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Abstract

We propose a two Higgs doublet Type III seesaw model with µ-τ flavor symmetry. We
add an additional SU(2) Higgs doublet and three SU(2) fermion triplets in our model.
The presence of two Higgs doublets allows for natural explanation of small neutrino
masses with triplet fermions in the 100 GeV mass range, without fine tuning of the
Yukawa couplings to extremely small values. The triplet fermions couple to the gauge
bosons and can be thus produced at the LHC. We study in detail the effective cross-
sections for the production and subsequent decays of these heavy exotic fermions. We
show for the first time that the µ-τ flavor symmetry in the low energy neutrino mass
matrix results in mixing matrices for the neutral and charged heavy fermions that
are not unity and which carry the flavor symmetry pattern. This flavor structure can
be observed in the decays of the heavy fermions at LHC. The large Yukawa couplings
in our model result in the decay of the heavy fermions into lighter leptons and Higgs
with a decay rate which is about 1011 times larger than what is expected for the
one Higgs Type III seesaw model with 100 GeV triplet fermions. The smallness of
neutrino masses constrains the neutral Higgs mixing angle sinα in our model in such
a way that the heavy fermions decay into the lighter neutral CP even Higgs h0, CP
odd Higgs A0 and the charged Higgs H±, but almost never to the heavier neutral CP
even Higgs H0. The small value for sinα also results in a very long lifetime for h0.
This displaced decay vertex should be visible at LHC. We provide an exhaustive list
of collider signature channels for our model and identify those that have very large
effective cross-sections at LHC and almost no standard model background.
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1 Introduction

Understanding of the flavor structure of the fermions has emerged as one of the most
formidable problems in particle physics. While all fermions are expected to attain masses
in the standard model through their Yukawa couplings with the standard Higgs doublet, it
is not clear why the mass of the electron should be six order of magnitude smaller than that
of the top quark. The extremely tiny neutrino masses pose a further challenge and demand
an explanation. The “seesaw” mechanism [1] has been the most widely accepted method
of explaining the smallness of the neutrino mass compared to that of the charge leptons.
The seesaw mechanism was so named because the lightness of the standard neutrino is
explained due to the heaviness of an additional particle beyond the standard model of
particle physics. The new mass scale could be associated with a GUT scale, or in general
with any intermediate mass scale. Being much heavier than the rest of the standard model
particles, this additional field can be integrated out, giving a dimension five Majorana
mass term for the neutrinos [2]. This mass term is inversely proportional to the mass of
the heavy particle, and hence neutrinos become naturally light. There are three variants
of the seesaw mechanism. These come from the fact that one can obtain the dimension
five effective operator by integrating out either SU(2)L× U(1)Y (i) singlet fermions [1], or
(ii) triplet scalars [3], or triplet fermions [4] (also [5]). The three variants are commonly
known as Type I, Type II and Type III seesaw mechanism, respectively. While Type I and
Type II scenarios have been extensively explored in the literature for a long time, focus
has only recently shifted to the Type III seesaw mechanism, and a plethora of papers have
appeared of late. While the possibility of gauged U(1) symmetry with fermion triplets
was studied in [6], authors of [7] studied for the first time predictions for leptogenesis
within the framework of Type III seesaw. A hybrid Type I+III seesaw framework is shown
to result within a SU(5) GUT model in [8, 9], and within a left-right symmetric model
with spontaneously broken parity in [10]. The effect of the additional fermions on the
Higgs mass bounds was studied through renormalization group equations in [11], while the
renormalization group evolution of the neutrino mass matrix within the Type III seesaw
framework was performed in [12]. In [13] the authors work with just one extra heavy
fermion triplet and generate the addition light neutrino masses at the loop level. The
phenomenology of the Type III seesaw in lepton flavor violating processes was studied in
great depths in [14, 15] and also recently in [16].

The most crucial feature concerning the Type III seesaw is the following. Since the
additional heavy fermions belong to the adjoint representation of SU(2), they have gauge
interactions. This makes it easier to produce them in collider experiments. With the LHC
all set to take data, it is pertinent to check the viability of testing the seesaw models at
colliders. The implications of the Type III seesaw at LHC was first studied in [17] and [18]
in the context of a SU(5) GUT model. In the SU(5) model it is possible to naturally have
the adjoint fermions in the 100 GeV to 1 TeV mass range, throwing up the possibility of
observing them at LHC. The authors of these papers identified the dilepton channel with
4 jets as the signature of the triplet fermions. Subsequently, a lot of work has followed on
testing Type III seesaw at LHC [19–21].
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In the usual Type III (and also Type I) version of the seesaw models with one Higgs
doublet, the neutrino mass is given by

mν = −v2Y T
Σ

1

M
YΣ (1)

where, v is the Higgs Vacuum Expectation Value (VEV), M is the mass (matrix) of the
adjoint fermions and YΣ is the Yukawa coupling (matrix) of these fermions with the stan-
dard model lepton doublets and Higgs. To predict neutrino masses ∼ 0.1 eV without fine
tuning the Yukawas, one requires that M ∼ 1014 GeV. On the other hand, an essential
requisite of producing the heavy fermion triplet signatures at the LHC, is that they should
not be heavier than a few hundred GeV. One can immediately see that if M ∼ 300 GeV,
then mν ∼ 0.1 eV demands that the Yukawa coupling YΣ ∼ 10−6. This in a way tenta-
mounts to fine tuning of the Yukawas, and smothers out the very motivation for the seesaw
mechanism – which was to explain the smallness of the neutrino mass without unnaturally
reducing the Yukawa couplings.

In this paper, we propose a seesaw model with 300-800 GeV mass range triplet fermions,
without any drastic reduction of the Yukawa couplings. We do that by introducing an
additional Higgs doublet in our model. We impose a Z2 symmetry which ensures that this
extra Higgs doublet couples to only the exotic triplet fermions, while the standard Higgs
couples to all other standard model particles [22]. As a result the smallness of the neutrino
masses can be explained from the the smallness of the VEV of the second Higgs doublet,
while all standard model fermions get their masses from the VEV of the standard Higgs.
Therefore, we use the presence of two different VEVs in our model to explain the smallness
of the neutrino masses compared to all others, without resorting to unnatural suppression of
the neutrino Yukawa couplings. We show that these large Yukawas result in extremely fast
decay rates for the heavy fermions in our model and hence have observational consequences
for the heavy fermion phenomenology at LHC. We show how this can be used to distinguish
our two Higgs doublet Type III seesaw model from the usual one Higgs doublet models.1

The presence of two Higgs doublets in our model also enhances the richness of the
phenomenology at LHC. We have in our model two neutral physical scalar and one neutral
physical pseudoscalar and a pair of charged scalars. We will work out in detail our Higgs
mass spectrum by imposing constraints coming from the neutrino masses. We will show
that due to these constraints, our Higgs mixing angle is very small and the Higgs behave
in a very peculiar way and have collider signatures which are very different from the usual
two Higgs doublet models in the market [23–27]. We will study this crucial link between
neutrino and Higgs physics in our model and its implications for LHC in detail.

Another feature associated with neutrinos which has puzzled model builders is it unique
mixing pattern. While all mixing angles are tiny in the quark sector, for the leptons we
have observed two large and one small mixing angle. In its standard parametrization with

1The largeness of the Yukawa couplings (along with the smallness of the heavy fermion masses), also
brings in larger non-unitarity and larger lepton flavor violation in our model, compared to the earlier Type
III seesaw models. However, these are still well below the sensitivity of the current and upcoming future
experiments.
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mixing angles θ12, θ23 and θ13 and phases δ (Dirac), α and β (Majorana), the neutrino
mixing matrix is given as

UPMNS=







c12 c13 s12 c13 s13 e
−iδ

−c23 s12 − s23 s13 c12 e
iδ c23 c12 − s23 s13 s12 e

iδ s23 c13
s23 s12 − c23 s13 c12 e

iδ −s23 c12 − c23 s13 s12 e
iδ c23 c13













1 0
0 eiα 0
0 0 ei(β+δ)





 . (2)

In this parametrization, the mixing angle θ23 is observed to be very close to π/4, while
θ13 has so far been seen to be consistent with zero. This indicates that there should be
some underlying symmetry which drives one mixing angle to be maximal and another to
be zero. The most simple way of generating this is by imposing a µ-τ exchange symmetry
on the low energy neutrino mass matrix [28].

In this paper we will impose the µ-τ symmetry on the Yukawa couplings and the heavy
fermion mass matrices. This leads to µ-τ symmetry in the light neutrino mass matrix and
hence the correct predictions for the neutrino oscillation data. We discuss in detail the
light as well as heavy neutrino mixing. We first provide general expressions for all mass
eigenvalues and mixing matrices and then study the experimental consequences for our
model. We show that due to the µ-τ symmetry, the mixing matrices of the heavy fermions
turn out to be non-trivial. In particular, they are also µ-τ symmetric and hence much
deviated from unity, even though we start with a real and diagonal Majorana mass matrix
for the heavy triplets. This is a new result and we will show that this affects the flavor
structure of the heavy fermion decays at colliders, which can be used to test µ-τ symmetry
in neutrinos at LHC. We study in detail the collider phenomenology of this µ-τ symmetric
model with three heavy fermion SU(2) triplets and two Higgs SU(2) doublets and give
predictions for LHC.

The paper is organized as follows. In section 2, we present the lepton Yukawa part of
the model within a general framework and give expressions for the masses and mixings
of the charged and neutral components of both light as well as heavy leptons. In section
3, we present our µ-τ symmetric model and give specific forms for the mass and mixing
parameters. We show that the mixing for heavy fermions is non-trivial and µ-τ symmetric.
In section 4, we study the cross-section for the heavy fermion production and LHC, as
a function of the fermion mass. In section 5, we study the decay rates of these heavy
fermions into Higgs and gauge bosons. We compare and contrast our model against the
usual Type III seesaw models with only one Higgs. We also show the consequences of
non-trivial mixing of the heavy fermions on the flavor structure of their decays. In section
6, we discuss the decay rates and branching ratios of the Higgs decays. We probe issues
on Higgs decays, which are specific and unique to our model. Section 7 is devoted to the
discussion of displaced decay vertices as a result of the very long living h0 in our model. In
section 8, we list all possible final state particles and their corresponding collider signature
channels which could be used to test our model. We calculate the effective cross-sections
for all channels at LHC. We highlight some of the channels with very large effective cross-
sections and discuss the standard model backgrounds. Finally, in section 9 we present
our conclusions. Discussion of the scalar potential, the Higgs mass spectrum and the
constraints from neutrino data on the Higgs sector is discussed in detail in Appendix A.
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The lepton-Higgs coupling vertices are listed in Appendix B.1, the lepton-gauge coupling
vertices are listed in Appendix B.2, and the quark-Higgs coupling vertices are listed in
Appendix B.3.

2 Yukawa Couplings and Lepton Masses and Mixing

We add three extra SU(2) triplet fermions to our standard model particle content. These
fermions belong to the adjoint representation of SU(2) and are assigned hypercharge Y = 0.
This makes each of them self conjugate. We will denote their Cartesian components as2

Ψ′
i =







Σ′1
i

Σ′2
i

Σ′3
i





 , (3)

where i = 1, 2, 3 and Ψ′
i = Ψ′

i
C . In the compact 2× 2 notation they will be represented in

our convention as

Σ′
i =

1√
2

∑

j

Σ′j
i · σj , (4)

where σj are the Pauli matrices. The right-handed component of this multiplet in the 2×2
notation is then given by

Σ′
Ri =

(

Σ′0
Ri/

√
2 Σ′+

Ri

Σ′−
Ri −Σ′0

Ri/
√
2

)

, (5)

where

Σ′±
R i =

Σ′1
Ri ∓ iΣ′2

Ri√
2

and Σ′0
Ri = Σ′3

Ri (6)

are the components of the triplet in the charge eigenbasis. The corresponding charge-
conjugated multiplet will then be

Σ′
R
C
i = CΣ′

R
T
=

(

Σ′0
Ri

C
/
√
2 Σ′+

Ri

C

Σ′−
Ri

C −Σ′0
Ri

C
/
√
2

)

. (7)

The object which transforms as the left-handed component of the Σ multiplet can then be
written as

Σ̃′C
Ri

= iσ2 Σ
′
R
C
i iσ2 =

(

Σ′0
Ri

C
/
√
2 Σ′−

Ri

C

Σ′+
Ri

C −Σ′0
Ri

C
/
√
2

)

, (8)

2Throughout this paper we denote particles in their weak eigenbasis by primed and mass eigenbasis by
unprimed notation.
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such that Σ′
i = Σ′

Ri
+ Σ̃′C

Ri
.

As discussed in the introduction, we include in our model a new SU(2) scalar doublet,
Φ2, in addition to the usual standard model doublet Φ1. This new doublet couples only to
the triplet fermions introduced above. The triplet fermions on the other hand are restricted
to couple with only the new Φ2 doublet and not with Φ1. This can be ensured very easily
by giving Z2 charge of −1 to the triplet fermions Σ′

i and the scalar doublet Φ2, and Z2

charge +1 to all standard model particles3. The part of the Lagrangian responsible for the
lepton masses can then be written as

− LY =
[

Ylij l
′
Ri
Φ†

1L
′
j + YΣij

Φ̃†
2Σ

′
Ri
L′
j + h.c.

]

+
1

2
Mij Tr

[

Σ′
Ri
Σ̃′C

Rj
+ h.c.

]

, (9)

where L′ and l′R are the usual left-handed lepton doublet and right-handed charged leptons
respectively, Yl and YΣ are the 3× 3 Yukawa coupling matrices, and Φ̃2 = iσ2Φ

∗
2. Once the

Higgs doublets Φ1 and Φ2 take Vacuum Expectation Value (VEV)

〈Φ1〉 =
(

0
v

)

, 〈Φ2〉 =
(

0
v′

)

, (10)

we generate the following neutrino mass matrix

Lν =
1

2

(

ν ′C
Li

Σ′0
Ri

)

(

0 v′√
2
Y T
Σij

v′√
2
YΣij

Mij

)(

ν ′
Lj

Σ′0
Rj

C

)

+ h.c., (11)

and the following charged lepton mass matrix

Ll =
(

l′Ri
Σ′−

Ri

)

(

vYlij 0
v′YΣij

Mij

)

(

l′Lj

Σ′+
Rj

C

)

+ h.c., (12)

=
(

l′Ri
Σ′−

Ri

)

Ml

(

l′Lj

Σ′+
Rj

C

)

+ h.c., (13)

Note that due to the imposed Z2 symmetry neutrino masses depend only on the new Higgs
VEV v′ while in the charged lepton mass matrix both the VEV’s enter. The value of v′ is
determined by the scale of the neutrino masses and is independent of the mass scale of all
other fermions. Therefore, the neutrino masses can be naturally light, without having to
fine tune the Yukawas YΣ to unnaturally small values.

The 6×6 neutrino matrix (11) can be diagonalized to yield 3 light and 3 heavy Majorana
neutrinos. The 6× 6 unitary matrix U which accomplishes this is defined as

UT
(

0 mT
D

mD M

)

U =
(

Dm 0
0 DM

)

, and

(

ν ′
Lj

Σ′0
Rj

C

)

= U

(

νLj

Σ0
Rj

C

)

, (14)

3We will break this Z2 symmetry mildly in the scalar potential. We discuss the phenomenological
consequences of this Z2 symmetry and its breaking when we introduce the scalar potential and present
the Higgs mass spectrum in Appendix A.
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where mD = v′YΣ/
√
2, and

Dm =







m1 0 0
0 m2 0
0 0 m3





 , DM =







MΣ1 0 0
0 MΣ2 0
0 0 MΣ3





 . (15)

Here mi andMΣi
(i = 1, 2, 3) are the low and high energy mass eigenvalues of the Majorana

neutrinos respectively. We reiterate that the primed and unprimed notations represent the
weak and mass eigenbases respectively. The mixing matrix U can be parameterized as a
product of two matrices

U = Wν Uν (16)

where Wν is the matrix which brings the 6 × 6 neutrino matrix given by Eq. (11) in its
block diagonal form as

W T
ν

(

0 mT
D

mD M

)

Wν =
(

m̃ 0
0 M̃

)

, (17)

while Uν diagonalizes m̃ν and M̃Σ as

UT
ν

(

m̃ 0
0 M̃

)

Uν =
(

Dm 0
0 DM

)

. (18)

The above parameterization therefore enables us to analytically estimate the mass eigen-
values and the mixing matrix U in terms of Wν and Uν by a two step process, by first
calculating Wν and then Uν . Since the unitary matrix U has 62 = 36 free parameters and
the matrix Uν has 2 × 32 = 18 parameter, the matrix Wν should have 36 − 18 = 18 free
parameters. This matrix therefore can be parameterized as [29]

Wν =
(

√
1−BB† B
−B†

√
1−B†B

)

, (19)

where B = B1 + B2 + B3 + ... and Bj ∼ (1/mΣ)
j , where mΣ is the scale of the heavy

Majorana fermion mass. Using an expansion in 1/mΣ and keeping only terms second order
or lower in 1/mΣ, we get

Wν ≃
(

1− 1
2
m†

D(M
−1)∗M−1mD m†

D(M
−1)∗

−M−1mD 1− 1
2
M−1mDm

†
D(M

−1)∗

)

. (20)

The light and heavy neutrino mass matrices obtained at this block diagonal stage are given
by (only second order terms in 1/mΣ are kept)

m̃ν = −mT
DM

−1mD, (21)

M̃ = M +
1

2

(

mDm
†
D(M

−1)∗ + (M−1)∗m∗
Dm

T
D

)

. (22)
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Note that Eq. (21) is the standard seesaw formula for the light neutrino mass matrix,
while Eq. (22) gives the heavy neutrino mass matrix. These can be diagonalized by two
3× 3 unitary matrices U0 and UΣ, respectively. This yields

Uν =
(

U0 0
0 UΣ

)

, (23)

For the charged leptons we follow an identical method for determining the mass eigen-
values and the mixing matrices. However, since the charged lepton mass matrixMl given by
Eq. (13) is a Dirac mass matrix, one has to diagonalize it using a bi-unitary transformation

T †
(

ml 0√
2mD M

)

S =
(

Dl 0
0 DH

)

= Mld , (24)

where ml = vYl, while Dl and DH are diagonal matrices containing the light and heavy
charged lepton mass eigenvalues. With the above definition for the diagonalization, the
right-handed and left-handed weak and mass eigenbases for the charged leptons are related
respectively as,

(

l′L
Σ′+

R

C

)

= S
(

lL
Σ+

R
C

)

, and

(

l′R
Σ′+

R

C

)

= T
(

lR
Σ+

R

)

. (25)

Instead of using Eq. (24) for the diagonalization, we will work with the matrices

M †
l Ml = SM †

ld
Mld S

†, and MlM
†
l = T MldM

†
ld
T †, (26)

to obtain S and T respectively. As for the neutrinos, we parameterize

S = WLUL, and T = WRUR, (27)

where WL and WR are the unitary matrices which bring M †
l Ml and MlM

†
l to their block

diagonal forms, respectively,

W †
LM

†
l Ml WL =

(

m̃l
†m̃l 0

0 M̃H
†
M̃H

)

, and W †
R MlM

†
l WR =

(

m̃lm̃l
† 0

0 M̃HM̃H
†

)

. (28)

Using arguments similar to that used for the neutrino sector, and keeping terms up to
second order in 1/mΣ, we obtain

WL =
(

1−m†
D(M

−1)∗M−1mD

√
2m†

D(M
−1)∗

−
√
2M−1mD 1−M−1mDm

†
D(M

−1)∗

)

, (29)

WR =
(

1
√
2mlm

†
D(M

−1)∗M−1

−
√
2(M−1)∗M−1mDm

†
l 1

)

, (30)
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The square of the mass matrices for the light and heavy charged leptons in the flavor basis
obtained after block diagonalization by WR and WL are given by

m̃lm̃
†
l = mlm

†
l − 2mlm

†
D(M

−1)∗M−1mDm
†
l , (31)

M̃HM̃
†
H = MM † + 2mDm

†
D + (M−1)∗M−1mDm

†
lmlm

†
D

+ mDm
†
lmlm

†
D(M

−1)∗M−1, (32)

and

m̃†
l m̃l = m†

lml − [m†
DM

∗−1M−1mDm
†
lml + h.c] (33)

M̃ †
HM̃H = M †M +M−1mDm

†
DM +M †mDm

†
D(M

−1)∗ +M−1(mDm
†
D)

2(M−1)∗

+ [M−1(M−1)∗M−1mD(m
†
lml)m

†
DM−1

2
M−1mDm

†
DM

∗−1M−1mDm
†
DM + h.c](34)

One can explicitly check that the masses of the heavy charged leptons obtained from Eqs.
(32) and (34) are approximately the same as that obtained for the neutral heavy fermion
using Eq. (22). Indeed a comparison of these equations show that at tree level, the
difference between the neutral and charged heavy fermions are of the order of the neutrino
mass and can be hence neglected. One-loop effects bring a small splitting between the
masses of the heavy and neutral fermions of ≈ 166 MeV. This allows the decay channel
Σ± = Σ0 + π± at colliders, as discussed in detail in [18, 19]. In this paper we will neglect
this tiny difference and assume that the masses of all heavy fermions are the same.

The matrices m̃†
l m̃l and M̃ †

HM̃H are diagonalized by Ul and UL
h giving,

UL =
(

Ul 0
0 UL

h

)

. (35)

Similarly the m̃lm̃
†
l and M̃HM̃

†
H matrices are diagonalized by Ur and UR

h and hence give,

UR =
(

Ur 0
0 UR

h

)

. (36)

Finally, the low energy observed neutrino mass matrix is given by

UPMNS = U †
l U0. (37)

Note that both Ul and U0 are unitary matrices and hence UPMNS is unitary.

3 A µ-τ Symmetric Model

As discussed in the introduction we wish to impose µ-τ symmetry on our model in order to
comply with the current neutrino data, which shows a preference for θ13 = 0 and θ23 = π/4.
Henceforth, we impose the µ-τ exchange symmetry on both the neutrino Yukawa matrix

9
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Figure 1: Scatter plots showing variation of sin2 θ12 (upper panels) and R = ∆m2
21/|∆m2

31|
(lower panels) as a function of a4, a11 and a6. All Yukawa couplings apart from the
one plotted on the x-axis, are allowed to vary freely. Only points which predict oscillation
parameters within their current 3σ values are shown. Blue points are form0 = v′2/(2M1) =
0.95 eV while the green points are for m0 = 0.006 eV.
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parameters within their current 3σ allowed ranges. Allowed points are shown for m0 = 0.96
eV (blue), 0.006 eV (green) and 0.0021 eV (red). All Yukawa couplings apart from the
ones plotted in the x-axis and y-axis are allowed to vary freely, in each panel.
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Figure 3: Non-zero values of Ue3 and |0.5 − sin2 θ23| predicted when µ-τ symmetry is
broken. Shown are the oscillation parameters against the µ-τ symmetry breaking parameter
ǫ = M3 −M2. Only points which reproduce the current neutrino observations within their
3σ C.L. are shown. The plot is generated at a fixed set of Yukawa couplings and heavy
neutrino masses.

YΣ and the Majorana mass matrix for the heavy fermions M . Therefore, the neutrino
Yukawa matrix takes the form

YΣ =







a4 a11 a11
a′11 a6 a8
a′11 a8 a6





 , (38)

In what follows we will assume (for simplicity) that a′11 = a11. Note that the µ-τ symmetry
does not impose this condition. It only imposes that YΣ12 = YΣ13 and YΣ21 = YΣ31 . We
have put a′11 = a11 in order to reduce the number of parameters in the theory. For the
same reason, we assume all entries of YΣ to be real. The heavy Majorana mass matrix is
given by

M =







M1 0 0
0 M2 0
0 0 M2





 , (39)

where without loosing generality we have chosen to work in a basis where M is real and
diagonal. Here the condition M3 = M2 is imposed due to the µ− τ symmetry.

The above choice of Yukawa and heavy fermion mass matrix lead to the following form
of the light neutrino mass matrix

m̃ ≃ v′2

2

















a24
M1

+
2a211
M2

a11

(

a4
M1

+ a6+a8
M2

)

a11

(

a4
M1

+ a6+a8
M2

)

a11

(

a4
M1

+ a6+a8
M2

)

a211
M1

+
a26+a28
M2

a211
M1

+ 2a6a8
M2

a11

(

a4
M1

+ a6+a8
M2

)

a211
M1

+ 2a6a8
M2

a211
M1

+
a26+a28
M2

















, (40)
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where we have used the seesaw formula given by Eq. (21), which is valid up to second
order in 1/mΣ. One can straightaway see from the above mass matrix that the scale of
the neutrino masses emerges as ∼ v′2a2/(2mΣ), where a is a typical value of the Yukawa
coupling in Eq. (38) and mΣ the scale of heavy fermion masses. As discussed in the
introduction, we restrict the heavy fermion masses to be less than 1 TeV in order that
they can be produced at the LHC. Therefore in principle, neutrino masses of ∼ 0.1 eV
could have been obtained with just the standard model Higgs doublet by reducing the
Yukawa couplings to values ∼ 10−6. However, this is usually considered as extreme fine
tuning as there is no reason why the Yukawa couplings of the neutrinos should be so much
suppressed, and the motivation for the seesaw mechanism is lost. In order to circumvent
this, we introduced a different Higgs doublet Φ2, which couples only to the exotic fermions.
On the other hand, Yukawa coupling of the standard Higgs Φ1 with the exotic fermions was
forbidden in our model by the Z2 symmetry. Hence, only the VEV of this new Higgs doublet
appears in Eq. (40). Since this Higgs Φ2 is not coupled to any standard model particle,
it could have a VEV which could be different. Therefore, we demand that v′ ∼ 105 eV in
order to generate neutrino masses of ∼ 0.1 eV keeping the Yukawa couplings ∼ 1. We have
checked that such low value of Higgs VEV is not in conflict with any experimental data.
We will discuss in detail the scalar potential and the Higgs mass spectrum in Appendix A.

We next turn to predictions of this model for the mass squared differences and the
mixing angles. Since the neutrino mass matrix we obtained in Eq. (40) has µ-τ symmetry
it follows that

θ13 = 0 and θ23 = π/4. (41)

To find the mixing angle θ12 and the mass squared differences ∆m2
21 and ∆m2

31
4, one needs

to diagonalize the mass matrix m̃ given in Eq. (40). In fact, the form of m̃ in Eq. (40) is the
standard form of the neutrino mass matrix with µ-τ symmetry, and hence the expression
of mixing angle θ12 as well ∆m2

21 and ∆m2
31 can be found in the literature (see for e.g. [30]).

We show in Fig. 1 the variation of sin2 θ12 (upper panels) and R = ∆m2
21/|∆m2

31| (lower
panels) with the Yukawa couplings a4, a11 and a6. We do not show the corresponding
dependence on a8 since it looks almost identical to the panel corresponding to a6. The
figure is produced assuming inverted mass hierarchy for the neutrino, i.e., ∆m2

31 < 0. The
neutrino mass matrix given by Eq. (40) could very easily yield ∆m2

31 > 0 and hence the
normal mass hierarchy (see for e.g. [30]). However, for the sake of illustration, we will show
results for only the inverted hierarchy in this paper. In every panel of Fig. 1, all Yukawa
couplings apart from the one plotted on the x-axis, are allowed to vary freely. The points
show the predicted values of sin2 θ12 (upper panels) and R (lower panels) as a function
of the Yukawa couplings for which all oscillation parameters are within their current 3σ
values [31],

7.1× 10−5eV 2 < ∆m2
21 < 8.3× 10−5eV 2 , 2.0× 10−3eV 2 < |∆m2

31| < 2.8× 10−3eV 2 , (42)

0.26 < sin2 θ12 < 0.42 , sin2 2θ23 > 0.9 , sin2 θ13 < 0.05 . (43)

4We define ∆m2

ij = m2

i −m2

j .
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For this figure we take M1 = M2 for simplicity and define m0 = v′2/(2M1). The blue points
are for m = 0.95 eV while the green points are for m0 = 0.006 eV.

Fig. 2 is a scatter plot showing the values of the Yukawa couplings which give all
oscillation parameters within their current 3σ allowed ranges given in Eqs. (42) and (43).
Again as in the previous plot we assume M1 = M2, define m0 = v′2/(2M1) and show the
allowed points for m0 = 0.96 eV (blue), 0.006 eV (green) and 0.0021 eV (red). All Yukawa
couplings apart from the ones shown in the x-axis and y-axis are allowed to vary freely, in
each panel.

Since the µ and τ charged lepton masses are different, we phenomenologically choose to
not impose the µ-τ symmetry on the charged lepton mass matrix5. Hence, without loosing
generality, the charged lepton Yukawa matrix can be taken as

Yl =







Ye 0 0
0 Yµ 0
0 0 Yτ





 , . (44)

The masses of the light charged leptons can then be obtained from Eqs. (31) and/or (33).
For our choice of YΣ and M , it turns out that me ≈ vYe , mµ ≈ vYµ, and mτ ≈ vYτ , if
we neglect terms proportional to v′2. The mixing matrices Ul and Ur which diagonalize
m̃†

l m̃l (cf. Eq. (33)) and m̃lm̃
†
l (cf. Eq. (31)) respectively, turn out to be unit matrices at

leading order.

Ul ≃







1 0 0
0 1 0
0 0 1





 , Ur ≃







1 0 0
0 1 0
0 0 1





 , (45)

Finally, we show in Fig. 3 the impact of µ-τ symmetry breaking on the low energy
neutrino parameters. For the sake of illustration we choose a particular form for this
breaking, by taking M3 6= M2. Departure from µ-τ symmetry results in departure of
Ue3 from zero and sin2 θ23 from 0.5. We show in Fig. 3 the Ue3 (left hand panel) and
|0.5− sin2 θ23| generated as a function of the symmetry breaking parameter ǫ = M3 −M2.
The figure is generated for a4 = −0.066, a11 = 0.171, a6 = 0.064, a8 = 0.0037 and
m0 = 0.745 eV. We have fixed M1 = M2 = 299 GeV in this plot. For ǫ = 0, µ-τ symmetry
is restored and both Ue3 and 0.5 − sin2 θ23 go to zero. We show only points in this figure
for which the current data can be explained within 3σ. We note that for ǫ > 0 the curve
extends to about M3 = M2 + 2.6 GeV, for this set of model parameters. For ǫ < 0, the
allowed range for ǫ is far more restricted.

We next turn our attention to the predictions of this model for the heavy fermion
sector. The masses of the heavy fermions can be obtained using YΣ and M , as discussed
in the previous section. The 6× 6 mixing matrices, which govern the mixing of the heavy
leptons with light ones, can also be obtained as discussed before. We will see in the next
section that all the four 3× 3 blocks of the matrices U , S and T are extremely important

5We reiterate that our choice of the lepton masses and mixing are dictated solely by observations.
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for phenomenology at the LHC. We denote these 3× 3 blocks as

U =
(

U11 U12

U21 U22

)

=
(

(Wν)11U0 (Wν)12UΣ

(Wν)21U0 (Wν)22UΣ

)

, (46)

S =
(

S11 S12

S21 S22

)

=
(

(WL)11Ul (WL)12U
L
h

(WL)21Ul (WL)22U
L
h

)

, (47)

T =
(

T11 T12

T21 T22

)

=
(

(WR)11Ur (WR)12U
R
h

(WR)21Ur (WR)22U
R
h

)

, (48)

The matrices Wν , WL and WR have been given in Eqs. (20), (29) and (30) respectively.
These can be estimated for our choice ofmD, M andml. In particular, we note that S11 and
T11 are close to 1, while U11 is given almost by UPMNS. The off-diagonal blocks U12, U21,
S12 and S21, are suppressed by ∼ mD/M , while T12 and T21 are suppressed by ∼ mDml/M

2.
Finally, the matrices U22 = (Wν)22UΣ, S22 = (WL)22U

L
h , and while T22 ≃ UR

h . To estimate
these we need to evaluate first the matrices which diagonalize the heavy fermion mass
matrices M̃ , M̃ †

HM̃H , and M̃HM̃
†
H respectively. For M with µ-τ symmetry, it turns out

that

UΣ ≃ UL
h ≃ UR

h ≃







1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2





 , (49)

thereby yielding

U22 ≃







1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2





 . (50)

S22 ≃







1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2





 . (51)

T22 ≃







1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2





 . (52)

This structure of UΣ, U
L
h and UR

h (and hence of U22, S22 and T22), is an immediate conse-
quence of the µ-τ symmetry in M and mD. This is an extremely new and crucial feature.
To the best of our knowledge, this has not been pointed out in any of the previous Type
III seesaw models studies. The main reason is that no study so-far has considered the
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flavor aspect of Type III seesaw. As a result none of them considered imposing an un-
derlying flavor symmetry group on the fermions such that the triplet fermion Majorana
mass matrix and the Yukawa matrix would be µ-τ symmetric. They assume that UΣ, U

L
h

and UR
h are almost unit matrices since M is real and diagonal. However, this is true only

if M1 ≪ M2 ≪ M3. Breaking of the µ-τ symmetry either in mD or in M , will destroy
this non-trivial form for UΣ, U

R
h and UL

h . But having µ-τ symmetry in both YΣ and M is
both theoretically as well as phenomenologically well motivated. We will see later that this
non-trivial form of the matrices UΣ, U

L
h and UR

h will lead to certain distinctive signatures
at LHC.

One should note that while UΣ, U
L
h and UR

h have the form given by Eq. (49), Ul and
Ur ≃ I, though both M and Yl were taken as real and diagonal. The main reason for this
drastic difference is the following. While we take exact µ-τ symmetry for M , for Yl we
take a large difference between Yµ and Yτ values. This choice was dictated by the observed
charged lepton masses.

Finally, a comment regarding the extent of deviation from unitarity in our model is
in order. It is clear from the discussion of the previous section and Eq. (20) that the
deviation from unitarity of the light neutrino mixing matrix is ∝ m2

D/m
2
Σ ≃ mν/mΣ, where

mν and mΣ are the light neutrino and heavy lepton mass scales respectively. Therefore,
an important difference between our model and the usual GUT Type III seesaw models
is that the extent of non-unitarity for our model is much larger. This will result in larger
lepton flavor violating decays in our case. Detailed calculations for lepton flavor violating
radiative as well as tree level decays of a generic Type III seesaw model have been published
in [14, 15] and we do not repeat them here. The authors of these papers have also worked
out the current constraints on the deviation from unitarity. One can check that even for
100-1000 GeV mass range heavy leptons, the predicted non-unitarity and lepton flavor
violating decay rates in our model are far below the current experimental bounds. In fact,
the predicted decay rates can be seen to be far below the sensitivity reach of all forthcoming
experiments.

4 Heavy Fermion Production at LHC

The triplet fermions couple to the standard model particles through the Yukawa couplings
as well as gauge couplings. We give in Appendix B, the detailed Yukawa and gauge
couplings of the neutral and charged heavy fermions with the standard model leptons,
vector bosons, and Higgs particles. We have kept the masses of the heavy fermions in the
100 GeV to 1 TeV range. Therefore, it should be possible to produce these fermions at
LHC. In this section, we will study in depth the production and detection possibilities of
the heavy leptons in our Type III seesaw model. Compared to the earlier papers, there
are two distinctly new aspects in our analysis – (i) presence of two Higgs doublet instead
of one, leading to a far more rich collider phenomenology, (ii) presence of µ-τ symmetry in
our model.

The heavy triplet fermion production at LHC has been discussed by many earlier papers
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[17–21]. At LHC we will be looking at the following production channels

pp → Σ±Σ∓,Σ±Σ0,Σ0Σ0.

The exotic fermions have both Yukawa couplings to Higgs as well as gauge couplings
to vector bosons. Therefore, they could be in principle produced through either gauge
mediated partonic processes (left diagram) or through Higgs mediated partonic processes
(right diagram)

q

q̄/q′

Z/γ/W±

Σ±

Σ0/ Σ∓ q

q̄/q′

h0/A0

H0/H±

Σ±

Σ0/ Σ∓

However, it turns out that the vertex factors for the couplings of heavy fermions to gauge
bosons which are relevant for the formers production, viz., Σ+Σ−Z/γ and Σ0Σ±W∓, are
much larger than those involving the Higgs, viz., Σ+Σ−H0/h0/A0 and Σ0Σ±H∓. To illus-
trate this with a specific example, we compare the Σ+Σ−Z coupling given in Eqs. (B16)
and (B17) with the Σ+Σ−h0 coupling given in Table 9. It is easy to see that the Σ+Σ−Z/γ
coupling has terms proportional to T †

22T22 and S†
22S22, while the Σ

+Σ−h0 coupling depends
on terms which have an off-diagonal mixing matrix block. Since the off-diagonal mixing
matrix blocks are much smaller than the diagonal ones (as discussed in section 3), it is not
surprising that the couplings of two exotic fermions to the Higgs particles are much smaller
than to the gauge bosons. Hence the heavy exotic fermions will be produced predominantly
via the gauge boson mediated processes. For the heavy fermion production cross-section at
the LHC, we chose CTEQ6L [32] as the parton distribution function (PDF) and partonic
center of mass energy as the renormalization and factorization scale. We have explicitly
checked that the production cross-sections do not change much with the PDF and scale.
All cross-sections in this paper are calculated using the Calchep package [33].

In Fig. 4 we show the production cross-section for Σ−Σ0 (bold dotted line), Σ+Σ0 (solid
line), and Σ+Σ− (fine dotted line), at LHC as a function of the corresponding heavy fermion
mass. It is straightforward to see that the Σ′0Σ′0Z (and Σ′0Σ′0W±) couplings are absent. A
very small Σ0Σ0Z is generated through mixing from the ν ′0ν ′0Z coupling. However, this is
extremely small. Hence, Σ0Σ0 production through gauge interactions is heavily suppressed
and is not shown in Fig. 4. One can see that the production cross-sections of the heavy
fermions fall sharply with their mass. More precisely, σ(Σ±Σ∓) = 112 fb, σ(Σ+Σ0) = 206
fb and σ(Σ−Σ0) = 95 fb, for MΣi

≃ 300 GeV. However, for MΣi
≃ 600 GeV this quickly

falls to σ(Σ±Σ∓) = 6 fb, σ(Σ+Σ0) = 13 fb, and σ(Σ−Σ0) = 4 fb. Therefore, it is obvious
that the lightest amongst the three generation of heavy fermions will be predominantly
produced at the collider, and will hence dominate the phenomenology. One can check that
the production cross-sections that we get is almost identical to that obtained in earlier
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Figure 4: Variation of production cross section of Σ±, Σ0 with the mass of exotic leptons.

papers [19, 20]. This is not unexpected since our model is different from all the earlier
models in the Higgs sector. However as discussed above, it is the gauge interactions which
predominantly produce the exotic leptons. The gauge-lepton couplings in our model is
same as in the earlier works. Since the heavy fermion production comes mostly from the
gauge mediated sub-processes, we get the same production cross-sections as other papers.

5 Heavy Fermion Decays

Once produced at LHC, the heavy fermions will decay to different lighter states due to its
interaction with different standard model particles. In particular, they could decay into
light leptons and Higgs due to their Yukawa couplings, or to light leptons and vector bosons
due to their gauge interactions. The light leptons could be either the charged leptons or
the neutrinos. The Higgs could be either the neutral Higgs h0, H0, A0, or the charged
Higgs H±. The gauge bosons could be either W± or Z. The Higgs and gauge bosons
would eventually give the final state particles in the detector, which will be tagged at the
experiment. This will be studied in detail in the following sections. Here we concentrate
on only the two body decay rates and branching ratios of the exotic leptons Σ± and Σ0.
All possible vertices and the corresponding vertex factors for the Yukawa interactions of
Σ± and Σ0 are given in Tables 9, 10, 11. The vertices and vertex factors for the charged
and neutral current gauge interactions can be found in Appendix B.2. Presence of two
Higgs doublets and µ-τ symmetry in YΣ and M will have direct implications in the partial
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decay widths for different decay processes.

5.1 Decay to Light Leptons and Higgs

In this subsection, we perform a detailed study of all two-body decays of these fermions
into a lepton and a Higgs. Since we have two Higgs doublets in our model, we have a pair
of charged Higgs H±, and three neutral Higgs – h0 and H0 are CP even, while A0 is CP
odd. The Higgs mass spectrum and mixing is given in Appendix A. The decay width Γ for
Σi → ljX is given by

Γ =
MΣi

32π

[

1− (MX −mlj )
2

MΣi

2

] 1
2 ×

[

1− (MX +mlj )
2

MΣi

2

] 1
2 × Aji, (53)

where MΣi
, MX and mlj are the masses of Σ0

i /Σ
±
i , X and lj , respectively, where X is the

relevant Higgs involved. The lj could be either a charged lepton or a neutrino. For the
charged Higgs H± mode, and the neutral Higgs h0 and H0 mode, the factor Aji is given as

Aji =
(

|(CX,L
lΣ )ji|2 + |(CX,R

lΣ )ji|2
)(

1− (M2
X −M2

l )

M2
Σi

)

+
(

(CX,L
lΣ )

∗
ji(C

X,R
lΣ )ji + (CX,R

lΣ )
∗
ji(C

X,L
lΣ )ji

)

mlj

MΣi

, (54)

while for the CP-odd neutral Higgs A0 the factor is

Aji =
(

|(CX,L
lΣ )ji|2 + |(CX,R

lΣ )ji|2
)(

1− (M2
X −M2

l )

M2
Σi

)

−
(

(CX,L
lΣ )

∗
ji(C

X,R
lΣ )ji + (CX,R

lΣ )
∗
ji(C

X,L
lΣ )ji

)

mlj

MΣi

. (55)

In the above equations (CX,L
lΣ )/(CX,R

lΣ ) are the relevant vertex factors given in Table 9, 10
and 11, and i, j represents the generation. In all numerical results that follow we will fix the
model parameters (Yukawa couplings and entries ofM mass matrix) to their values given in
Table 1. This set of model parameters yield ∆m2

21 = 7.67×10−5 eV2, ∆m2
31 = −2.435×10−3

eV2 and sin2 θ12 = 0.33. Of course θ13 = 0 and θ23 = π/4. Throughout the rest of the
paper, we also take the value of Mh0 = 40 GeV, MH0 = 150 GeV, MA0 = 140 GeV and
MH± = 170 GeV. Also, for all cases where we present results for fixed values of the heavy
fermion masses, we take MΣ1 = 300 GeV and MΣ2 = MΣ3 = 600 GeV.

5.1.1 Σ± → l± h0/H0/A0

Let us begin with the decay of heavy charged leptons into light charged leptons and neutral
Higgs. The Higgs concerned in this case could be h0, H0, or A0. We start by probing the
decay rate Σ±

i → l±j h
0. From Eq. (53) we see that the decay rate is governed by the factor

Aji, which in turn depends on the vertex factors given in Table 9. The vertex factors are

18



a4 a6 a8 a11 mo/eV
M2

M1

M3

M1

0.145 0.097 0.109 4× 10−4 2.356 2.0 2.0

Table 1: Model parameters used for all numerical results in section 5 and 6. This set
of model parameters yield ∆m2

21 = 7.67 × 10−5 eV2, ∆m2
31 = −2.435 × 10−3 eV2 and

sin2 θ12 = 0.33. Of course θ13 = 0 and θ23 = π/4. Parameter m0 = v′2/(2M1).
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0) with MΣi

given in terms of the 3×3 block matrices Sab and Tab, where a, b = 1, 2. We have seen in the
earlier sections that S12, T12 and T21 are heavily suppressed – the first one by O(mD/M)
and T12 and T21 by O((mlmD)/M

2). The vertex factors also depend on the Higgs mixing
angle α. In Appendix A, we have shown how the neutrino mass constrains the neutral
Higgs mixing such that sinα ∼ 10−6 and cosα ∼ 1. Therefore, for the Σ±

i → l±h0 decay
the dominating vertex factor is

Ch0,R
l±Σ± ≃ 1√

2
S†
11Y

†
ΣT22 cosα. (56)

We have seen in Eq. (47) that S11 ≃ 1 if we neglect terms of the order of O(m2
D/M

2).
Therefore,

Ch0,R
l±Σ± ≃







a4
√
2a11 0

a11
1√
2
(a6 + a8)

1√
2
(a8 − a6)

a11
1√
2
(a6 + a8)

1√
2
(a6 − a8)





 . (57)
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From Eq. (57) we can see that (Ch0,R
l±Σ±)13 ≃ 0. In fact one can check that this happens

because T22 given by Eq. (52) has a specific form, which is due to µ-τ symmetry. The
consequence of this is that decay of Σ−

3 → e−h0 will be forbidden to leading order. Also
note from Eq. (57) that the decay rate of all heavy charged fermions into µ± is predicted
to be exactly equal to their decay rate into τ±. This is also an obvious consequence of the
µ-τ symmetry.

The partial decay widths for Σ−
i → l−j h

0 from an exact numerical calculation in shown
in Fig. 5, as a function of the heavy charged fermion mass. The thin blue lines are decay
into e−, while the thick green lines are for decay into µ−/τ−. As expected, we notice the
following two consequences of µ-τ symmetry

• Decay rate of Σ−
3 → e−h0 is almost zero.

• The decay rate of the heavy fermions into µ− is exactly equal to that into τ−.

We can also see that for Σ−
1 decay, the decay rate into e− is about 5 orders of magnitude

larger than into µ−/τ−. The trend is opposite for Σ−
2 decay, where the decay is predomi-

nantly into µ−/τ−. Both of these features can be understood from Eq. (57) and the values
of the Yukawa couplings taken (cf. Table 1). Σ−

1 decay into e− and µ−/τ− is proportional
to a24 and a211, respectively. The ratio of the decay widths seen in the figure matches the
ratio a24/(a

2
11) ∼ 105. Similarly, one can check that for Σ−

2 decay, the corresponding ratio
is 4a211/(a6 + a8)

2, which agrees with the middle panel of Fig. 5. Finally, the fact that the
decay rate of Σ−

3 → µ−h0 is less than that of Σ−
2 → µ−h0 can also be understood in terms

of Eq. (57) and the Yukawa coupling values taken for the calculation.
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Figure 7: Variation of Γ(Σ0
i → ljH

+) with MΣi

We next turn to the decay width for Σ±
i → l±j H

0. Expression for the decay rate is same
as that given by Eq. (53) except that now Mh0 is replaced by the H0 mass MH0 . For this
decay channel the Aji factor is dominantly given by

CH0,R
l±Σ± ≃ 1√

2
S†
11Y

†
ΣT22 sinα. (58)

Note that compared to the effective vertex factor for Σ±
i → l±j h

0 given in Eq. (56),
the effective vertex factor given above for Σ±

i → l±j H
0 is suppressed by sinα. Since

sinα ∼ 10−6, the decay rate of Σ±
i into H0 are heavily suppressed. We show in Fig. 6 this

decay rate calculated from exact numerical results. Comparing Fig. 5 with Fig. 6, we see
that decays into H0 are suppressed by a factor of about ∼ 1010, as expected from the order
of magnitude estimate. Therefore, we can neglect Σ±

i → l±j H
0 for all practical purposes.

From Table 9 it is easy to see that the decay rate Σ±
i → l±j A

0 will be almost identical
to that that predicted for Σ±

i → l±j h
0. The vertex factors for the two process are the same

and hence the only difference could come from the difference between the Higgs masses.
However, it is easy to see from Eq. (53) that the effect of the Higgs mass on the decay rate
is not very significant, especially for relatively heavy fermions.
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5.1.2 Σ0 → l∓ H±

The decay rate for this channel is also given by Eq. (53), and is governed primarily by the
vertex factor

CH±,R
l±Σ0 ≃ 1√

2
S†
11Y

†
ΣU

∗
22 cos β. (59)

Recall that cos β ∼ 1. As discussed before, the matrix U22 displays features similar to the
matrix T22. Therefore, the form of dominant vertex factor for this case is similar to that
given in Eq. (57). The corresponding decay rates are shown in Fig. 7. All features seen for
Σ−

i → ljh
0 is also seen here. Decay channel Σ0

3 → e∓j H
± is forbidden. Decay rates to µ∓ is

equal to decay rate to τ∓. The huge hierarchy in the decay rates of Σ0
1 and Σ0

2 into e and
µ/τ are also present due to same reason as given for Σ− → l−h0 decays. The decay rate
and flavor structure for the final state charged leptons is therefore seen to be same here
as for the decay of charged heavy fermions into charged light leptons and h0. However, in
this case we have a charged Higgs in the final state and it should be easy to tag this and
differentiate the two processes in the detector at LHC. We will also discuss in the following
sections that the h0 also has a much longer lifetime than H±, which can be observed in
the detector. In addition, the heavy lepton itself is charged in one case and uncharged in
the other. The two processes should hence be separable at the collider experiment.

5.1.3 Σ0 → ν h0/H0/A0

We next turn to the decay channels with a light neutrino in the final state. This will give
missing energy in the final state. Decay of the neutral Σ0 will create a neutrino and a
neutral Higgs. As in the case of decay of Σ± to charged leptons and neutral Higgs, one can
check from Table 10 that the decay to the Higgs H0 is heavily suppressed due to smallness
of U21 as well as the sinα term. However, decay to h0 is driven by the vertex factor

Ch0,R
νΣ0 =

1

2
U †
11Y

†
ΣU

∗
22 cosα. (60)

For the decay Σ0
i → νjA

0 we find from Table 10 that the dominant vertex factor is

CA0,R
νΣ0 = − i

2
U †
11Y

†
ΣU

∗
22 cos β. (61)

Since cos β ≃ cosα, the decay rate and flavor structure for this channel will be similar to
what we found for the Σ0

i → νjh
0 channel. The main difference comes in the difference

between the masses of the h0 and A0 Higgs.
For the Σ0

i → νjH
0 decay, one can see from Table 10 that the vertex factors for both PL as

well as PR vertices, are suppressed by sinα. Therefore, this decay rate can be neglected.
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5.1.4 Σ± → ν H±

From Table 11 the vertex factor for this decay will be

CH±,L
νΣ± ≃ UT

11Y
T
Σ S22 cos β. (62)

As we have seen in section 3, the structure of S22 is very similar to that of U22. Hence,
a comparison of the vertex factor for this process with the one from Σ0

i → νjh
0 and

Σ0
i → νjA

0 shows that all three will have decay rates of comparable magnitude, modulo
the difference in the masses of the scalars h0, A0 and H±. Since we assume masses of h0,
A0 and H± as 40 GeV, 140 GeV and 170 GeV respective, the decay rate for Σ± → νH±

is predicted to be the lowest.

5.2 Decay to Light Leptons and Vector Bosons

The exotic heavy leptons have gauge interactions. Therefore, it is expected that they will
also decay into final state particles with vector bosons, W± and Z. The decay width Γ for
Σ±

i → l±j /νV and Σ0
i → l±j /νV in the ml = 0 limit is given by

Γ =
MΣi

32π

[

1− MV
2

MΣ
2

]2 [

2 +
MΣ

2

MV
2

](

|(CV,L
l±Σ)ji|

2 + |(CV,R
l±Σ)ji|

2
)

, (63)

where CV,L
l±Σ and CV,R

l±Σ are the relevant vertex factors given in Appendix B.2, and MV is the
mass of the vector boson involved. The dominant vertex factor relevant for Σ± → l±Z and
Σ0 → l±W∓ in terms of YΣ, M , v′ and the mixing matrices are given respectively by

CZ,L
l±Σ± ≃ v′

2

g

cw
Ul

†Y †
ΣM

−1UL
h , and CW∓,L

l±Σ0 ≃ −v′

2
g Ul

†Y †
ΣM

−1UΣ. (64)

For the other two channels Σ0 → νZ and Σ± → νW±, they are given respectively by

CZ,L
νΣ0 ≃

v′

2
√
2
(gcw + g′sw)U

†
PMNSY

†
ΣM

−1UΣ, and CW∓,R
νΣ± ≃ − v′√

2
g UT

PMNSY
T
Σ M−1UR

h .(65)

As mentioned before, the gauge interaction part of our model is identical to that for the
one Higgs doublet Type III seesaw considered earlier. Some of these vertex factors6 can
therefore can be seen to agree with that given in [15]. The only difference is that we
include the matrices Ul, U

R
h and UΣ in our general expressions, while these were taken as

unit matrices in [15].

5.3 Comparing Σ±/0 Decays to Higgs and Gauge Bosons

In Fig. 8 we show the decay rates Σ−
1 → ν1W

− (long-dashed blue line), Σ−
1 → e−Z (dot-

dashed green line), Σ0
1 → ν1Z (dot-dashed magenta line), Σ0

1 → e−W+ (thin solid red line),

6Vertex factor for Σ0 → νZ is not given in [15].
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Figure 8: Comparison of the decay rate of the heavy fermion into (i) Higgs and (ii) vector
bosons, in our two Higgs doublet model.

Σ−
1 → e−H0 (dotted maroon line), Σ−

1 → ν1H
− (dashed violet line), and Σ−

1 → e−h0 (thick
solid dark green line). One can clearly see that all decays to gauge bosons are suppressed
with respect to decays to h0 (and A0) and H± by a factor of more than 1010. The reason
for this can be seen by comparing the vertex factors involved in decays to Higgs h0, A0 and
H± (cf. Eqs. (56), (59), (60), (61), (62)), with decays to gauge bosons (cf. Eqs. (64) and
(65)). It is clear that while the former vertex factors do not have any suppression factor,
the latter are all suppressed by v′/MΣ. Another important difference between the decay
rates to Higgs given in Eq. (53), and gauge bosons given in Eq. (63), is in the kinematic
factors. Comparison of the two equations reveals that (for ml = 0), there is an additional
factor of (2+M2

Σ/M
2
V ) for the gauge boson decays. This extra M2

Σ in the numerator cancels
out the 1/M2

Σ in the denominator coming from the square of the vertex factors. However,
the suppression of the gauge boson decay rates due to g2v′2/M2

V ∝ v′2/V 2 remains, where
V 2 = v′2 + v2. Since we have taken v′ ∼ 10−3-10−4 GeV, the decays to gauge bosons
are suppressed by a factor of ∼ 1010-1012 compared to the decays to Higgs. Therefore,
branching ratios of the heavy fermion decay to W± and Z can be neglected in our model
and we concentrate on only decays to h0, A0 and H± in our next section. Note that the
decay to H0 is also suppressed by a factor of 1010-1012, as was also pointed out earlier.
We had seen that this suppression is due to sin2 α coming from the vertex factor for this
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process. Since sin2 α ∼ 10−12, we find that the decay rate for this case is of the same order
of magnitude as the decays to the gauge bosons. Hence, this is also neglected henceforth.

5.4 Comparison Between One and Two Higgs Doublet Models

It is pertinent to compare the two-body decays of the heavy fermions in our two Higgs
doublet model with the usual Type III seesaw models considered earlier which have one
Higgs doublet. The expressions for heavy fermion decays to Higgs and gauge bosons in
the one Higgs doublet models have been given before in the literature [18–21], and we give
them here for the sake of comparison. The decay rates to gauge bosons in the one Higgs
doublet model is given as (for ml = 0)

Γ1HDM(Σ0 → νZ) ≃ λ2MΣ

64π
(1− M2

Z

MΣ
2 )

2(1 + 2
M2

Z

MΣ
2 ), (66)

Γ1HDM(Σ0 → l∓W±) ≃ λ2MΣ

32π
(1− M2

W

MΣ
2 )

2(1 + 2
M2

W

MΣ
2 ), (67)

Γ1HDM (Σ± → l±Z) ≃ λ2MΣ

32π
(1− M2

Z

MΣ
2 )

2(1 + 2
M2

Z

MΣ
2 ), (68)

Γ1HDM (Σ± → νW±) ≃ λ2MΣ

16π
(1− M2

Z

MΣ
2 )

2(1 + 2
M2

Z

MΣ
2 ). (69)

where λ is the triplet fermion – lepton doublet – Higgs doublet Yukawa coupling in the one
Higgs doublet model, and all mixing terms are neglected. This should be compared with
the corresponding expression given in Eq. (63), which on neglecting all mixing and hence
flavor effects reduces to (for ml = 0)

Γ2HDM(Σ0 → νZ) ≃ y2Σ MΣ

64π

v′2

V 2
(1− M2

Z

MΣ
2 )

2(1 + 2
M2

Z

MΣ
2 ), (70)

Γ2HDM(Σ0 → l∓W±) ≃ y2Σ MΣ

32π

v′2

V 2
(1− M2

W

MΣ
2 )

2(1 + 2
M2

W

MΣ
2 ), (71)

Γ2HDM(Σ± → l±Z) ≃ y2Σ MΣ

32π

v′2

V 2
(1− M2

Z

MΣ
2 )

2(1 + 2
M2

Z

MΣ
2 ), (72)

Γ2HDM(Σ± → νW±) ≃ y2Σ MΣ

16π

v′2

V 2
(1− M2

Z

MΣ
2 )

2(1 + 2
M2

Z

MΣ
2 ). (73)

where V 2 = v2 + v′2 is the electroweak breaking scale. The scale of the Yukawa coupling
constants and VEVs are fixed by the neutrino mass mν ∼ λ2V 2/MΣ for the one Higgs
doublet model and mν ∼ y2Σv

′2/MΣ. If one replaces λ2 and y2Σv
′2/V 2 with mνMΣ/V

2 in
both set of expressions, one can see that the the decay rates of heavy fermions into gauge
bosons are identical for both models.

The rates for decay into Higgs for the one Higgs doublet model neglecting flavor effects, is
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given by (for ml = 0)

Γ1HDM (Σ0 → νH0) ≃ λ2MΣ

64π
(1− M2

H

MΣ
2 )

2, (74)

Γ1HDM(Σ± → l±H0) ≃ λ2MΣ

32π
(1− M2

H

MΣ
2 )

2. (75)

For the two Higgs doublet model, the corresponding decay rates are given by Eq. (53),
which on neglecting all flavor effects reduces to (for ml = 0)

Γ2HDM(Σ0 → νh0/A0) ≃ y2Σ cos2 αMΣ

64π
(1−

M2
h/A

MΣ
2 )

2, (76)

Γ2HDM(Σ± → l±h0/A0) ≃ y2Σ cos2 αMΣ

32π
(1−

M2
h/A

MΣ
2 )

2, (77)

Γ2HDM (Σ0 → νH0) ≃ y2Σ sin2 αMΣ

64π
(1− M2

H

MΣ
2 )

2, (78)

Γ2HDM(Σ± → l±H0) ≃ y2Σ sin2 αMΣ

32π
(1− M2

H

MΣ
2 )

2, (79)

where the first two expressions are for decays to h0 or A0 and the last two for decays to H0.
Again, for the same value of MΣ ∼ 100 GeV in both models, one requires λ ∼ 10−5-10−6

for the one Higgs doublet model in order to produce mν ∼ 0.1 eV, while yΣ ∼ 1 for our
two Higgs doublet model. Therefore, clearly

Γ2HDM(Σ0 → νh0/A0) ∼ 1011 × Γ1HDM (Σ0 → νH0),

Γ2HDM(Σ± → l±h0/A0) ∼ 1011 × Γ1HDM (Σ± → l±H0).

Hence, the the exotic fermions decay about 1011 times faster in our model compared to
the one Higgs doublet model7. This could lead to observational consequences at LHC. In
particular, authors of [19] talk about using “displaced vertices” as a signature of the Type
III seesaw mechanism. In our model the lifetime of the exotic fermions is a factor of 1011

shorter and so will be the gap between their primary production vertex and the decay
vertex. Our model therefore predicts no displaced vertex for the heavy fermion decays. In
addition, decay to h0 are predominant. The h0 decay predominantly into bb̄ pairs, but with
a very long lifetime, as we will discuss in section 6. This will give a distinctive signature
of our model at LHC. We will discuss displaced vertices from h0 decay in section 7.

5.5 Flavor Structure and the Decay Branching Ratios

Finally, we present the branching fractions of the heavy fermion decays. Table 2 shows the
branching fractions for the Σ±, while Table 3 gives the branching fraction for Σ0 decays.

7We reiterate that the decays Σ0 → νH0 and Σ± → l±H0 are suppressed by the sin2 α ∼ 10−12 factor
and hence turn out to be comparable to the decay rates in the one Higgs doublet model. However, the
branching ratio to this mode is negligible and can be neglected.
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Decay modes Σ±
1 Σ±

2 Σ±
3

ν H± 0.363 0.473 0.473
e±A0 0.247 2.28× 10−6 0.0
µ±A0 2.3× 10−6 0.125 0.125
τ± A0 2.3× 10−6 0.125 0.125
e± h0 0.389 2.5× 10−6 0.0
µ± h0 3.6× 10−6 0.139 0.139
τ± h0 3.6× 10−6 0.139 0.139

Table 2: Decay branching fractions of Σ±
1 , Σ

±
2 and Σ±

3 for Mh0=40, MH0=150, MH± = 170
GeV and MA0 = 140 GeV. We have taken model parameters M1 = 300 GeV and M2 =
M3 = 600 GeV.

Decay modes Σ0
1 Σ0

2 Σ0
3

e∓ H± 0.368 4.3× 10−6 0.0
µ∓H± 3.4× 10−8 0.236 0.236
τ∓ H± 3.4× 10−8 0.236 0.236
ν A0 0.243 0.250 0.250
ν h0 0.386 0.277 0.277

Table 3: Decay branching fractions of Σ0
1, Σ

0
2 and Σ0

3 for Mh0=40, MH0=150, MH± = 170
GeV and MA = 140 GeV. We have taken model parameters M1 = 300 GeV and M2 =
M3 = 600 GeV.

For the channels with neutrino in the final state, we give the sum of the branching fraction
into all the three generations, as observationally it will be impossible to see the neutrino
generations at LHC. We do not show decays to gauge bosons and H0 as they are suppressed
by a factor of 1011 with respect to the decays into h0, A0 andH±. As a result of the inherent
µ-τ symmetry in the model, Σ

±/0
3 decays to electrons is strictly forbidden and branching

ratios of their decay into µ and τ leptons are equal. We find that due to the form of U22,
S22 and T22 given in Eqs. (50), (51) and (52), Σ

±/0
2 decays to electrons is also negligible and

their probability to decay into µ and τ leptons is equal. We also find that the branching
fractions of Σ±

2 is equal to the branching fractions of Σ±
3 , and similarly for the neutral

heavy fermions. We also notice that Σ
±/0
1 decays only to electrons and their decay to µ

and τ lepton is almost zero. This as pointed out before, comes due to the constraint on the
Yukawa couplings from the low energy neutrino oscillation data. The difference between
the branching fraction to h0, A0 and H± is mainly driven by the difference in the masses
which we have chosen for these Higgses.
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6 Higgs Decay

In the previous section we concluded that the heavy fermions will all decay into h0, A0

or H±. We next turn to the subsequent decay of these Higgs particles. We concentrate
on the possible decay modes of h0, A0 and H± and tabulate only those few which have
significant branching ratios. The branching ratios obviously depend on our choice for the
Higgs masses as well as our choice of the mixing angles α and β, which appear in the
coupling. The part of the Lagrangian containing the interaction terms of the Higgs with
the leptons and quarks are given in Appendix B. The interaction of Higgs fields with
the gauge fields comes from the Higgs kinetic terms and is the same as the general two
Higgs doublet model. Possible decay channels for the charged Higgs involve the W± and
the neutral CP even Higgs. It is well known that in the two Higgs doublet model, the
W± −H∓ −H0 coupling is proportional to sin(β − α), whereas W± −H∓ − h0 coupling
is proportional to cos(β − α) [23]. In Appendix A, we have shown how constraint from
neutrino mass drives sinα ∼ sin β ∼ 10−6. Therefore, in our model H± → W±H0 is always
suppressed, irrespective of the Higgs mass8. In fact, the only decay channel possible for
the charged Higgs in our model is H± → W±h0, for which the decay branching fraction

BR(H± → W±h0) = 1.0. (80)

The W± next decay into either qq′ pairs or l±νl/ν̄l pairs with the following decay branching
fractions

BR(W± → qq′) = 0.67,

BR(W± → e±νe/ν̄e) = 0.11,

BR(W± → µ±νµ/ν̄µ) = 0.11,

BR(W± → τ±ντ/ντ ) = 0.11. (81)

The branching fractions of the neutral Higgs h0, H0 and A0 are given in Table 4. Though
H0 is almost never produced through heavy fermion decays in our model, we have included
them in the table for completeness. We find that the neutral Higgs decay to bb̄ pairs almost
90% of the times. The second largest decay fraction is to τ τ̄ pairs, while decays to cc̄
happens less than few percent of the times. In our following sections where we look for
collider signatures, we will consider h0 (and A0) decays to only bb̄ and τ τ̄ pairs.

Finally, a short discussion on direct production of h0, without involving the heavy
fermion decays, is in order. In our model, the lightest Higgs has a mass as low as 40 GeV.
This might appear to be a cause of concern, given that such a Higgs was not observed at
LEP. However, it is easy to see that this Higgs mass is not excluded by the direct Higgs
searches at LEP-2. This is because the coupling corresponding to Z − Z − h0 vertex is
given by (gMZ/ cos θw) sin(β−α). Since in our model sin(β−α) is almost zero, the LEP-2
bound on Higgs mass does not pose any serious threat to our model, irrespective of the
mass of h0.

8One can see that this channel is also kinematically forbidden for our choice of the Higgs masses,
whereby with MH± = 170, it is impossible to create an on-shell pair of W± and H0.
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Decay modes h0 H0 A0

bb̄ 0.89 0.87 0.87
τ τ̄ 0.07 0.09 0.09
cc̄ 0.04 0.04 0.04

Table 4: Decay branching fractions of h0, H0 and A0 for Mh0 = 40 GeV, MH0 = 150 GeV,
and MA0 = 140 GeV.

7 Displaced h0 Decay Vertex

Amongst the most significant difference of our model with the usual Type III seesaw
model are the decay lifetimes of the heavy fermions and h0 (as well as A0). We had seen in
section 5 that the total decay rate for 300 GeV Σ0 is about 4 × 10−2 GeV. This gives the
corresponding rest frame lifetime as 4.97 × 10−13 cm. The lifetime for Σ± is similar. One
can check that for the usual one Higgs doublet models, the rest frame lifetime for the heavy
fermions is ≃ 0.5 cm for mν = 0.1 eV and MΣ ∼ 100 GeV, which is rather large. The
authors of [19] therefore proposed that the displaced decay vertex of heavy fermion could
be a typical signature of the one Higgs Type III seesaw model. Clearly, for our model
with two Higgs doublets, the decay lifetime is 1011 times smaller and hence we predict
no displaced vertex for the heavy fermion decay. This can be used as a distinguishing
signature between the two models.

Another very important and unique feature of our model is the very long lifetime of our
neutral Higgs h0, which comes due to the smallness of sinα. In fact, since sinα ∼ 10−6, the
lifetime for h0 in our model is 1012 times larger compared to the standard model Higgs. In
particular, the h0 total decay rate is 4× 10−15 GeV. This gives h0 a rest frame lifetime of
4.97 cm. For a h0 with 200 GeV of energy, the lifetime in the lab frame is seen to be close
to 25 cm. Therefore, we expect a big gap between the decay vertices of the heavy fermion
and the h0. This displaced h0 decay vertex should be detectable at the LHC detectors
ATLAS and CMS.

We would like to make just a few qualitative remarks about the prospects of detecting
the displaced h0 vertex. Like stressed many times before, the h0 decay predominantly into
bb̄ pairs. While b-tagging is a very important and standard tool for collider experiments,
and while both ATLAS [34] and CMS [35] have been developing algorithms for tagging
the b, there is an additional complication with b-tagging in our model which should be
pointed out here. Since the h0 lifetime is a few 10s of cm in the lab frame, it is expected
to decay inside the silicon tracker of ATLAS and CMS. In particular, the pixel tracker of
CMS and ATLAS which are only few cm from the center of the beam pipe, will miss the
h0 decay vertex. However, the silicon strip trackers would be useful in observing the b-jets.
The tracks from the primary and secondary vertices of the b-hadron should be seen. In
addition, one could use the two other standard tools for tagging the b-jets. Firstly, one
could the tag the lepton in the jet coming from the semi-leptonic decays of the b-hadron.
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These leptons are expected to have smaller pT compared to the ones coming from W± and
Z decays, and hence this is called soft-lepton tagging [34,35]. More importantly, one could
construct the invariant mass distribution of the 2 b-jets. This should give us a sharp peak
corresponding to the h0. We therefore expect that ATLAS and CMS should be able to
detect the displaced h0 decay vertex. This would give a characteristic and unambiguous
signal of our model.

Note that while the lifetime of h0 is constrained to be large due to the smallness of sinα
alone in our model, things are slightly more complicated for the lifetime of A0. This is
because in principle A0 could decay through the mode A0 → Zh0. While this is forbidden
kinematically for the A0 mass we assume, one could argue that for a large enough mass
for A0, the lifetime of A0 could be shorter. However, we stress that even if A0 decays fast
into h0, that would still produce a displaced vertex, since the h0 would still have a very
long lifetime.

8 Model Signatures at the LHC

Having discussed in details the production and subsequent decays of the exotic fermions,
as well as the decay branching fractions of the intermediate Higgs into final state particles,
we next describe the signatures of the two Higgs doublet Type III seesaw model at the
LHC. We will present a comprehensive list of final state particles and their corresponding
collider signatures.

The most important characteristics of our model are the following:

1. Presence of µ-τ symmetry in YΣ and M . This is expected to show-up in the flavor
of the final state lepton coming directly from the Σ±/0 decay vertex.

2. Presence of two CP even neutral Higgses (h0 and H0), one CP odd neutral Higgs
(A0), and a pair of charged Higgs (H±).

3. Predominant decay of the heavy fermions into light leptons, and h0, A0 or H±.
Decays into H0 and gauge bosons almost never happen.

4. Very short lifetime for the heavy fermion due to the very large Yukawa couplings.

5. Predominant decay of h0 and A0 into bb̄ pairs 89% and 87% of the time, respectively.
They decay also into τ τ̄ 7-9% of the time.

6. Very large lifetime of h0 and A0.

7. The Higgs H± decays into W±h0 and almost never into W±H0.

8. Short predicted lifetime for H±.

In what follows, we will use these model characteristics to identify distinctive final state
channels at the collider. We identify all possible channels in the collider for our model
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and calculate the respective effective cross-sections. The results are given in Tables 5, 6
and 7. We will also discuss some of the most important channels and the characteristic
backgrounds, if any, associated with them. In this section we have only given results for
effective cross-sections for the decay of Σ

±/0
1 with MΣ1 = 300 GeV. Results for the other

heavy fermion generations can be similarly obtained.

8.1 Signatures from Σ+Σ− decays

We give in Table 5 all possible collider signatures coming from the decay of Σ+Σ− pairs,
for our two Higgs doublet Type III seesaw model. In the last column we also give the
corresponding effective cross-sections for these channels in units of fb. Of course the final
cross-sections can be obtained only after putting in the various cuts and efficiency factors.
These efficiency factors will have to be folded with the cross-sections given in Table 5 to get
the final effective cross-sections for the various channels. Few clarifications on our notation
is in order. Light charged leptons could be released in the final state through two ways:
(i) from the decay of the heavy fermions Σ± → l±h0 and Σ0 → l±H∓, (ii) from the decays
of W → lν̄l. The charged leptons released from the Σ±/0 decays are different from those
from W± in two respects. Firstly, the former carry the information on the flavor structure
of the model as discussed in the previous sections, while the latter do not. Secondly, since
they come from decays of the heavier Σ±/0, they are expected to be harder than the ones
from W± decays. We refer to the charged leptons from the Σ±/0 decays as l and the ones
from W± decays as l′. The notation OSD stands for opposite sign dileptons from Σ±/0

decays, while OSD′ stands for opposite sign dileptons from W± decays. When we have
one charged lepton from Σ±/0 decay and an opposite sign charged lepton from W± decay,
then it is denoted as OSD(l + l′) and so on. 9

While we provide an exhaustive list of channels for the Σ+Σ− decay mode in Table
5, obviously not all of them can be effectively used at the LHC to provide smoking gun
evidence for our two-Higgs doublet Type III seesaw model. We will highlight below a few
of these channels which appear to be particularly promising.

• As discussed in details before, one of the main decay channels of Σ± is Σ± → l± h0.
The h0 with mass of 40 GeV, then decays subsequently to bb̄ pairs giving rise to a
final state signal of a pair of opposite sign dileptons (OSD) + 4 b-jets.

Σ+Σ− → l+l−h0h0 → l+l−bb̄bb̄ → 4b+OSD.

We have seen from Table 2 that the branching ratio for Σ± → l± A0 is also com-
parable. This will also produce the same collider signature of 4b + OSD. The only
observable difference will be that the b-jets produced from the A0 decay will be harder

9 We should also mention at this point that for some cases whether the charged lepton in the final state
is a l or l′ can be said from the detector topology only after proper cuts have been imposed on the lepton
transverse momentum. This will however require detailed simulation, which is outside the scope of this
paper and will be done in an independent work.
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Sl no Channels Effective cross-section (in fb)

1 Σ+Σ− → l+l−h0h0 → 4b+OSD 35.84

2 Σ+Σ− → l+l−h0h0 → 2b+OSD + 2τ 3.67

3 Σ+Σ− → l+l−h0h0 → OSD + 4τ 0.37

4 Σ+Σ− → l+h0H−ν → 4b+ l + 2j+ 6 pT 26.88

5 Σ+Σ− → l+h0H−ν → 4b+OSD(l + l′)+ 6 pT 8.92

6 Σ+Σ− → l+h0H−ν → 4b+ l + τ+ 6 pT 4.48

7 Σ+Σ− → l+h0H−ν → 2b+ l + 2τ + 2j+ 6 pT 2.69

8 Σ+Σ− → l+h0H−ν → 2b+ l + 3τ+ 6 pT 0.45

9 Σ+Σ− → l+h0H−ν → 2b+OSD(l + l′) + 2τ+ 6 pT 0.9

10 Σ+Σ− → l+h0H−ν → l + 4τ + 2j+ 6 pT 0.28

11 Σ+Σ− → l+h0H−ν → OSD(l + l′) + 4τ+ 6 pT 0.04

12 Σ+Σ− → l+h0H−ν → l + 5τ+ 6 pT 0.02

13 Σ+Σ− → H+νH−ν → 4b+ 4j+ 6 pT 15.68

14 Σ+Σ− → H+νH−ν → 4b+ 2j + l′+ 6 pT 10.52

15 Σ+Σ− → H+νH−ν → 4b+ 2j + τ+ 6 pT 5.26

16 Σ+Σ− → H+νH−ν → 4b+OSD′+ 6 pT 0.86

17 Σ+Σ− → H+νH−ν → 4b+ 2τ+ 6 pT 0.43

18 Σ+Σ− → H+νH−ν → 4b+ 1τ + 1l′+ 6 pT 0.53

19 Σ+Σ− → H+νH−ν → 2b+ 2τ + 4j+ 6 pT 3.25

20 Σ+Σ− → H+νH−ν → 2b+ 2τ + 2j + l′+ 6 pT 2.12

21 Σ+Σ− → H+νH−ν → 2b+ 3τ + 2j+ 6 pT 1.06

22 Σ+Σ− → H+νH−ν → 2b+ 2τ +OSD′+ 6 pT 0.32

23 Σ+Σ− → H+νH−ν → 2b+ 4τ+ 6 pT 0.08

24 Σ+Σ− → H+νH−ν → 2b+ 3τ + l′+ 6 pT 0.02

25 Σ+Σ− → H+νH−ν → 4τ + 4j+ 6 pT 0.15

26 Σ+Σ− → H+νH−ν → 4τ + 2j + l′+ 6 pT 0.10

27 Σ+Σ− → H+νH−ν → 5τ + 2j+ 6 pT 0.05

28 Σ+Σ− → H+νH−ν → 5τ + l′+ 6 pT 0.006

29 Σ+Σ− → H+νH−ν → 4τ +OSD′+ 6 pT 0.02

30 Σ+Σ− → H+νH−ν → 6τ+ 6 pT 0.005

Table 5: Effective cross-sections (in fb) for different Σ+Σ− decay channels for MΣ1 = 300
GeV.
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as A0 is much more massive than h0. Here and everywhere else in this section, we
will ignore the information on the hardness of the b-jets and present the sum of the
cross-sections with h0 and A0 in the intermediate state. We should also stress that
while we write only h0 explicitly in the intermediate channels in the Tables, the cross-
sections given in the final column always also include A0 as well as h0. One finds
that the effective cross-section for this channel is 35.84 fb, which is rather high. The
OSD released are expected to be hard, as they come from the decay of the massive
fermions.

Instead of decaying into bb̄ pair, the h0s could decay into τ τ̄ . If one of the h0 decays
into bb̄ and the other into τ τ̄ , we will get

Σ+Σ− → l+l−h0h0 → l+l−bb̄τ τ̄ → 2b+OSD + 2τ.

This has an effective cross-section of 3.67 fb, which will reduce further due to the
lower τ detection efficiency. A third possibility exists where both the h0 decay into
τ τ̄ pairs. The effective cross-section for this channel is small as can be seen from the
Table 5, and will get smaller once the τ detection efficiencies are folded.

• The other dominant decay channel for Σ± decay is Σ± → νH±. The neutrino will
give missing energy while H± will decay into H± → W±h0. The W± could decay
hadronically giving 2 jets or leptonically giving either a τ -jet + missing energy or e/µ
lepton + missing energy. Since the lepton released in the Σ± → l± h0 is important
both for understanding the flavor structure of the mixing matrix as well as for tagging
the channel in order to reduce the background, we consider first the case where one
of heavy charged fermion decays into a hard charged lepton and h0 and the other
into a neutrino and H±. The most interesting channels in this case turn out to be:

Σ+Σ− → l+h0H−ν → l+h0h0W−ν → 4b+ l + 2j+ 6 pT ,

Σ+Σ− → l+h0H−ν → l+h0h0W−ν → 4b+ l + τ+ 6 pT ,
where for the former, the two h0 (one from the Σ+ decay and another from H− decay)
produce 4 b-jets, and the W− decays produce two hadronic jets. In the latter channel,
the W− decays into τντ , producing a τ -jet. The effective cross-section for the former
channel is 26.88 fb, while that for the latter is 4.48 fb. The effective cross-sections
for the other channels with l+h0h0W−ν in the intermediate states are given in Table
5. However, their cross-sections are smaller.

• Finally, both the charged heavy fermions could decay through the H±ν mode. In
this case we have the following leading order possibilities:

Σ+Σ− → H+νH−ν → h0h0W+W−νν → 4b+ 4j+ 6 pT ,

Σ+Σ− → H+νH−ν → h0h0W+W−νν → 4b+ 2j + l′+ 6 pT ,

33



Σ+Σ− → H+νH−ν → h0h0W+W−νν → 4b+ 2j + τ+ 6 pT .
The mode Σ+Σ− → 4b + OSD′+ 6 pT , appearing at serial number 16 in Table 5
could have been easy to tag as it contains 4b-jets and pair of opposite sign dileptons
coming from W± decay, and missing energy. However, the effective cross-section
for this channel is relatively low. Note that none of the channels with H+νH−ν in
their intermediate state have l in their final state. For these channels therefore, it is
impossible to say anything about the flavor structure of the model.

8.2 Σ±Σ0 decay

We give in Tables 6 and 7, all possible decay channels, final state configurations of parti-
cles, and their corresponding effective cross-sections for the Σ±Σ0 production and decays.
We reiterate that the final effective cross-section after cuts will be obtained once these
cross-sections are folded with the efficiency functions. For the leptons we follow the same
convention for our notation as done for the previous section.

• We begin by looking at the Σ±Σ0 decays where Σ± → l±h0 and Σ0 → νh0. This
would lead to the following final state configuration

Σ±Σ0 → l±h0h0ν → 4b+ l+ 6 pT ,

with a very large effective cross-section of 96.3 fb. This channel should be easy to
tag. The 4 hard b-jets come from the displaced h0 vertices, and the lepton released is
hard. This lepton will also carry information on the µ-τ symmetric flavor structure
of the model. Another unambiguous channel with significant effective cross-section
coming from the l±h0h0ν intermediate state is

Σ±Σ0 → l±h0h0ν → 2b+ l + 2τ+ 6 pT ,

where one of the h0 decays into τ τ̄ .

• The other intermediate state which has very large effective cross-sections is Σ±Σ0 →
νH± νh0. The H± would decay into W±h0, and W± into a lepton l′ finally giving

Σ±Σ0 → H±νh0ν → 4b+ l′+ 6 pT ,

with an effective cross-section of 107.4 fb. Alternatively, the W− could instead decay
into τ ν̄τ giving

Σ±Σ0 → H±νh0ν → 4b+ τ+ 6 pT ,
with effective cross-section of 53.7 fb, or decay into qq′ giving

Σ±Σ0 → H±νh0ν → 4b+ 2j+ 6 pT ,

with an effective cross-section of 35.98 fb.
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Sl no Channels Effective cross-section (in fb)

1 Σ±Σ0 → l±h0h0ν → 4b+ l+ 6 pT 96.3

2 Σ±Σ0 → l±h0h0ν → 2b+ l + 2τ+ 6 pT 19.7

3 Σ±Σ0 → l±h0h0ν → l + 2τ+ 6 pT 0.99

4 Σ±Σ0 → H±νh0ν → 4b+ 1l′+ 6 pT 107.4

5 Σ±Σ0 → H±νh0ν → 4b+ τ+ 6 pT 53.7

6 Σ±Σ0 → H±νh0ν → 4b+ 2j+ 6 pT 35.98

7 Σ±Σ0 → H±νh0ν → 2b+ 2τ + 2j+ 6 pT 7.36

8 Σ±Σ0 → H±νh0ν → 2b+ 2τ + l′+ 6 pT 2.42

9 Σ±Σ0 → H±νh0ν → 2b+ 3τ+ 6 pT 1.21

10 Σ±Σ0 → H±νh0ν → 4τ + 2j+ 6 pT 0.38

11 Σ±Σ0 → H±νh0ν → l′ + 4τ+ 6 pT 0.12

12 Σ±Σ0 → H±νh0ν → 5τ+ 6 pT 0.06

13 Σ±Σ0 → l±H∓l±h0 → 4b+ 2l + 2j 36.12

14 Σ±Σ0 → l±H∓l±h0 → 4b+ 3l(2l + l′)+ 6 pT 12.04

15 Σ±Σ0 → l±H∓l±h0 → 4b+ 2l + 1τ+ 6 pT 6.02

16 Σ±Σ0 → l±H∓l±h0 → 2b+ 2l + 2τ + 2j 7.4

17 Σ±Σ0 → l±H∓l±h0 → 2b+ 3l(2l + l′) + 2τ+ 6 pT 2.4

18 Σ±Σ0 → l±H∓l±h0 → 2b+ 2l + 3τ+ 6 pT 1.20

19 Σ±Σ0 → l±H∓l±h0 → 2l + 4τ + 2j 0.36

20 Σ±Σ0 → l±H∓l±h0 → 3l(2l + l′) + 4τ+ 6 pT 0.12

21 Σ±Σ0 → l±H∓l±h0 → 2l + 5τ+ 6 pT 0.06

Table 6: Effective cross-sections (in fb) of different Σ±Σ0 decay channels for MΣ1 = 300
GeV.
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Sl no Channels Effective cross-section (in fb)

1 Σ±Σ0 → H±νH±l∓ → 4b+ l + 4j+ 6 pT 13.36

2 Σ±Σ0 → H±νH±l∓ → 4b+ l + τ + 2j+ 6 pT 4.38

3 Σ±Σ0 → H±νH±l∓ → 4b+OSD(l + l′) + 2j+ 6 pT 6.57

4 Σ±Σ0 → H±νH±l∓ → 4b+ LSD(l + l′) + 2j+ 6 pT 2.19

5 Σ±Σ0 → H±νH±l∓ → 4b+OSD(l + l′) + τ+ 6 pT 1.09

6 Σ±Σ0 → H±νH±l∓ → 4b+ LSD(l + l′) + τ+ 6 pT 0.37

7 Σ±Σ0 → H±νH±l∓ → 2b+OSD(l + l′) + 2τ + 2j+ 6 pT 1.35

8 Σ±Σ0 → H±νH±l∓ → 2b+ LSD(l + l′) + 2τ + 2j+ 6 pT 0.45

9 Σ±Σ0 → H±νH±l∓ → 2b+OSD(l + l′) + 3τ+ 6 pT 0.23

10 Σ±Σ0 → H±νH±l∓ → 2b+ LSD(l + l′) + 3τ+ 6 pT 0.08

11 Σ±Σ0 → H±νH±l∓ → OSD(l + l′) + 4τ + 2j+ 6 pT 0.06

12 Σ±Σ0 → H±νH±l∓ → LSD(l + l′) + 4τ + 2j+ 6 pT 0.02

13 Σ±Σ0 → H±νH±l∓ → 2b+ l + 2τ + 4j+ 6 pT 2.78

14 Σ±Σ0 → H±νH±l∓ → l + 4τ + 4j+ 6 pT 0.14

15 Σ±Σ0 → H±νH±l∓ → 4b+ 3l(l + 2l′)+ 6 pT 1.68

16 Σ±Σ0 → H±νH±l∓ → 2b+ 3l(l + 2l′) + 2τ+ 6 pT 0.32

15 Σ±Σ0 → H±νH±l∓ → 3l(l + 2l′) + 4τ+ 6 pT 0.02

16 Σ±Σ0 → H±νH±l∓ → 4b+ l + 2τ+ 6 pT 0.42

17 Σ±Σ0 → H±νH±l∓ → 2b+ l + 4τ+ 6 pT 0.08

18 Σ±Σ0 → H±νH±l∓ → l + 5τ + 2j+ 6 pT 0.04

19 Σ±Σ0 → H±νH±l∓ → l + 6τ+ 6 pT 0.004

20 Σ±Σ0 → H±νH±l∓ → l + l′ + 5τ+ 6 pT 0.008

Table 7: Effective cross-sections (in fb) of different Σ±Σ0 decay channels for MΣ1 = 300
GeV.
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• Large effective cross-section in the Σ±Σ0 channel is also expected from the following
decay chain

Σ±Σ0 → l±h0l±H∓ → 4b+ 2l + 2j,

with effective cross-section of 36.12 fb. Both the leptons in this channel come from
the heavy fermion decay vertices and carry the flavor information of the model.

• Σ±Σ0 could also decay through the intermediate states H±νH±l∓. This leads to
20 possible final state particles and collider signatures. These are listed in Table 7.
However, the only one which has sizable effective cross-section is

Σ±Σ0 → l±h0l±H∓ → 4b+ l + 4j+ 6 pT .

However, this channel has 4 light quark jets, which is always prone to problems with
backgrounds.

8.3 Backgrounds

Sl no Channels Effective cross-section

in fb

1 4b +OSD 35.84

2 4b+ l+ 6 pT 96.3

3 4b+ l′+ 6 pT 107.4

4 4b+ τ+ 6 pT 53.7

5 4b+ l + 2j+ 6 pT 26.88

6 4b+ 2l + 2j 36.12

7 4b+ 3l(2l + l′)+ 6 pT 12.04

Table 8: Effective cross-sections in fb for MΣ1 = 300 GeV, for the most important channels
for our model.

In Tables 5, 6 and 7 we provided a comprehensive list of collider signature channels
for the heavy fermions, and their corresponding effective cross-sections. In the previous
subsection we had also discussed some of the most important channels with large effective
cross-sections. In Table 8 we give a subset of those highlighted in sections 8.1 and 8.2.
These are expected to be the most unambiguous channels, with smallest backgrounds and
the largest signal cross-sections. In almost all channels listed in Table 8, the final collider
signature contains 4 b-jets and a hard lepton coming from the primary heavy fermion
decay vertex. In addition, the 4 b-jets come from the h0 decay vertex which is significantly
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displaced with respect to the heavy fermion decay vertex. The main source of standard
model background for the channels with 4 b-jets and a lepton are the tt̄bb̄ modes, which
can give multiple b-jets, leptons and missing energy. However, as mentioned many times
before, the b-jets come from h0 displaced vertex and should not have any standard model
background. Having the hard lepton in the final state further cuts down the background.
Therefore, each of these collider channels are expected to have very little to no backgrounds.
For a detailed signal to background analysis one requires a detailed simulation for the final
state topology, which is outside the scope of this work. Nevertheless we add a few lines
discussing qualitatively the possibility of backgrounds for some of the listed channels in
Table 8.

• 4b +OSD: Here the two opposite sign dileptons come from the Σ+Σ− decays. Since
the Σ± are heavy with MΣ± = 300 GeV, the leptons will be very hard and we can
put a cut of pT ∼> 100 GeV. The displaced h0 vertex should remove all backgrounds.

• 4b + l+ 6 pT : Here tt̄bb̄ does not directly give any background, unless one of the
leptons from the final state is missed. However, the pT cut on the hard lepton and
the displaced h0 vertices should effectively remove any residual background.

• 4b + l′+ 6 pT : Here the pT cut on the lepton cannot be imposed as the lepton here
comes from W± decay. However, the 4 b-jets still come from the displaced h0 vertices
and that should anyway take care of killing all backgrounds to a large extent.

• 4b+ l+2jet+ 6 pT : The main background could again come from standard model tt̄bb̄
channels. This can also be removed by the displaced h0 vertex and a cut of pT ∼> 100
GeV for the lepton.

• 4b+ 2l + 2j: Similar to the first case, but with 2 extra jets.

• 4b + 3l(2l + l′)+ 6 pT : Out of the 3 leptons in this channel, two are hard and one is
relatively soft. In addition we have the h0 displaced vertex. Therefore, this channel
is expected to be absolutely background free.

9 Conclusions

The seesaw mechanism has remained the most elegant scheme to explain the smallness
of the neutrino masses without having to unnaturally fine tune the Yukawa couplings to
very small values. In the so-called Type III seesaw, three self-conjugate (Y = 0) SU(2)
triplet fermions are added to the standard model particle content. These exotic fermions
are color singlets and belong to the adjoint representation of SU(2). These exotic fermions
have Yukawa couplings with the standard model lepton doublet and the Higgs doublet.
They also have a Majorana mass term. Once these heavy leptons are integrated out from
the theory, we are left with a Majorana mass term for the neutrino given by the famous
seesaw formula, where the smallness of the neutrino mass is explained by the largeness of
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the heavy fermion mass, without having to fine tune the Yukawa couplings to very small
values. To generate neutrino masses mν ∼ 0.1 eV, one requires that the heavy fermion
mass should be ∼ 1014 GeV. Being in the adjoint representation of SU(2), one of the most
interesting feature of these exotic fermions is that they have gauge couplings, and therefore
can be produced at collider experiments. The only constraint for the production of these
particles at LHC is that their mass should be in a few 100 GeV range. However, in order to
produce neutrino masses mν ∼ 0.1 eV, one would then have to tune the Yukawa couplings
to be ∼ 10−6, which ruins completely the very spirit and motivation for seesaw.

In order to circumvent this problem and preserve the motivation of the seesaw mech-
anism, we propose an extended Type III seesaw model with two SU(2) Higgs doublets
along with the three self-conjugate SU(2) fermion triplets. We impose an additional Z2

symmetry such that one of the Higgs doublets, called Φ1, has positive charge while the
other, called Φ2, has negative charge under this symmetry. In addition, we demand that
all standard model particles have positive charge with respect to Z2 while the three new
exotic fermion triplets are negatively charged. Therefore, Φ1 behaves like the standard
model Higgs, while Φ2 is coupled only to the exotic fermion triplets. As a result, the neu-
trino mass term coming from the seesaw formula depends on the VEV of Φ2 (v′), while
all other fermion masses are dependent on the VEV of Φ1 (v). We can therefore choose a
value for v′ such that mν ∼ 0.1 eV for exotic fermion masses ∼ 100 GeV, without having
to fine tune the Yukawa couplings to very small values.

Another typical feature about neutrinos concern their peculiar mixing pattern which
should be explained by the underlying theory. The current neutrino oscillation data sug-
gests an inherent µ-τ symmetry in the low energy neutrino mass matrix. It is therefore
expected that this µ-τ symmetry should also exist at the high scale, either on its own or
as a sub-group of a bigger flavor group. We imposed an exact µ-τ symmetry on both the
Yukawa coupling of the triplet fermions YΣ as well as on their Majorana mass matrix M .
Therefore the low energy neutrino matrix m̃ obtained after the seesaw had an in-built µ-τ
symmetry. As a result our model predicts θ23 = π/4 and θ13 = 0. The mixing angle θ12 as
well as the mass squared differences ∆m2

21 and ∆m2
31 are given in terms of the entries of

YΣ and M . We showed how the oscillation parameters depend on the model parameters
in YΣ and M .

A very important and new aspect which emerged from our study concerns the mixing
in the heavy fermion sector. It had been assumed in all past studies that the mixing
matrices UΣ, U

L
h and UR

h which diagonalize the heavy fermion mass matrices M̃Σ, M
†
HMH

and MHM
†
H respectively, are almost unit matrices. However, we showed that for the case

where M was µ-τ symmetric, these matrices were highly non-trivial, and in particular had
the last column as (0, 1/

√
2, 1/

√
2). We showed that this has observable consequences for

the heavy fermion decays at the collider. We showed that flavor structure of our model
was reflected in the pattern of heavy fermion decays into light charged leptons. These
showed a µ-τ symmetry. The state Σ

±/0
3 decayed equally into muons and taus and almost

never decayed into electrons. We have checked that this feature exists not only for our
model, but for any model with an underlying flavor symmetry group that imposes µ-τ
symmetry on the heavy Majorana mass matrix M . In fact, we have made explicit checks
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on the seesaw model proposed by Altarelli and Feruglio [36], where A4 was imposed as the
flavor symmetry group. Though the proposed A4 model by Altarelli and Feruglio was a
Type I seesaw model, it can be easily adapted to the Type III seesaw case. We found that
the mixing matrices UΣ, U

L
h and UR

h even for that case had (0, 1/
√
2, 1/

√
2) as their last

column.
Having established the flavor structure of our model, we next turned to the production

and detection of heavy fermions at LHC. We discussed quantitatively and in details the
cross-section for the heavy fermion production at LHC and their decay rates. While the
production cross-sections for our model turned out to be same as that in all earlier calcula-
tions done in the context of the one Higgs doublet model, the decay pattern for the heavy
fermions in our case was found to be extremely different and unique. The µ-τ permutation
symmetry showed up in the flavor pattern of the heavy fermion decays due to the typical
last column (0, 1/

√
2, 1/

√
2) of the matrices UΣ, U

L
h and UR

h . We also showed that in our
case the decay rate of the heavy fermions was about 1011 times larger than that found
for the one Higgs doublet model. In fact, the heavy fermion decay rate for our model
is 5.8 × 10−2 GeV and 4 × 10−2 GeV for 300 GeV charged and neutral heavy fermions,
respectively. Therefore, while for the one Higgs doublet case one could attempt to look for
displaced heavy fermion decay vertices, in our case they will decay almost instantaneously.
We found that this tremendous decay rate came from the very fast decays of Σ±/0 into
light leptons and Higgs h0, A0 or H±. The very large decay rate was shown to stem from
the very large Yukawa couplings in our model. As the Yukawa couplings are a factor of
105 − 106 larger in our model, the decay rates which depend on the square of the Yukawa
couplings are a factor 1010-1012 higher. Decays into H0 and gauge bosons in our model
was shown to be same as in the one Higgs doublet case, and the reason explained.

Another distinctive feature of our model appeared in the pattern of the Higgs decays.
We showed that the smallness of the neutrino masses constrained the neutral Higgs mixing
angle α to be very small. This resulted in a very small decay rate for the h0 Higgs. For a
mass of Mh0 = 40 GeV, the h0 lifetime in the Higgs rest frame comes out to be about 5
cm. This will give a displaced decay vertex in the LHC detectors, ATLAS and CMS. The
lifetime for H± turned out to be small.

Finally, we discussed in detail the expected collider signatures for our two Higgs doublet
Type III seesaw model with µ-τ symmetry. We tabulated a comprehensive and exhaustive
list of all possible collider signature channels for the heavy fermions at LHC. We gave the
effective cross-sections for each of these channels. The effective cross-section for some of
these channels were seen to be very high. We made a short-list of channels with very high
effective cross-section and low background at LHC. This was presented in Table 8. In all
the listed channels we have 4 b-jets coming from the decay of two h0 which have displaced
vertices. In addition, all (except one) of them have a hard lepton in the final state coming
from the Σ±/0 decay. This lepton in addition to being hard, also carries information on the
µ-τ symmetry of our model. These collider signature channels are hence very distinctive
of our model and suffer from almost no standard model background.

In conclusion, we proposed a Type III seesaw model with large Yukawa couplings and
triplet fermion masses light enough to be produced at the LHC. This could be achieved
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through a unique two Higgs doublet model. The very large Yukawa couplings resulted in
very fast decays of the heavy fermions, with a decay rate about 1011 times faster than
obtained in the earlier Type III seesaw models. We imposed a µ-τ symmetry on our model
in order to comply with the low energy neutrino oscillation data. This flavor pattern is
reflected also in the mixing matrices of the heavy fermions, which are no longer unity,
and which have observable consequences for the heavy fermion decays at the LHC. The
neutrino mass constrains also the mixing angle of the neutral Higgs to be very small. This
nearly forbids the decay of the heavy fermions into the heavier CP even neutral Higgs
H0. Thus they decay almost always into h0 (and A0) and H±. More importantly, the
small neutral Higgs mixing angle increases the lifetime of the h0. These are expected to
live for more than 10 cm at LHC before decaying predominantly into bb̄, producing b-jets.
This would be seen as a displaced h0 decay vertex in the detector. We identified collider
signature channels at LHC which have very large effective cross-section and almost no
standard model background. These could be used to provide smoking gun evidence for our
model.
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Appendix

A The Scalar Potential and Higgs Spectrum

Our model has two SU(2) complex Higgs doublets Φ1 and Φ2, with hypercharge Y = 1.
The scalar potential can then be written as

V = λ1

(

Φ†
1Φ1 − v2

)2
+ λ2

(

Φ†
2Φ2 − v′2

)2
+ λ3

(

(Φ†
1Φ1 − v2) + (Φ†

2Φ2 − v′2)
)2

+λ4

(

(Φ†
1Φ1)(Φ

†
2Φ2)− (Φ†

1Φ2)(Φ
†
2Φ1)

)

+ λ5

(

Re(Φ†
1Φ2)− vv′ cos ξ

)2

+λ6

(

Im(Φ†
1Φ2)− vv′ sin ξ

)2
, (A1)

where

〈Φ1〉 =
(

0
v

)

, 〈Φ2〉 =
(

0
v′eiξ

)

, and tanβ =
v′

v
. (A2)

Recall that under the imposed Z2 symmetry, Φ1 carries charge +1, while Φ2 has −1 charge.
Therefore, the λ5 term is zero when the symmetry is exact. We will discuss shortly the
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phenomenological consequences of this and argue in favor of a mild breaking of this Z2

symmetry. With the scalar potential Eq. (A1) it is straightforward to obtain the Higgs mass
matrix and obtain the corresponding mass spectrum. The physical degrees of freedoms
contain the charged Higgs H± and the neutral Higgs H0, h0, and A0. While H0 and h0 are
CP even, A0 is CP odd. If we work in a simplified scenario where ξ is taken as zero, then
it is is quite straightforward to derive the mass of the charged Higgs H± and the CP-odd
Higgs A0. The masses are given as

M2
H± = λ4(v

2 + v′
2
), and M2

A0 = λ6(v
2 + v′

2
), (A3)

respectively. The mass matrix for the neutral CP-even Higgs is

M ′ =
(

4v2(λ1 + λ3) + v′2λ5 (4λ3 + λ5)vv
′

(4λ3 + λ5)vv
′ 4v′2(λ2 + λ3) + v2λ5

)

. (A4)

The mixing angle, obtained from diagonalizing the above matrix is given by

tan 2α =
2M12

M11 −M22

, (A5)

and the corresponding masses are

M2
H0,h0 =

1

2
{M11 +M22 ±

√

(M11 −M22)2 + 4M2
12. (A6)

The physical Higgs are given in terms of components of Φ1 and Φ2 as follows. The neutral
Higgs are given as

H0 =
√
2
(

(ReΦ0
1 − v) cosα + (ReΦ0

2 − v′) sinα
)

, (A7)

h0 =
√
2
(

−(ReΦ0
1 − v) sinα + (ReΦ0

2 − v′) cosα
)

, (A8)

A0 =
√
2(−ImΦ0

1 sin β + ImΦ0
2 cos β), (A9)

while the charged Higgs are

H± = −Φ±
1 sin β + Φ±

2 cos β. (A10)

The Goldstones turn out to be

G± = Φ±
1 cos β + Φ±

2 sin β (A11)

G0 =
√
2(ImΦ0

1 cos β + ImΦ0
2 sin β). (A12)

Recall that the requirement from small neutrino masses mν ∼ 0.1 eV constrains v′ ∼ 10−4

GeV. Therefore, for our model we get from Eqs. (A2) and (A5)

tanβ ∼ 10−6, and tan 2α ∼ tanβ ∼ 10−6. (A13)
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One can estimate from Eq. (A6), that in the limit v′ ≪ v,

M2
H0 ≃ (λ1 + λ3)v

2, and M2
h0 ≃ λ5v

2. (A14)

We should point out here that in the limit of exact Z2 symmetry, λ5 = 0 exactly, and in
that case M2

h0 ∝ λ3
2

(λ1+λ3)2
v′2. Since v′ ∼ 10−4 GeV, this would give a very tiny mass for

the neutral Higgs h0. To prevent that, we introduce a mild explicit breaking of the Z2

symmetry, by taking λ5 6= 0 in the scalar potential. This not only alleviates the problem of
an extremely light Higgs boson, it also circumvents spontaneous breaking of Z2, when the
Higgs develop vacuum expectation value. This saves the model from complications such
as creation of domain walls, due to the spontaneous breaking of a discrete symmetry. The
extent of breaking of Z2 is determined by the strength of λ5. Since we wish to impose only
a mild breaking, we take λ5 ∼ 0.05. This gives us a light neutral Higgs mass of M0

h ≃ 40
GeV from Eq. (A14). Since all other λi ∼ 1, the mass of the other CP even neutral Higgs,
the CP odd neutral Higgs and the charged Higgs are all seen to be ∼ v GeV from Eqs.
(A3) and (A14). We will work with M0

H = 150 GeV, M0
A = 140 GeV and M±

H = 170 GeV.
Also required are the couplings of our Higgs with the gauge bosons. This is needed in

order to understand the Higgs decay and the subsequent collider signatures of our model.
These are standard expressions and are well documented (see for instance [23]). One can
check that certain couplings depend on sinα and sin(β − α). From Eq. (A13) we can see
that these couplings are almost zero. Others depend on cosα and cos(β−α) and therefore
large. We refer the reader to [23] for a detailed discussion on the general form for the
coulings.

B Appendix B: The Interaction Lagrangian

B.1 Lepton-Higgs Coupling

The lepton Yukawa part of the Lagrangian for our two Higgs doublet model was given in
Eq. (9) as,

− LY =
[

Ylij l
′
Ri
Φ†

1L
′
j + YΣij

Φ̃†
2Σ

′
Ri
L′
j + h.c.

]

+
1

2
Mij Tr

[

Σ′
Ri
Σ̃C

Rj
+ h.c.

]

. (B1)

From this one can extract the individual Yukawa coupling vertex factors between two
fermions and a Higgs. We have three generations of heavy and light neutral leptons and
three generations of heavy and light charged leptons. In addition, we have three neutral
and a pair of charged Higgs. The Yukawa interaction between any pair of fermions and
a corresponding physical Higgs field can be extracted from Eq. (B1). We list below all
Yukawa possible interactions in the mass basis of the particles. The vertex factors are
denoted as C

X,L/R
FI , where F and I are the initial and final state fermions respectively, X is

the physical Higgs involved and L/R are for either the vertex with PL or PR respectively,
where PL and PR are the left and right chiral projection operators respectively. Note that
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we have suppressed the generation indices for clarity of the expressions. But the generation
indices are implicitly there and the vertex factors are all 3× 3 matrices.

− LH0

l,Σ− = H0{l(CH0,L
ll PL + CH0,R

ll PR)l + {l(CH0,L
lΣ− PL + CH0,R

lΣ− PR)Σ
− + h.c} (B2)

+Σ−(CH0,L
Σ−Σ−PL + CH0,R

Σ−Σ−PR)Σ
−}

− Lh0

l,Σ− = h0{l(Ch0,L
ll PL + Ch0,R

ll PR)l + {l(Ch0,L
lΣ− PL + Ch0,R

lΣ− PR)Σ
− + h.c} (B3)

+Σ−(Ch0,L
Σ−Σ−PL + Ch0,R

Σ−Σ−PR)Σ
−}

− LA0

l,Σ− = A0{l(CA0,L
ll PL + CA0,R

ll PR)l + {l(CA0,L
lΣ− PL + CA0,R

lΣ− PR)Σ
− + h.c} (B4)

+Σ−(CA0,L
Σ−Σ−PL + CA0,R

Σ−Σ−PR)Σ
−}

− LG0

l,Σ− = G0{l(CG0,L
ll PL + CG0,R

ll PR)l + {l(CG0,L
lΣ− PL + CG0,R

lΣ− PR)Σ
− + h.c} (B5)

+Σ−(CG0,L
Σ−Σ−PL + CG0,R

Σ−Σ−PR)Σ
−}

− LH0

ν,Σ0 = H0{ν ′(CH0,L
νν PL + CH0,R

νν PR)ν + {ν ′(CH0,L
νΣ0 PL + CH0,R

νΣ0 PR)Σ
0 + h.c} (B6)

+Σ0(CH0,L
Σ0Σ0PL + CH0,R

Σ0Σ0PR)Σ
0}

− Lh0

ν,Σ0 = h0{ν ′(Ch0,L
νν PL + Ch0,R

νν PR)ν + {ν(Ch0,L
νΣ0 PL + Ch0,R

νΣ0 PR)Σ
0 + h.c} (B7)

+Σ0(Ch0,L
Σ0Σ0PL + Ch0,R

Σ0Σ0PR)Σ
0}

− LA0

ν,Σ0 = A0{ν(CA0,L
νν PL + CA0,R

νν PR)ν + {ν(CA0,L
νΣ0 PL + CA0,R

νΣ0 PR)Σ
0 + h.c} (B8)

+Σ0(CA0,L
Σ0Σ0PL + CA0,R

Σ0Σ0PR)Σ
0}

− LG0

ν,Σ0 = G0{ν(CG0,L
νν PL + CA0,R

νν PR)ν + {ν(CG0,L
νΣ0 PL + CG0,R

νΣ0 PR)Σ
0 + h.c} (B9)

+Σ0(CG0,L
Σ0Σ0PL + CG0,R

Σ0Σ0PR)Σ
0}
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CH0,L
ll

1√
2
(T †

11YlS11 cosα + T †
21YΣS11 sinα) CH0,R

ll
1√
2
(S†

11Y
†
l T11 cosα + S†

11Y
†
ΣT21 sinα)

CH0,L
lΣ−

1√
2
(T †

11YlS12 cosα + T †
21YΣS12 sinα) CH0,R

lΣ−
1√
2
(S†

11Y
†
l T12 cosα + S†

11Y
†
ΣT22 sinα)

CH0,L
Σ−Σ−

1√
2
(T †

12YlS12 cosα + T †
22YΣS12 sinα) CH0,R

Σ−Σ−
1√
2
(S†

12Y
†
l T12 cosα + S†

12Y
†
ΣT22 sinα)

Ch0,L
ll

−1√
2
(T †

11YlS11 sinα− T †
21YΣS11 cosα) Ch0,R

ll
−1√
2
(S†

11Y
†
l T11 sinα− S†

11Y
†
ΣT21 cosα)

Ch0,L
lΣ−

−1√
2
(T †

11YlS12 sinα− T †
21YΣS12 cosα) Ch0,R

lΣ−
−1√
2
(S†

11Y
†
l T12 sinα− S†

11Y
†
ΣT22 cosα)

Ch0,L
Σ−Σ−

−1√
2
(T †

12YlS12 sinα− T †
22YΣS12 cosα) Ch0,R

Σ−Σ−
−1√
2
(S†

12Y
†
l T12 sinα− S†

12Y
†
ΣT22 cosα)

CA0,L
ll

i√
2
(T †

11YlS11 sin β + T †
21YΣS11 cos β) CA0,R

ll
−i√
2
(S†

11Y
†
l T11 sin β + S†

11Y
†
ΣT21 cos β)

CA0,L
lΣ−

i√
2
(T †

11YlS12 sin β + T †
21YΣS12 cos β) CA0,R

lΣ−
−i√
2
((S†

11Y
†
l T12 sin β + S†

11Y
†
ΣT22 cos β)

CA0,L
Σ−Σ−

i√
2
(T †

12YlS12 sin β + T †
22YΣS12 cos β) CA0,R

Σ−Σ−
−i√
2
(S†

12Y
†
l T12 sin β + S†

12Y
†
ΣT22 cos β)

CG0,L
ll

−i√
2
(T †

11YlS11 cos β − T †
21YΣS11 sin β) CG0,R

ll
i√
2
(S†

11Y
†
l T11 cos β − S†

11Y
†
ΣT21 sin β)

CG0,L
lΣ−

−i√
2
(T †

11YlS12 cos β − T †
21YΣS12 sin β) CG0,R

lΣ−
i√
2
(S†

11Y
†
l T12 cos β − S†

11Y
†
ΣT22 sin β)

CG0,L
Σ−Σ−

−i√
2
(T †

12YlS12 cos β − T †
22YΣS12 sin β) CG0,R

Σ−Σ−
i√
2
(S†

12Y
†
l T12 cos β − S†

12Y
†
ΣT22 sin β)

Table 9: The vertex factors for PL (PR) and their corresponding exact expression in terms
of the Yukawa couplings and mixing matrices are given in the first (third) and second
(forth) column respectively. The vertex factors listed here are for Yukawa interactions of
the charged leptons with neutral Higgs.

−LH−

l,Σ0,ν,Σ− = H−{l(CH−,L
lν PL + CH−,R

lν PR)ν + l(CH−,L
lΣ0 PL + CH−,R

lΣ0 PR)Σ
0 (B10)

+Σ−(CH−,L
Σ−ν PL + CH−,R

Σ−ν PR)ν + Σ−(CH−,L
Σ−Σ0PL + CH−,R

Σ−Σ0PR)Σ
0}

+h.c

−LG−

l,Σ0,ν,Σ− = H−{l(CG−,L
lν PL + CG−,R

lν PR)ν + l(CG−,L
lΣ0 PL + CG−,R

lΣ0 PR)Σ
0 (B11)

+Σ−(CG−,L
Σ−ν PL + CG−,R

Σ−ν PR)ν + Σ−(CG−,L
Σ−Σ0PL + CG−,R

Σ−Σ0PR)Σ
0}

+h.c

The exact vertex factors C
X,L/R
FI for our two Higgs doublet Type III seesaw model are

listed in Tables 9, 10, 11.

B.2 Lepton-Gauge coupling

The lepton-gauge couplings come from the kinetic energy terms for the Σ fields in the
Lagrangian. The kinetic energy terms are given as

− Lk = Σ′
Riγ

µDµΣR
′ + LSM

k , (B12)
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CH0,L
νν

sinα
2
(UT

21YΣU11) CH0,R
νν

sinα
2
(U †

11Y
†
ΣU

∗
21)

CH0,L
νΣ0

sinα
2
(UT

21YΣU12) CH0,R
νΣ0

sinα
2
(U †

11Y
†
ΣU

∗
22)

CH0,L
Σ0Σ0

sinα
2
(UT

22YΣU12) CH0,R
νΣ0

sinα
2
(U †

12Y
†
ΣU

∗
22)

Ch0,L
νν

cosα
2

(UT
21YΣU11) Ch0,R

νν
cosα
2

(U †
11Y

†
ΣU

∗
21)

Ch0,L
νΣ0

cosα
2

(UT
21YΣU12) Ch0,L

νΣ0
cosα
2

(U †
11Y

†
ΣU

∗
22)

Ch0,L
Σ0Σ0

cosα
2

(UT
22YΣU12) Ch0,R

Σ0Σ0
cosα
2

(U †
12Y

†
ΣU

∗
22)

CA0,L
νν

i cos β
2

(UT
21YΣU11) CA0,R

νν − i cos β
2

(U †
11Y

†
ΣU

∗
21)

CA0,L
νΣ0

i cos β
2

(UT
21YΣU12) CA0,R

νΣ0 − i cos β
2

(U †
11Y

†
ΣU

∗
22)

CA0,L
Σ0Σ0

i cos β
2

(UT
22YΣU12) CA0,R

Σ0Σ0 − i cos β
2

(U †
12Y

†
ΣU

∗
22)

CG0,L
νν

i sinβ
2

(UT
21YΣU11) CG0,R

νν − i sinβ
2

(U †
11Y

†
ΣU

∗
21)

CG0,L
νΣ0

i sinβ
2

(UT
21YΣU12) CG0,R

νΣ0 − i sinβ
2

(U †
11Y

†
ΣU

∗
22)

CG0,L
Σ0Σ0

i sinβ
2

(UT
22YΣU12) CG0,R

Σ0Σ0 − i sinβ
2

(U †
12Y

†
ΣU

∗
22)

Table 10: The vertex factors for PL (PR) and their corresponding exact expression in terms
of the Yukawa couplings and mixing matrices are given in the first (third) and second
(forth) column respectively. The vertex factors listed here are for Yukawa interactions of
the neutral leptons with neutral Higgs.

CH−,L
lν −T †

11YlU11 sin β CH−,R
lν ( 1√

2
S†
11Y

†
ΣU21

∗ − S†
21YΣ

∗U11
∗) cos β

CH−,L
lΣ0 −T †

11YlU12 sin β CH−,R
lΣ0 ( 1√

2
S†
11Y

†
ΣU22

∗ − S†
21YΣ

∗U12
∗) cos β

CH−,L
νΣ− ( 1√

2
UT
21YΣS12 − UT

11YΣ
TS22) cos β CH−,R

Σ−ν −U †
11Y

†
l T12 sin β

CH−,L
Σ−Σ0 −T †

12YlU12 sin β CH−,R
Σ−Σ0 ( 1√

2
S†
12Y

†
ΣU22

∗ − S†
22YΣ

∗U12
∗) cos β

CG−,L
lν T †

11YlU11 cos β CG−,R
lν ( 1√

2
S†
11Y

†
ΣU21

∗ − S†
21YΣ

∗U11
∗) sin β

CG−,L
lΣ0 T †

11YlU12 cos β CG−,R
lΣ0 ( 1√

2
S†
11Y

†
ΣU22

∗ − S†
21YΣ

∗U12
∗) sin β

CG−,L
νΣ− ( 1√

2
UT
21YΣS12 − UT

11YΣ
TS22) sin β CG−,R

Σ−ν U †
11Y

†
l T12 cos β

CG−,L
Σ−Σ0 T †

12YlU12 cos β CG−,R
Σ−Σ0 ( 1√

2
S†
12Y

†
ΣU22

∗ − S†
22YΣ

∗U12
∗) sin β

Table 11: The vertex factors for PL (PR) and their corresponding exact expression in terms
of the Yukawa couplings and mixing matrices are given in the first (third) and second
(forth) column respectively. The vertex factors listed here are for Yukawa interactions of
the charged as well as neutral leptons with charged Higgs.
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where the first term is for heavy triplet fermion field and the second term contains the
corresponding contributions from all standard model fields. The Σ′

R field is defined in Eq.
(5). The covariant derivative is defined as

Dµ = ∂µ −
√
2g
(

W 3
µ W+

µ

W−
µ −W 3

µ

)

. (B13)

Inserting the covariant derivative in Eq. (B12) one obtains the following interaction terms
between leptons and gauge fields

Lint = Ll,Σ−

NC + Lν,Σ0

NC + LCC , (B14)

where the first two terms contain the neutral current interactions between l± and Σ± (first
term) and between ν and Σ0 (second term) respectively. The last term gives the charged
current interaction between the leptons. The neutral current interaction Lagrangian in-
volving l and Σ− is given by

Ll,Σ−

NC = lγµ{cZ,Rll PR + cZ,Lll PL}l Zµ + {lγµ{cZ,RlΣ−PR + cZ,LlΣ−PL}Σ− Zµ + h.c}
+Σ−γµ{cZ,RΣ−Σ−PR + cZ,LΣ−Σ−PL}Σ− Zµ, (B15)

where

cZ,Rll =
g

cw
s2w(T

†
11T11)− cwg(T

†
21T21)},

cZ,RlΣ− =
g

cw
s2w(T

†
11T12)− cwg(T

†
21T22),

cZ,RΣ−Σ− =
g

cw
s2w(T

†
12T12)− cwg(T

†
22T22), (B16)

cZ,Lll =
g

cw
(−1

2
+ s2w)(S

†
11S11)− cwg(S

†
21S21),

cZ,LlΣ− =
g

cw
(−1

2
+ s2w)(S

†
11S12)− cwg(S

†
21S22),

cZ,LΣ−Σ− =
g

cw
(−1

2
+ s2w)(S

†
12S12)− cwg(S

†
22S22). (B17)

The neutral current interaction Lagrangian involving the neutral leptons is given by

Lν,Σ0

NC = (gcw + g′sw)
1

2
νγµ{(U †

11U11)PL}νZµ

+(gcw + g′sw)
1

2
Σ0γµ{(U †

12U12)PL}Σ0Zµ

+{(gcw + g′sw)
1

2
νγµ{(U †

11U12)PL}Σ0Zµ + h.c}. (B18)
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The charged current interaction Lagrangian is given by

LCC = gνγµ{{(U †
21S21) +

1√
2
(U †

11S11)}PL + (UT
21T21)PR}lW+

µ (B19)

+gνγµ{{(U †
21S22) +

1√
2
(U †

11S12)}PL + (UT
21T22)PR}Σ−W+

µ

+gΣ0γµ{{(U †
22S21) +

1√
2
(U †

12S11)}PL + (UT
22T21)PR}lW+

µ

+gΣ0γµ{{(U †
22S22) +

1√
2
(U †

12S12)}PL + (UT
22T22)PR}Σ−W+

µ + h.c

B.3 Quark-Higgs coupling

Finally, we discuss the the Yukawa Lagrangian for quark sector, which is given by

−LQ = YUij
u′
Ri
Φ̃†

1Q
′
j + YDij

d′Ri
Φ†

1Q
′
j + h.c, (B20)

where Q′ is the left-handed quark doublet and u′
R and d′R are the right-handed “up” and

“down” types of quark fields. Again, primes denote the flavor bases. After the electroweak
spontaneous symmetry breaking the up and down quark mass matrices are obtained as

MU = YUv (B21)

MD = YDv

Note that only Φ1 couples to both the up and down quark fields due to the imposed Z2

symmetry, while the Yukawa couplings of Φ2 to quarks is forbidden10. However, due to the
mixing between Higgs fields as discussed in Appendix A, all the physical Higgs particles
would couple to the quark fields. Here we list all the interaction vertices between quarks
and Higgs fields, which are specific to our model. The fields represents the fields in the
mass basis.

− LH0

u,d =
1√
2

cosα

v
uMuuH

0 +
1√
2

cosα

v
dMddH

0 (B22)

−Lh0

u,d = − 1√
2

sinα

v
uMuuh

0 − 1√
2

sinα

v
dMddh

0 (B23)

−LA0

u,d = i
1√
2

sinβ

v
uγ5MuuA

0 − i
1√
2

sinβ

v
dγ5MddA

0 (B24)

10This is a major difference between our model and other two Higgs doublet models where the Higgs
which couples to the neutrinos also couples to the up type quarks, while the one which couples to the
charged leptons couples to the down type quarks.
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−LG0

u,d = −i
1√
2

cosβ

v
uγ5MuuG

0 + i
1√
2

cosβ

v
dγ5MddG

0 (B25)

−LG±

u,d =
cosβ

v
u(VCKMMdPR −MuVCKMPL)d+ h.c (B26)

− LH±

u,d = −sinβ

v
u(VCKMMdPR −MuVCKMPL)d+ h.c (B27)
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