
The sbv IMPROVER Systems Toxicology computational challenge:
Identification of human and species-independent blood response

markers as predictors of smoking exposure and cessation status

Vincenzo Belcastro a,⇑,1, Carine Poussin a,⇑,1, Yang Xiang a, Maurizio Giordano o, Kumar Parijat Tripathi o,
Akash Boda a, Ali Tugrul Balci l,3, Ismail Bilgen l,3, Sandeep Kumar Dhanda n,3, Zhongqu Duan i,k,3,
Xiaofeng Gong i,k,3, Rahul Kumarm,3, Roberto Romero d,e,f,g,h,3, Omer Sinan Sarac l,3, Adi L. Tarca b,c,3,
Peixuan Wang i,k,3, Hao Yang i,j,3, Wenxin Yang i,j,3, Chenfang Zhang i,k,3, Stéphanie Boué a,
Mario Rosario Guarracino o, Florian Martin a, Manuel C. Peitsch a, Julia Hoeng a

a PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland2

bDepartment of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
cDepartment of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
d Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA
e Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI 48201, USA
fDepartment of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
gDepartment of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48825, USA
hCenter for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
i SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
j School of Mathematics Sciences, Shanghai Jiao Tong University, Shanghai, China
kDepartment of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
l Istanbul Technical University, Istanbul, Turkey
m Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
n La Jolla Institute for Allergy and Immunology, 9420, Athena Circle, La Jolla, CA 92037, USA
o Istituto di Calcolo e Reti ad Alte Prestazioni CNR, Via P. Castellino, 111 80131 Napoli, Italy

a r t i c l e i n f o

Article history:

Received 20 April 2017

Received in revised form 23 June 2017

Accepted 12 July 2017

Available online xxxx

Keywords:

Systems toxicology

Computational challenge

Gene signature

Smoking biomarker

Blood biomarkers

a b s t r a c t

Cigarette smoking entails chronic exposure to a mixture of harmful chemicals that trigger molecular

changes over time, and is known to increase the risk of developing diseases. Risk assessment in the con-

text of 21st century toxicology relies on the elucidation of mechanisms of toxicity and the identification

of exposure response markers, usually from high-throughput data, using advanced computational

methodologies.

The sbv IMPROVER Systems Toxicology computational challenge (Fall 2015-Spring 2016) aimed to

evaluate whether robust and sparse (�40 genes) human (sub-challenge 1, SC1) and species-

independent (sub-challenge 2, SC2) exposure response markers (so called gene signatures) could be

extracted from human and mouse blood transcriptomics data of current (S), former (FS) and never

(NS) smoke-exposed subjects as predictors of smoking and cessation status. Best-performing computa-

tional methods were identified by scoring anonymized participants’ predictions.

Worldwide participation resulted in 12 (SC1) and six (SC2) final submissions qualified for scoring.

The results showed that blood gene expression data were informative to predict smoking exposure (i.e.

discriminating smoker versus never or former smokers) status in human and across species with a high
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level of accuracy. By contrast, the prediction of cessation status (i.e. distinguishing FS from NS) remained

challenging, as reflected by lower classification performances. Participants successfully developed induc-

tive predictive models and extracted human and species-independent gene signatures, including genes

with high consensus across teams. Post-challenge analyses highlighted ‘‘feature selection” as a key step

in the process of building a classifier and confirmed the importance of testing a gene signature in indepen-

dent cohorts to ensure the generalized applicability of a predictive model at a population-based level.

In conclusion, the Systems Toxicology challenge demonstrated the feasibility of extracting a consistent

blood-based smoke exposure response gene signature and further stressed the importance of independent

and unbiased data and method evaluations to provide confidence in systems toxicology-based scientific

conclusions.

� 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Holy grail in systems toxicology: can specific markers of exposure

response to chemical(s) be identified in blood?

Humans are constantly exposed to individual or mixtures of

chemicals (e.g., cigarette smoke, pollutants, pesticides, and other

chemicals) that may have effects on their cells. If chemicals are

harmful and/or cumulative doses of chemicals exceed a threshold

limit value, exposure can lead to cellular/tissue damage and dys-

function, which in turn can increase risk of disease development.

Hence, identification of specific markers elicited in response to

(specific) chemicals is important to assess the exposure status of

subjects and to associate exposure with toxicity outcomes. The

appropriate combination of identified markers constitutes a speci-

fic exposure response fingerprint or signature discriminating

exposed and non-exposed subjects. Such a signature may also dis-

tinguish formerly-exposed and never-exposed subjects. Exogenous

chemicals (e.g., lead), chemical-derived metabolites, and endoge-

nous molecules produced by primarily exposed organs (e.g., lung,

gut) can pass into the blood stream and may induce molecular

changes in blood cells [1]. Therefore, investigating whether specific

markers in response to chemical exposure can be identified in

blood cells may be highly valuable for monitoring chemical expo-

sure [2,3]. Interestingly, new ‘omics’ technologies (e.g., genomics,

transcriptomics, proteomics, metabolomics, lipidomics) can be

applied to toxicity testing in order to increase efficiency and pro-

vide a more data- and system-driven approach to exposure

response assessment [3,4].

Gene signature-based classification models for biological/clinical

status prediction

Transcriptomics-based technologies enable biological mecha-

nistic insights to be gained by measuring whole-genome gene

expression levels. Transcriptomics data have also been used exten-

sively to develop classification models predictive of disease diag-

nosis or prognosis, tumor subtyping, adverse drug response, and

therapeutic outcome [5–8]. Gene signatures are generally derived

from disease-relevant tissues such as liver, lung, and tumors. How-

ever, blood can be collected easily for diagnostics (minimally inva-

sive) and only small quantities are necessary for transcriptomics

profiling. Therefore, more and more investigations have used blood

samples to identify gene signatures that may be leveraged for the

development of tests such as In Vitro Diagnostic Multivariate Index

Assays [9,10]. The real-world application of gene signature-based

classification models as reliable tools for predictive medicine is still

limited [11]. This is mainly because (i) it is difficult to identify

robust and sufficiently sparse signatures for the development of

ready-to-use diagnostic tools and (ii) the way models are built

often leads to poor predictive performance when applied to new

individual samples (e.g., lack of validation in independent cohorts

to test robustness and generalized applicability in populations, or

the use of transductive method-based models [12]).

The systems biology verification Industrial Methodology for

PROcess VErification in Research (sbv IMPROVER [13]; https://sb-

vimprover.com) project aims to verify methods and data in sys-

tems biology/toxicology using double-blind performance

assessment. Over the past six years, sbv IMPROVER organized

crowd-sourced challenges covering a broad range of scientific

questions [14–18]. The first one titled Diagnostic Signature Chal-

lenge in 2012 was designed to assess to what extent models

trained on transcriptomics data available in public repositories

could predict the diagnosis of individual subjects in unrelated

datasets for four disease types [18]. Many of the classification mod-

els proposed were transductive (i.e., training and test sets are pro-

cessed together and prediction model solely applies to this specific

test set) rather than inductive (i.e., the signature model is applied

to a single new sample without retraining), which may lead to poor

classification on a new single patient sample and may be impracti-

cable for real-world application. These limitations were considered

in the design and constraint of new classification problems in our

latest computational challenge open to the scientific community

and described below.

Application of omics-based classification to toxicogenomics using

blood as surrogate tissue: prediction of tobacco smoke exposure and

cessation

In liver and pulmonary toxicity studies, gene signatures have

been identified successfully in blood showing (i) capability to pre-

dict exposure and toxicity to chemicals such as acetaminophen in

liver (drug-induced liver injury) or crystalline silica in lung; (ii)

superior sensitivity as predictors of toxicity compared with the

classical toxicity markers in rats; and (iii) to some extent, similar-

ities in pathways and functions that are perturbed in primary tis-

sue and blood [3]. These findings, in addition to its easy access,

make blood highly relevant as a surrogate to identify gene

expression-based signatures as specific markers for toxicological

evaluation and risk assessment. Smoking is a major risk factor for

the development of various diseases (e.g., cardiovascular and lung

diseases) [19]. Smokers are exposed to a mixture of thousands of

chemical constituents when cigarette smoke is inhaled. Among

them, some constituents or their metabolites that pass into the

blood circulation elicit systemic effects distal from the lungs, the

primary site of exposure. For example, changes in gene expression

in circulating peripheral blood cells are associated with several

systemic immune and inflammatory-related disorders [20,21].

Smoking cessation has been shown to revert some cigarette

smoke-induced functional and molecular changes back to non-

smoker levels or intermediate levels depending on the subject’s

smoking history (e.g., smoking duration, consumption) and
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cessation period [22–24]. Therefore, the identification of specific

markers of response to smoking or cessation in whole blood cells

may be an important way to monitor the exposure status of an

individual subject. In general, blood-based signatures for smoking

exposure that have been reported in the literature share very few

genes [25–27]. Most pre-clinical toxicological in vivo studies are

conducted in rodents, adding a degree of complexity when apply-

ing the results to humans. This raises the question of the translata-

bility of blood-based exposure response gene signatures between

human and rodents that was also addressed in the challenge.

The Systems Toxicology computational challenge

The latest sbv IMPROVER computational challenge in the scope

of this manuscript and titled ‘‘Systems Toxicology” (from Novem-

ber 2015 to May 2016) had the objective to assess whether gene

expression data from blood cells were sufficiently informative to

extract specific blood response markers (i.e. signature) to predict

smoking exposure and cessation status in human (sub-challenge

1, SC1) and across species for (sub-challenge 2, SC2) translational

toxicology (https://sbvimprover.com/challenge-4/the-computa-

tional-challenge; Fig.1a). Participants were asked to develop

blood-based gene signature classification models that could (i) dis-

criminate smoking exposure status, i.e. separate smoke-exposed

and non-current smoke-exposed subjects, and (ii) among non-

current smoke-exposed subjects, distinguish formerly and never

smoke-exposed subjects (cessation status) (Fig.1b).

The challenge rules constrained participants to develop induc-

tive rather than transductive predictive classification models that

could identify gene signatures that did not exceed 40 genes (spar-

sity). The Affymetrix gene expression datasets provided for the

challenge included blood samples from smoker/smoke-exposed,

former smoker/formerly smoke-exposed, and never smoker/never

smoke-exposed groups of subjects from clinical (human) and

in vivo mouse studies. The participants received class labels and

data for the training dataset and also had the freedom to use

additional public and/or private gene expression data to train their

models. Then, the participants were asked to apply their trained

predictive classification models directly on new data from inde-

pendent studies (test dataset) and to provide confidence levels that

a blood sample belonged to one class or the other. After closure of

the challenge, anonymized participants’ predictions were scored

using pre-defined metrics for performance assessment and best-

performing teams were identified. The present manuscript sum-

marizes the results and learnings from the Systems Toxicology

computational challenge.

Materials and methods

Study population and designs

Whole blood samples were acquired in the context of clinical

and in vivo mouse studies conducted by Philip Morris Interna-

tional, or from a Biobank repository. Populations and designs for

the different studies are described below. Whole blood was col-

lected in PAXgeneTM tubes and frozen at �80 �C until it was further

processed to generate transcriptomics data. Details of the different

studies described hereafter are available in Supplementary table 1.

QASMC study (dataset H1)

The Queen Ann Street Medical Center (QASMC) study is a clin-

ical case–control study [28] that was conducted between July

2011 and December 2012 at The Heart and Lung Centre (London,

UK), after approval from the National Health Service (NHS) Black

Country Ethics Committee and in strict compliance with the Inter-

national Conference on Harmonization-Good Clinical Practice

(ICH-GCP) guidelines. The study was registered at ClinicalTrials.gov

with the identifier NCT01780298. The QASMC study aimed to iden-

tify biomarker(s) that would enable differentiation between smok-

ers with chronic obstructive pulmonary disease (COPD) (i.e.,

cigarette smoke with a �10 pack/year smoking history and COPD

disease classified as GOLD Stage 1 or 2) and three comparative

Fig. 1. Overview of the Systems Toxicology computational challenge. (a) Human and mouse blood samples were collected from smokers/3R4F-exposed (S/3R4F) and non-

current smokers/not-exposed-to-3R4F (NCS) (mouse: exposed and non-exposed) and gene expression was measured. Classification approaches were developed by the

participants to identify exposed and non-exposed subjects. (b) Human and mouse samples were divided into training (H1 and M1a) and test (H2 and M2a) datasets. Training

datasets and class labels were released to allow participant to train their models. Test datasets (including mock samples) were released in two subsets. Participants were

asked to provide their predictions on the first subset before the second subset was released. Participants had to apply their models to assess the class labels for the samples in

the test set.
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groups of matched subjects (matched by ethnicity, sex, and age

(within 5 years) with the recruited COPD subjects): smokers (S),

former smokers (FS), and never smokers (NS). All smoking subjects

(S and FS) had a smoking history of at least 10 pack-years. FS quit

smoking at least 1 year prior to sampling (�78% of FS have stopped

for more than 5 years). Sixty subjects in each group were enrolled

(�240 subjects in total:�60 S with COPD,�60 S, 60 FS, and 60 NS).

The 240 patients included males (58%) and females (42%) aged

between 40 and 70 years. The microarray data are available in

the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress)

under accession number E-MTAB-5278.

BLD-SMK-01 (dataset H2)

The transcriptomics dataset BLD-SMK-01 (H2) was produced

from PAXgeneTM blood samples obtained from a banked repository

(BioServe Biotechnologies Ltd., Beltsville, MD, USA) based on

defined inclusion/exclusion criteria as follows. At the time of sam-

pling, the subjects were between 23 and 65 years of age. Subjects

with a disease history and those taking prescription medications

were excluded. Smokers had smoked at least 10 cigarettes daily

for at least three years. Former smokers had ceased smoking at

least two years prior to sampling and before quitting had smoked

at least 10 cigarettes daily for at least three years. Smokers and

never smokers were matched by age and sex, while former smok-

ers could not be properly matched due to the lower number of

samples available for this group. The microarray data are available

in the ArrayExpress database under accession number E-MTAB-

5279.

ZRHR-reduced exposure (REX)C-03-EU and -04-JP studies (datasets

H3 and H4)

The REXC-03-EU and C-04-JP studies were randomized, con-

trolled, open-label, 3-arm parallel group, and single-center studies

(Supplementary Fig. 1a). These studies were performed to demon-

strate reductions in exposure to selected smoke constituents for

healthy subjects switching to the tobacco heating system THS2.2

(Switch) corresponding to a candidate modified-risk tobacco pro-

duct (MRTP), or smoking abstinence (cessation or Cess), compared

with continuing to use conventional cigarettes (considered as

smokers), for 5 days in confinement [29,30]. The studies were con-

ducted in Europe (C-03-EU) and Japan (C-04-JP) and were regis-

tered at ClinicalTrials.gov with the identifiers NCT01959932 and

NCT01970982, respectively. The microarray data are available in

the ArrayExpress database under accession numbers E-MTAB-

5332 (C-03-EU) and E-MTAB-5333 (C-04-JP).

Mouse C57Bl6-pMRTP-SW inhalation study (dataset M1a/b)

A 7-month inhalation study was conducted with female

C57BL/6 mice [24]. The study design (Supplementary Fig.1b)

included five groups of mice that were exposed to: (1) cigarette

smoke from a reference cigarette (3R4F), (2) air after 2-month

exposure to 3R4F (Cess), (3) air only (Sham), (4) mainstream aero-

sol from a potential MRTP (pMRTP), or (5) switched to a pMRTP

after 2-month exposure to 3R4F (Switch) [24]. Data from the latter

two groups were provided to the challenge participants for verifi-

cation purposes and results associated with these data are dis-

cussed in a separate manuscript [31]. For each group, blood

samples were collected from 7 to 10 animals at 2, 3, 5 and

7 months. Samples from the 3R4F, pMRTP, and Sham groups were

also collected at 4 months. The microarray data are available in the

ArrayExpress database under accession number E-MTAB-5281.

Mouse Apoe-/- -THS2.2-SW inhalation study (dataset M2a/b)

An 8-month inhalation study was conducted with female

Apoe�/� mice randomized into different groups [32]. The study

design (Supplementary Fig. 1c) included five groups of mice that

have been exposed to (1) cigarette smoke from 3R4F, (2) air for

6 months after 2-month exposure to 3R4F (Cess), (3) air (Sham)

for up to 8 months, (4) mainstream aerosol from THS2.2, at nico-

tine levels matched to those of 3R4F for up to 8 months, or (5)

THS2.2 for 6 months after 2-month exposure to 3R4F (switch).

Data from these two latest groups were provided to the challenge

participants for verification purposes and results associated with

these data are discussed in a separate manuscript [31]. For each

group, blood was sampled at 1, 2, 3, 6, and 8 months. The microar-

ray data are available in the ArrayExpress database under acces-

sion number E-MTAB-5280.

Both potential MRTP and THS2.2 (the candidate MRTP) are heat-

not-burn tobacco-based technologies. The tobacco heating system

(THS)2.2, uses an electrically heated system [33], and pMRTP uses

a fast-lighting carbon tip as heat source [24].

Transcriptomics data generation and processing

RNA isolation from human blood samples

For each clinical and in vivo study, the samples were random-

ized prior to RNA extraction. For the clinical studies, total RNA

was isolated using a PAXgeneTM Blood miRNA Kit (catalog number

763134; Qiagen, Venlo, The Netherlands) according to the manu-

facturer’s instructions. For the in vivo mouse studies, total RNA

was isolated using a RNeasy Protect Animal Blood Kit (catalog

number 73224; Qiagen, Venlo, The Netherlands) according to the

manufacturer’s instructions. The concentration and purity of the

RNA samples were determined using a UV spectrophotometer

(NanoDrop� 1000 or Nanodrop 8000; Thermo Fisher Scientific,

Waltham, MA, USA) by measuring the absorbance at 230, 260,

and 280 nm. RNA integrity was further checked using an Agilent

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Only

RNA samples with a RNA integrity number (RIN) >6 were pro-

cessed for further analysis.

RNA preparation and hybridization on Affymetrix chip

Targets were prepared from 80 ng of RNA using the Ovation�

Whole Blood Reagent and Ovation RNA Amplification System V2

(NuGEN, AC Leek, The Netherlands). The quantity of cDNA was

measured with a SpectraMax� 384Plus microplate reader (Molec-

ular Devices, Sunnyvale, CA, USA). The cDNA quality was deter-

mined by assessing the size of the unfragmented cDNA using a

Fragment Analyzer (Advanced Analytical, Ankeny, IA, USA). The

size distribution of the final fragmented and biotinylated product

was also monitored using electropherograms on an Agilent 2100

Bioanalyzer (Santa Clara, CA, USA). After fragmentation and label-

ing the cDNA fragments for human and mouse were hybridized

on a GeneChip� Human Genome U133 Plus 2.0 Array or GeneChip�

Mouse Genome 430 2.0 Array (Affymetrix), respectively, according

to the manufacturer’s guidelines.

For the QASMC study (H1 dataset), target preparation from

blood samples and hybridization on a GeneChip� Human Genome

U133 Plus 2.0 Array (Affymetrix) were performed by AROS Applied

Biotechnology AS (Aarhus, Denmark).

Raw data processing and QC

Raw data (CEL files) from each dataset were processed and nor-

malized in the R environment (v3.1.2, [34]) using frozen Robust

Microarray Analysis, fRMA v1.18 [35]. Frozen parameter vectors

for mouse (mouse4302frmavecs v1.3.0, [36]) and human (hgu133-

plus2frmavecs v1.3.0, [37]) were used by the frma functions. The

custom brainarray cdf files for mouse (mouse4302mmentrezgcdf

v16.0.0) and human (hgu133plus2hsentrezgcdf v16.0.0 [38]) were

used for Affymetrix probe-to-Entrez Gene ID mapping, resulting in

one probe set for one gene (for details, see Supplementary informa-

tion). Normalized-unscaled standard error (NUSE), relative log
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expression (RLE), median absolute value RLE (MARLE) and pseudo-

images as well as raw images plot were generated for quality check

of the data.

Differential gene expression analysis

Differential expression for contrasts of interest (smoker vs non-

current smoker) was determined by linear modeling using the

limma R package v3.22.1 [39].

The Systems Toxicology challenge

Goals and rules

Participants were asked to develop robust and sparse human

(sub-challenge 1, SC1) and species-independent (sub-challenge 2,

SC2) blood-based gene signature classification models to discrimi-

nate between smoke-exposed and non-currently smoke-exposed

subjects (task 1, Fig.1b), and subsequently (ii) to classify non-

currently smoke-exposed subjects, as former and never smoke-

exposed subjects (task 2, Fig.1b). As a first constraint, predictive

models were requested to be inductive, as opposed to transductive

[12], with the ability to predict the class of a single new blood sam-

ple without the need to retrain/refine the model or use semi-

supervised approach(es) combining training and test datasets to

predict sample class. Participants had the opportunity to develop

3-class prediction model. As a second constraint, the length of

the signatures could not exceed 40 genes.

Data preparation and release

After data processing and normalization, datasets were

prepared for release to the participants. Sample names were

anonymized using random generated unique names in the format

‘‘S_+10 alphanumeric characters”. The metadata included the sex

for each sample.

Training datasets. Participants were provided with data and

class/group labels from the H1 (Clinical QASMC study) and M1a

(Mouse C57Bl6-pMRTP-SW inhalation study) datasets to train their

blood-based gene signature classification models (Fig.1b and Sup-

plementary table 1). H1 was released as the training set for SC1

(224 samples, and 18,604 genes). H1 (human) and M1a (mouse)

were released as the training sets for SC2 (224 and 112 samples,

respectively). Only human genes with a mouse homolog (14,311

genes) were retained in the two sets, as described below. The par-

ticipants had the freedom to use additional private and/or public

blood-related datasets for training.

Test and verification datasets. Participants applied their trained

blood-based gene signature models (see Supplementary table 2

for the full list of methods applied) on test sets of gene expression

data: H2 for SC1 and H2 plus M2a (Mouse Apoe-THS2.2-SW inhala-

tion study) for SC2. Additional datasets provided for verification

purposes [31] and not used for scoring were the H3/H4 (REXC-

03-EU and C-04-JP) datasets for SC1, and the H3/H4 and M1 b/

M2 b datasets for SC2. For each sub-challenge, test and verification

sample data were randomized and then split into two subsets

released sequentially at different dates during the challenge

(Fig. 1b). Samples from the different exposure groups were simi-

larly distributed between the two subsets. To check whether par-

ticipants did use inductive rather than transductive methods for

class prediction, 10% of samples of subset 1 were included in sub-

set 2. The class predictions and confidence values for those samples

had to match between the two subsets. Mock sample data were

added and randomized with the original sample datasets to avoid

group identification using unsupervised analysis of the test dataset

(e.g., clustering). Details of the preparation and release of the test

and verification datasets for the challenge are available in the Sup-

plementary information.

Human-mouse homology mapping procedure

Mouse genes were orthologized to human genes using the

NCBI/HCOP mapping database [40] (download 11 Dec. 2014).

HCOP aggregates orthology predictions from multiple sources.

Ortholog candidates were selected on the basis of supporting evi-

dence from these sources. HomoloGene database was selected as

preferred source. For mouse genes mapping to multiple human

genes with equal support, the ortholog candidate with matching

gene symbol was preferred. Alternatively, the first candidate

was selected. To facilitate the dataset handling, human and

mouse gene expression datasets were provided with mouse gene

symbols for both. A list of the orthologous genes between human

and mouse that were retained for the datasets is given in Supple-

mentary table 3.

Predictive blood-based gene signature classification models

Participants applied diverse selection methods including filter,

wrapper, and embedded methods [41] to identify genes discrimi-

native of exposure groups. Various machine learning methods

were used to train blood-based gene signature classification mod-

els and estimate performances using cross-validation (Supplemen-

tary table 2).

Scoring participants’ class predictions

For each sample from the test and verification datasets, partic-

ipants were requested to provide a confidence value P (between 0

and 1) that the sample belonged to class 1 (e.g. smokers), and a

confidence value 1-P that the sample belonged to class 2 (e.g.

non-current smokers). P and 1-P were requested to be unequal.

Prior to the challenge opening, the scoring strategy was defined

and approved by an external and independent Scoring Review

panel of experts in the field. Samples present in the test dataset,

and not in the verification dataset, were used to assess team per-

formances in each sub-challenge. Anonymized participants’ class

predictions were scored using the area under the precision recall

(AUPR) curve and Mathews correlation coefficient (MCC) metrics

[42]. The AUPR was computed as the integral between 0 and 1 of

the area drawn by the precision and recall values. For MCC, a

threshold of 0.5 was defined to binarize confidence values and

build confusion matrices to compute MCC values that range

between�1 and +1. The formulae used are reported as Supplemen-

tary information. Team performance was based on the average

rank computed across metrics and tasks (task 1: smokers (S) vs

non-current smokers (NCS), task 2: former smokers (FS) vs never

smokers (NS). Participants incorrectly classifying smokers in task

1 were penalized in a way that these misclassified subjects were

automatically placed in the wrong class for task 2 before partici-

pants were scored.

The statistical significance of the participants’ predictions was

verified against 10,000 randomly generated predictions. Random

predictions were generated by assigning all samples from a test

dataset a confidence value P ranging between 0 and 1 to be a smo-

ker (1-P to be a non-current smoker) extracted from a uniform ran-

dom distribution. Subjects with a random confidence value below

0.5 were subsequently randomly classified as former or never smo-

ker following the same procedure. Random predictions were then

scored as described above. The P-values associated with the partic-

ipants’ AUPR or MCC scores corresponded to the proportion of tri-

als when the actual score was greater than a random score

corresponding to the 95th percentile of scores obtained by random

simulation. Scoring results and final ranking were reviewed and

approved by the Scoring Review panel.
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Post-challenge analyses

Predictions across teams and statistical distribution comparison

The ‘‘All teams” confidence values were obtained by taking the

median value per subject/sample across all teams’ confidence val-

ues. Confidence values were transformed to log odds, and the

Wilcoxon-Mann-Whitney test was computed to compare log odds

distributions between classes.

Misclassification significance

The log odds of the ‘1-0’ outcome given by each team on all

individual samples were modeled using a linear mixed model.

The smoking status was included as a fixed predictor in the model

while the teams were included as a random factor. The impact of

smoking status on the log odds were estimated and tested for sig-

nificance, and consequently on the classification error.

Crowd consensus gene signatures

Consensus human and species-independent smoking exposure

and cessation gene signatures were extracted by selecting genes

with at least two occurrences across the 12 and six qualified teams

for SC1 and SC2, respectively.

Heatmaps of gene expression fold changes for smoking exposure and

cessation consensus signatures

Gene expression fold changes were computed by subtracting

the mean of normalized log2-based expression levels of the respec-

tive control groups (Fig. 5 and Supplementary Fig. 5) from each

subject’s normalized log2-based expression levels. Expression

fold-changes of genes from the consensus signatures were visual-

ized on heatmaps with hierarchical clustering (Euclidean as dis-

tance metric and complete method as agglomerative algorithm).

Differentially expressed genes (DEGs; FDR � 0.05) were deter-

mined using the limma R package version 3.22.7 [43].

Pathway/process over-representation analysis of consensus smoking

exposure and cessation gene signatures

Over-representation analysis of the blood-based smoking expo-

sure and cessation consensus gene signatures were conducted

using gene set sub-collections from Broad-MSigDBv 5.1 [44] and

DAVID v6.7 [45].

Performance analysis of all gene combinations from the top six teams’

human-based smoking exposure consensus signature: impact of gene

signature length, gene expression co-linearity level, and classification

methods

The analysis included all possible combinations of genes from

the consensus signature. The extraction of an 18 gene-based

human smoking exposure consensus signature was limited to the

top six teams (instead of the 12 qualified teams) because of limita-

tions imposed by the computer intensive calculation required for

this analysis. The 18 gene-based consensus signature in blood,

which included DSC2, FSTL1, GPR63, GSE1, GUCY1A3, RGL1, CTTNBP2,

F2R, SEMA6B, CDKN1C, CLEC10A, GPR15, LINC00599, P2RY6, PID1,

Fig. 2. Participants’ prediction performances and final ranking. (a, c) Participants’ scores (x-axis) relative to the null distribution (density curves) calculated from 10,000

random predictions. Dark blue and dark red (a-up, c-up) refer to the smoker (S) vs non-current smoker (NCS) task for area under precision recall (AUPR) and Matthew

correlation coefficient (MCC), respectively. Blue and red (a-down, c-down) refer to former smoker (FS) vs never smoker (NS) task for AUPR and MCC, respectively. Blue and red

circles identify participant’s scores. Vertical dashed lines indicate the scores with P-values of 0.05 (smaller P-values are on the right of the dashed line). (b, d) Bar plots

showing the sum of ranks (y-axis, left scale) and the average rank (y-axis, right scale) across all metrics and tasks for all teams for SC1 (b) and SC2 (d). A lower sum of rank

implies better performance.
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SASH1, AHRR, and LRRN3, was identified by selecting genes with at

least two co-occurrences across the signatures of the top six teams.

The impact of gene signature size and co-linearity level on classifi-

cation performance was investigated. The analysis was conducted

using fivefold cross-validated training (with 10 repeats) and test

datasets from SC1, separately. The most widely applied machine

learning (ML) methods in the challenge were Random Forest

(RF), support vector machine with linear kernel (svmLinear), par-

tial least squares discriminant analysis (PLS), naive Bayes (NB), k-

Nearest Neighbor (kNN), linear discriminant analysis (LDA), and

logistic regression (LR). All possible combinations of the 18 genes

of length 2–18 (i.e. 262,125 gene sets) were generated. Applying

each of the seven ML methods to each gene set led to a total of

1,834,875 tested classification strategies. The level of co-linearity

of genes within a gene set was reflected as the percentage of vari-

ance of the first principal component of the expression matrix

restricted to that gene set. The performance of the 1,834,875 gene

set-ML predictions (called ‘‘Top”) was evaluated by computing

MCC and AUPR scores. The performance of these ‘‘Top” gene sets

were compared with that of gene sets (2–18 genes) randomly

selected among the DEGs or all genes represented on the HG-

U133_Plus_2 chip. The sampling process was repeated 1000 times

for each gene set size, leading to a total of 17,000 random ‘‘DEG” or

‘‘All genes” gene sets. All ML methods applied for classification

using the default parameters are available in the Caret R package

version 6.0–41 (https://cran.r-project.org/web/packages/caret/in-

dex.html).

Impact of gene signature length on performances based on an

ensemble learning method

A separate analysis was performed to measure the impact of

varying gene signature lengths on classification performances.

The Weka tool [46] was used to rank [47] and order attributes

(genes) by weights of a Support Vector Machine (SVM) classifier.

A list of the first 100 top-ranked genes is reported in Supplemen-

tary table 9 [48]. Performances were measured on a 10-fold strat-

ified cross-validation on the training set of ML methods from the

Fig. 3. Exposure class predictions by top performers and across all teams. Box plot

showing the distributions of confidence scores (and median confidence scores for

‘‘All teams”) for samples belonging to different exposure classes. The higher (close

to 1) the value the higher the confidence that a subject is a smoker. Low values

imply high confidence that the subject is a non-current smoker (NCS; i.e., former

smoker (FS) or never smoker (NS)). (a) SC1: Smoker (S) vs NCS confidence score

distributions for the three best-performing teams in SC1, and median confidence

score distributions for all teams. (b) SC1: FS vs NS confidence score distributions for

top three best-performing teams, and median confidence scores distribution of all

teams. (c) SC2: S vs NCS (human) and 3R4F (exposed) vs NCS (non-exposed)

(mouse) confidence score distributions for top three best-performing teams in SC2,

and median confidence score distribution of all teams. (d) SC2: FS vs NS (human)

and cessation (Cess) vs Sham (mouse) confidence score distributions for top three

best-performing teams, and median confidence score distributions of all teams.

[Wilcoxon-Mann-Whitney P-value, ’.’ < 0.1, ’*’ < 0.05, ’**’ < 0.01, ’***’ < 0.001,

(’�’ � 0.1)].

Fig. 4. Sample misclassifications. Sub-Challenge1 (SC1) (a, c) and SC2 (b, d)

misclassifications shown as heatmaps. Teams are in columns arranged in decreas-

ing order of performance from left to right. Subjects are in rows with the class label

color as sidebar (smoker (S/3R4F), former smoker (FS/Cess), never smoker (NS/

Sham)). Rows were clustered per class according to a binary distance between rows.

Cells in green correspond to subjects correctly classified, cells in ochre correspond

to misclassifications. White cells indicate the absence of a prediction. Horizontal

bars show the number of subjects misclassified in each row. (e) Number of years

since a FS quit smoking (x-axis) vs number of times the FS was misclassified. Linear

and quadratic model fitting are reported.
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Python Scikit Learn library (http://scikit-learn.org). All classifiers

were run with default parameter settings in all experiments. Per-

formances were measured with AUPR and MCC metrics. The list

of the 11 ML methods tested, including methods used by the

best-performing teams, were: Stochastic Gradient Descent; Ran-

dom Forest (RF); Extremely Randomized Trees; AdaBoost; Gradient

Tree Boosting (GTB); Gaussian Naive Bayes; k-Nearest Neighbors

(kNN); MultiLayer Perceptron (MLP); Linear Discriminant Analysis

(LDA); Logistic Regression (LR); and Support Vector Classifier

(SVC). The four best algorithms were selected for the ensemble

learning method. The four ML methods were combined by an

ensemble logic based on a soft voting mechanism: class label pre-

diction was based on the argmax of the sums of the predicted prob-

abilities of each ML method. The 4-classifier ensemble learning

methods were trained on a dataset containing only expression val-

ues of the smallest gene signature (60 genes) by which all tested

ML methods performed at 100% of accuracy during cross-

validation.

Results

The Systems Toxicology challenge addressed the problem of

identification of blood exposure response markers, in the form of

gene expression-based signatures, predictive of smoking exposure

and cessation status in human (SC1) and across both human and

rodent species (SC2) for translational toxicology (Fig.1a). After

training blood-based signature classification models, participants

applied their models on independent unlabeled gene expression

data for class prediction. Participants’ eligibility for scoring was

conditional to their compliance with the challenge rules (1, sub-

mission completeness; 2, predictions using inductive classification

models; and 3, gene signature length �40 genes).

Participation, scores, and final ranking

The Systems Toxicology challenge attracted worldwide partici-

pation (Supplementary Fig. 2). Among the 61 teams registered (165

participants; 47% China, 21% Europe, 10% USA, and 9% India), 23

and 15 teams provided submissions for SC1 and SC2, respectively.

Among them, 12 and six teams complied with all challenge rules,

and therefore were eligible for scoring. MCC and AUPR scores com-

puted on anonymized teams’ predictions were compared with an

empirical null distribution generated from 10,000 random predic-

tion sets and were considered as significant when they exceeded

the 95th percentile of the null distribution (Fig. 2a and c, and Sup-

plementary table 4).

MCC scores obtained from random predictions for task 2, for-

mer smokers (FS) vs never smokers (NS), were centered on �0.5

because all samples that were misclassified in task 1 were consid-

ered as incorrect predictions for scoring task 2 predictions (‘‘penal-

ization”). For both sub-challenges, 80–100% and 50–80% of the

teams obtained significant MCC and AUPR scores for smoker (S)

vs non-current smoker (NCS; i.e., FS and NS) and FS vs NS classifi-

cations, respectively (Fig. 2a and c). Final ranking was based on

averaging the score-based ranks across metrics and tasks for each

sub-challenge (Fig. 2b and d, and Supplementary table 4). Teams

264 and 219 were declared best performers for SC1 and SC2,

respectively. Teams 225 and 259 were ranked second and third

for SC1, respectively, and teams 264 and 250 were ranked second

equal for SC2.

To understand the impact of the penalization scheme men-

tioned above on score significance for the discrimination of FS vs

NS, the top teams of each sub-challenge (except team 225) pro-

vided us with predictions for all samples (as opposed to samples

predicted only as NCS) using the same classification models. The

results showed (Supplementary Fig. 3) that, for SC1, only team

Fig. 5. Expression fold changes in the test dataset and co-occurrences of genes from consensus smoking exposure and cessation signatures. Differential gene expression

heatmaps for the test datasets for (a, b) SC1 and (c, d) SC2. Subjects are in columns and grouped per class. Smokers (S) are in red (3R4F in light red), former smokers (FS) are in

green (cessation (Cess) in light green), and never smokers (NS) are in blue (Sham in light blue). The respective control groups are annotated as ctr. (a) SC1: S vs NCS (ctr: FS

+ NS). (c) SC2: S vs NCS and 3R4F vs NCS (ctr: Cess + Sham). (b) SC1: FS vs NS. (d) SC2: FS vs NS and Cess vs Sham. Lengths of horizontal bars are proportional to the number of

times a gene is selected as part of a signature. Gray bars denote genes for which the fold change (FC) is statistically significant (FDR < 0.05).
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264’s predictions reached significance (P-value < 0.05) for both the

MCC and AUPR scores and, for SC2, the predictions of teams 250

and 264 were significant only for the AUPR score or MCC score,

respectively. These observations indicated that, overall, the penal-

ization procedure led to team scores that were higher relative to

the null distribution of scores than they should have been when

all class samples were predicted. Moreover, the shift of best-

performing teams toward lower or non-significant scores high-

lighted the difficulty to discriminate FS from NS using only gene

expression data from blood.

Prediction of smoking exposure status was possible in human and

across species using blood gene expression, while prediction of

cessation status was more challenging

As classification predictions, participants were requested to

submit confidence values P (between 0 and 1) and 1-P that a sam-

ple belonged to class/group 1 (e.g., S) and class/group 2 (e.g., NCS),

respectively. Confidence value distributions per actual group/class

are displayed as boxplots in Fig. 3. For both sub-challenges, signif-

icant differences between the smoke-exposed and non-current

smoke-exposed groups were calculated based on log odds trans-

formed confidence values. A clear separation between both groups

(S/3R4F vs NCS) was observed in boxplots generated with individ-

ual and aggregated confidence values of the top three teams and all

teams, respectively (Fig. 3a and c). By contrast, the discrimination

between FS and NS subjects was difficult, as illustrated by the lack

of significant difference in confidence value distributions

(Fig. 3b and d). Despite this observation, the medians of confidence

values for FS/cessation groups tended to be systematically higher

than the medians for NS/Sham groups for individual and aggre-

gated results (Supplementary Fig. 4). Overall, these results show

that blood gene expression data were informative to build human

and species-independent blood-based gene signature classification

models for smoking exposure status, but weakly informative to

derive signature classification models predictive of cessation

status.

Samples from formerly smoke-exposed group were more frequently

misclassified in both sub-challenges

Individual sample classification was closely investigated to

identify whether some samples were systematically misclassified

across teams. In general, most of the subjects were correctly clas-

sified as S vs NCS in both sub-challenges, as shown by the majority

of green color cells in the heatmaps (Fig. 4a and b) representative

of correctly classified samples.

Misclassification increased significantly for former smokers as

compared to both never (P-value = 5.58e-06) and current smokers

(P-value = 0.0032). Finally, the p-value for the misclassification for

former smokers compared to any other group (current and never

smokers) was lower than 0.001 (Table 1).

Samples from FS were misclassified by at least 50% and 70% of

teams in SC1, 45% and 75% (vs 32% of the total number of all

human test samples), respectively. For SC2, the percentages of FS

samples misclassified by at least 50% and 70% of teams were 48%

and 67% (v.s. 30% of the total number of all human and mouse test

samples), respectively. In both SC1 and SC2, the classification of

samples as FS and NS resulted in higher misclassification rate com-

pared with their classification as S vs NCS, as reflected by the sim-

ilar proportion of green and ochre colored heatmap cells

corresponding to correctly classified and misclassified samples,

respectively (Fig. 4c and d). Overall, the results show that samples

from the FS group were the most frequently misclassified (for

human).

The wisdom of crowds enabled the identification of consensus blood-

based smoking exposure and cessation gene signatures

Consensus smoking exposure and cessation signatures were

obtained by considering genes present in the signatures of at least

two teams (Fig. 5; Supplementary table 5). The consensus human

and species-independent gene signatures that could discriminate

smoking exposure status contained 43 and 14 genes, respectively,

and those identified as predictors of the cessation status included

25 and nine genes, respectively. Human and species-independent

smoking exposure signatures had eight genes in common,

while no gene overlap was observed for human and species-

independent cessation signatures. In general, the expression fold

change of genes in the smoking exposure signatures comparing

S/3R4F vs NCS were higher than the expression fold change of

genes in the cessation signatures comparing FS/cessation vs NS/

Sham. In addition, the genes in the smoking exposure signatures

showed clear expression patterns separating smoke-exposed and

non-current smoke-exposed subjects (Fig.5a and c).

Not surprisingly, this separation was even more pronounced on

the heatmap generated with the training dataset (Supplementary

Fig. 5). For the cessation signatures, gene expression patterns

were observed for the training dataset (Supplementary Fig. 5);

however, the patterns became barely visible for the test datasets

(Fig.5b and d), indicating that gene expression level differences

were subtler between the FS/cessation and NS/Sham groups, and

that the selected genes only weakly generalized as discriminative

features across independent datasets. Notably, some genes in the

smoking exposure (e.g., LRRN3, MT2, P2RY6) and cessation (e.g.,

AOX1, ABCC12) signatures showed opposite fold change directions

in human and mouse for the same exposure groups such as S

and 3R4F or FS and cessation (Fig.5c and d).

Table 1

Sample misclassification across teams. The number (and percentage) of misclassified samples per sub-challenge (SC) and task are shown. For SC1 (top) and SC2 (bottom), the total

number of samples (including group and sex) misclassified by at least 50% and 70% of the teams are reported. M: Male; F: Female; FS: Former Smoker; NS: Never Smoker; S:

Smoker.

Sub-challenge % Teams Total misclassified samples Misclassified samples per class Total samples per class

SC1 �50% 11 (4 M/7 F) 5 (45%) FS 26 FS

28 NS

27 S

3 (27%) NS

3 (27%) S

�70% 4 (2 M/2 F) 3 (75%) FS

1 (25%) NS

0 (0%) S

SC2 �50% 25 (5 M/20 F) 12 (48%) FS 26 FS/8 Cess

28 NS/13 Sham

27 S/12 3R4F

6 NS + 1 Sham (28%)

2 S + 4 3R4F (24%)

�70% 6 (2 M/5 F) 4 (67%) FS

1 (17%) NS

1 (17%) S
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Genes coding for cell surface receptors and molecules involved in

proximal pathway signaling were over-represented in consensus blood

smoking exposure signatures

For biological interpretation of the blood-based gene signatures,

a pathway/process over-representation analysis was performed

using Broad MSigDB, DAVID and Ingenuity Pathway Analysis. Only

the human smoking exposure ‘consensus’ signature that counted

43 genes showed significant pathway/process over-representation.

Lack of significant pathway over-representation for the other

consensus signatures may be due to their lower size, and hence

reduced power. For the human smoking gene signature, the

over-represented MSigDB gene sets (FDR � 0.05) were associated

with cell surface receptors such as G-protein coupled receptors

(GPCR) and purinergic receptors, and intracellular signaling such

as G-proteins (Table 2).

Genes that had transcription factor binding site for NFAT, FOXO4

or BACH2 in their promoter sequences were also over-represented

(Table 2). Similar results were identified with DAVID’s functional

annotation clustering method, which groups category terms corre-

sponding to pathway/process as well as protein sequence features

and functions into annotation clusters (Supplementary table 6).

The terms associated with the most significant cluster were related

to protein localization corresponding to transmembrane, integral

to membrane, membrane and also to glycoprotein, glycosylation

sites. The second and third clusters included terms related to coag-

ulation, wound healing and nucleotide receptor activity, purinergic

nucleotide receptor activity, cell surface receptor signal transduc-

tion, GPCR protein signaling, phospholipase C activity. Other clus-

ters included terms such as inflammation, defense response,

blood circulation, immunoglobulin, phosphorylation, kinase activ-

ity, ion binding. In the ‘‘Diseases and Functions” category, Ingenu-

ity Pathway Analysis highlighted top significantly over-

represented processes associated with carbohydrate metabolism,

cardiovascular disease and function (e.g., endothelial permeability,

hypertension, myocardial infarction), hematological disease and

function (e.g., blood coagulation, thrombosis) (data not shown).

In addition, the literature was queried to find whether genes in

the consensus human smoking exposure signature had previously

been associated with smoking in blood. Interestingly, and despite

the fact that the feature selection was not based on prior knowl-

edge, genes showing the highest co-occurrences across teams

were, in general, the most reported in the literature to be associ-

ated with smoking (Supplementary table 7).

Gene set combinations from an 18 gene-based consensus signature

from the top six teams were informative and outperformed ‘‘DEGs”

and ‘‘All Genes”-derived gene sets for smoking exposure status class

prediction

The impact of gene signature size and co-linearity level on the

performance of smoking exposure status class prediction was

explored using the 18 gene-based consensus signature from the

top six teams’ predictions. MCC and AUPR scores were calculated

to evaluate the performance of all possible combinations of signa-

tures of lengths 2–18 with ML-based class predictions (Fig. 6 and

Supplementary Fig. 6).

The prediction performance increased with gene set size and

gradually stabilized with longer sets, including up to 18 genes in

both training (cross-validation, CV) (for CV, MCC = 0.57 for size = 2

and MCC = 0.91 for size = 18) and test sets (for test, MCC = 0.42 for

size = 2 and MCC = 0.77 for size = 18) (Fig. 6a). Prediction perfor-

mances reached maximum when the co-linearity level (reflected

by the percentage of variance represented by the first principal

component computed from the gene set expression matrix) of

genes in the ‘‘Top” gene sets ranged between 50% and 60%, and

then decreased with increased co-linearity (Fig. 6b). Considering

that the ‘‘Top‘‘ gene sets were composed of the signature genes

from different teams and were already quite diverse, combining

genes that are to some extent co-linear may strengthen the predic-

tion. Performances decreased with increased co-linearity of genes

within gene sets from DEGs (Fig. 6b). In general, gene sets from

”Top‘‘, ”DEG‘‘, and ”All Genes‘‘ gave the best, middle, and worst per-

formances, respectively (Fig. 6a, b and c). In addition, performances

derived from CV outperformed those computed for the test set

(Fig. 6a, b and c). Performance metrics obtained with various ML

methods showed similar patterns (Fig. 6b), and therefore, were

aggregated to facilitate the visualization of results (Fig. 6a and c).

Overall, the results indicated that blood genes from the 18 gene-

based consensus signature were informative and had high predic-

tive power for smoking exposure status when combined.

Table 2

Over-representation analysis of biological pathways/processes associated with the consensus human smoking exposure gene signature. List of pathways, biological processes, and

transcription factor targets enriched in the consensus gene signature. Statistical significance is reported in the second column.

MSigDB Canonical Pathways

(Canonical pathways, BioCarta, KEGG, Reactome) Gene Sets

�LOG10(FDR)

REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS 2.05

REACTOME_G_ALPHA_Q_SIGNALLING_EVENTS 1.99

REACTOME_GPCR_LIGAND_BINDING 1.99

REACTOME_GASTRIN_CREB_SIGNALLING_PATHWAY_VIA_PKC_AND_MAPK 1.99

REACTOME_P2Y_RECEPTORS 1.94

REACTOME_HEMOSTASIS 1.94

REACTOME_NUCLEOTIDE_LIKE_PURINERGIC_RECEPTORS 1.81

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 1.81

REACTOME_NITRIC_OXIDE_STIMULATES_GUANYLATE_CYCLASE 1.49

MSigDB - GO Biological Process

SIGNAL_TRANSDUCTION 5.14

CELL_SURFACE_RECEPTOR_LINKED_SIGNAL_TRANSDUCTION_GO_0007166 4.53

INTRACELLULAR_SIGNALING_CASCADE 2.20

G_PROTEIN_COUPLED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY 1.34

MSigDB - Transcription Factor Targets (Top3)

TGGAAA_V$NFAT_Q4_01 2.63

TTGTTT_V$FOXO4_01 2.61

V$BACH2_01 1.73
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Performances degraded for long gene signatures (>40 genes)

A separate analysis was conducted to understand the impact of

the length of gene signatures selected as discriminative features on

classification performances. Genes were selected by SVM, and

ranked according to the feature selection SVM (see Material and

Methods for details). The cross-validation performances of the dif-

ferent methods are reported in Supplementary Fig. 7 and Supple-

mentary table 8. Ensemble learners based on decision trees

methods (AdaBoost, GTB, RF, and ERT) had accuracies in the range

90–96%, but did show significant improvements with increased

signature lengths. RF, ERT, and GTB in particular, showed

oscillating trends in accuracy. The kNN and Gaussian Naive Bayes

methods had accuracies in the ranges 96–99% and 94–96%,

respectively. The Stochastic Gradient Descent method had high

accuracies of around 99–100%, with peaks limited to some

signature size ranges. Four methods (MLP, LR, LDA, and SVC) were

robust enough to maintain 100% accuracies throughout all

signature lengths larger than 30 genes and were selected for the

ensemble learner. Ensemble learner performances on the test set

are reported in Fig. 7 (and Supplementary fig. 8).

As the graph shows, the best prediction of the ensemble learner

on the S vs NCS task was obtained when a signature length of 40

genes was selected (accuracy = 92.6%, AUPR = 95.8%, and MCC =

83.2%). It is worth noting that by further increasing/decreasing

the signature length, the prediction accuracy (as well as the AUPR

and MCC scores) decreased. A signature length of 40 genes was

found to be optimal on the test set even though, from the cross-

validation analysis, 40 genes were not sufficient for the ensemble

learner to reach top performances.

Fig. 6. Performance versus signature size and gene similarity. (a) Matthew correlation coefficient (MCC) score versus gene signature size for cross-validation and test dataset.

Features were selected from the list of (i) ‘‘Top” genes (red), i.e., genes selected frequently by participants as part of the signature; (ii) ‘‘DEGs” (green), list of differentially

expressed genes; (iii) ‘‘All Genes” (light blue), all measured genes. (b) MCC performance versus coefficient of similarity between genes in the signature. Seven different

machine learning classifier were tested: (Random Forest (RF), support vector machine with linear kernel (svmLinear), partial least squares discriminant analysis (PLS), naive

Bayes (NB), k-Nearest Neighbor (kNN), linear discriminant analysis (LDA), and logistic regression (LR)). (c) Distributions of MCC scores in CV (red) and test set (green) data,

plus distribution of the differences (light blue), for ‘‘Top” (top), ‘‘DEGs” (middle), and ‘‘All genes” (bottom) selections.

Fig. 7. Score versus signature size (�10 genes). Performances of the ensemble

learner (top four methods from cross-validation). Performance accuracy (blue), Area

under the precision-recall (AUPR) curve (orange), and Matthew correlation coef-

ficient (MCC) (gray) scores degraded when gene signature length increased above

40 genes.
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Discussion

Crowdsourcing is a powerful approach to solve scientific prob-

lems, and also to independently verify methods, results, and con-

clusions [31]. Systems toxicology is an emerging discipline that

requires the development of advanced computational methods

for the analysis of large-scale datasets and the extrapolation of pre-

dictive toxicological outcomes and risk estimates. Here, we sum-

marize the results and lessons from the sbv IMPROVER Systems

Toxicology computational challenge that was opened to the scien-

tific community (https://sbvimprover.com).

The predictions submitted by the participants in the challenge

demonstrated that blood gene expression data were informative

enough to identify specific markers and train models predictive

of smoking exposure status in human and across human and

mouse species. This finding confirmed that smoke has a prominent

effect that propagates in blood cells distal to lungs, the primary site

of exposure [20,27]. Best-performing teams succeeded in (i) devel-

oping inductive models able to predict the class of new indepen-

dent individual samples with high levels of performance

(AUPR � 0.93 for SC1 and SC2), and (ii) extracting parsimonious

signatures that did not exceed 40 genes. These results have impli-

cations for the development of blood-based molecular-diagnostics

tool for monitoring an exposure response to cigarette smoking.

These results may also be useful for assessing the exposure

response to the new generation of non-combustible tobacco prod-

ucts with the potential to reduce individual risk. Applying a human

blood-based smoking exposure response gene signature previously

identified [27], Martin et al. demonstrated that samples from con-

ventional cigarette smokers who switched to a THS2.2 shifted

away from the S group and classified closer to the NCS group after

only 5 days of switching [49]. These results were independently

confirmed by the crowd in the context of this challenge [31].

Although different computational approaches were used for the

challenge, the wisdom of crowds enabled the identification of

robust consensus blood-based human and species-independent

smoking exposure signatures, including genes with high co-

occurrences across qualified teams, namely AHRR, CDKN1C, LRRN3,

PID1, GPR15, SASH1, CLEC10A, LINC00599, and P2RY6. These genes

overlapped remarkably with genes present in previously published

blood-based smoking gene signatures derived from the same data-

sets, constituting an independent confirmation of a signature pro-

posed by Martin et al. [27] and signatures from a meta-analysis of

six studies that included a total of 10,233 subjects [50]. Many

genes of the consensus signature are reported to undergo differen-

tial regulation at the mRNA and/or DNA methylation level follow-

ing exposure to cigarette smoke (references in Supplementary

table 7). Epigenetic-dependent/independent transcriptional regu-

lation and/or blood cell population enrichment modifications

may explain smoke-induced molecular changes observed in whole

blood [51,52]. Further blood cell type-specific investigations may

provide a deeper understanding of the contribution of each sub-

population to the smoking signature. For example, among the

genes with the strongest association with smoking, P2RY6, PID1,

and SASH1 were identified in the transcriptome of monocytes,

and LRRN3 may be expressed specifically in T lymphocyte sub-

population [53,54]. Regarding the consensus species-independent

smoking exposure signature, species-specific regulation mecha-

nisms and/or blood cell population composition may account for

the opposite directionality of expression changes observed in

human and mouse for a subset of the genes.

Most genes present in the consensus smoking signature encode

cell surface receptors and molecules involved in glycoprotein and

innate immune pattern recognition/binding (ASGR2, TLR5, P2RY6,

P2RY1), immune regulation (VSIG4), coagulation (F2R, PF4), and

signal transduction such as G-proteins (GPR15, GPR63), guanylate

cyclase (GUCY1A3, GUCY1B3), and kinases (AK8, NLK). These func-

tional characteristics suggest that exposure to smoke modifies

the properties of circulating blood cells seen as ‘‘sentinels” for

sensing and reacting to their environment. For example, purinergic

receptors present in many cell types recognize extracellular

nucleotides (ATP, ADP, UDP) that are actively released or passively

leaked from damaged or dying cells, as danger signals and trigger

inflammation. Interestingly, it has been reported that nucleotide

levels are elevated in plasma of active smokers with peripheral

artery diseases [55]. The purinergic receptors may also be linked

to the development of diseases as their inhibition can reduce/pre-

vent the development of atherosclerosis and smoke-induced lung

injury and emphysema [56,57]. Notably, P2Y6 receptor expression

was found to be one of the most strongly induced genes in lung

tissue of mice exposed to smoke [56]. Other genes present in the

consensus signature such as SASH1 may link smoking and

atherosclerosis [58]. Therefore, the consensus blood smoking sig-

nature may not only include genes that reflect a response to smoke

exposure, but also genes that may play roles in smoke-related dis-

ease pathogenesis in the long term. This hypothesis was supported

by Huan et al. who found significant associations between their

whole blood-based cigarette smoking signature and human com-

plex diseases and traits [50].

Unlike smoking status, predicting cessation status that differen-

tiates FS and NS individuals remains challenging, as reflected by

the lower prediction performances and gene signature overlap

across teams. This outcome indicates that blood gene expression

data alone may not be sufficiently informative to discriminate FS

and NS individuals. However, the observations that blood samples

from FS misclassification increased significantly as compared to

both never and current smokers suggested larger heterogeneity

of the gene expression profiles compared with S and NS. Either

FS were not fully compliant with quitting smoking or smoke-

induced molecular changes remain persistent in blood even after

periods of cessation. Smoking and cessation histories vary from

one subject to another and related parameters (i.e., intensity, dura-

tion) and/or other data modalities (e.g., DNAmethylation) may also

need to be included in the modeling process. Zhang et al. [59]

reported a linear relationship between cotinine concentration

and DNA methylation levels at site cg05575921 (AHRR). Another

study found that DNA methylation at F2RL3 was dependent on

the interaction of pack years and time since quit [60]. Gene expres-

sion and DNA methylation levels in FS have been shown to reverse

with time [60,61] and approach those of NS several years after ces-

sation [62], although persistent epigenetic markers of smoking

have been detected decades (>35 years) after cessation [61]. In line

with this report, we observed that FS who most recently quit

smoking were more frequently misclassified as those who ceased

smoking for longer time periods (Fig.4e).

Genes identified to be consensus genes were not necessarily dif-

ferentially expressed between classes. The identification of a highly

predictive gene signature does not rely on selecting only DEGs

(although informative to some extent), but rather on building the

right combination of genes that, as a set, have high discrimination

power between classes. We have found that the magnitude and

robustness of classification performance were dependent on find-

ing the right balance of the number and co-linearity of genes

(50–60% here; same gene expression patterns) to build the signa-

ture. Indeed, irrespective of the methodology applied for classifica-

tion, performances started to degrade when the list of genes

became too short or increased beyond a certain size (>40 genes).

These observations highlighted the importance of a feature selec-

tion step. Once the most relevant features were identified, the

ML methods used for classification did not necessarily show large
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differences in the performance accuracies of the sample classifica-

tion. Another important learning was that cross-validation, irre-

spective of the way a signature was built, overestimated

classification performances, which may lead to over-fitting [11].

Therefore, validation of a signature in independent cohorts is crit-

ical to ensure robustness and generalization of a predictive model.

In conclusion, the Systems Toxicology challenge outcomes

showed that blood gene expression data were sufficiently informa-

tive to predict exposure to smoke in human and across species, but

may not be sufficient for cessation status prediction. The crowd

succeeded in developing robust inductive predictive models and

identifying concise human and species-specific signatures that

included genes with large consensus across teams. Post-challenge

computational analysis also highlighted the importance of the fea-

ture selection step in the process of building a classifier and the

need for validation of a gene signature in independent cohorts.

Overall, leveraging the power and wisdom of the crowd in this

challenge demonstrated the importance of independent and unbi-

ased evaluations of data and computational methods to provide

learnings, confirmation, and confidence in scientific conclusions

in systems toxicology.
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