As hypoxia plays a significant role in the formation and maintenance of cartilage tissue, aiming to develop native hypoxia-mimicking tissue engineering scaffolds is an efficient method to treat articular cartilage (AC) defects. Cobalt (Co) is documented for its hypoxic-inducing effects in vitro by stabilizing the hypoxia-inducible factor-1α (HIF-1α), a chief regulator of stem cell fate. Considering this, we developed a novel three-dimensional (3D) bioprintable hypoxia-mimicking nano bioink wherein cobalt nanowires (Co NWs) were incorporated into the poly(ethylene glycol) diacrylate (PEGDA) hydrogel system as a hypoxia-inducing agent and encapsulated with umbilical cord-derived mesenchymal stem cells (UMSCs). In the current study, we investigated the impact of Co NWs on the chondrogenic differentiation of UMSCs in the PEGDA hydrogel system. Herein, the hypoxia-mimicking nano bioink (PEGDA+Co NW) was rheologically optimized to bioprint geometrically stable cartilaginous constructs. The bioprinted 3D constructs were evaluated for their physicochemical characterization, swelling-degradation behavior, mechanical properties, cell proliferation, and the expression of chondrogenic markers by histological, immunofluorescence, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) methods. The results disclosed that, compared to the control (PEGDA) group, the hypoxia-mimicking nano bioink (PEGDA+Co NW) group outperformed in print fidelity and mechanical properties. Furthermore, live/dead staining, double-stranded DNA (dsDNA) content, and glycosaminoglycans (GAGs) content demonstrated that adding low amounts of Co NWs (<20 ppm) into PEGDA hydrogel system supported UMSC adhesion, proliferation, and differentiation. Histological and immunofluorescence staining of the PEGDA+Co NW bioprinted structures revealed the production of type 2 collagen (COL2) and sulfated GAGs, rendering it a feasible option for cartilage repair. It was further corroborated by a significant upregulation of the hypoxia-mediated chondrogenic and downregulation of the hypertrophic/osteogenic marker expression. In conclusion, the hypoxia-mimicking hydrogel system, including PEGDA and Co2+ ions, synergistically directs the UMSCs toward the chondrocyte lineage without using expensive growth factors and provides an alternative strategy for translational applications in the cartilage tissue engineering field. © 2023 American Chemical Society.