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Stability analysis of a liquid layer subjected to an oblique temperature gradient (OTG)
is carried out. The general linear stability analysis reveals a stabilization effect of the
imposed horizontal component (horizontal temperature gradient, HTG) of the OTG on
the long-wave instabilities introduced by the vertical component (vertical temperature
gradient, VTG) of the OTG. This stabilization is due to the VTG induced by the
prescribed HTG, which counteracts the imposed VTG. The induced VTG arises due to the
presence of advection of the energy. As a result of the stabilization, the long-wave mode
forms an island of instability in the η–Mac plane, where η and Mac are the ratio of the
strength of the imposed HTG to imposed VTG components of the OTG, and the critical
Marangoni number, respectively. However, for sufficiently high η, a new class of modes
emerge with the critical Marangoni number scaling as Mac ∼ 1/η. These modes originate
as a result of the interaction between the thermocapillary flow caused by the imposed
HTG on the one hand, and the VTG on the other, and remain the dominant modes of
instability at higher η. The long-wave analysis is carried out and, in its framework, the
nonlinear evolution equation is derived, and, based on it, linear and weakly nonlinear
analyses are performed. An increase in η changes the type of bifurcation from subcritical
to supercritical. The numerical solution of the evolution equation around the critical
parameter values validates the predictions of the weakly nonlinear analysis. The present
study illustrates a possible use of imposing the HTG to prevent dry-spot formation and
rupture of the film caused by the imposed VTG.

Key words: Marangoni convection, thin films

1. Introduction

Liquid layers subjected to an oblique temperature gradient (OTG) are encountered
in microfluidics applications, additive manufacturing (Kowal, Davis & Voorhees 2018),
material processing and crystal growth (Lappa 2010), and industrial processes such as
coating and drying (Kistler & Schweizer 1997). Maintaining a purely vertical or horizontal
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temperature gradient in experiments studying thermocapillarity may be difficult, thus,
inadvertently, a liquid layer is subjected to an OTG (Nepomnyashchy & Simanovskii
2009).

The Marangoni instability, named after Marangoni (Marangoni 1871), arising from the
temperature dependence of the surface tension and an ensuing emergence of shear stress
in a liquid layer with a flat interface subjected to a purely vertical temperature gradient
(VTG), was first studied theoretically by Pearson (1958). He showed the emergence of
the Marangoni or thermocapillary instability as a consequence of the surface-tension
dependence on the temperature at the layer interface. The analysis of Pearson (1958)
showed that the cellular patterns observed by Bénard (1901) in his pioneering experimental
studies arise as a result of the Marangoni instability. Scriven & Sternling (1964), Smith
(1966), Davis & Homsy (1980) and Perez-Garcia & Carneiro (1991) extended the study
of Pearson (1958) to liquid layers with a deformable surface. Here, a deformable surface
refers to the liquid–gas interface with a finite surface tension whose presence allows its
deformation in response, among other factors, to the tangential stresses arising due to
surface-tension gradients referred to below as Marangoni stresses. Their analysis revealed
a strong effect of a decrease in surface tension on the instability, which is due to a stronger
temperature variation along the interface.

Another class of thermocapillary instabilities emerge due to the presence of an imposed
purely horizontal temperature gradient (HTG) that affects the dynamics of a liquid layer
(Davis 1987). This setting was first theoretically investigated by Smith & Davis (1983a,b),
who showed the emergence of oblique hydrothermal waves and spanwise rolls as a result
of the Marangoni instability in this configuration in which the base flow is not quiescent as
in the layer subjected to a VTG but flows in the direction opposite to that of the imposed
HTG driven by the Marangoni stresses. Their study considered both linear and return
thermocapillary flows, which refer to the flows with linear and quadratic velocity profiles
with respect to the normal coordinate, respectively. The instabilities described by Smith
& Davis (1983a,b) were experimentally observed by Schwabe et al. (1992), Benz et al.

(1998), Riley & Neitzel (1998), Schatz & Neitzel (2001), Ospennikov & Schwabe (2004)
and Schwabe (2007).

Davis (1987) extended the analysis of Smith & Davis (1983a,b) for a system subjected to
a purely imposed HTG to the case of an imposed OTG. In the case of a fixed temperature
gradient at the substrate, Davis (1987) showed that there exists a relationship between
the critical Marangoni numbers defined using the imposed HTG and VTG, which did
not predict the stabilization caused by the imposed HTG. However, the later studies
of Nepomnyashchy, Simanovskii & Braverman (2001) and Shklyaev & Nepomnyashchy
(2004) and the present work show that a prescribed HTG has a strong stabilizing effect on
the modes found by Pearson (1958) which are caused by the prescribed VTG. Furthermore,
Davis (1987) showed a negligible effect on the surface-wave instabilities at low Prandtl
numbers Pr. However, for moderate- and high-Prandtl-number regimes, important in
practical applications involving liquids such as water with Pr ∼ 7, Davis (1987) suggested
a continuing effort to fill in certain gaps. The present work fills the gap of practical
importance and studies the interaction between the prescribed HTG and VTG.

Inspired by the experimental limitations on imposing and maintaining a purely vertical
temperature gradient and practical applications, Nepomnyashchy et al. (2001), Shklyaev &
Nepomnyashchy (2004), Nepomnyashchy & Simanovskii (2007, 2009, 2014) and Kowal
et al. (2018) investigated the stability of liquid layers subjected to an OTG. In addition to
the VTG-related stabilization of instabilities, Nepomnyashchy et al. (2001) and Shklyaev
& Nepomnyashchy (2004) also showed theoretically the emergence of hydrothermal
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waves and spanwise rolls, which could become dominant at sufficiently high HTG. The
experiments of Schwabe (2007) and Mizev & Schwabe (2009) confirmed these theoretical
results.

It must be noted that Nepomnyashchy et al. (2001) and Shklyaev & Nepomnyashchy
(2004) studied the return flow in the layer with a non-deformable free surface. However,
linear flow is important in thin films and can be experimentally realized (Schwabe
2007). Furthermore, any physically realistic liquid–gas interface possesses a finite surface
tension and thus the capillary number is essentially non-zero. Hence, the present study
deals with linear flow generated in a liquid layer by applying an OTG to the layer with
a free deformable surface. Nepomnyashchy & Simanovskii (2007, 2009) studied the
linear stability and carried out a nonlinear investigation in the framework of a thin-film
approximation. However, as shown in § 4, the thin-film approximation has only partial
success in capturing the impact of the imposed HTG on the instabilities related to the
imposed VTG as far as the linear stability theory is concerned.

The present work investigates thermocapillary instability in a liquid layer subjected to
an OTG carrying out both the general linear stability analysis (GLSA) and the nonlinear
analysis in the thin-film approximation. Furthermore, weakly nonlinear stability analysis is
carried out based on the thin-film approximation to understand the impact of the imposed
HTG on the type of bifurcation exhibited by the film. To understand the impact of the
imposed HTG on film rupture, fully nonlinear simulations around critical parameters will
also be studied in the present work.

The rest of the paper is arranged as follows. The problem statement, the original
governing equations and boundary conditions, the base-state fields and the governing
equations for the perturbations are all introduced in § 2. The numerical technique
employed in resolving the GLSA is validated in § 3 and its results are presented in § 4. The
linear and nonlinear stability analyses in the framework of the long-wave approximation
are carried out in § 5. The major conclusions of the present study are summarized in
§ 6. Finally, the pseudospectral numerical approach used in the solution of the linear
eigenvalue problem for the GLSA is outlined in appendix A.

2. Problem formulation

Consider a layer of an incompressible Newtonian liquid with temperature-independent
properties such as viscosity µ, density ρ, kinematic viscosity ν and thermal diffusivity κ

deposited upon a horizontal planar substrate in a gravitational field g. The layer is assumed
to be of mean thickness d and infinite lateral extent. The liquid layer is bounded by an
ambient inert gas phase at the liquid–gas interface, which is assumed to be deformable.
The coordinate system used here is Cartesian, with the x

∗- and z∗-axes located in the
substrate plane, whereas the y

∗-axis is normal to the substrate and directed into the liquid
layer, with the reference point y

∗ = 0 located on the substrate plane. In what follows,
the asterisk denotes dimensional variables, whereas their dimensionless counterparts are
denoted without an asterisk.

The temperature of the planar substrate is imposed to vary in the x
∗-direction as T∗

0 −
η∗

x
∗ whereas that of the ambient gas phase is T∗

∞ − η∗
x

∗, so that ∆T∗ ≡ T∗
0 − T∗

∞ > 0,
where T∗

0 and T∗
∞ are constant temperatures and η∗ is the imposed HTG. Thus, the entire

system (the substrate, the liquid layer and the gas phase) is subjected to a constant HTG in
the x

∗-direction. The present setting suggests that the temperature field in the liquid layer
depends on both x

∗ and y
∗, which suggests that an OTG is imposed on the layer. As shown
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below in (2.7b), the base-state temperature has a cubic term in addition to the linear term
in y. The cubic term in y arises due to the presence of advection of energy. The layer is
assumed to be sufficiently thin so the buoyancy effect could be neglected.

Surface tension at the liquid–gas interface σ ∗ is assumed to be temperature-dependent,

σ ∗ = σ ∗
0 − γ ∗(T∗ − T∗

0 ), (2.1)

where γ ∗ = −(dσ ∗/dT∗) > 0 and σ ∗
0 is the reference surface tension of the fluid at

the reference temperature of the lower plate taken as T∗
0 . The length, time, velocity

and temperature are non-dimensionalized by d, d2/κ , κ/d and β∗d, respectively, where
β∗ is the imposed VTG to be specified later. Furthermore, pressure and stresses are
non-dimensionalized by µκ/d2.

We denote the dimensionless fluid velocity field as v = (vx , vy, vz), with vi being
the velocity components in the direction i = x, y, z. The dimensionless continuity and
momentum conservation equations are

∇ · v = 0, (2.2a)

1

Pr
[∂tv + (v · ∇)v] = −∇p − G Pr∇y + ∇2

v, (2.2b)

where Pr = µ/ρκ is the Prandtl number, G = gd3/ν2 is the Galileo number,
∇ = (∂x , ∂y, ∂z) is the gradient operator, ∇2 ≡ ∂2

x
+ ∂2

y
+ ∂2

z is the Laplacian operator, p is
the pressure and ∂i denotes the partial derivative with respect to i. The dimensionless heat
advection–diffusion equation is

∂tT + (v · ∇)T = ∇2T. (2.2c)

The governing equations (2.2) are subjected to the following boundary conditions.
Assuming no slip, impermeability and a constant specified temperature at the solid
substrate y = 0 yields

vx = 0, vy = 0, vz = 0, T = T0 − ηx, (2.3a)

where η = η∗/β∗ represents the dimensionless HTG. The deformable gas–liquid interface
is located at y = 1 + ξ(x, y, t), where ξ(x, z, t) is the infinitesimal displacement of the
interface from its undisturbed position y = 1.

The boundary conditions at the interface are the kinematic boundary condition, the
tangential and normal components of the stress balance (Perez-Garcia & Carneiro 1991)
and the continuity of the heat flux, respectively,

∂tξ + v⊥ · ∇ξ = vy, (2.3b)

tj · τ · n = −Ma∇T · tj, (2.3c)

−p + n · τ · n = −Ca−1(∇ · n) − Bo Ca−1ξ, (2.3d)

∇T · n = −Bi(T − T∞ + ηx), (2.3e)

where

Ma =
γβ∗d2

µκ
, Bo =

ρgd2

σ ∗
0

, Bi =
qd

kth

, Ca =
µκ

σ ∗
0 d

, (2.4a–d)

respectively, are the Marangoni, Bond, Biot and capillary numbers, with Bo = G Ca and
j = 1, 2. Here q, σ ∗

0 , g and kth are the coefficient of thermal convection at the free surface,
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Thermocapillary instabilities in a liquid layer 906 A12-5

the surface tension evaluated at the free surface temperature, the gravitational acceleration
and the thermal conductivity of the fluid, respectively. The vectors tj and n represent the
unit tangent and unit normal vectors to the free surface, respectively. Also, the vector v⊥ is
the two-dimensional vector obtained by projection of v onto the x–z plane, v⊥ = (vx , vz).
The linearized expressions for the normal n and tangential t1 and t2 vectors at the free
surface in the perturbed state are

n = −∂xξex + ey − ∂zξez, t1 = ex + ∂xξey, t2 = ∂zξey + ez. (2.5a–c)

The vectors, ex , ey and ez are the unit vectors in the x-, y- and z-directions, respectively.

2.1. Base state

For the base state, the governing equations (2.2) are subjected to the following boundary
conditions. Assuming no slip, impermeability and constant temperature at the solid
substrate y = 0 they are

v̄x = 0, v̄y = 0, v̄z = 0, T̄ = T0 − ηx . (2.6a)

At the undisturbed gas–liquid interface y = 1, the boundary conditions are the kinematic
boundary condition, the tangential component of the stress balance and the continuity of
the heat flux, respectively,

v̄y = 0, (2.6b)

dv̄x

dy
= −Ma ∂x T̄, (2.6c)

∂yT̄ = −Bi(T̄ − T∞ + ηx). (2.6d)

The governing equations (2.2) and boundary conditions determine the base state in the
form

v̄x = η Ma y, v̄y = 0, v̄z = 0, p̄ = pa − G Pr y, (2.7a)

T̄(x, y) = T0 − ηx +

[
η2Ma

2(1 + Bi)

(
1 +

Bi

3

)
− 1

]
y −

η2Ma

6
y

3, (2.7b)

where

β∗ =
Bi∆T∗

(1 + Bi)d
. (2.8)

From (2.7b), the HTG induces an additional VTG, which has positive sign and counteracts
the imposed negative VTG. Furthermore, the induced VTG is proportional to η2. As shown
later in § 4, the induced VTG has a strong effect on the Marangoni instabilities exhibited
by the imposed VTG.

2.2. Perturbed state

Next, infinitesimally small perturbations are imposed on the base-state equations (2.7)
to carry out the linear stability analysis of the system. Squire’s theorem (Schmid &
Henningson 2001) is not applicable in the present case due to the imposed HTG.
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906 A12-6 R. Patne, Y. Agnon and A. Oron

Thus, in what follows, three-dimensional disturbances are considered. The governing
equations are then linearized around the base-state equations (2.7) and normal modes

f ′(x, t) = f̃ ( y) exp(ikx + imz + st), ξ(x, z, t) = ξ̃ exp(ikx + imz + st) (2.9a,b)

are substituted into these. Here f ′(x, t) is a perturbation to a dynamic quantity f (x, t), such
as the components of the fluid velocity field vx , vy and vz, pressure p and temperature
T , f̃ ( y) is the corresponding eigenfunction in the Laplace–Fourier space and ξ̃ is a
constant. The parameters k and m are the wavenumbers of the perturbations in the x-
and z-directions, respectively, and the value s = sr + isi is the complex growth rate. The
flow is linearly unstable if at least one eigenvalue satisfies the condition sr > 0. As a result
of this procedure, the linearized continuity, momentum conservation and energy equations
become

ikṽx + Dṽy + imṽz = 0, (2.10a)

1

Pr
[sṽx + ikv̄x ṽx + ṽyDv̄x ] = −ikp̃ + (D2 − k2 − m2)ṽx , (2.10b)

1

Pr
[sṽy + ikv̄x ṽy] = −Dp̃ + (D2 − k2 − m2)ṽy, (2.10c)

1

Pr
[sṽz + ikv̄x ṽz] = −imp̃ + (D2 − k2 − m2)ṽz, (2.10d)

sT̃ + ikv̄x T̃ + ∂x T̄ ṽx + ∂yT̄ ṽy = (D2 − k2 − m2)T̃, (2.10e)

where D ≡ d/dy.
Equations (2.10) are then supplemented with the following boundary conditions. At

y = 0, the assumptions of no slip and impermeability at the lower plate imply

ṽx = 0, ṽy = 0, ṽz = 0, T̃ = 0. (2.11a)

At the deformable boundary, due to the presence of the Marangoni forces, additional
stresses are generated. Thus, upon a standard procedure of projection of the boundary
conditions at the deformed interface y = 1 + ξ onto y = 1, the boundary conditions at
y = 1 become

ṽy = sξ̃ + ikv̄x ξ̃ , (2.11b)

τ̃xy = −ik Ma(T̃ + ∂yT̄ ξ̃ ), (2.11c)

τ̃yz = −im Ma(T̃ + ∂yT̄ ξ̃ ), (2.11d)

−p̃ + τ̃yy − 2ikDv̄x ξ̃ = −
(Bo + k2 + m2)

Ca
ξ̃ , (2.11e)

DT̃ + Bi T̃ + (−ik∂x T̄ + ∂2
y
T̄ + Bi ∂yT̄)ξ̃ = 0. (2.11f )

While deriving the normal stress balance boundary condition (2.11e), it has been assumed
that the thermocapillary contribution to the normal stress balance is negligible, i.e.

γ ∗(T̄∗|y∗=d − T∗
0 )/σ ∗

0 = Ma Ca(T̄|y=1 − T0) ≪ 1. (2.12)

Since for most liquids Ma Ca ≪ 1 at the onset of the linear instability, this assumption
holds true provided that (T̄|y=1 − T0) = O(1). This also helps to proceed with the normal
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0 1 2 3 4 5
k

102

103

104

Re

Present numerical approach
Smith & Davis (1983b)

FIGURE 1. Neutral stability curves in k–Re space for the problem corresponding to curve (b)
in figure 1 of Smith & Davis (1983b). An excellent agreement between the data extracted from
Smith & Davis (1983b) and our numerical approach shown by the dot-dashed curve and circles,
respectively, validates the latter.

mode analysis by removing the term T̄|y=1 which depends on x and therefore could
represent an obstacle.

Equations (2.10)–(2.11) constitute a generalized linear eigenvalue problem, which is to
be solved for the eigenvalues s and the eigenfunctions for a specified set of parameter
values Bi, Bo, Ca, Pr and Ma. To determine the spectrum of the eigenvalue problem
(2.10)–(2.11), the pseudo-spectral method is employed, the details of which are presented
in appendix A.

3. Validation

Thermocapillary instability in the fluid layers subjected to OTG has been previously
studied by Nepomnyashchy et al. (2001) and Shklyaev & Nepomnyashchy (2004) for a
return flow configuration. They considered a two-layer structure of the fluids with the
fluid–fluid interface assumed to be non-deformable. Thus, a validation by using the results
obtained in their studies is difficult. Instead, a three-way validation using the results
obtained by Smith & Davis (1983a,b) and Hu, He & Chen (2016) for a purely HTG and
Perez-Garcia & Carneiro (1991) for a purely VTG, is presented below.

Smith & Davis (1983b) analysed surface-wave instabilities in a liquid layer subjected
to a purely HTG. Their study revealed an absence of long-wave instabilities in the flow
considered here, which they referred to as ‘linear flow’ due to its base-state velocity profile.
The present non-dimensionalization format does not allow the limit of a purely HTG.
Thus, to validate our numerical approach, the linearized perturbation equations of Smith
& Davis (1983b) were directly used in the code. The additional dimensionless numbers
in their study were the surface-tension number, S = ρdσ ∗

0 /µ2, and the Reynolds number,
Re = Ma/Pr. The agreement between the data extracted from a representative neutral
stability curve in the study of Smith & Davis (1983b) along with that obtained by using
our numerical approach is shown in figure 1. The results presented in figure 1 show an
excellent agreement between Smith & Davis (1983b) and the present numerical approach,
thereby validating the latter.

Smith & Davis (1983b), however, did not present the eigenspectrum; thus, to achieve
an independent validation for our numerical technique, the eigenspectrum obtained using
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906 A12-8 R. Patne, Y. Agnon and A. Oron

Present numerical approach Hu et al. (2016)

0.000026 + 0.031995i 0.000026 + 0.031995i
−0.000001 − 0.012583i −0.000001 − 0.012584i
−0.000614 − 0.062833i −0.000613 − 0.062832i
−0.065905 − 0.016561i −0.065904 − 0.016560i

TABLE 1. The four leading eigenvalues in the eigenspectrum for a liquid layer subjected to a
purely HTG obtained using our numerical approach and those taken from Hu et al. (2016)
with Pr = 0.02, Ma = 6.15, k = 0.0251676, m = 0.389187, Bo = 0, Bi = 0 and Ca = 0. The
agreement between the two columns validates our numerical technique.

the latter is compared with Hu et al. (2016) in table 1. It must be noted that Hu et al.

(2016) studied the instabilities in an Oldroyd-B liquid layer subjected to a purely HTG
with a non-deformable surface. Additionally, our numerical approach predicts the critical
Marangoni number Mac = 15.49 and the critical wavenumber kc = 0 for Bi = 0 and Pr =
∞ for the emergence of longitudinal stationary rolls in a liquid layer subjected to a purely
HTG, which is in a perfect agreement with Smith & Davis (1983a).

Smith & Davis (1983a,b) and Hu et al. (2016) studied the instabilities arising due to
the purely imposed HTG, but, in the present problem, an additionally imposed VTG is
also present. The non-dimensionalization scheme here allows for the existence of a purely
VTG, and the governing equations for this problem can be simply obtained by substituting
η = 0 into the set of equations (2.10) and into the base state (2.7a) and (2.7b). Similarly,
the numerical solution for the OTG can be reduced to the case of a purely VTG.

The previous studies of Scriven & Sternling (1964), Davis & Homsy (1980) and
Perez-Garcia & Carneiro (1991) on the Marangoni instability in a liquid layer with a
deformable interface subjected to a purely VTG demonstrated the predominant emergence
of the stationary mode characterized by si = 0, implying non-travelling disturbances at
the onset of instability. The neutral stability curve for the stationary mode with η = 0
and m = 0 can be obtained analytically by substituting s = 0 into the governing equations
(2.10)–(2.11) and solving the corresponding eigenvalue problem in terms of the Marangoni
number Ma in the form (Scriven & Sternling 1964)

Ma = −
8k(Bo + k2)[k cosh(k) + Bi sinh(k)][k − cosh(k) sinh(k)]

−k3[Bo + (1 − 8Ca)k2] cosh(k) + (Bo + k2) sinh3(k)
. (3.1)

It can be immediately deduced from (3.1) that the neutral Marangoni number and its
critical value (if the instability is indeed stationary) Mac are independent of Pr. It must
be noted that, for a Newtonian liquid with temperature-independent density, only the
stationary mode of the Marangoni instability was theoretically predicted (Perez-Garcia
& Carneiro 1991). The variation of Ma with k given by (3.1) is presented in figure 2 for
a fixed set of parameters. The parameter Mac is obtained by minimizing Ma(k), and the
critical wavenumber kc is determined then via Mac = Ma(kc).

For the stationary mode with Bi = 0, Bo = 0.1 and Ca = 0.01, the critical Marangoni
number Mac = 6.6667, as obtained by Perez-Garcia & Carneiro (1991) is in agreement
with the value of Mac obtained from (3.1). To validate our numerical approach, the neutral
stability curves determined both via (3.1) and numerically are presented in figure 2, which
exhibits an excellent agreement between the two.
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Analytical results, (3.1)
Present numerical approach

FIGURE 2. Variation of Ma with k for the stationary mode in a liquid layer with Bi = 0,
Bo = 0.1, η = 0 and Ca = 0.01. The figure also presents a validation of our numerical approach.
The continuous curve is obtained from the analytical expression (3.1), whereas the triangles are
obtained numerically. The system is unstable for Ma in the domain above the curve.

4. Results and discussion

4.1. General linear stability analysis

Before proceeding with the results, it is important to determine the limits of the parameter
values to be used hereafter. The ranges for the dimensional parameters are d ∼ 10−6–10−3

m, ρ ∼ 103 kg m−3, γ ∼ 10−5–10−3 N m K−1, kth ∼ 10−6–10−3 J m−1 s−1 K−1, q ∼ 1–102

J m−2 s−1 K−1, κ ∼ 10−7–10−5 m2 s−1, µ ∼ 10−3–102 Pa s and σ ∗
0 ∼ 10−3–10−1 N m−1

(Ezersky et al. 1993; Li, Xu & Kumacheva 2000; Ospennikov & Schwabe 2004; Mizev
& Schwabe 2009), and the corresponding dimensionless numbers are Bi ∼ O(10−3–10),
Bo ∼ O(10−3–10−1), Ca ∼ O(10−4–10−1) and Pr ∼ O(1–103). This parametric range will
be used in the present study to analyse various modes of instability.

The eigenvalue spectrum for the present problem with a chosen parameter set is
illustrated in figure 3 showing a set of converged eigenvalues. We refer to the eigenvalues
as converged if they vary only at the sixth significant digit upon variation in the number
of collocation points N from N = 50 to N = 75. For a purely VTG, only stationary, either
stable or unstable, modes exist. However, the thermocapillary convection induced by an
imposed HTG converts these stationary modes to the convective ones, i.e. modes with
si /= 0, as illustrated in figure 3(a).

The position of the vertical line along which most of the eigenvalues are clustered
in figure 3(a) can be explained as follows. The eigenspectra for plane Couette, plane
Poiseuille and Hagen–Poiseuille flows show a similar vertical line at the average base-state
speed multiplied by the wavenumber of the disturbance (Schmid & Henningson 2001).
The average base-state velocity in the present case is ηMa/2, which is also the phase
speed of the wave; thus the frequency of the perturbations (−si) travelling with this
speed becomes kηMa/2. For the parameter set used in figure 3, the estimate above yields
si = −0.0225, which is in a perfect agreement with the vertical line shown in figure 3.
This also implies that si = 0 for η = 0, which is indeed the case since si = 0 for all modes
when a liquid layer is subjected to a purely VTG. As a consequence of the imposed HTG,
the stationary instability mode with sr ∼ 0.02 becomes a downstream (si < 0) mode, as
shown in figure 3(b).
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FIGURE 3. The eigenspectrum of the present problem for Bi = 0, Bo = 0.1, Pr = 7, η = 0.05,
Ma = 90, k = m = 0.01 and Ca = 0.001 illustrating the shift of the stationary modes from
stationary (si = 0) to convective (si /= 0) modes. (a) The full spectrum along with the line at
si = −0.0225, which is a consequence of the HTG. (b) The magnified spectrum of the two
leading eigenvalues, with the most unstable one originating from the stationary mode of the
purely VTG, which now becomes a downstream (si < 0) mode as a consequence of the imposed
HTG. In both panels, the overlap of the eigenvalues obtained for N = 50 and N = 75 shows their
genuine nature.

The spanwise long-wave (k = 0) unstable mode remains stationary, in contrast with
the oblique (k /= 0, m /= 0) or streamwise (m = 0) long-wave modes. This may be a
consequence of the absence of the flux due to the base state in the z-direction similar
to the flux in the x-direction induced by the HTG component of the applied OTG.

Along with the long-wave modes, the present analysis also reveals the emergence of a
new class of unstable modes. The evolution of the two unstable modes from this class of
modes in the eigenspectrum of the problem with an increase in Ma is shown in figure 4.
These new modes were not found in the earlier studies of Scriven & Sternling (1964),
Perez-Garcia & Carneiro (1991) and Patne, Agnon & Oron (2020), where a liquid layer was
subjected to a purely VTG. The existence of such modes in the present analysis thus stems
from the interaction between the imposed VTG and the thermocapillary flow induced by
the imposed HTG. The new modes satisfy si < 0, and thus they represent downstream
modes. The neutral stability curves for the streamwise and spanwise long-wave modes and
the new mode are illustrated in figure 5. For the long-wave modes, even with η /= 0, the
critical wavenumbers are kc and/or mc = 0. Thus, the long-wave instability existing for a
purely VTG is not affected by the presence of the thermocapillary flow.

With η = 0 and the parameter sets shown in figure 5, (3.1) yields Mac = 6.667; however,
the neutral stability curves presented in figure 5 yield Mac = 7.19. Thus, irrespective
of the streamwise or spanwise character of the long-wave modes, the stabilizing effect
of the imposed HTG is the same as that of the HTG on the instabilities introduced
by the purely VTG, which could be explained via the following argument: The term
[η2Ma/(2(1 + Bi))](1 + Bi/3) − 1 in the base-state temperature (2.7b) shows that the
imposed HTG introduces a VTG that counteracts the imposed VTG, effectively weakening
it, thereby stabilizing the long-wave deformational instabilities introduced by the latter.
The neutral stability curve for the new mode has a minimum at kc = 0.38, and thus it is a
finite-wavelength mode.

The perturbed fields of the fluid velocity components v′
x

and v′
y

and temperature T ′

corresponding to the marginally stable new mode at the critical parameters are shown

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

74
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Thermocapillary instabilities in a liquid layer 906 A12-11

–45 –40 –35 –30 –25 –20 –15 –10 –5 0
–3

–2

–1

0

1

2

3

4

5

s
r

s
i

Ma = 25
Ma = 35
Ma = 45
Ma = 55
Ma = 65
Ma = 75

FIGURE 4. The evolution of the two leading eigenvalues with an increase in Ma, which results
in the emergence of the new modes of instability. The parameters here are Bi = 0, Bo = 0.1,
Pr = 7, η = 1, Ma = 90, k = 0.3, m = 0.0 and Ca = 0.001. These new modes originate as a
result of the interaction between the imposed HTG and VTG components, and these modes can
only exist if the OTG is imposed and the free surface is deformable.
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FIGURE 5. Neutral stability curves presenting the variation of Ma with k for the stationary mode
in a liquid layer for Bi = 0, Bo = 0.1, Pr = 7 and Ca = 0.01 for the streamwise and spanwise
long-wave modes and the new short-wave mode. For the latter, the critical wavenumbers are
kc ≈ 0.38 and mc = 0, so its neutral stability curve is determined for m = 0. The base flow is
unstable for Ma greater than the boundary set by the respective curves.

in figure 6. The critical parameters correspond to the minimum on the neutral stability
curve for the new mode in figure 5. These perturbations have been normalized by their
respective maximal absolute values. The velocity perturbations are essentially non-zero
at the free surface as a consequence of the Marangoni effect driving the instability at the
layer interface. However, due to the presence of an OTG, the temperature perturbations
exhibit the maximal value at y ≈ 0.45. This maximal value exhibited by the temperature
perturbations is sensitive to the variation in the strength of the HTG, η. For example, for
η = 4 with the same parameter set as in figure 6(c), the maximum of the temperature
perturbation takes place at y ≈ 0.5. Furthermore, at higher values of η, the temperature
perturbation field exhibits multiple extrema in the domain y ∈ [0, 1].
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FIGURE 6. The normalized perturbation fields (a) v′
x
, (b) v′

y
and (c) T ′ for Bi = 0, Bo = 0.1,

Pr = 7, η = 1, Ma = 22.62, k = 0.38, m = 0.0 and Ca = 0.01 for the marginally stable
eigenvalue s = −17.86566i. Here, v′

x
= Re[ṽx eikx ], v′

y
= Re[ṽy eikx ] and T ′ = Re[T̃ eikx ]. The

length of the domain in the x-direction is equal to the wavelength of the perturbations, 2π/k.
For convenience, the axes are normalized to the interval [0, 1]. The velocity perturbations attain
their maximal values at the free surface due to the presence of the Marangoni stresses. However,
the temperature perturbation field attains its maximum at y ∼ 0.45 due to the imposed OTG.

Figure 7 presents the critical curve in the plane spanned by the value of η and the
critical Marangoni number Mac. For Ca = 0.01 and a purely VTG, only the long-wave
deformational mode of the instability exists (Perez-Garcia & Carneiro 1991; Patne et al.

2020). Upon imposing an OTG, however, the long-wave mode is confined to the region
η < 0.2 for sufficiently large Marangoni numbers Ma. This confinement leads to the
formation of an instability island presented in figure 7. As explained above, the term
{[η2Ma/(2(1 + Bi))](1 + Bi/3) − 1}y in the base-state temperature (2.7b) suggests that
the imposed HTG induces a VTG proportional to [η2Ma/(2(1 + Bi))](1 + Bi/3) which
counteracts the imposed VTG, thereby stabilizing the long-wave mode. This suggests that
when both, an imposed VTG and an induced VTG are of the same strength, the long-wave
instability disappears, implying that the quantity [η2Ma/(2(1 + Bi))](1 + Bi/3) − 1 must
vanish. This procedure for Bi = 0 leads to Mac = 2/η2, which is also the line shown in
figure 7. As expected, the instability island of the long-wave mode in the η–Ma plane
lies below this asymptote, as seen in figure 7(a). The upper boundary of the instability
island can be approximated by the line Mac = 1/η2. Although not shown here, a similar
stabilizing effect is also observed for either the spanwise or an oblique long-wave mode,
and the critical values Mac are exactly the same as that for the streamwise long-wave
mode.

For a relatively strong surface tension, e.g. Ca = 0.0001, the finite-wavelength mode
with kc = 1.98 and Mac = 79.6 exists for the imposed purely VTG (Pearson 1958).
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FIGURE 7. Variation of the critical Marangoni number Mac with η for Bi = 0, Bo = 0.1, Pr = 7
and (a) Ca = 0.01 and (b) Ca = 0.0001. For the new mode in panels (a) and (b), the critical
wavenumber is kc ∼ 0.38 and 0.22, respectively. The new mode exhibits characteristic scaling
Mac ∼ 1/η for η > 0.3. The dashed line Mac = 2/η2 represents a borderline beyond which the
long-wave deformational mode is suppressed for Bi = 0.

Similar to the long-wave mode, the imposed HTG also stabilizes the finite-wavelength
mode, since the stabilizing effect discussed above also acts upon the finite-wavelength
disturbances, as shown in figure 7(b). In contrast with the long-wave mode, the
finite-wavelength mode does not form an island of instability; instead, it crosses the barrier
asymptote Mac = 2/η2 and continues as one of the instability modes from the class of new
modes. Since its critical Marangoni number is larger than that of the new mode, it then
becomes the second most unstable mode, thereby losing its importance as the dominant
mode of instability.

The new mode of instability found in the present work exhibits a characteristic scaling
Mac ∼ 1/η with the critical wavenumber kc that does not vary with η for η > 0.3. Also,
the critical spanwise wavenumber for the new mode is found to be zero, and thus it is
a streamwise mode of instability. Since the long-wave mode is confined to η < 0.2 for
Ca = 0.01, as seen in figure 7(a), and the finite-wavelength mode is confined to η < 0.1
for Ca = 0.0001, as shown in figure 7(b), then the new mode governs the stability of the
system in the range to the right of the tip of the instability island. Thus, the imposed
HTG may suppress the instabilities related to the VTG, but it leads to the emergence of
new instability modes. This implies that the imposed HTG does not necessarily have a
stabilizing effect on the system, in contrast with the previous studies (Nepomnyashchy
et al. 2001; Shklyaev & Nepomnyashchy 2004). The continuation of the finite-wavelength
mode also falls under the class of new modes whose critical Marangoni number scales as
Mac ∼ 1/η.

Extension of the new modes presented in figure 7 into the domain η < 0.1 turns out to
be a numerically difficult task. The difficulty arises because the long-wave mode, due to
a much lower value of Mac as compared to that of the new mode, becomes unstable over
a large range of k, thereby making it hard to track the new mode by using the numerical
technique employed here. Also, the new mode does not represent the dominant instability
mode for low values of η; hence a further analysis of the new mode in that domain is not
carried out.

The effects of variations of Bo and Pr on the critical parameters of the system are
shown in figure 8. Figure 8(a) shows that an increase in the Bond number, equivalent
to an increase of the relative importance of gravity with respect to capillarity, leads to
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FIGURE 8. Variation of Mac with η at Bi = 0 and Ca = 0.01. (a) The effect of varying Bo on
Mac for Pr = 7. (b) The effect of varying Pr on Mac for Bo = 0.1. The critical wavenumber is
negligibly affected by variation of Bo and Pr.

a shrinkage of the instability island for the long-wave mode, whereas it has a negligible
effect on the critical parameters for the new mode. The reason for this is that the Bond
number Bo appears only in the normal-stress boundary condition (2.11e) in combination
with the two wavenumbers as Bo + k2 + m2. Thus, only if the critical wavenumbers are
of the same order of magnitude as the Bond number can the latter affect the critical
parameters of the corresponding instability mode. For the long-wave mode kc = mc ∼ 0,
and thus it is readily affected by the variation in Bo, whereas the new mode with kc ∼ 0.4
is negligibly affected for small Bo. On physical grounds, this implies that long-wave
disturbances are more affected by gravity as compared to those of a finite wavelength.
As for variation in the Prandtl number Pr with a fixed Bo, the influence on the long-wave
and the new modes is opposite to that of Bo, as shown in figure 8(b), namely the long-wave
mode remains almost unaffected, whereas the short-wave new mode is more sensitive. An
increase in Pr leads to a decrease in the strength of the inertial terms that play a crucial
role in introducing the new modes, as explained in § 4.3, which explains the stabilization
caused by an increase in Pr.

At high values of η, along with the new modes, the spectrum of the problem contains
also pairs of unstable spanwise modes. For k = 0, the spanwise modes form pairs of
eigenvalues with equal growth rate and absolute value of the oscillation frequency
but travelling in opposite directions. Two such pairs, one unstable and one stable, are
illustrated in figure 9(a). As the wavenumber k increases, the symmetry of the modes
with respect to the sign of si breaks, as shown in figure 9(b). An increasing k favours the
downstream mode, which continues as the most unstable mode among the class of new
unstable modes discussed above, while the growth rate of the upstream mode decreases
with an increase in k, thereby emphasizing its spanwise nature. For an arbitrary value of η,
the new mode always has a lower Mac as compared to the spanwise mode; thus a further
analysis of the spanwise mode will not be carried out. Also, the second unstable mode,
which is a new one shown in figure 4, emerges from the downstream mode of the second
pair shown in figure 9(a).

4.2. Energy analysis

To explain the effect of the imposed OTG on the thermocapillary instabilities, the
following discussion analyses the effect of the imposed HTG on the perturbation
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FIGURE 9. The spectra for Bi = 0, Bo = 0.1, Pr = 7, η = 10, Ma = 4, m = 0.5 and Ca = 0.01.
(a) The emergence of a pair of unstable symmetric spanwise eigenvalues at k = 0 with an
equal growth rate but corresponding to propagation in the opposite directions at the same phase
speed. (b) The symmetry is broken for values of k /= 0. With an increase in k, the growth
rate of the downstream mode increases, whereas that of the upstream mode decreases. The
downstream mode is the new mode of instability when tracked by slowly varying the values
of the wavenumbers k and m.

energy balance. In what follows, the approach of Hu, Peng & Zhu (2013) and Hu
et al. (2016) has been followed. Before proceeding, the Navier–Stokes equations (2.2b)
linearized around the base state v̄ are recast as

1

Pr

∂v
′

∂t
= −∇p′ + ∇ · τ

′ −
1

Pr
[(v′

· ∇)v̄ + (v̄ · ∇)v′], (4.1)

where the quantity τ
′ is the disturbance of the stress tensor for a Newtonian fluid. Taking

the scalar product with the perturbation velocity vector v
′, integrating the result over the

flow domain and simplifying the resulting integrals yields an equation describing the time
evolution of the total kinetic energy of the perturbations,

E = 1
2

∫
v

′
· v

′ dV, (4.2)

in the form

1

Pr

∂E

∂t
= −

∫
p′

v
′
· n dA −

1

2

∫
τ

′ : γ̇
′ dV +

∫
τ

′
· v

′
· n dA −

1

Pr

∫
v

′
· ¯̇γ · v

′ dV

≡ −Ip − Ib + IM − IR, (4.3)

where Ip, Ib, IM and IR are the components of pressure work, the bulk stress work,
the surface stress work (Marangoni stress work) and the Reynolds stress work (Drazin
2002) in the energy balance, respectively. The quantities, dV and dA are the volume and
area elements, respectively, and the area integrals are over the flow domain boundary.
The quantities γ̇

′ = ∇v
′ + ∇v

′T and ¯̇γ = ∇v̄ + ∇v̄
T represent the strain-rate tensors

associated with the perturbed and base states, respectively. Since it is only at the free
deformable surface that the velocity perturbations v

′ do not vanish, the contribution to
the area integrals will come from the free surface alone. Sample values of the integrals

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

74
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



906 A12-16 R. Patne, Y. Agnon and A. Oron

Parameters Ip Ib IR

k = 0.01, Ma = 15, η = 0 −0.163762 0.297564 0
k = 0.01, Ma = 15, η = 0.1 −0.163763 0.297567 −0.000819
k = 0.2, Ma = 30, η = 1 −0.140948 0.791648 −0.008123
k = 0.2, Ma = 3, η = 5 −0.111424 0.787903 −0.010591

TABLE 2. Sample values of the pressure work Ip, bulk stress work Ib and Reynolds stress work IR

integrals normalized by the value of the Marangoni stress work integral IM for Bi = 0, Bo = 0.1,
Ca = 0.01 and Pr = 7 for the unstable stationary long-wave (the first two rows) and the new
(the last two rows) modes. The bulk stress work remains positive as expected and thus has a
stabilizing effect due to viscous dissipation. Since both the pressure work and Reynolds stress
work integrals are negative, these components of the energy balance result in the growth of the
perturbation energy. The contribution of the Reynolds stress work is much smaller compared to
the rest of the components.

in (4.3) are shown in table 2. The Marangoni stress work component IM of (4.3) is found to
be positive for the parameter values explored here, and thus it exerts a destabilizing effect.
The bulk stress work component Ib is unconditionally positive in the case of a Newtonian
fluid, since τ

′ : γ̇
′ = γ ′

ijγ
′
ji ≥ 0, and thus leads to a decrease in the perturbation energy

due to the presence of viscous dissipation. Note that stationary modes for η = 0 may
still emerge even if the bulk stress work integral is positive. These stationary modes may
become unstable by virtue of the Marangoni stress work and the pressure work integral Ip,
which is found to be negative for the parameter range studied here.

The integral IR is a volume-averaged correlation between the perturbations in the
horizontal and vertical components of the velocity field. This term is also responsible
for the energy exchange between the base state and perturbation quantities. Upon
simplification for the present problem, it reduces to 2ηMa v′

x
v′

y
which turns out to be

negative for the parameter range studied here, as shown in table 2. Thus, Reynolds stress
work has a destabilizing effect, but it may be subdued at high Pr and low η. It is also seen
from table 2 that, since all values are normalized with respect to the Marangoni stress work
term, the contribution of the latter to the energy balance is major with respect to those of
the other components. The bulk stress work becomes on a par with the Marangoni stress
work as far as its absolute value is concerned when the value of η increases. To summarize,
except for the bulk stress work, all other components of the energy balance lead to the
growth of the disturbance energy.

4.3. Physical mechanism

This section is devoted to a discussion of the physical mechanisms driving the instabilities
revealed in the previous sections. The Marangoni stresses exerted on the free surface of the
layer give rise to the base-state flow with a non-zero velocity profile under the assumption
that η /= 0. These base-state flow components then provide coupling with perturbations
at the free surface, which leads to the exchange of energy between the base state and
the perturbations, eventually causing the instabilities observed here. However, a physical
mechanism of the emerging instabilities and their stabilization predicted here might give
a better understanding of the underlying processes.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

74
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Thermocapillary instabilities in a liquid layer 906 A12-17

In the case of the Marangoni instability due to the purely imposed VTG, the physical
mechanism can be described as follows (Smith 1986; Davis 1987). Thermal perturbations
at the layer free surface may lead to the emergence of a hot spot and, due to the Marangoni
stresses arising from the variation in temperature-dependent surface tension, liquid parcels
at the surface flow away from the hot spot. However, to maintain mass conservation,
a vertical flow develops from underneath the free surface towards it. The fluid beneath
the free surface is hotter than at the surface itself as a result of the imposed VTG.
Thus, convective heat flux triggered by the upflow generated by the hot spot warms it up
even more, enhancing the conductive heat flux, thereby making the liquid layer unstable
provided that dissipative effects due to liquid viscosity and thermal diffusivity do not cause
decay of the driving mechanism.

The suppression of the instability driven by the VTG via the prescribed HTG revealed
in the present paper can be explained in the following way. The imposed HTG induces a
VTG and the latter turns out to counteract the imposed VTG. Thus, if a hot spot emerges
at the liquid–gas interface due to thermal fluctuations, while the imposed VTG leads to a
decrease in the temperature as one moves away from the bottom wall, the induced VTG
leads to the opposite effect. Thus, even if a hot spot emerges, the upwelling flow generated
due to the mass conservation may not bring the energy sufficient to compensate the heat
loss due to the heat conduction from the hot spot if the induced VTG is sufficiently high.
Hence, to suppress the instability caused by the imposed VTG, the induced VTG must be
of a comparable magnitude to inhibit the warming up of the hot spot. To have this happen
quantitatively, the coefficient of y in the base-state temperature (2.7b) must vanish, which
in turn leads to the asymptote Ma ∼ 2/η2.

The physical mechanisms responsible for the emergence of the instabilities observed
due to the imposed purely HTG were explained by Smith (1986). The new class of
instability modes lie in the region where the imposed HTG dominates the imposed VTG
and these modes emerge at finite critical wavenumbers kc. The importance of inertia in the
emergence of the new instability modes can be immediately noticed from figure 8(b),
which shows that a decrease in inertia equivalent to an increase in Pr has a strong
stabilizing effect. Following the above discussion, consider a hot spot generated as a
result of thermal perturbations at the interface. Driven by the Marangoni stresses, the
fluid will then flow from this hot spot towards the nearest cold spots, while to conserve
mass, upflow takes place. However, this upflow brings a colder fluid to the hot spot since
the magnitude of the induced opposing VTG is greater than that of the imposed VTG
owing to the existence of the new modes above the asymptote Mac ∼ 2/η2. Thus, the
hot spot may lead to heat loss by both conduction and convection (due to cold upwelling
flow), thereby stabilizing the fluctuations. However, before the upflow can cool off the hot
spot, the thermocapillary flow driven by the imposed HTG carries the energy of the hot
spot downstream, thereby preventing cooling it by the upflow since the interface has the
maximal velocity.

As said, to prevent stabilization by cooling from underneath due to the upwelling flow,
the base-state velocity at the free surface must be sufficiently large, and thus these new
modes do not exist at low η. The hot-spot perturbations then interact with the base-state
flow and temperature through the inertial terms of the momentum conservation and
energy equations. Thus, the original hot spot fades away while a new hot spot emerges
downstream, which may offset the heat loss by conduction and the upflow, eventually
leading to the instability revealed in this paper. The role played by the interaction terms
between the base state and the perturbations can also be inferred from table 2, where
the rightmost column represents the Reynolds stress integral IR of (4.3) quantifying the
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906 A12-18 R. Patne, Y. Agnon and A. Oron

energy transferred from the base state to the field of perturbations. Thus, an increase in IR

leads to an increase in the energy transfer from the base state to the perturbations, thereby
destabilizing the flow and giving rise to the new mode of instability.

Although the imposed VTG component does not play a major role in the emergence of
the new instability modes, it reduces the cooling effect due to the upflow by counteracting
the induced VTG. Thus, the imposed HTG component plays a major role in the emergence
of the new instability modes, while the imposed VTG component sustains their generation.

5. Long-wave analysis

In this section, we derive the long-wave evolution equation describing the nonlinear
dynamics of a thin liquid film subjected to an OTG. We then carry out linear and weakly
nonlinear analyses of the system followed by numerical solution of the fully nonlinear
evolution equation to support the results of the latter. Following the standard procedure
(Oron, Davis & Bankoff 1997), the wavelength of the disturbances L is assumed to be
substantially larger than the average thickness of the film d, where d = ǫL and ǫ ≪ 1.

To derive the thin-film evolution equation, the following scaling transformation is used
in (2.2): x → Xǫ−1, y → y, t → τǫ−1, vx → U, vy → ǫV , T → T and p → Πǫ−1. The
local instantaneous film thickness h∗(x

∗, t∗) is normalized by d, i.e. h∗ = hd. Using these
scalings, at the leading order O(ǫ0) the governing equations (2.2) reduce to

− ∂XΠ + ∂2
y
U = 0, ∂yΠ = GPr, ∂2

y
T = 0. (5.1a–c)

Equations (5.1a–c) are supplemented with the following boundary conditions. At the
substrate y = 0, the assumptions of no slip, no penetration and an imposed temperature
imply

vx = 0, vy = 0, T = −η̂X, (5.2a–c)

where η̂ = ηǫ−1 is the scaled imposed HTG. At the free surface y = h(x, t), the continuity
of the tangential and normal stresses and Newton’s cooling law yield, respectively,

∂yU = −M̂a ∂XT, (5.3a)

Π = −Ĉa
−1

∂2
Xh + ĜPr h, (5.3b)

∂yT + Bi(T + ∆̂T + η̂X) = 0, (5.3c)

where

M̂a = ǫMa, Ĉa = ǫ−3Ca, Ĝ = ǫG, ∆̂T =
T∗

0 − T∗
∞

β∗d
, (5.4a–d)

respectively, are scaled Marangoni, capillary and Galileo numbers, while ∆̂T is the
dimensionless temperature difference between the substrate and free surface temperatures.

The solution of the O(ǫ0) equations (5.1a–c) along with the boundary conditions (5.3)
yields

U =

(
y

2

2
− yh

)
∂XΠ + M̂a

[
η +

1 + Bi

(1 + Bi h)2
∂Xh

]
y. (5.5)

The kinematic boundary condition at the free surface in its conservative version yields, in
terms of the non-dimensional film thickness h(x, t),

∂τ h = −∂X

∫ h

0
U dy, (5.6)
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Thermocapillary instabilities in a liquid layer 906 A12-19

and upon substitution of (5.5) into (5.6) this results in

∂τ h = ∂X

[
h3

3
∂XΠ − M̂a

h2

2

(
η +

1 + Bi

(1 + Bi h)2
∂Xh

)]
, (5.7)

where the pressure Π is given by (5.3b).
The first, second and third terms of (5.3b) account for the impact of the capillarity and

gravity, HTG and VTG, respectively. Now scaling back the quantities in the above equation
yields

∂th = ∂x

[
h3

3
∂x(−Ca−1∂2

x
h + Bo Ca−1h) − Ma

h2

2

(
η +

1 + Bi

(1 + Bi h)2
∂x h

)]
. (5.8)

Equation (5.8) is therefore the evolution equation governing the nonlinear dynamics of a
thin film subjected to an OTG and represents the key equation in the forthcoming study.
Note a slight difference between the coefficient of the last term of (5.8) containing 1 + Bi

instead of the conventional Bi in the same term – see, for instance, (2.63) in Oron et al.

(1997). The difference is due to normalization of temperature with an imposed VTG
component instead of the temperature difference between those of the substrate and the
ambient gas. Next, linear and weakly nonlinear stability analyses of the system are carried
out based of the evolution equation (5.8).

5.1. Linear stability analysis

To study the linear stability of the system, we substitute h(x, t) = 1 + h′(x, t) into (5.8)
with h′(x, t) ≪ 1 as a perturbation imposed on the film interface. The resulting expression
is then linearized about the unperturbed height in which normal modes of the form
h′(x, t) = h̃ exp(ikx + st) with a constant h̃ are used and the dispersion relation in terms
of the complex growth rate s is obtained as

s =
1

6
k

[
−

2k(Bo + k2)

Ca
− 6iηMa +

3Ma k

(1 + Bi)

]
. (5.9)

The real and imaginary parts of the complex growth rate s yield the growth rate and
frequency of the critical disturbances, respectively, as

sr =
1

6
k2

[
−

2(Bo + k2)

Ca
+

3Ma

(1 + Bi)

]
, si = −ηk Ma. (5.10a,b)

The fastest-growing linear mode k = km is determined by finding the value of k where a
maximum for the growth rate sr given by (5.10a,b) is obtained:

km =
1

2

√
3Ma Ca

1 + Bi
− 2Bo. (5.11)

The corresponding wavelength is thus

Lm =
2π

km

. (5.12)

It is immediately clear from (5.10a,b) that the long-wave approximation does not
predict stabilization of the long-wave mode in contradiction with the corresponding result
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FIGURE 10. Variation of (a) the growth rate sr and (b) the frequency si with the disturbance
wavenumber k as obtained from (5.9) for Bi = 0.01, Bo = 0.1 and Ca = 0.01. (a) Destabilization
of the film with an increase in the Marangoni number for an arbitrary value of η. The critical
value of the Marangoni number in this case is Mac = 6.6667. (b) Variation of the frequency
of the disturbances with η at Ma = 15. The negative value of si indicates the downstream
propagation of the long-wave mode for a non-zero η. For η = 0, there is no propagation.

obtained in the general linear stability analysis presented in the previous section. As
discussed there, the VTG induced by the imposed HTG counteracts the imposed VTG,
thereby leading to the stabilization of the long-wave mode. The induced VTG originates
from the convective terms of the base state of the heat advection–diffusion equation.
However, in the thin-film approximation, the convective terms of the heat equation, i.e. the
third equation in (5.1a–c), are of order higher than O(ǫ0), and therefore their contribution
is absent in the leading-order evolution equation. The inability of the thin-film analysis
to predict the stabilizing effect of the HTG explains the reason why it is missing in the
analysis carried out by Nepomnyashchy & Simanovskii (2007, 2009). This also implies
the necessity for the general linear stability analysis performed and presented above. The
expression for si in (5.10a,b) suggests an advection of the disturbances introduced by the
imposed HTG in agreement with the results of the GLSA.

It follows from (5.9) that the growth rate of the disturbances is independent of the
imposed HTG, and thus the result shown in figure 10(a) is valid for arbitrary η. The
instability sets in with an increase in Ma beyond the critical value Ma = Mac.

The expression for the critical Marangoni number Mac in the case of a film of infinite
extent (k → 0) is obtained from (5.10a,b) by setting the growth rate sr to zero:

Mac =
2(1 + Bi)Bo

3Ca
. (5.13)

If the characteristic length L of the film in the horizontal direction is finite, the critical
value of the Marangoni number is altered accordingly to account for this feature:

Mac =
2(1 + Bi)

[
Bo + (2π/L)2

]

3Ca
. (5.14)

With η = 0, the critical wavenumber is kc = 0 for the long-wave mode, and thus taking
the limit k → 0 in (3.1) and simplification of the resulting expression leads to (5.13). Thus,
the critical Marangoni number given by the thin-film approximation is in agreement with
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η

FIGURE 11. Variation of the critical Marangoni number Mac with η as obtained from the GLSA
and the long-wave analysis for Bi = 0, Bo = 0.1, Pr = 7 and Ca = 0.01. At low η, the GLSA is
in agreement with the long-wave analysis.

that obtained from the GLSA for η = 0. A comparison of Mac obtained from the GLSA
and the thin-film analysis is shown in figure 11. For a low strength of the imposed HTG,
both the GLSA and the long-wave approximation are in a very good agreement.

5.2. Weakly nonlinear analysis

It is known that a thin film subjected to a VTG along with capillarity and stabilizing gravity
with ensuing Marangoni stresses undergoes subcritical bifurcation (vanHook et al. 1997;
Oron & Bankoff 1999; Alexeev & Oron 2007). To carry out the weakly nonlinear stability
analysis in the case at hand, we follow the approach of Oron & Bankoff (1999) and Cheng,
Chen & Lai (2001) and introduce slow time scales T1 = δt and T2 = δ2t, where δ ≪ 1 is a
small parameter related to the deviation of the Marangoni number from its critical value:

δ =
Ma − Mac

Mac

. (5.15)

The Marangoni number Ma and the film thickness h(x, t) are expanded into series of δ

as

Ma = Mac(1 + δ + δ2 + δ3 + · · · ), (5.16a)

h(x, t) = 1 + δh1(x, t, T1, T2) + δ2h2(x, t, T1, T2) + δ3h3(x, t, T1, T2) + · · · , (5.16b)

and these are substituted into (5.8) after the latter is multiplied by (1 + Bi h)3, eliminating
by this the denominators in various terms and bringing the equation into ‘polynomial form’
to simplify the forthcoming analysis. The problem is solved order by order in δ.

At first order in δ, the correction to the film thickness h1 due to the perturbations is
obtained in the form h1(x, t, T1, T2) = a(T1, T2) exp(i(kcx + sit)) + c.c., where a(T1, T2)

is the complex amplitude of the perturbation, yet unknown, evolving in slow time and c.c.
denotes complex conjugate.

At second order in δ, a linear differential equation in terms of the temporal growth
rate of the amplitude a(T1, T2) in slow time scale T1 is obtained. The growth rate
obtained at second order in δ is due to the normal modes, since the solution of
the differential equation turns out to be exponential, similar to h1 above, namely
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906 A12-22 R. Patne, Y. Agnon and A. Oron

h2(x, t, T1, T2) = b(T1, T2) exp(i(kcx + sit)) + c.c., with the complex amplitude b(T1, T2)

proportional to a(T1, T2)
2.

Finally, at third order in δ, the Landau equation governing the temporal evolution of the
amplitude function a ≡ a(T1, T2) in slow time T2 is obtained,

∂T2 a = λ1a − λ2|a|2a, (5.17a)

where λ1 and λ2 are the Landau parameters:

λ1 = −
4ikc[2(1 + Bi)2η + iBi kc]Mac

8Bi(1 + Bi)
, λ2 =

c1c4 − 3c2c3

c4c5
, (5.17b)

with kc = 2π/L the cut-off wavenumber and Mac the critical value of the
Marangoni number obtained from sr = 0 for k = kc, and si = −ηkMac. The constants
ci, i = 1, . . . , 5, are given by

c1 = −4(1 + Bi){kc[2(1 + 2Bi(4 + 5Bi))kc(Bo + k2
c)

− Ca(−6iBi(1 + 2Bi)η + kc + 9Bi kc)Mac] + 6iBi2Ca si},

c2 = kc{2(1 + Bi)(2 + 3Bi)kc(Bo + k2
c) + Ca[2i(1 + Bi)(1 + 4Bi)η

− (4 + 3Bi)kc]Mac} + 6iBi(1 + Bi)Ca si,

c3 = kc{2(1 + Bi)kc[Bo + 6Bi Bo + (7 + 24Bi)k2
c ]

+ Ca[2i(1 + Bi)(1 + 4Bi)η − (2 + 15Bi)kc]Mac} + 6iBi(1 + Bi)Ca si,

c4 = kc[2(1 + Bi)kc(Bo + 4k2
c) + 3iCa(η + Bi η + ikc)Mac]

+ 3i(1 + Bi)Ca si,

c5 = 8(1 + Bi)3Ca.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.17c)

For a film subjected to Marangoni stresses induced by a purely VTG, namely η = 0, the
Landau equation (5.17a) is real, the cubic coefficient λ2 is negative and bifurcation from
equilibrium is subcritical. Also, note that, in the case of η = 0, the coefficient λ1 contains
k2

c as a factor. The latter is positive if the cut-off wavenumber exists, i.e. the system is
linearly unstable, and it is negative if the system is linearly stable, i.e. kc does not exist
since k2

c < 0.
In the case of η /= 0, the Landau equation (5.17a) is complex. For sufficiently low values

of η, the real part of λ2 is negative, λ2r < 0, as shown in figure 12. This implies that the
temporal evolution according to (5.17a) is super-exponential, so the disturbances will go on
increasing for Ma > Mac, leading to film rupture and the formation of dry spots. However,
figure 12 also shows that, at sufficiently high η, the Landau coefficient λ2 satisfies the
condition λ2r > 0; therefore, bifurcation is then supercritical. As a consequence, the
temporal evolution of a leads to saturation of the interface disturbance and the emergence
of a stationary continuous interfacial shape. The effects of Bi, Bo and Ca on the value of
λ2r are illustrated in figure 12. It is interesting to note that, as η tends to zero, the value of
λ2r tends to a constant negative value.

Variations of the Bond number Bo, the Biot number Bi and the capillary number Ca

have strong effects on the value of λ2r, which also suggests that the bifurcation changes
its type from subcritical to supercritical with an increase in η. For sufficiently low values
of η, i.e. when the relative strength of the HTG is low, the film undergoes subcritical
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FIGURE 12. Variation of λ2r with the parameter η demonstrating the change in the bifurcation
type for the periodic domain of L = Lm ≈ 141.197, showing the effect of: (a) varying Bond
number Bo, with Bi = 0.01 and Ca = 0.001; (b) varying Biot number Bi, with Bo = 0.1 and
Ca = 0.001; and (c) varying capillary number Ca, with Bi = 0.01 and Bo = 0.1. The critical
value of Mac for these parameters is obtained using (5.14).

bifurcation, λ2r < 0. However, depending on the other parameters, at a particular η, λ2r

becomes positive and the film bifurcates supercritically from the equilibrium.
The implications of these results are as follows: The vertical component of the imposed

OTG leads to thermocapillary flow and increasing interfacial deformation, which tends to
rupture the film. The horizontal component of the imposed gradient induces flow in the
x-direction. This flow brings liquid into the thinning part of the film, and the thinning
process may be weakened or even halted if the rate of filling in is sufficiently fast. The
transition of the bifurcation from subcritical for lower values of η to supercritical for larger
η supports this observation. The subcritical bifurcation suggests an unbounded increase
in the amplitude of the interfacial deformation which results in film rupture, whereas
supercritical bifurcation yields a halt in the amplitude growth and therefore amplitude
saturation. Hence, a careful control of the imposed HTG could be used in manipulating
the emergence of the dry spots.

Figure 13 presents the results of the numerical investigation of (5.8) in a long periodic
domain of length L = Lm ≈ 141.197 (equivalent to ǫ = 0.007) for the Marangoni number
Ma = 70 near its critical value Mac = 68.667 for Ca = 0.001, Bo = 0.1 and Bi = 0.01.
We stress that the full numerical study of (5.8) is not within the scope of the current
paper. It is focused here only on the illustration of the film dynamics near criticality.
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FIGURE 13. Spatiotemporal evolution of the film for Ma = 70, Bo = 0.1, Bi = 0.01 and
Ca = 0.001 for various values of η in the periodic domain corresponding to the wavelength of the
fastest-growing linear mode L = Lm ≈ 141.197. Curves 1–4 correspond to η = 0.005, 0.02, 0.03
and 0.05, respectively. (a) Phase plane portraits describing temporal variation of the local film
thickness at x = 0 following the transient period. The closed character of all curves suggests that
they depict interfacial travelling waves propagating in the positive x-direction. Here ht represents
the time derivative at the location x = 0. Each of the contours shown here represents at least 10
full loops around the periodic domain. (b) Snapshots of the interfacial shape h(x). Curves 1–4
display interfacial travelling waves h(x) at t = 12 000, 5000, 5000 and 12 000, respectively; curve
5 shows the interfacial shape h(x) for η = 0.001 near rupture at t ≈ 518.5.

Equation (5.8) is solved with periodic boundary conditions in the domain 0 ≤ x ≤ L and
with the initial condition h(x, t = 0) = 1 + 0.05 cos(2πx/L). The numerical approach
used here is similar to that described in detail by Haimovich & Oron (2010) with a uniform
grid with 1000–2000 grid points and the time step of O(10−3).

In the case of η = 0, for Ma > Mac the film is linearly unstable and its spatiotemporal
evolution results in its rupture, namely at a specific location within the periodic domain
the instantaneous film thickness approaches zero, h ≪ 1. When the left–right symmetry
is broken by introducing an HTG and hence η /= 0, a flow to the right emerges. With
sufficiently low values of η the flow is weak and the film rupture remains the only scenario
that takes place in the long-time range. Curve 5 in figure 13(b) shows the shape of the
interface h(x) near the moment of rupture in the case of η = 0.001. The trough of the
interface displays multiple satellite drops, which are reminiscent of a sequence of fingering
events discussed in Boos & Thess (1999) and Oron (2000). The difference between the
pattern shown here by curve 5 in figure 13(b) and the patterns shown in Boos & Thess
(1999) and Oron (2000) is the absence of symmetry induced by the flow along the x-axis.
It is important to emphasize that (Boos & Thess 1999) used the original hydrodynamic
equations to solve the problem numerically, whereas (Oron 2000) employed the long-wave
theory to do that. It is also noteworthy that the approach to rupture is moderately slow in
the absence of van der Waals force. Should the attractive van der Waals force be taken into
consideration, once the film has sufficiently thinned, the process of rupture would be fast.
If a repulsive van der Waals force were included in the model, the film would not rupture,
and an ultrathin ‘adsorbed’ layer would form in the trough on the microscopic scale. In
any case, from the macroscopic point of view, the film will rupture.

With an increase in the value of η, the flow along the x-axis intensifies, the film
saturates, the minimal thickness of the film stays away from zero and rupture is prevented.
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Figure 13(a,b) display, respectively, the phase plane portraits of the evolution past the
transient period and the interfacial shapes in the long-time limit. Curves 1–4 in both
panels correspond to η = 0.005, 0.02, 0.03 and 0.05, respectively. As follows from the
phase plane portraits of the time history of the local film thickness taken at x = 0 for the
four flows, each of them reaches the state of a travelling wave propagating to the right
without a change in its shape. The interfacial shapes presented in figure 13(b) are taken
at large times which are due to a slow spatiotemporal evolution of the film arising from
a small supercriticality δ ≈ 0.02. Note that similar features of flows, namely rupture for
small tilt angles and saturation for larger tilt angles, was observed in the case of the film
falling on the underside of a planar substrate tilted with respect to the horizontal in the
gravitational field (Oron & Rosenau 1992).

The weakly nonlinear analysis presented above predicts the transition from subcritical
bifurcation to supercritical bifurcation for the given parameter set at η = η̃ ≈ 0.03354, as
demonstrated in figure 12(c). The results presented here show a qualitative agreement
between the threshold of the change in the type of bifurcation and the results of the
numerical solution of the nonlinear evolution equation (5.8).

We find that, on the one hand, the fully nonlinear analysis based on numerical solution
of (5.8) indicates that the transition from rupture for small values of η and the emergence
of continuous saturated states of the system takes place between η = 0.001 and η = 0.005
for the chosen parameter set. On the other hand, the weakly nonlinear analysis predicts the
transition value at η = η̃, which in the considered case is at η̃ ≈ 0.03354. Below this value
the bifurcation is subcritical,and therefore an indefinite growth of the interfacial amplitude
culminating in film rupture is expected, and above it, the bifurcation is supercritical, and
the growth of the interfacial deformation is saturated. Note that this apparent mismatch
arises from the fact that the weakly nonlinear analysis is carried out on small deviations
from equilibrium, whereas the eventual saturation of the interfacial shape takes place when
the deformation of the interface is large and sometimes at the stage where the film is near
rupture.

It is interesting to note that the transition value η = η̃ arising from the weakly nonlinear
analysis and also the transition value of η = η̄ separating the ruptured and continuous
saturated regimes as determined from the numerical solution of the evolution equation
(5.8) increase with an increase in the length of the periodic domain L for the parameter set
of figure 13. It is found that, similar to the case of L = Lm mentioned and explained above,
η̄ < η̃.

We note that trajectories 2 and 4 on the phase plane portraits in figure 13(a) each display
a small closed loop, whereas curve 3 features two such loops. All of these correspond to
secondary dimples on the corresponding shape of the interfacial wave in figure 13(b).

We also note that, despite the fact that the cases shown in figure 13 are near criticality,
there exists a large difference between the temporal period T of the travelling waves
obtained numerically and presented here and the value obtained from the linear stability
analysis, |Lm/(si/k)| = Lm/(Maη), which is ≈ 2.017/η for the example presented in
figure 13. The values of T obtained numerically for the cases presented by curves 1–4
are 705.0, 129.0, 106.6 and 66.25, respectively.

6. Conclusions

In the present study, we consider the Marangoni instability in a liquid layer with
a deformable interface subjected to the presence of an oblique temperature gradient
(OTG). We carry out the general linear stability analysis (GLSA) of the system and
also both the linear and weakly nonlinear stability analyses in the framework of the
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thin-film approximation. We reveal the stabilizing effect of the horizontal component
of the imposed temperature gradient (HTG) on the instabilities driven by the vertical
component of the imposed temperature gradient (VTG), and demonstrate the existence
of a new class of instability modes which are a consequence of the interaction between the
two aforementioned components of the imposed temperature gradients.

The predicted stabilization of the long-wave instability imposed by the VTG is due
to an additional VTG induced in the base state by the imposed HTG counteracting the
imposed VTG. This feature leads to the formation of an island of instability in the η–Mac

plane, where η denotes the ratio between the components of the imposed HTG and VTG.
For sufficiently high values of η, a new class of instability modes originate due to the
interaction between the imposed VTG and the thermocapillary flow driven by the imposed
HTG. This new class of modes exhibit characteristic scaling Mac ∼ η−1 and kc ∼ const.
In the region characterized by the dominance of the HTG, these modes are responsible for
the instability.

A decrease in the Bond number (Bo) leads to the widening of the instability island
caused by the long-wave instability in the η–Mac plane but has a negligibly small effect
on the new class of modes. In contrast, a decrease in the Prandtl number Pr leads to a
reduction in the critical value Mac for the new class of modes; the instability island of the
long-wave instability is negligibly affected.

The linear stability analysis in the framework of the thin-film approximation does not
reveal stabilization of the long-wave instability, in contradiction with the GLSA, which
is due to the absence of the induced VTG component by the imposed HTG at the
relevant order in the thin-film analysis. This disagreement between the GLSA and the
thin-film analysis could probably be remedied by stepping up in the order of the thin-film
approximation.

To further understand the role of the imposed HTG on the dynamics of the thin film
beyond the linear stability theory, a weakly nonlinear stability analysis is carried out. It
reveals the transition of the bifurcation type from subcritical in the absence of, or in the
presence of, a weak imposed HTG to supercritical in the presence of a stronger HTG. This
suggests the possibility of utilizing the HTG in manipulation of thin films and prevention
or mitigating dry spot formation. Numerical solution of a pertinent nonlinear evolution
equation supports the results of the weakly nonlinear stability analysis and shows the
emergence of film rupture, travelling stationary and non-stationary waves.

Appendix A. Details of the numerical approach

To carry out the linear stability analysis of the problem at hand, the pseudo-spectral
method is employed in which the eigenfunctions are expanded into series of Chebyshev
polynomials. For convenience, the domain 0 ≤ y ≤ 1 is transformed into −1 ≤ y ≤ 1 by
stretching y → 2y − 1.

The eigenfunctions for the perturbed velocity, pressure and temperature fields in
(2.10)–(2.11) are expanded in terms of Chebyshev polynomials as

ṽx( y) =

m=N∑

m=0

amTm( y), ṽy( y) =

m=N∑

m=0

bmTm( y), ṽz( y) =

m=N∑

m=0

cmTm( y),

p̃( y) =

m=N∑

m=0

dmTm( y), T̃( y) =

m=N∑

m=0

emTm( y),

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 1)
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where Tm( y) are Chebyshev polynomials of degree m and N is the highest degree of the
polynomial in the series expansion or equivalently the number of collocation points. The
coefficients am, bm, cm and gm are the unknowns to be solved for. The expansion series for
the derivatives of the eigenfunctions are simply obtained by taking the derivative of the
series as, for instance,

Dṽx( y) =

m=N∑

m=0

amDTm( y), (A 2)

where D = d/dy is the differentiation operator. Similar expansions are written for the rest
of the dependent variables in (A 1) as well. All series expansions are then substituted into
the governing equations. For example, the discretized form of the x-momentum balance
equation (2.10b) is

1

Pr

[
(s + ikv̄x)

m=N∑

m=0

amTm( y) + Dv̄x

m=N∑

m=0

bmTm( y)

]

= −ik
m=N∑

m=0

dmTm( y) +

m=N∑

m=0

amD2Tm( y) − (k2 + m2)

m=N∑

m=0

amTm( y). (A 3)

The remaining governing equations are then discretized in a similar manner.
The boundary conditions (2.11a) at the solid substrate, i.e. y = −1, become

m=N∑

m=0

amTm(−1) = 0,

m=N∑

m=0

bmTm(−1) = 0,

m=N∑

m=0

cmTm(−1) = 0, (A 4a–c)

m=N∑

m=0

emTm(−1) = 0. (A 5)

There are five boundary conditions at the free surface, one of which is utilized to eliminate
the amplitude of the perturbed location of the free surface h̃. Here the normal stress
balance boundary condition (2.11e) is solved for h̃, which yields an expression for ξ̃ in
terms of the perturbed pressure and normal stress component

h̃ = −
Ca

Bo + k2 + m2 − 2ikCa Dv̄x

(−p̃ + 2Dṽy). (A 6)

Equation (A 6) is then substituted into the rest of the boundary conditions. The kinematic
boundary condition now yields

ṽx + (s + ikv̄x)
Ca

Bo + k2 + m2 − 2ikCa Dv̄x

(−p̃ + 2Dṽy) = 0, (A 7)

and upon substitution of the Chebyshev series expansion into it, this results in

m=N∑

m=0

amTm(1) +
Ca(s + ikv̄x)

Bo + k2 + m2 − 2ikCa Dv̄x

(
−

m=N∑

m=0

dmTm(1) + 2
m=N∑

m=0

bmDTm(1)

)
= 0.

(A 8)
A similar procedure is then followed for the rest of the boundary conditions at the free
surface y = 1.
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The generalized eigenvalue problem is then constructed in the form

Ae + sBe = 0, (A 9)

where A and B are the matrices obtained from the discretization procedure explained above
and e is the vector containing the coefficients of all series expansions (A 1).

In these matrices, each eigenfunction corresponds to an N × N block, so ṽx occupies
the first N rows and columns, the second eigenfunction ṽz occupies the next N rows and
columns from N + 1 to 2N, and so on. Thus, matrices A and B are of order 5N × 5N.

Further details of the discretization of the governing equations and boundary conditions,
and of the construction of the matrices A and B can be found in the standard procedure
described by Canuto et al. (1987), Gottlieb & Orszag (1987), Trefethen (2000) and
Schmid & Henningson (2001). Next, we use the MATLAB routine polyeig to solve the
constructed generalized eigenvalue problem (A 9). To filter out the spurious modes from
the numerically computed spectrum of the problem, the latter is obtained for N and N + 2
collocation points, and the eigenvalues are compared with a specified tolerance, e.g. 10−4.
The genuine eigenvalues are verified by increasing the number of collocation points by 25
and monitoring the variation of the obtained eigenvalues. Whenever the eigenvalue does
not change up to a prescribed precision, e.g. to the sixth significant digit, the same number
of collocation points is used to determine the critical parameters of the system. In the
present work, N = 75 is found to be sufficient to achieve convergence and to determine
the leading most unstable eigenvalue within the investigated parameter range.
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