosted on GitHub at https://github.

com/pylada/pylada-defects. We believe an auto-
mated point defect analysis framework like this will
accelerate structure-property prediction by bringing
detailed defect understanding to the forefront, and
will contribute to more strategic efforts towards tun-
ing the device performance.
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and Vladan Stevanović. Predicting density func-
tional theory total energies and enthalpies of for-
mation of metal-nonmetal compounds by linear
regression. Physical Review B, 93(8):085142, feb
2016.

[28] C. R. Hubbard, H. E. Swanson, and F. A. Mauer.
A silicon powder diffraction standard reference
material. Journal of Applied Crystallography,
8(1):45–48, feb 1975.

[29] O Madelung. Semiconductors: group IV ele-
ments and III-V compounds, 1991.

[30] H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl,
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