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bounds are found to be relevant only for low-scale seesaw scenarios with relatively large

Yukawa couplings. The regions corresponding to stability, metastability and instability of

the electroweak vacuum are identified. These theoretical constraints give a very predictive

parameter space for the couplings and masses of the new scalars and RHNs which can be

tested at the LHC and future colliders. The lightest non-SM neutral CP-even/odd scalar

can be a good dark matter candidate and the corresponding collider signatures are also

predicted for the model.
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1 Introduction

The last missing piece of the Standard Model (SM) particle spectrum was found in 2012

with the discovery of a SM-like Higgs boson with a mass of about 125GeV at the Large

Hadron Collider (LHC) [1, 2], followed by increasingly-precise measurements [3–6] on its

spin, parity, and couplings to SM particles, all of which are consistent within the uncertain-

ties with those expected in the SM [7]. On the other hand, there are ample experimental

evidences, ranging from observed dark matter (DM) relic density and matter-antimatter

asymmetry in the universe to nonzero neutrino masses, that necessitate an extension of

the SM, often involving the scalar sector. Moreover, from the theoretical viewpoint, it is

known that the SM by itself cannot ensure the absolute stability of the electroweak (EW)

vacuum up to the Planck scale [8–11].1 An extended scalar sector with additional bosonic

1This is not a problem per se, as for the current best-fit values of the SM Higgs and top-quark masses [12],

the EW vacuum is metastable in the SM with a lifetime much longer than the age of the universe [13].

However, absolute stability is desired, for instance, for the success of minimal Higgs inflation [14] (see

ref. [15] for a way around, though). Moreover, Planck-scale higher-dimensional operators can have a large

effect to render the metastability prediction unreliable in the SM [16–18].
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degrees of freedom can alleviate the stability issue, by compensating for the destabilizing

effect of the top-quark Yukawa coupling on the renormalization group (RG) evolution of

the SM Higgs quartic coupling. The issue of vacuum stability in presence of additional

scalars has been extensively studied in the literature. An incomplete list of models include

SM-singlet scalar models [19–25], Two-Higgs doublet models (2HDM) [26–31], type-II see-

saw models with SU(2)L-triplet scalars [32–38], U(1) extensions [39–45], left-right sym-

metric models [46–48], universal seesaw models [49, 50], Zee-Babu model [51, 52], models

with Majorons [53, 54], axions [22, 55], moduli [56, 57], scalar leptoquarks [58] or higher

color-multiplet scalars [59, 60], as well as various supersymmetric models [61–71]. In con-

trast, additional fermions typically aggravate the EW vacuum stability, as shown e.g. in

type-I [72–78], III [79–82], linear [83] and inverse [84, 85] seesaw scenarios, fermionic EW-

multiplet DM models [86–89], or models with vectorlike fermions [90, 91].

As alluded to above, nonzero neutrino masses provide a strong motivation for beyond

the SM physics. Arguably, the simplest paradigm to account for tiny neutrino masses

is the so-called type-I seesaw mechanism with additional right-handed heavy Majorana

neutrinos [92–96]. However, it comes with the additional Dirac Yukawa couplings which

contribute negatively to the RG running of the SM Higgs quartic coupling, thus aggravat-

ing the vacuum stability problem. One way to alleviate the situation is by adding extra

scalars [97–102] which compensate for the destabilizing effect of the right-handed neutrinos

(RHNs). Following this approach, we consider in this paper an inert 2HDM [103, 104] with

the addition of RHNs for seesaw mechanism. The lighest of the Z2 doublet is stable and we

choose the parameter space in such a way that the neutral Z2 odd component of the inert

doublet comes out to be lightest and therefore, can be identified as the DM candidate [104–

111].2 Though the second Higgs doublet remains inert as far as the EW symmetry breaking

is concerned, it plays an important role in deciding the stability of the EW minimum for

given Dirac neutrino Yukawa couplings. For sizable quartic couplings in the 2HDM sec-

tor, we find that the effect of large Dirac Yukawa couplings from the RHN sector can be

compensated to keep the EW vacuum stable all the way up to the Planck scale. It should

be emphasized here that the effect of the RHNs on vacuum stability is only relevant in

the low-scale seesaw scenarios with relatively large Dirac Yukawa couplings, which can be

realized either via cancellations in the type-I seesaw matrix or via some form of inverse

seesaw mechanism (see section 2.2 for details). We also discuss the collider phenomenology

of this model, and in particular, new exotic decay modes of the RHNs involving the heavy

Higgs bosons (see section 5).

The rest of this article is organized as follows: In section 2 we briefly review the inert

2HDM with RHNs. In section 3, the RG running effects are discussed in the context of

perturbativity. In section 4, the stability of the EW vacuum has been studied in detail as a

function of the Yukawa couplings. Some LHC phenomenology is touched upon in section 5.

Our conclusions are given in section 6. For completeness, we give the expressions for two-

loop beta functions used in our analysis in appendix A.

2A variant of this model with an additional scalar singlet was considered in refs. [99, 102] to obtain a

multi-component DM scenario.
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2 The model

We extend the SM by adding another SU(2)L-doublet scalar field and three RHNs which

are singlets under the SM gauge group. The scalar sector of the model is discussed in

section 2.1. For the vacuum stability analysis, we consider two different scenarios for the

RHNs, viz., a canonical type-I seesaw with small Yukawa couplings and an inverse seesaw

with large Yukawa couplings, which are discussed in section 2.2. We consider the SM

gauge-singlet RHNs which are even under Z2 symmetry and thus generate small neutrino

masses via type-I seesaw mechanism, while the lightest component of the Z2-odd inert

doublet is the DM candidate.3

2.1 The scalar sector

The scalar sector of this model consists of two SU(2)L-doublet scalars Φ1 and Φ2 with the

same hypercharge 1/2:

Φ1 =

(
G+

h+ iG0

)
, Φ2 =

(
H+

H + iA

)
. (2.1)

The tree-level Higgs potential symmetric under the SM gauge group SU(2)L × U(1)Y
is given by [113]

Vscalar = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 +H.c)

+ λ1(Φ
†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
[
λ5(Φ

†
1Φ2)

2 + λ6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + H.c

]
, (2.2)

where the mass terms m2
11,m

2
22 and the quartic couplings λ1,2,3,4 are all real, whereas m2

12

and the λ5,6,7 couplings are in general complex. To avoid the dangerous flavor changing

neutral currents at tree-level and to make Φ2 inert for getting a DM candidate, we impose

an additional Z2 symmetry under which Φ2 is odd and Φ1 is even. This removes the m12,

λ6 and λ7 terms from the potential and eq. (2.2) reduces to

Vscalar = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 + λ1(Φ

†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

[
λ5(Φ

†
1Φ2)

2 +H.c
]
. (2.3)

The EW symmetry breaking is achieved by giving real vacuum expectation value

(VEV) to the first Higgs doublet, i.e

〈Φ1〉 =
1√
2

(
0

v

)
, (2.4)

with v ≃ 246GeV, whereas the second Higgs doublet, being Z2-odd, does not take part in

symmetry breaking (hence the name ‘inert 2HDM’).

3This is different from the scotogenic model [112], where the RHNs are also Z2-odd and the Dirac

neutrino masses are forbidden. The observed neutrino masses in this model are obtained via one-loop

radiative effects.
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Using minimization conditions, we express the mass parameter m11 in terms of other

parameters as follows:

m2
11 = −λ1v

2 , (2.5)

whereas the physical scalar masses are given by

M2
h = 2λ1v

2 ,

M2
H =

1

2
[2m2

22 + v2(λ3 + λ4 + 2λ5)] ,

M2
A =

1

2
[2m2

22 + v2(λ3 + λ4 − 2λ5)] ,

M2
H± = m2

22 +
1

2
v2λ3 . (2.6)

Here we get one CP -even neutral Higgs boson h which is identified as the SM-like Higgs

boson of mass 125GeV discovered at the LHC. We also get two heavy neutral Higgs bosons

H and A with opposite CP parities and a pair of charged Higgs bosons H±. Notice from

eq. (2.6) that the heavy Higgs bosons H, A and H± are nearly degenerate. Depending

upon the sign of λ5 one of scalars between H and A can be a cold DM candidate. Since all

the physical Higgs bosons except h are Φ2-type, i.e., Z2-odd, this also restricts their decay

modes. Since Φ2 is inert, there is no mixing between Φ1 and Φ2 and the gauge eigenstates

are same as the mass eigenstates for the Higgs bosons. The Z2-symmetry prevents any

such mixing through the Higgs portal. In this scenario, the second Higgs doublet does not

couple to fermions.

To ensure that the tree-level potential (2.3) is bounded from below in all the directions,

the quartic couplings must satisfy the tree-level stability conditions [113]

λ1 > 0 , λ2 > 0 , 2
√

λ1λ2 + λ3 > 0 , 2
√

λ1λ2 + λ3 + λ4 − 2|λ5| > 0 . (2.7)

Similarly, a neutral, charge-conserving vacuum can be ensured by demanding that

λ4 − 2|λ5| < 0 , (2.8)

which is a sufficient but not necessary condition.

Another constraint comes from the fact that the scalar potential (2.3) can have two

minima at different depths [111, 113–117]. In order to avoid the possibility of having

a pseudo-inert vacuum as the global minimum, the following constraints must be satis-

fied [111], along with m2
11 < 0:

m2
22 >





R
√

λ2

λ1
m2

11 for |R| < 1 ,
√

λ2

λ1
m2

11 for R > 1 ,
(2.9)

where λ345 = λ3 + λ4 + 2|λ5| and R = λ345/2
√
λ1λ2. Such constraints will affect the RG-

evolution of the dimensionless couplings, depending on their values at the electroweak scale.

In our case, λi ≥ 0.03 (for i = 2, · · · , 5) corresponds to R > 1 and λi < 0.03 corresponds to
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|R| < 1 at the electroweak scale. Demanding R > 1 turns out to be a stronger constraint

than eq. (2.9), as we test the perturbativity and stability profiles. The values of m2
11,22 are

taken suitably at the electroweak scale in order to avoid the pseudo-inert vacuum for the

RG-evolution in section 3, as well as for the benchmark points discussed in the section 5.

2.2 The fermion sector

In the fermion sector, we just add SM gauge-singlet RHNs which are Z2 even, to the

SM particle content to generate tree-level neutrino mass via seesaw mechanism. In the

canonical type-I seesaw, we just add three RHNs NRi
, where i = 1, 2, 3 and the relevant

part of the Yukawa Lagrangian is given by

LI = iNRi
/∂NRi

−
(
YNij

LiΦ̃1NRj
+

1

2
N

c
Ri
MRi

NRi
+H.c.

)
, (2.10)

where L ≡ (ν, ℓ)L is the SM lepton doublet, Φ̃1 = iσ2Φ
⋆
1 (with σ2 being the second Pauli

matrix), N c
R ≡ N⊺

RC
−1 (with C being the charge conjugation matrix), YN is the 3×3

Yukawa matrix and MR is the 3×3 diagonal mass matrix for RHNs.

After EW symmetry breaking by the VEV of Φ1, the YN couplings generate the Dirac

mass terms for the neutrinos:

MD =
v√
2
YN , (2.11)

which mix the left- and right-handed neutrinos. This leads to the full neutrino mass matrix

Mν =

(
0 MD

M⊺
D MR

)
. (2.12)

After block diagonalization and in the seesaw limit ||MD|| ≪ ||MR||, we obtain the mass

eigenvalues for the light neutrinos as

mν ≃ −MDM
−1
R M⊺

D , (2.13)

whereas the RHN mass eigenstates have masses of order MR. From eq. (2.13), it is clear

that in order to have the correct order of magnitude of light neutrino mass mν . 0.1 eV,

as required by oscillation data as well as cosmological constraints, the Yukawa couplings in

the canonical seesaw have to be very small, unless the RHNs are super heavy. For instance,

for MR ∼ O(100 GeV), we require YN . O(10−6). We will see later that these coupling

values are too small to have any impact in the RG evolution of other couplings, and thus,

the RHNs in the canonical seesaw have effectively no contribution to the vacuum stability

in this model.

However, most of the experimental tests of RHNs in the minimal seesaw rely upon

larger Yukawa couplings [118, 119]. There are various ways to achieve this theoretically,

even for a O(100 GeV)-scale RHN mass. One possibility is to arrange special textures of

MD and MR matrices and invoke cancellations among the different elements in eq. (2.13)

to obtain a light neutrino mass [120–127]. Another possibility is the so-called inverse
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seesaw mechanism [128, 129], where one introduces another set of fermion singlets Si (with

i = 1, 2, 3), along with the RHNs NRi
. The corresponding Yukawa Lagrangian is given by

LISS = iNR /∂NR + iS /∂S −
(
YNij

LiΦ̃1NRj
+NRi

MRij
Sj +

1

2
S
c
iµSij

Sj +H.c.

)
, (2.14)

where MR is a 3×3 Dirac mass matrix in the singlet sector and µS is the small lepton

number breaking mass term for the S-fields. In the basis of {νcL, NR, S}, the full 9 × 9

neutrino mass matrix takes the form

Mν =




0 MD 0

M⊺
D 0 MR

0 M⊺
R µS


 . (2.15)

After diagonalization of the mass matrix eq. (2.15) we get the three light neutrino masses

mν ≃ MDM
−1
R µS(M

⊺
R)

−1M⊺
D , (2.16)

whereas the remaining six mass eigenstates are mostly sterile states with masses given by

MR ± µS/2. The key point here is that the presence of additional fermionic singlet and

the extra mass term µS give us the freedom to accommodate any MR values while having

sizable Yukawa couplings.

Irrespective of the underlying model framework, if we take large YN ∼ O (1), it will

have a significant negative contribution to the running of quartic couplings via the RHN

loop at scales µ > MR [131]. This must be taken into account in the study of vacuum

stability in low-scale seesaw scenarios, as we show below.

3 RG evolution of the scalar quartic couplings

To study the RG evolution of the couplings, the inert 2HDM+RHN scenario was imple-

mented in SARAH 4.13.0 [132] and the β-functions for various gauge, quartic and Yukawa

couplings in the model are evaluated up to two-loop level. The explicit expressions for the

two-loop β-functions can be found in appendix A, and are used in our numerical analysis of

vacuum stability in the next section. To illustrate the effect of the Yukawa and additional

scalar quartic couplings on the RG evolution of the SM Higgs quartic coupling λ1 in the

scalar potential (2.3), let us first look at the one-loop β-functions. At the one-loop level,

the β-function for the SM Higgs quartic coupling λh (which is equal to λ1 at tree level)

in this model receives three different contributions: one from the SM gauge, Yukawa and

quartic interactions, the second from the RHN Yukawa couplings and the third from the

inert scalar sector as shown in eq. (3.1).

βλh
= βSM

λ1
+ βRHN

λ1
+ βinert

λ1
, (3.1)

– 6 –
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with

βSM
λ1

=
1

16π2

[
27

200
g41 +

9

20
g21g

2
2 +

9

8
g42 −

9

5
g21λ1 − 9g22λ1 + 24λ2

1

+ 12λ1Tr
(
YuY

†
u

)
+ 12λ1Tr

(
YdY

†
d

)
+ 4λ1Tr

(
YeY

†
e

)

− 6Tr
(
YuY

†
uYuY

†
u

)
− 6Tr

(
YdY

†
d YdY

†
d

)
− 2Tr

(
YeY

†
e YeY

†
e

)]
, (3.2)

βRHN
λ1

=
1

16π2

[
4λ1Tr

(
YNY †

N

)
− 2Tr

(
YNY †

NYNY †
N

)]
, (3.3)

βinert
λ1

=
1

16π2

[
2λ2

3 + 2λ3λ4 + λ2
4 + 4λ2

5

]
. (3.4)

Here g1, g2 are respectively the U(1)Y , SU(2)L gauge couplings, and Yu, Yd, Ye are respec-

tively the up, down and electron-type Yukawa coupling matrices in the SM. We use the

SM input values for these parameters at the EW scale [12]: λ1 = 0.1264, g1 = 0.3583,

g2 = 0.6478, yt = 0.9511(0.9369) at one (two) loop, while other Yukawa couplings are

neglected [11]. It is important to note that the RHN contribution to the RG evolution of

λ1 is applicable only above the threshold of MR.

For illustration, we assume MR = 100GeV and fix all other quartic coupling values

to λi = 0.1 (with i = 2, 3, 4, 5) with yt = 0.9369 at the EW scale. The added effects of

these new contributions in eq. (3.1) on the RG evolution of the SM Higgs quartic coupling

λh as a function of the energy scale µ are shown in figure 1. Here the red curve shows

the RG evolution of λh using βSM
λ1

only [cf. eq. (3.2)], while the blue curve shows the

evolution using βSM
λ1

+βRHN
λ1

, and finally the green curve shows the full evolution using βλh
≡

βSM
λ1

+βRHN
λ1

+βinert
λ1

[cf. eq. (3.1)]. The three panels correspond to three benchmark values

for the diagonal and degenerate Yukawa coupling values YN = 0.4 (left), 0.01 (middle),

and 10−7 (right). As shown in the left panel of figure 1, for large YN = 0.4, the negative

RHN contribution to the β-function in eq. (3.3) brings down the stability scale (below

which λh ≥ 0) from 106.6GeV in the SM (at one-loop level) to 106.2GeV, which is then

neutralized by the positive inert scalar contribution [cf. eq. (3.4)], that pushes the stability

scale back to 107.2GeV and makes λh > 0 again near the Planck scale. As shown in the

middle and right panels, for smaller YN values, the RHN contribution to the running of

λh is negligible, and therefore, the red and blue curves almost coincide. In these cases, the

addition of inert scalar contribution pushes the stability scale up to 107.6GeV, and then

λh again becomes positive at ∼ 1019.6GeV.

For completeness, we show the full two-loop evolution using the β-functions given in

appendix A in figure 2. In this case, the stability scale in the SM is 109.5GeV, whereas

including the inert scalar contribution always leads to a stable vacuum all the way up to the

Planck scale, even for the case when the Yukawa coupling is chosen to be large, YN = 0.4

(left panel). From this illustration, we conclude that although large Yukawa couplings

involving RHNs in low-scale seesaw models tend to destabilize the vacuum at energy scales

lower than that in the SM, the additional scalar contributions in the inert 2HDM extension

under consideration here have the neutralizing effect of bringing back (or even enhancing)

– 7 –
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(b) YN = 0.01
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(c) YN = 10−7

Figure 1. One-loop running of the Higgs quartic coupling λh as a function of the energy scale µ

for three benchmark values of the Yukawa coupling YN . Here we have taken MR=100GeV and set

λi=2,3,4,5 = 0.1, yt = 0.9511 for the other quartic couplings at the EW scale. The red, blue, and

green curves respectively correspond to the β-functions in the SM, including the RHN contribution

and the total contribution including both RHNs and inert scalars to the SM. The horizontal line

corresponds to λh = 0, which is the stability line.
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(b) YN = 0.01
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(c) YN = 10−7

Figure 2. Two-loop running of the Higgs quartic coupling λh as a function of energy for three

benchmark values of the Yukawa coupling YN . Here we have taken MR=100GeV and λi = 0.1

for the values of the quartic couplings λ2,3,4,5 at the EW scale. For the top Yukawa coupling, we

use the two-loop value yt = 0.9369 at the EW scale. The red, blue, and green curves respectively

correspond to the β-functions in the SM, including the RHN contribution and the total contribution

including both RHNs and inert scalars to the SM.

the stability up to higher scales, and in the particular example shown above, all the way

up to the Planck scale [133].

3.1 Stability bound

The variation of the stability scale with the size of YN and λi is depicted in figure 3 for

the choice of yt = 0.9369 at EW scale. For smaller values of λi, say 0.1 (red curve), the

stability can be ensured up to the Planck scale only for YN ≤ 0.30, beyond which the

negative contribution from the RHNs take over and pull λh to negative values at scales

below the Planck scale. As we increase the λi values, the compensating effect from the scalar

sector gets enhanced and stability can be ensured up to the Planck scale for higher values

of YN . This is illustrated by the blue curve corresponding to λi = 0.2, for which YN ≤ 0.50

is allowed. However, arbitrarily increasing λi does not help, as the theory encounters a

Landau pole below the Planck scale. For instance, with λi = 0.3 (green curve), a Landau

– 8 –
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Figure 3. Effect of Yukawa coupling on the stability bound for different values of λi and yt =

0.9369. Here, the red curve corresponds to λi = 0.10 which gives stability till the Planck scale

for YN ≤ 0.30. The blue curve corresponds to λi=0.2 which gives stability till the Plank scale

for YN ≤ 0.50. The green curve corresponds to λi=0.3 which hits Landau pole at YN=0.58 and

µ = 1018.5 GeV (as shown by the dagger). The purple curve corresponds to λi=0.4 which hits

Landau pole at YN= 0.55 and µ = 1017.8 GeV(as shown by the star). Otherwise, the green and

purple curves almost coincide.

pole is developed at YN = 0.58 and µ = 1018.5GeV(dagger). Similarly, with λi = 0.4

(purple curve), a Landau pole is developed at YN = 0.55 and µ = 1017.8GeV(star). This

leads us to the discussion of the perturbativity bound below.

3.2 Perturbativity bound

Apart from the stability constraints on the model parameter space, we also need to consider

the perturbativity behaviour of the dimensionless couplings as we increase the validity scale

of the theory. We impose the condition that all dimensionless couplings of the model must

remain perturbative for a given value of the energy scale µ, i.e. the couplings must satisfy

the following constraints:

|λi| ≤ 4π, |gj | ≤ 4π, |Yk| ≤
√
4π , (3.5)

where λi with i = 1, 2, 3, 4, 5 are all scalar quartic couplings, gj with j = 1, 2 are EW gauge

couplings,4 and Yk with k = u, d, e,N are all Yukawa couplings.

Figure 4 describes the variations of different dimensionless couplings with the energy

scale µ. Here we have shown the two-loop RG evolution of g1 (yellow), g2 (dotted blue), λh

(green), λ3 (red), λ4 (purple) and λ5 (blue) as a function of the energy scale µ for bench-

mark values of YN = 0.53 and MR = 100GeV and with the initial conditions g1=0.3583,

g2=0.6478, yt = 0.9369, λh=0.1264, and λi = 0.4 (for i = 3, 4, 5) at the EW scale. The

important feature to be noted from this plot is that the theory becomes non-perturbative

around 108.5GeV, as the λ3 coupling overshoots the perturbativity limit, mainly driven by

4The running of the strong coupling g3 is same as in the SM, so we do not show it here.
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Figure 4. Two-loop RG evolution of dimensionless couplings g1, g2, λh and λi (with i = 3, 4, 5) as a

function of the energy scale µ for benchmark values of YN = 0.53, yt = 0.9369, MR = 100GeV and

initial condition for λi = 0.4 at the EW scale. The horizontal dashed line shows the perturbativity

limit for scalar quartic and gauge couplings.

λ3Tr(Y
†YN) (see appendix A) for the large Yukawa coupling YN = 0.53 chosen here. This

is to illustrate that the perturbativity of the couplings up to the Planck scale is an addi-

tional constraint we have to take into account along with the vacuum stability constraint,

while doing the RG-analysis.

The perturbativity behavior of the scalar quartic couplings λ3,4,5 is studied in figures 5–

7 respectively. In each case, we consider three benchmark values for the Yukawa coupling

YN = 0.1 (left), 0.4 (middle) and 0.9 (right). In each subplot, the various curves correspond

to different benchmark initial values for the remaining unknown quartic couplings at the

EW scale: red, green, blue and purple respectively for very weak coupling (λi = 0.01),

weak coupling (λi = 0.1), moderate coupling (λi = 0.4) and strong coupling (λi = 0.8),

while the SM Higgs quartic coupling is fixed at λh = 0.126 for yt = 0.9369 and one of

the quartic coupling value is varied (as shown along the x-axis) at the EW scale. From

figure 5, we see that for a given YN value, the scale at which λ3 hits the perturbative limit

decreases as the scalar effect is increased. For example, in the strong coupling limit (with

λ2,4,5 = 0.8 at the EW scale), λ3 hits the Landau pole at µ ∼ 106GeV making the theory

non-perturbative much below the Planck scale. As we increase the YN value (going from

left to right panel), the perturbative limit is reached even for smaller values of λi. For

instance, for YN = 0.9 (right panel of figure 5), λ3 hits the Landau pole even in the very

weak coupling limit (with λi = 0.01) at µ ∼ 1012GeV. The results for λ4 (cf. figure 6) and

λ5 (cf. figure 7) are very similar to those of λ3 discussed above.

Figure 8 shows the bounds on Yukawa coupling YN from perturbativity of λi for dif-

ferent initial λi values for the choice of yt = 0.9369 at the EW scale. Here the color coding

refers to the size of the Yukawa coupling. For small YN ∼ 10−7 corresponding to the

canonical type-I seesaw limit (sky-blue region), no significant effect of RHN is noticed on

the perturbativity bound. Even if we allow for YN values up to 10−2 as in low-scale seesaw
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(c) YN = 0.9

Figure 5. Two-loop running of the scalar quartic coupling λ3 as a function of the perturbativity

scale (scale where the perturbativity limit is violated) for three benchmark values of the Yukawa

coupling YN with yt = 0.9369. Here red, green, blue and purple curves in each plot correspond

to different initial conditions for λi (with i = 2, 4, 5) at the EW scale, representative of very weak

(λi = 0.01), weak (λi = 0.1), moderate (λi = 0.4) and strong (λi = 0.8) coupling limits respectively.
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(c) YN = 0.9

Figure 6. Two-loop running of the scalar quartic coupling λ4 as a function of the perturbativity

scale for three benchmark values of the Yukawa coupling YN with yt = 0.9369. Here red, green,

blue and purple curves in each plot correspond to different initial conditions for λi (with i = 2, 3, 5)

at the EW scale, representative of very weak (λi = 0.01), weak (λi = 0.1), moderate (λi = 0.4) and

strong (λi = 0.8) coupling limits respectively.
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(c) YN = 0.9

Figure 7. Two-loop running of the scalar quartic coupling λ5 as a function of the perturbativity

scale for three benchmark values of the Yukawa coupling YN with yt = 0.9369. Here red, green,

blue and purple curves in each plot correspond to different initial conditions for λi (with i = 2, 3, 4)

at the EW scale, representative of very weak (λi = 0.01), weak (λi = 0.1), moderate (λi = 0.4) and

strong (λi = 0.8) coupling limits respectively.
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Figure 8. Bounds from perturbativity on YN as a function of the perturbativity scale for different

values of λi with yt = 0.9369, MR = 100GeV. The color coding refers to the size of Yukawa

coupling, with sky-blue, yellow and red-colored regions roughly corresponding to the canonical

type-I seesaw, low-scale seesaw (with fine-tuning) and inverse seesaw scenarios.

models with cancellation in the seesaw matrix (yellow region), the effect of RHN on the

perturbativity of λi is hardly noticeable. However, as we increase YN to the level of 0.1

and above, the perturbativity scale decreases quickly due to the positive effect of RHNs

via λiTr(Y
†
NTN) in the RG equations. The exact value of YN where this starts to happen

depends on the initial value of λi. For λi = 0.1, the perturbativity scale occurs below

the Planck scale and the effect of RHN starts showing up for YN > 0.15. For λi = 0.2,

the perturbativity limit is constant ∼ 1016GeV and the effect of RHN starts becoming

important for a larger YN > 0.3 or so. On the other hand, for λi =0.8, the perturbativity

limit is constant at ∼ 106GeV and the effect of RHN comes much later for YN > 0.8. Thus

as λi increases, it can accommodate higher values of YN for vacuum stability, but on the

contrary, it makes the theory non-perturbative at much lower scale. We infer from figure 8

that an upper bound comes from perturbativity on λi and YN values, i.e. λi ≤ 0.15 and

YN ≤ 0.3 for the given theory to remain perturbative till the Planck scale. For comparison,

it is worth noting that the perturbativity limit on YN derived here is a factor of few weaker

than those coming from EW precision data, which vary between 0.02 to 0.07, depending

on the lepton flavor, for the minimal seesaw case (i.e. without the inert doublet) [134–138].

4 Vacuum stability from RG-improved potential

In this section, we investigate the stability of the EW vacuum including the quantum cor-

rections at one-loop level. Here we follow the RG-improved effective potential approach

by Coleman and Weinberg [139], and calculate the effective potential at one-loop for our

model. The parameter space of the model is then scanned for the stability, metastabil-

ity and instability of the potential by calculating the effective Higgs quartic coupling and

demanding appropriate limits. We then translate it into constraints on the model param-

eter space.
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Considering the running of couplings with the energy scale in the SM, we know that the

Higgs quartic coupling λh gets a negative contribution from top Yukawa coupling yt, which

makes it negative around 109−10GeV and we expect a second deeper minimum for the

high field values of Φ1 as it couples to top quark. It has been shown that other direction

almost remains flat as it is unlikely to get quantum corrections which generates much

deeper minima, especially for the inert doublet which does not couple to top quark and

RHNs [115, 140, 141]. Since the other minimum exists at much higher scale than the EW

minimum in h direction, we can safely consider the effective potential in the h-direction

to be

Veff(h, µ) ≃ λeff(h, µ)
h4

4
, with h ≫ v , (4.1)

where λeff(h, µ) is the effective quartic coupling which can be calculated from the RG-

improved potential. The stability of the vacuum can then be guaranteed at a given scale

µ by demanding that λeff(h, µ) ≥ 0. This approach gives us the RG-improved stability

condition at the one-loop level, which supersedes the tree-level condition given in eq. (2.7).

We follow the same strategy as in the SM in order to calculate λeff(h, µ) in our model, as

described below.

4.1 Effective potential

The one-loop RG-improved effective potential at high field values (keeping the form of

eq. (4.1)) in our model can be written as

Veff ≃ V0 + V SM
1 + V inert

1 + V RHN
1 , (4.2)

where contributions at high Higgs field values come from V0, the tree-level potential; V
SM
1 ,

the SM one-loop potential at zero temperature with vanishing momenta; V inert
1 and V RHN

1 ,

the one-loop potentials for the inert scalar doublet and the RHN loops in the model. In

general, V1 can be written as

V1(h, µ) =
1

64π2

∑

i

(−1)FniM
4
i (h)

[
log

M2
i (h)

µ2
− ci

]
, (4.3)

where the sum runs over all the particles that couple to the h-field, F = 1 for fermions in

the loop and 0 for bosons, ni is the number of degrees of freedom of each particle, M2
i are

the tree-level field-dependent masses given by

M2
i (h) = κih

2 − κ′i , (4.4)

with the coefficients given in table 1. In the last column, m2 corresponds to the tree-level

Higgs mass parameter. Note that the massless particles do not contribute to eq. (4.4), and

hence, neither to eq. (4.3). Therefore, for the SM fermions, we only include the dominant

contribution from top quarks, and neglect the other quarks. It is also important to note

that the RHN contributions come after each threshold value of MRi
.
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Particles i F ni ci κi κ′i

W± 0 6 5/6 g22/4 0

Z 0 3 5/6 (g21 + g22)/4 0

SM t 1 12 3/2 Y 2
t 0

h 0 1 3/2 λh m2

G± 0 2 3/2 λh m2

G0 0 1 3/2 λh m2

H± 0 2 3/2 λ3/2 0

Inert H 0 1 3/2 (λ3 + λ4 + 2λ5)/2 0

A 0 1 3/2 (λ3 + λ4 − 2λ5)/2 0

RHN Ni 1 2 3/2 Y 2
N/2 0

Table 1. Coefficients entering in the Coleman-Weinberg effective potential, cf. eq. (4.3).

Using eq. (4.3) for the one-loop potentials, the effective potential in eq. (4.2) can be

written in terms of an effective quartic coupling as in eq. (4.1). This effective coupling can

be written as follows:

λeff (h, µ) ≃ λ1 (µ)︸ ︷︷ ︸
tree-level

+
1

16π2

{
∑

i=W±,Z,t,

h,G±,G0

niκ
2
i

[
log

κih
2

µ2
− ci

]

︸ ︷︷ ︸
Contribution from SM

+
∑

i=H,A,H±

niκ
2
i

[
log

κih
2

µ2
− ci

]

︸ ︷︷ ︸
Contribution from inert doublet

+2
∑

i=1,2,3

niκ
2
i

[
log

κih
2

µ2
− ci

]

︸ ︷︷ ︸
Contribution from RHN

}
. (4.5)

Note that in the inverse seesaw case and in the limit µS → 0, each of the RHN mass

eigenvalue is double-degenerate, and therefore, we have an extra factor of two for each

RHN contribution in eq. (4.5). The nature of λeff(h, µ) in our model thus guides us to

identify the possible instability and metastability regions, as discussed below. We take

the field value h = µ for the numerical analysis as at that scale the potential remains

scale-invariant [142].

4.2 Stable, metastable and unstable regions

The parameter space where λeff ≥ 0 is termed as the stable region, since the EW vacuum

is the global minimum in this region. For λeff < 0, there exists a second minimum deeper

than the EW vacuum. In this case, the EW vacuum could be either unstable or metastable,

depending on the tunneling probability from the EW vacuum to the true vacuum. The

parameter space with λeff < 0, but with the tunneling lifetime longer than the age of the

universe is termed as the metastable region. The expression for the tunneling probability
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to the deeper vacuum at zero temperature is given by

P = T 4
0 µ

4 exp

[ −8π2

3λeff(µ)

]
, (4.6)

where T0 is the age of the universe and µ denotes the scale where the probability is maxi-

mized, i.e. ∂P
∂µ

= 0. This gives us a relation between the λ values at different scales:

λeff(µ) =
λeff(v)

1− 3
2π2 log

(
v
µ

)
λeff(v)

, (4.7)

where v ≃ 246GeV is the EW VEV. Setting P = 1, T = 1010 years and µ = v in eq. (4.6),

we find λeff(v) =0.0623. The condition P < 1, for a universe about T = 1010 years old

is equivalent to the requirement that the tunneling lifetime from the EW vacuum to the

deeper one is larger than T0 and we obtain the following condition for metastability [8]:

0 > λeff(µ) &
−0.065

1− 0.01 log
(

v
µ

) . (4.8)

The remaining parameter space with λeff < 0, where the condition (4.8) is not satisfied is

termed as the unstable region. As can be seen from eq. (4.5), these regions depend on the

energy scale µ, as well as the model parameters, including the RHN mass and the gauge,

scalar quartic and Yukawa couplings (see also ref. [140]).

Figure 9 shows the variation of λeff in our model with the energy scale for different

values of λi (with i = 2, 3, 4, 5) and MR values with a fixed YN = 0.4. The three different

lines correspond to different values of the top Yukawa coupling by varying the top mass from

170 to 176GeV with median value at 173GeV [10]. The red region in figure 9 corresponds

to the instability region and the yellow region below the horizontal line λeff = 0 corresponds

to the metastable region, whereas the green region above λeff = 0 is the stability region.

Figure 9(a) and figure 9(b) show that as the values of λi are increased from 0.01 to 0.1 for

the same value of YN = 0.4 and MR = 103, λeff becomes unstable at 1015GeV instead of

1011GeV (with higher end of the top mass). Figure 9(a), figure 9(c) and figure 9(e) [or

figure 9(b), figure 9(d) and figure 9(f)] show that for fixed λi and YN , the stability scale

also gets enhanced as we increase RHN mass MR, because the RHNs contribute to the

β-function only at scales µ ≥ MR. This is the reason for the discontinuity at MR value,

which is obvious in figure 9(e) and figure 9(f).

To see the individual effects of the scalar quartic couplings λ2,3,4,5 on the stability scale,

we show in figure 10 the three-dimensional correlation plots for λ3 versus λ4 with energy

scale µ for different values of YN and MR with a fixed λ2 = λ5 = 0.01. As in figure 9, the

red, yellowy and green regions correspond to the unstable, metastable and stable regions

respectively. Figure 10(a), figure 10(b) and figure 10(c) show the effect of the RHN Yukawa

coupling on the stability scale. For smaller YN =0.1, there is no unstable region. As the

value of YN is increased to 0.4 and 0.5 the stability and metastability regions decrease,

while the unstable region increases. Similarly, figure 10(d). figure 10(e) and figure 10(f)
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(a) λi = 0.01, MR = 103 GeV (b) λi = 0.1, MR = 103 GeV

(c) λi = 0.01, MR = 104 GeV (d) λi = 0.1, MR = 104 GeV

(e) λi = 0.01, MR = 108 GeV (f) λi = 0.1, MR = 108 GeV

Figure 9. Running of λeff with energy scale for six different scenarios: λi = 0.01 (left) and 0.1

(right); MR = 103 GeV (top), 104 GeV (middle) and 108 GeV (bottom). We have fixed YN = 0.4 in

all the subplots. The three different lines for λeff correspond to different values of the top Yukawa

coupling obtained by varying the top mass from 170GeV (upper dashed line) to 176GeV (lower

dashed line) with the median value of 173GeV (middle solid line). The red, yellow and green regions

correspond to the unstable, metastable and stable regions, respectively.
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(a) YN = 0.1, MR = 103 GeV (b) YN = 0.4, MR = 103 GeV (c) YN = 0.5, MR = 103 GeV

(d) YN = 0.4, MR = 102 GeV (e) YN = 0.4, MR = 105 GeV (f) YN = 0.4, MR = 108 GeV

Figure 10. Three-dimensional correlation plot for λ3 versus λ4 with energy scale [log(10) in GeV]

in six different scenarios. In the top three panels, we fix MR = 103 GeV, yt = 0.93693 and vary YN

from 0.1 (left) to 0.4 (middle) and 0.5 (right). In the bottom three panels, we fix YN = 0.4 and

vary MR from 102 GeV (left) to 105 GeV (middle) and 108 GeV (right). In all the subplots, we have

fixed λ2 = λ5 = 0.01. The red, yellow and green regions correspond to the unstable, metastable

and stable regions, respectively.

describe the dependence on the MR scale. Here the metastable and stable regions increase

as we increase the value of MR from 102 to 108GeV.

As can be seen from figure 9, the stability scale crucially depends on the top Yukawa

coupling. The running of λeff also depends on the initial value of λh, which comes from

the experimental value of the SM Higgs mass. Figure 11 shows the stability phase diagram

in terms of Higgs boson mass and top pole mass for two different choices of YN = 10−7

and 0.38 while keeping MR fixed at 100GeV. The contours show the current experimental

1σ, 2σ, 3σ regions in the (Mh,Mt) plane, while the dot represents the central value [12].

Figure 11(a) describes that for small YN = 10−7, the current 3σ values for the Higgs boson

mass and top mass mostly lie in the stable region. However, as YN is increased to a large

value of 0.38 in figure 11(b), the Higgs boson mass value lies in the stable region but the

top mass value lies in the unstable/metastable region. The bound that comes on YN from

stability for which both Higgs boson mass and the top mass lie in the stability region

is YN . 0.32 for MR = 100GeV and λi = 0.1. Although this turns out to be weaker

than the existing experimental constraints [143, 144], this provides an independent, purely

theoretical constraint on the model.
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(b) YN = 0.38

Figure 11. Stability phase diagram in terms of the SM Higgs boson and top-quark pole masses.

Here we have fixed λi = 0.1 and MR = 100GeV, while YN is varied from 10−7 (left) to YN = 0.38

(right). The red, yellow and green regions correspond to the unstable, metastable and stable regions

respectively, which change depending on the model parameters. The contours and the dot show

the current experimental 1σ, 2σ, 3σ regions and central value in the (Mh,Mt) plane.

5 LHC phenomenology

The collider phenomenology of inert Higgs doublet with RHN is quite interesting as some

decay modes involving RHNs are not allowed due to the Z2 symmetry and this feature can

be used to distinguish it from other scenarios. The pseudoscalar boson, the heavy CP-even

Higgs boson and the charged Higgs boson (A,H,H±) are all from the inert doublet Φ2,

which is Z2 odd and their mass splittings are mostly . MW [cf. eq. (2.6)]. However, mass

splittings around & MW±,Z are also possible some parameter space. The Z2 symmetry

prohibits any kind of mass-mixing of these inert Higgs bosons with the SM-like Higgs

boson, which is coming from Z2-even Φ1. The couplings of Φ2 with fermions are also

prohibited, leaving only the gauge and scalar couplings. Nevertheless, as shown above, the

inert Higgs doublet Φ2 plays a crucial role in determining the stability and perturbativity

conditions, and therefore, it is important to study their potential signatures at colliders.

In table 2 we present ten benchmark points for the future collider study which are allowed

by the vacuum stability and perturbativity bounds. The scenario with the lightest charged

Higgs bosons (H±) causes an electromagnetically-charged DM candidate and such points

are phenomenologically disallowed. This leaves us with two kind of scenarios with either

H or A as the lightest heavy scalar, to be identified as the DM candidate.

The RHNs on the other hand only couple to Φ1, leaving the Yukawa interactions with

the SM-like Higgs boson. Via their mixing with the light neutrinos, the RHNs also couple

to the SM W and Z gauge bosons after EW symmetry breaking, which are proportional

to the VEV of Φ1 and decay dominantly to W±ℓ∓, Zν, and hν. In principle, the RHN

sector and the inert scalar sector do not talk to each other. However, couplings with the

gauge sectors open up a window to the inert Higgs sector from the RHN decay. This is

possible via the three-body decays of the RHNs with heavy Higgs bosons in the final states
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BP λ3 λ4 λ5 m22 MH MA MH±

BP1 0.10 0.10 0.10 200 228.26 200.00 207.42

BP2 0.10 0.10 0.10 300 319.53 300.00 305.00

BP3 0.20 0.20 0.20 250 294.53 250.00 261.84

BP4 0.11 0.11 −0.20 200 185.88 242.40 208.15

BP5 0.22 0.22 −0.16 300 305.99 336.14 310.89

BP6 0.32 −0.10 −0.01 300 309.92 311.86 315.72

BP7 0.32 −0.20 −0.08 250 247.56 266.40 268.66

BP8 0.29 0.31 0.31 2200 2208.38 2199.86 2201.99

BP9 0.23 0.11 0.12 1200 1207.30 1201.26 1202.90

BP10 0.20 0.23 0.28 2000 2007.48 1999.01 2001.51

Table 2. Benchmark points allowed by the vacuum stability, perturbativity and DM constraints.

Here we have chosen YN = 0.4 and MR = 1TeV.

(a) (b) (c)

N

W±

ℓ∓ ℓ∓

h

(d)

N

ℓ∓

W± W±

h

(e)

N

h

ν
ℓ∓

W±

(f)

Figure 12. Various three-body decays of RHNs involving heavy Higgs bosons in the final state:

(a) Decay to light neutrinos and H/A via an off-shell Z boson; (b) decay to light neutrinos and

H/A pairs via an off-shell Higgs boson; (c) decay to a charged-lepton and charged Higgs boson in

association with H/A via an off-shell W boson; (d)-(f) decay to a charged lepton and SM W and

Higgs bosons.
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Decay Modes BR

in percentage

Ni → hW±ℓ∓ 0.36

Ni → HH±ℓ∓ 2.4× 10−4

Ni → AH±ℓ∓ 5.2× 10−5

Table 3. Dominant three-body decay BRs of RHN involving Higgs bosons in the final states for a

benchmark point allowed by the vacuum stability and perturbativity with MR = 1TeV. Note that

these BRs are independent of the choice of YN .

(a) (b) (c)

(d) (e) (f)

Figure 13. Feynman diagrams for RHN production via either gluon-gluon fusion [(a) to (d)] or

Drell-Yan process [(e) and (f)]. The cross ⊗ indicates light-heavy neutrino mixing.

that can be seen from figure 12. The RHNs can decay to light neutrinos and H,A via

an off-shell Z boson [cf. figure 12(a)], to light neutrinos and H/A pairs via a off-shell h

[cf. figure 12(b)], to a charged lepton and charged Higgs boson in association with H/A

[cf. figure 12(c)], and to a charged lepton and SM Higgs boson in association with W±

[cf. figures 12(d)–12(f)]. For a RHN with mass 1TeV, though the two-body decay modes

(with on-shell W±, Z and h) dominate, but the three-body decay modes involving the

heavy Higgs sector can still be explored at the LHC. The highest three-body decay mode

is Ni → hW±ℓ∓ [cf. figure 12(d)] with branching ratio (BR) ∼ 0.36% and other modes are

with BR(Ni → HH±ℓ∓) ∼ 2.4×10−4% and BR(Ni → AH±ℓ∓) ∼ 5.2×10−5% respectively,

as given in table 3 for YN = 0.01 and MR = 1TeV.

As for the RHN production at the LHC, being SM gauge-singlets, they can only be

produced via their mixing with active neutrinos in the minimal seesaw model. The dom-

inant production modes are shown in figure 13. There are two types of processes: (a)-

(d) involve RHN production [145, 146] via off-shell Higgs boson from gluon-gluon fusion,

whereas (e)-(f) involve production via off-shell W±/Z from Drell-Yan processes. The next-

to-leading order (NLO) cross-sections for YN = 0.1, 0.4 and MR = 500GeV, 1TeV are

– 20 –



J
H
E
P
0
8
(
2
0
2
0
)
1
5
4

Parameters Processes

σ(gg →
∑

iNiνi) σ(gg →
∑

iNiNi) σDY(pp →
∑

iNi +X)

YN MR in fb in fb in fb

in GeV 14TeV 100 TeV 14TeV 100TeV 14TeV 100TeV

0.1 500 0.15 9.70 1.8× 10−4 1.2× 10−2 0.34 6.90

0.1 1000 1.6× 10−3 0.36 5.0× 10−7 1.1× 10−4 4.5× 10−3 0.18

0.4 500 2.40 155.40 0.30 0.50 5.00 95.60

0.4 1000 0.03 5.83 1.2× 10−4 0.03 0.06 2.55

Table 4. NLO production cross-sections of the RHNs at the LHC for 14TeV and 100TeV center

of mass energy. Here the other parameters are as in BP3 of table 2.

given in table 4 where other parameters are kept as in BP3 of table 2. For the process Nν

[cf. figure 13(a)], the production cross-section at NLO for YN = 0.1 and MR = 500GeV

is: σ(gg → ∑
i=1,2,3Niνi) is ∼ 0.15 and 9.7 fb respectively at the LHC with 14TeV and

100TeV center of mass energy [147]. For pair production the cross-sections are 1.8× 10−4

and 1.2 × 10−3 respectively at the LHC with 14TeV and 100TeV center of mass energy.

Here we have used CalcHEP 3.7.5 [148] for calculating the tree-level cross sections and

decay branching fraction and have chosen NNPDF 3.0 QED NLO [149] and
√
ŝ (parton-level

center of mass energy) as the energy scale for the cross-section calculations. The third

column of table 4 also give NLO Drell-Yan cross-sections for the same scale and PDF.

We can see that for
√
s = 14TeV at the LHC Drell-Yan processes are more dominant

than gluon gluon fusion, whereas at
√
s = 100TeV gluon gluon fusion processes surpass

Drell-Yan ones. Though the overall cross-sections are small, but higher luminosity LHC

can probe these three-body decays. The maximum cross-section comes for YN = 0.4

and MR = 500GeV and for
√
s = 100TeV and these are 155.40 fb, 95.60 fb, 0.50 fb re-

spectively for (gg →
∑

iNiνi), (pp →
∑

iNi + X)DY and (gg →
∑

iNiNi). Note that

although such large values of YN might have been excluded from indirect constraints such

as EW precision data, it is still useful to get an independent direct constraint from the

collider searches.

Coming to the inert Higgs boson signatures we have to rely on the mass spectrum

of the Higgs bosons which depend on the couplings λ3,4,5 as shown in eq. (2.6). Table 2

shows benchmark points with the λ3,4,5 that are allowed by the vacuum stability and

perturbativity conditions. Depending on the phase space available, the charged Higgs

boson in this model can decay into AW± and/or HW± mostly via off-shell W boson as

the heavy Higgs bosons stay degenerate. The lighter of A and H is the DM candidate

and thus can give rise to the signature of mono-lepton plus missing energy or dijet plus

missing energy. However, because of the Z2-odd nature of H,A,H± we can only produce

the charged Higgs bosons as pair or in association with H/A. The heavier of A/H in

that case decays to dilepton plus missing energy via off-shell Z boson. The production of

H± pair gives rise to dilepton plus missing energy and H±A/H give rise to trilepton or
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mono-lepton plus missing energy signatures, which can be searched for at the LHC and

FCC-hh [150]. The inert Higgs boson productions in association with the DM candidate

leaving to jet plus lepton and missing energy signatures are studied in refs. [111, 116]. The

inert doublet signatures along with the three-body decays of RHNs with Higgs boson in

the final state can shed light on this model at the LHC with higher luminosity.

The LHC phenomenology discussed here is different from U(1)′ extensions where the

RHNs can be pair-produced at the LHC via the U(1)′ gauge boson [151–155]. Phenomeno-

logical signatures of such RHN decays in the type-I seesaw in presence of extra scalars have

been studied in the literature [156–160]. Similarly, in the case of type-III seesaw, the RHNs

have charged partner and couple to W± bosons [161]. The LHC phenomenology of such

extensions with and without additional Higgs doublet has also been looked into [162–164].

The inverse-seesaw phenomenologies probing the RHNs at the LHC along with heavier

Higgs bosons were also examined [165, 166].

6 Conclusion

We have considered a simple extension of the SM with a Z2-odd inert Higgs doublet,

supplemented by right-handed neutrinos with potentially large Dirac Yukawa couplings.

The neutral part of the inert-Higgs doublet is a suitable DM candidate, while the RHNs

are responsible for the correct light neutrino masses via seesaw mechanism. We have

studied the effect of these new scalars and fermions on the stability of the EW vacuum by

performing an RG analysis for the scalar quartic couplings.

We find that the additional scalars enhance the EW stability bound with respect to the

SM case, as expected. Although the introduction of RHNs with relatively larger Yukawa

couplings can be a spoiler for vacuum stability, the inert doublet comes to a rescue by

contributing positively to the β-functions. On the other hand, the scalar quartic couplings

cannot take arbitrarily large values at the EW scale due to perturbativity considerations

at higher scales. In particular, we find upper bounds on the scalar quartic couplings λi

(with i = 2, 3, 4, 5) and the Dirac Yukawa couplings YN , depending on the RHN mass scale

MR, to satisfy both stability and perturbativity constraints.

We also analyzed the RG-improved effective potential to identify the regions of pa-

rameter space giving rise to stable, metastable and unstable vacua. For fixed values of

λi, increasing YN enlarges the unstable vacuum region, whereas decreasing YN and/or in-

creasing the RHN mass scale MR enhances the stability prospects. The effect of the RHNs

on vacuum stability is only relevant in the low-scale seesaw scenarios with relatively large

Dirac Yukawa couplings, which can be realized either via cancellations in the type-I seesaw

matrix or via some form of inverse seesaw mechanism.

We also studied the phenomenological signatures of the heavy Higgs bosons along with

RHNs at the LHC and future 100TeV collider. Since the heavy Higgs bosons in this model

come from the Z2-odd doublet, they are relatively non-interacting with the SM particles and

are almost mass-degenerate, thus making their collider searches rather difficult. We have

identified some new three-body decay modes of the RHNs to heavy Higgs bosons (assuming
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that the RHNs are heavier than the Higgs bosons) which can be used to distinguish this

model from other vanilla RHN models.
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A Two-loop β-functions

A.1 Scalar quartic couplings
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A.2 Gauge couplings
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