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The emergence of multidrug-resistant strains of Gram-negative Klebsiella species is an

urgent global threat. The World Health Organization has listed Klebsiella pneumoniae

as one of the global priority pathogens in critical need of next-generation antibiotics.

Compared to other Gram-negative pathogens, K. pneumoniae accumulates a greater

diversity of antimicrobial-resistant genes at a higher frequency. The evolution of a

hypervirulent phenotype of K. pneumoniae is yet another concern. It has a broad

ecological distribution affecting humans, agricultural animals, plants, and aquatic

animals. Extracellular polysaccharides of Klebsiella, such as lipopolysaccharides,

capsular polysaccharides, and exopolysaccharides, play crucial roles in conferring

resistance against the host immune response, as well as in colonization, surface

adhesion, and for protection against antibiotics and bacteriophages. These extracellular

polysaccharides are major virulent determinants and are highly divergent with respect

to their antigenic properties. Wzx/Wzy-, ABC-, and synthase-dependent proteinaceous

nano-machineries are involved in the biosynthesis, transport, and cell surface expression

of these sugar molecules. Although the proteins involved in the biosynthesis and surface

expression of these sugar molecules represent potential drug targets, variation in the

amino acid sequences of some of these proteins, in combination with diversity in their

sugar composition, poses a major challenge to the design of a universal drug for

Klebsiella infections. This review discusses the challenges in universal Klebsiella vaccine

and drug development from the perspective of antigen sugar compositions and the

proteins involved in extracellular antigen transport.

Keywords: Klebsiella species, multidrug resistance, lipopolysaccharide, capsular polysaccharide,

exopolysaccharide, complement system, vaccine, antibiotics

INTRODUCTION

Klebsiella species (spp.) are rod-shaped and encapsulated Gram-negative bacteria in the
Enterobacteriaceae family (Podschun and Ullmann, 1998; Kenneth and Ryan, 2003; Murray
and Baron, 2007; Paczosa and Mecsas, 2016). Eleven species have been identified in the
Klebsiella genus, namely, Klebsiella pneumoniae (K. pneumoniae) (subsp. pneumoniae, subsp.
ozaenae, subsp. rhinoscleromatis), Klebsiella oxytoca (K. oxytoca), Klebsiella ornithinolytica (K.
ornithinolytica), Klebsiella planticola (K. planticola), Klebsiella terrigena (K. terrigena) (Murray
and Baron, 2007), Klebsiella variicola (K. variicola) (Rosenblueth et al., 2004) [subsp. tropicalensis
(Rodrigues et al., 2019)], Klebsiella granulomatis (K. granulomatis) (Carter et al., 1999), Klebsiella
aerogenes (K. aerogenes) (Tindall et al., 2017), Klebsiella africanensis (K. africanensis) (Rodrigues
et al., 2019), Klebsiella grimontii (K. grimontii) (Passet and Brisse, 2018), and Klebsiella
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quasipneumoniae (K. quasipneumoniae) (subsp.
quasipneumoniae and subsp. similipneumoniae) (Brisse et al.,
2014). Klebsiella pneumoniae (K. pneumonia) (Kp) are further
classified into classical (cKp) and hypervirulent (hvKp) strains
based on their phenotype and nature of pathogenicity (Shon
et al., 2013; Russo et al., 2018). Klebsiella spp. are generally found
in animal and human gut microbiota (Selden et al., 1971; Taur
and Pamer, 2013; Bilinski et al., 2016; Paczosa and Mecsas,
2016). They colonize a wide range of hosts including plants
and mammals (Bagley, 1985; Podschun and Ullmann, 1998;
Podschun et al., 2001; Wyres and Holt, 2018) and can grow
ubiquitously in water and soil (Bagley, 1985; Podschun and
Ullmann, 1998; Podschun et al., 2001; Rock et al., 2014).

Klebsiella spp. are generally opportunistic pathogens (Wyres
and Holt, 2018) and do not usually affect healthy individuals
(Bagley, 1985; Centers For Disease Control Prevention, 2010).
Generally, it is immunocompromised individuals, such as
patients undergoing chemotherapy, neonates, and the elderly,
that are affected by cKp infections. In contrast, hvKp can infect
healthy individuals of any age and can infect nearly every site of
the body and spread metastatically (Liu et al., 1986; Fang et al.,
2007; Russo et al., 2018). Klebsiella spp. utilize the following
virulence traits to protect themselves from the host immune
response (Davies, 2003; Lavender et al., 2004; Mishra et al.,
2015; Paczosa and Mecsas, 2016; Hsieh et al., 2019): capsular
polysaccharides (CPS), lipopolysaccharides (LPS), siderophores,
fimbriae (alternatively, pili), a type VI secretion system, outer-
membrane proteins, porins, efflux pumps, an iron transport
system, biofilms, and allantoin metabolism. Among these, CPS,
LPS, siderophores, and fimbriae are well-characterized virulence
factors of Klebsiella spp. (Paczosa and Mecsas, 2016). These
virulence factors assist Klebsiella spp. in evading the innate
immune response of the host and to survive in different sites
within the host, rather than actively suppressing host immune
system components (Domenico et al., 1994; Hsieh et al., 2019).
Notably, increased production of CPS and aerobactin (an iron-
chelating siderophore) is specific to the hvKp pathotype (Cheng
et al., 2010; Russo et al., 2018), as increased production of
CPS results in a hypermucoviscous phenotype that has a
viscous string length >5mm (Cheng et al., 2010). Nevertheless,
hypermucoviscosity is not specific to the hvKp pathotype, as cKp
can also exhibit such a phenotype (Catalan-Najera et al., 2017;
Russo et al., 2018). Furthermore, hvKp strains are not always
hypermucoviscous (Catalan-Najera et al., 2017; Russo et al.,
2018). Thus, the genes involved in the regulation of CPS (Cheng
et al., 2010) and aerobactin production are used to distinguish
the cKp and hvKp pathotypes (Russo et al., 2018). These are not
elaborated here, as it is beyond the scope of this review.

Klebsiella spp. cause a variety of opportunistic nosocomial
and community-acquired infections (Podschun and Ullmann,
1998; Tsai et al., 2008; Lin et al., 2010; Paczosa and Mecsas,
2016; Martin and Bachman, 2018; Vading et al., 2018; Juan
et al., 2019), such as urinary tract infection (Goldstein et al.,
1978; Sewify et al., 2016), soft tissue infection (Goldstein et al.,
1978), pneumonia (Lee et al., 1996; Tan et al., 1998), septicemia
(Arredondo-Garcia et al., 1992; Al-Anazi et al., 2008), bacteremia
(Goldstein et al., 1978; Lin et al., 1997), meningitis (Price

and Sleigh, 1972; Ku et al., 2017; Khaertynov et al., 2018),
and pyogenic liver abscesses (Chowdhury and Stein, 1992;
Youssef et al., 2012). As Klebsiella spp. have acquired resistance
against various antimicrobials, they often become a challenge in
treating these infections (Bengoechea and Sa Pessoa, 2019). For
instance, Kp isolates have continuously accumulated resistance
against four important classes of antibiotics, namely, the third-
generation cephalosporins, aminoglycosides, fluoroquinolones,
and carbapenems (Navon-Venezia et al., 2017; The European
Antimicrobial Resistance Surveillance Network, 2018). Multiple
drug resistance such as this eventually leads to extremely drug-
resistant Klebsiella strains (XDR) (Magiorakos et al., 2012;
Navon-Venezia et al., 2017).

In general, Kp is a hospital-associated pathogen that is
subjected to continuous selective pressure due to continuous
exposure to multiple antibiotics. K. pneumoniae inactivates a
spectrum of beta-lactams through the action of carbapenemases
and an extended spectrum of beta-lactamases (ESBL). As a
consequence, Kp can become resistant to beta-lactams and thrive
in healthcare settings (Hawkey and Jones, 2009; D’andrea et al.,
2013; Andrade et al., 2014; Zhang et al., 2016; Feng et al., 2018;
Fu et al., 2018). For example, a New Delhi metallo-β-lactamase 1
(NDM-1)-producing Kp strain originating from India has now
disseminated across the globe (Yong et al., 2009; Khan et al.,
2017). In 2016, a patient infected with NDM-1-producing Kp
died due to a lack of treatment options in Nevada (Chen et al.,
2017). Colistin, a drug of last resort that has been used against
carbapenem-resistant Enterobacteriaceae, targets bacterial lipid
A. K. pneumoniae has developed resistance against colistin
through mutations in lipid A modification regulatory genes such
as mgrB (Cannatelli et al., 2013; Jayol et al., 2014; Olaitan et al.,
2014; Poirel et al., 2015; Wright et al., 2015). Although both
cKp and hvKp are global pathogens, the former is predominantly
found in Western countries, while the latter is observed in the
Asia-Pacific Rim (Fazili et al., 2016; Rossi et al., 2018; Russo
and Marr, 2019). However, the evolution of hvKp strains with
multiple drug resistance (MDR) and extreme drug resistance
(XDR) is due to either hvKp acquiring drug-resistant plasmids
from cKp (Zhang et al., 2015, 2016; Wei et al., 2016; Feng et al.,
2018; Fu et al., 2018; Yao et al., 2018) or cKp acquiring an
hvKp virulence plasmid (Gu et al., 2018). Both pose a significant
challenge with respect to the treatment of infection.

Klebsiella pneumoniae has evolved several mechanisms
to resist antibiotics. In comparison to Escherichia coli (E.
coli), Kp has acquired double the number (more than 400)
of antimicrobial-resistant (AMR) genes (Wyres and Holt,
2018). Interestingly, ESBL-producing Kp exhibits carbapenem
resistance as a result of alterations in permeability due to
loss of porins (Bradford et al., 1997; Martinez-Martinez, 2008;
Leavitt et al., 2009) and overexpression of efflux pumps (Van De
Klundert et al., 1988). Klebsiella pneumoniae has also acquired
AMR through horizontal gene transfer enabled by plasmids
and a mobile genetic environment (Pendleton et al., 2013).
The emergence of plasmids with ESBL genes in Kp is one
such example (Wachino et al., 2004; Queenan and Bush, 2007;
Woodford et al., 2011; Lee et al., 2016). The translocation
of carbapenemase-encoding genes from Kp plasmids onto a
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chromosome makes infections almost impossible to control (Lee
et al., 2016). Due to chromosomal mutations, Kp has also become
resistant to the antimicrobial peptide colistin (Olaitan et al.,
2014; Doorduijn et al., 2016; Liu et al., 2016), leaving very few
therapeutic options for the treatment of patients infected with
Kp. Thus, it has become increasingly challenging to treat Kp
infections, as reflected by the increase in the number of severe
infections and the scarcity of effective antimicrobials (Paczosa
and Mecsas, 2016).

As Klebsiella spp. are reservoirs for antibiotic-resistant
genes (Navon-Venezia et al., 2017; Bengoechea and Sa Pessoa,
2019), they can act as key traffickers of AMR genes to
other environmentally and clinically important Gram-negative
bacteria. One such example is spread of carbapenem resistance
genes from Kp (Sidjabat et al., 2009) strains originated in the
United States (Smith Moland et al., 2003) to other Gram-
negative bacterial species such as Salmonella (Miriagou et al.,
2003), Enterobacter spp. (Hossain et al., 2004), Escherichia coli
(Bratu et al., 2007), and Proteus mirabilis (Tibbetts et al., 2008).
Such examples of interspecies spread have been observed for
quite some time. Similar to Kp, other Klebsiella species have
also acquired resistance against antibiotics. Klebsiella grimontii
(which is closely related to Klebsiella oxytoca) is a newly added
species to the Klebsiella genus (Passet and Brisse, 2018) and has
acquired resistance against carbapenem (Liu et al., 2018). These
events prompted the World Health Organization (WHO) to call
for a global effort to develop next-generation antibiotics against
Klebsiella infections (World Health Organization, 2017, 2018).

The rise in multidrug-resistant Klebsiella spp. (as well as
hvKp strains) and their periodic outbreak and global spread
(Navon-Venezia et al., 2017) warrant a new treatment strategy,
along with a new set of antibiotics and vaccines for Klebsiella
infections. Targeting bacterial survival mechanisms (rather than
destroying the bacteria) exerts less selective pressure on the
bacteria. For example, targeting the sugary armor of Klebsiella
spp., such as the LPS, CPS, and exopolysaccharide (EPS), would
be an efficient alternative strategy. Though structural information
and mechanical insights relating to the transport of CPS and
LPS onto the bacterial surface through various proteinaceous
nanomachines are available (Rahn et al., 1999, 2003; Kos et al.,
2009; Ruiz et al., 2009; Shu et al., 2009; Freinkman et al., 2012;
Sachdeva et al., 2017; Bi et al., 2018), only a fragmented picture
of their utility as potential drug and vaccine targets exists. To
this end, this review focuses on targeting the CPS, LPS, and EPS
armors of Klebsiella spp.

HOST INNATE IMMUNE DEFENSES
AGAINST KLEBSIELLA SPECIES

When a pathogen enters a host, it must contend with the
mechanical, chemical, and cellular barriers exhibited by the host,
and Klebsiella spp. is no exception (Zhang et al., 2000). Initially,
it has to overcome mechanical barriers such as the epithelia of
the skin, mucociliary clearance, the low-pH environment of the
genitourinary tract or gastrointestinal tract, etc. Subsequent to
this, the pathogen must circumvent the humoral and cellular

innate defenses. Several humoral defenses (opsonic, bactericidal,
and bacteriostatic) are used by the host for bacterial clearance
(Kabha et al., 1997; Zhang et al., 2000; Ivin et al., 2017).
One such humoral defense is the complement system, which
is activated in three different pathways (namely, the classical,
alternative, and mannose-binding lectin pathways) (Murphy
et al., 2012) for the purpose of clearing bacteria. In addition, the
pathogen has to deceive antimicrobial peptides, collectins, and
cellular components (i.e., neutrophils, monocytes/macrophages,
dendritic cells, and innate lymphoid cells) of the innate immune
defense to survive and maintain its growth in the host (Murphy
et al., 2012). The mechanisms of Klebsiella spp. defense against
the host are covered in detail in recent reviews (Doorduijn et al.,
2016; Paczosa and Mecsas, 2016; Bengoechea and Sa Pessoa,
2019).

Once Klebsiella spp. overcome the mechanical barriers of
the host, a variety of host immune defense pathways are
activated by pathogen recognition receptors (PRRs) such as
“Toll-like” receptors (TLRs), nucleotide-binding oligomerization
domain-like receptors (NLRs), etc. (Takeuchi and Akira, 2010)
through the detection of pathogen-associated molecular patterns
(PAMPs). As CPS and LPS are major pathogen surface
components, many of the PRRs activate these immune response
pathways primarily mediated by the detection of LPS and CPS.
For instance, upon binding to TLR4, the CPS activates the
NF-κB-mediated inflammatory and immune response pathways
(Regueiro et al., 2006, 2009; Yang et al., 2011). Interaction of LPS
with TLR4 and MD2 receptors on the host innate immune cells
also induces the NF-κB-mediated inflammatory response (Kawai
and Akira, 2010; Maeshima and Fernandez, 2013). The lung
collectins SP-A and SP-D, which are soluble PRRs, bind to LPS
and facilitate agglutination and phagocytosis by macrophages.
The recruitment of the classical complement pathway (following
LPS detection) and that of the lectin-mediated complement
pathway (upon detection of CPS) are some of the major
host strategies for bacterial clearance (Walport, 2001; Ricklin
et al., 2010; Holers, 2014; Gomez-Simmonds and Uhlemann,
2017). On detection of LPS, NLR protein family members
assemble to form inflammasome, which activates caspase 4/5
in humans and caspase-11 in the mouse. This triggers the
activation of non-canonical inflammasome to produce IL1β and
induce bacterial cell death (Hagar et al., 2013; Shi et al., 2014).
Opsonophagocytosis mediated by neutrophils and macrophages
is also a major bacterial clearance strategy (Domenico et al., 1994;
Salo et al., 1995; Regueiro et al., 2006).

HOST IMMUNE EVASION STRATEGIES OF
KLEBSIELLA SPP.

Klebsiella spp. make use of several sophisticated stealth immune
evasion strategies to escape from the host innate immune
response, rather than actively suppressing it. However, recent
research indicates that Klebsiella spp. have also developed several
anti-immune strategies that involve the attack of key regulators
and effectors of the host immune system. This makes them
formidable pathogens capable of disseminating and growing
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across a variety of sites in their hosts (Paczosa and Mecsas, 2016;
Bengoechea and Sa Pessoa, 2019). To establish in the host, the
pathogen has to counteract the host innate immune defenses
(Zhang et al., 2000). The surface oligosaccharide molecules (CPS
and LPS) are some of the major virulence factors that Klebsiella
spp. use to protect themselves from the host immune response.

Capsular Polysaccharide
The surface of Klebsiella spp. is shielded by a thick layer of
CPS fibers that protect the bacteria from the environment
(Amako et al., 1988). The polysaccharide capsule assists the
bacteria in surviving stressful environmental conditions such as
desiccation and exposure to detergents. High-molecular-weight
CPS, consisting of linear or branched oligosaccharides, form a
shield around the Klebsiella spp. cell surface and represent a
physical barrier against the complement system, as also seen in E.
coli (Meri and Pangburn, 1994; Alvarez et al., 2000; Cortes et al.,
2002b; Abreu and Barbosa, 2017). This shield plays a crucial role
in protecting Kp against innate immune response mechanisms,
evading complement deposition and opsonization, reducing
recognition, and adhesion by epithelial cells and phagocytes,
and abrogating lysis by antimicrobial peptides and complement
cascades (Podschun and Ullmann, 1998; Fang et al., 2004; Lin
et al., 2004; Pomakova et al., 2012; Paczosa and Mecsas, 2016;
Martin and Bachman, 2018). Poorly encapsulated Kp strains
are readily vulnerable to phagocytosis (Cortes et al., 2002a;
De Astorza et al., 2004). As compared to capsular Kp strains,
acapsular Kp strains are more easily phagocytosed by innate
immune cells (Domenico et al., 1994; Yoshida et al., 2000; Cortes
et al., 2002b; Lawlor et al., 2005, 2006). Deletion of the genes
responsible for capsule formation in the clinical strains ideally
leads to a non-pathogenic bacterium by drastically impairing the
virulence of Kp (Cortes et al., 2002b; Lawlor et al., 2006). It has
been shown that the thickness of CPS (rather than its chemical
composition) determines the extent of protection it confers
to Klebsiella spp. (De Astorza et al., 2004). Not surprisingly,
hvKp exhibits enhanced resistance to a variety of humoral
defenses such as complement killing, HBD-1 to HBD-3 [human
beta-defensin (HBD)], and to antimicrobial peptides such as
neutrophil protein 1 and lactoferrin (Fang et al., 2004).

The capsule type, also known as the K-antigen or K-type, is
Klebsiella species-specific and is widely used in the serotyping
of Klebsiella spp. Traditionally, Klebsiella spp. are identified as
having 77 K-antigens (viz., K1–K81, excluding K75–K78) based
on the diversity in their sugar composition, type of glycosidic
linkage, and the nature of enantiomeric and epimeric forms
(https://iith.ac.in/K-PAM/, K-PAM unpublished) (Pan et al.,
2015). Recently, additional K-types have been identified based on
the CPS locus or K-locus (KL) arrangement. These are known
as the KL series (KL1–KL81, KL101–KL149, KL151, KL153–
KL155, and KL157–159) (Wyres et al., 2016). It is noteworthy
that the KL1–KL81 locus types and the K1–K81 K-types are
synonymously used. However, the sugar compositions of the
remaining antigens in the KL series are as yet unknown. The
variation in the repeating units of different K-antigens leads
to varying degrees of detection of Klebsiella spp. by the innate
immune system (Kabha et al., 1995; Doorduijn et al., 2016).

Among the 134 K-types (including the KL series) identified
so far (Wyres et al., 2016), only a few of them are frequently
found in the strains isolated from clinical samples (Cryz et al.,
1986). Due to the increased production of CPS, hypervirulent
Kp strains produce a hypercapsule, which is a hypermucoviscous
EPS bacterial coating that may significantly contribute to
Kp pathogenicity (Shon et al., 2013). Klebsiella pneumoniae
strains with a hypercapsule are less sensitive to complement
detection and elimination (Pomakova et al., 2012) and also
have increased resistance to phagocytosis (Fang et al., 2004; Lin
et al., 2004; Pomakova et al., 2012) compared to the classical
strains. However, some cKp strains are also found to have a
hypermucoviscous coating (Catalan-Najera et al., 2017; Russo
et al., 2018). Notably, the presence of fucose in the hypercapsule
has been implicated in the evasion of the immune response for
the K1 antigen (Wu et al., 2008; Yeh et al., 2010). Although Kp
strains possessing K1 and K2 serotypes are often found to be
hypervirulent (Fung et al., 2002; Struve et al., 2015), other capsule
types such as K5, K20, K47, K54, K57, and K64 are also found
in hvKp strains (Yu et al., 2008; Shon et al., 2013; Russo et al.,
2018).

Klebsiella spp. K-antigens are negatively charged (as is
the case for other Gram-negative bacteria) and consist of
up to six monosaccharides in their main chain as well as
in the branch: D-mannose, D-glucose, D-galactose, L-fucose,
and L-rhamnose. Of particular note is a completely new
monosaccharide, 4-deoxy-threo-hex-4-enopyranosyluronic acid,
that is found in K38 but is absent in any other K-antigen
structure (Jansson et al., 1994). Detailed analyses of Klebsiella
spp. K-antigen sugar compositions (Table 1) reveal that as
with E. coli (Kunduru et al., 2016), K-antigens are negatively
charged due to the presence of uronic acid and or pyruvate
substitutions (https://iith.ac.in/K-PAM/, unpublished work).
Additionally, they also have O-acetyl, O-lactose, O-formyl,
and glutamate substitutions. The evolution and variability
in the sugar composition of CPS are one of the major
advantages possessed by Klebsiella when evading the host
immune response.

Lipopolysaccharide
Pathogenicity factor LPS, also known as endotoxin, is found
on the bacterial outer leaflet of the outer membrane and
plays an important role in offering protection against cationic
antimicrobial peptides (Clements et al., 2007; Llobet et al., 2015)
and the complement system in certain serotypes (Merino et al.,
1992). Klebsiella pneumoniae exploits the versatility of both CPS
and LPS to counteract the complement system (Ciurana and
Tomas, 1987; Alvarez et al., 2000; Shankar-Sinha et al., 2004;
Doorduijn et al., 2016; Adamo and Margarit, 2018). It has
been shown that purified LPS from Kp inhibits serum-mediated
clearance (Merino et al., 1992). The structure of LPS consists
of lipid A, core oligosaccharides, and O-antigens, among which
the O-antigen composition is highly variable across different
strains of Klebsiella spp. (Table 2, http://iith.ac.in/K-PAM/o_
antigen.html) (Lugo et al., 2007). Unlike K-antigens, Klebsiella
spp. has only 11 O-antigens (Clarke et al., 2018). O-antigen
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TABLE 1 | Continued

Main chain sugars side chain sugars
K
-a
n
ti
g
e
n

α
-L
-F
u
c
p

α
-L
-F
u
c
-O

a
c

β
-D

-G
a
lf

α
-D

-G
a
lp

α
-D

-G
a
lp
-p

y
r

α
-D

-G
a
lp
A

β
-D

-G
a
lp

β
-D

-G
a
lp
-O

a
c

β
-D

-G
a
lp
-p

y
r

α
-D

-G
lc
p

α
-D

-G
lc
p
A

β
-D

-G
lc
p

β
-D

-G
lc
p
-O

a
c

β
-D

-G
lc
p
-p

y
r

β
-D

-G
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p
A

β
-D

-G
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p
A
-p

y
r

β
-D

-G
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p
A
-O

a
c

α
-D

-M
a
n
p

α
-D

-M
a
n
p
-O

a
c

β
-D

-M
a
n
p

β
-D

-M
a
n
p
-O

a
c

β
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-M
a
n
p
-p

y
r

α
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-R

h
a
p

α
-L
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h
a
p
-O

A
c

α
-L
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h
a
p
-p

y
r

β
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-R

h
a
p

K
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α
-D

-G
a
lp

α
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a
lp
-p

y
r

α
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a
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A

β
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-G
a
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β
-D

-G
a
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-p

y
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α
-D

-G
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p

α
-D

-G
lc
p
A

β
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-G
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p

β
-D

-G
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p
-p

y
r

β
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-G
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p
-O

la
c

β
-D

-G
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p
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β
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p
A

β
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p
A
-G
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β
-D

-G
lc
p
A
-O

la
c

α
-D

-M
a
n
p

α
-D
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a
n
p
-p

y
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β
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a
n
p

β
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a
n
p
-p

y
r

α
-L
-R

h
a
p

β
-L
-R

h
a
p
-p

y
r

E
x
tr
a

K32 1 1 1 1 K32

K33 1 1 1 K33 1 1

K34 1 1 3 K34 1

K35 1 1 2 K35 1

K36 1 3 K36 1 1

K37 1 1 K37 1 1

K38 1 1 1 K38 1 β-L

-Sug

K39 2 2 2 K39

K40 1 1 2 2 K40

K41 1 1 1 1 K41 1 1 1

K43 1 2 K43 1 1

K44 1 1 1 2 K44

K45 1 3 K45 1

K46 1 1 1 1 K46 1 1

K47 1 1 K47 1 1

K48 1 1 2 K48 1

K49 2 1 K49 1

K50 1 1 1 2 K50 1 1

K51 2 K51 1 1

K52 −3 −1 −1 K52 −1

K53 1 1 2 1 K53 1

K54 1 1 2 2 K54 2

K55 1 1 K55 1 1

K56 1 2 1 K56 1

K57 1 1 1 K57 1

K58 1 1 1 K58 1

K59 1 1 2 K59 1

K60 1 1 1 1 K60 1 2

K61 1 1 1 1 K61 1

(Continued)
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TABLE 1 | Continued

Main chain sugars side chain sugars
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β
-D

-G
lc
p
-O

a
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β
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p
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y
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β
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β
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y
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β
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a
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α
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a
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β
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β
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a
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-p

y
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α
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h
a
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α
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-R

h
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A
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h
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p
-p

y
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h
a
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α
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α
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a
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-p

y
r

α
-D
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a
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A

β
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a
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y
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-D
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α
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A
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y
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β
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β
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β
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β
-D
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p
A
-O

la
c

α
-D
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α
-D
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p
-p

y
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β
-D
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β
-D

-M
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p
-p

y
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α
-L
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h
a
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β
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-R

h
a
p
-p

y
r

E
x
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a

K62 1 1 1 1 K62 1

K63 1 1 1 K63

K64 1 1 2 K64 1 1

K66 1 1 2 K66 1

K67 1 2 1 K67 1 1 1

K68 1 1 1 K68 1

K69 1 2 K69 1 1

K70 1 1 1 2 1 K70

K71 1 3 K71 1 1 1

K72 1 2 1 K72

K73 1 1 1 K73 1

K74 1 2 K74 1 1

K79 1 1 3 K79 2

K80 1 2 K80 1 1

K81 1 1 4 K81

K82 1 1 1 K82 1

K83 1 1 K83 1 1

Note that the number of occurrences of a particular sugar (which varies between 1 and 4) is also indicated. The presence of substitution(s) is also indicated next to the corresponding sugar. The sugar compositions of the newly identified

CPS locus [KL series (Wyres et al., 2016)] are not given, as they are unknown. The K-antigen names highlighted in the purple cells employ WbaP as the initiating glycosyl-transferase, while the K-antigens in the white cells use WcaJ

protein as the initiating glycosyl-transferase. The number of sugars in CPS structures with unknown anomeric forms is represented by negative values. Note that following abbreviations are used for sugar molecules in the table.

Sugar name: α-L-Fucp.

Position: 1-2-3456.

1: α and β represent the anomeric forms of the sugar molecules.

2: D and L represent the enantiomers of the sugar molecule.

345: Tri-letter sugar code (see below).

6: The molecule name terminates with “p” or “f” is for pyranose or furanose sugar forms respectively.

Fuc, Fucose; Gal, Galactose; Glc, Glucose; Rha, Rhamnose; Man, Mannose; GalpA, Galacturonic acid (Pyranose); GlcpA, Glucoronic acid (Pyranose); Oac, O-acetyl group; Pyr, pyruvyl group; β-L-Sug, 4-deoxy-three-hex-4-

enopyranosyluronic acid.
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Patro and Rathinavelan Klebiella Species Surface Associated Polysaccharides

is also used in the typing of Klebsiella spp. Among the 11 O-
antigen types found in Klebsiella spp., O1, O2, O3, and O5
are found in clinically imported strains (Hansen et al., 1999;
Follador et al., 2016). O-antigens of Klebsiella spp. consist
of D-galactose, D-galactofuranose, D-mannose, D-ribofuranose,
and N-acetyl-D-glucosamine sugars. Their composition varies
between different O-antigens, leading to differences in their
antigenicity. Like the K-antigen, the O-antigens differ from
each other in terms of sugar composition, glycosidic linkage,
number of repeating units, and epimeric and enantiomeric
forms (https://iith.ac.in/K-PAM/, unpublished work) (Follador
et al., 2016; Clarke et al., 2018). Unlike the K-antigens, only
acetyl group substitution is observed in O-antigens (and only
in one of the O-antigens). While Klebsiella spp. strains that
have truncated O-antigen or lack O-antigen (termed as “rough
LPS”) are susceptible to complement system-mediated killing,
the full-length O antigen or smooth LPS-containing Klebsiella
spp. strains are resistant to complement system-mediated killing
(Ciurana and Tomas, 1987; Mccallum et al., 1989; Merino et al.,
1992). Although the complement-resistant strains activate the
complement cascade, they are not susceptible to killing, as O-
antigen variability protects the Kp surface molecules (Merino
et al., 1992; Alberti et al., 1996; Shankar-Sinha et al., 2004; Merle
et al., 2015).

Exopolysaccharide
The extracellular matrix (which is a component of bacterial
biofilm) of Klebsiella spp. is composed of proteinaceous
adhesins, nucleic acids, and EPS (Sutherland, 2001; Branda
et al., 2005; Vu et al., 2009). Compared to other surface-
attached polysaccharides, little information is available on
biofilm-associated EPS, which is yet another virulence factor
of Kp (Cescutti et al., 2016). It has been shown that biofilm
polysaccharides of Kp to some extent reduce antimicrobial
peptide activity by preventing it from reaching the bacterial
membrane or by impeding interaction with the membrane
(Bellich et al., 2018). Genetic information regarding the
biosynthesis of EPS is encoded in specific operons on the bacterial
genome and 30 ORFs have been identified for the hetero-capsular
EPS K40-type of Klebsiella spp. (Pan et al., 2015). In general,
EPS contains rare sugars such as L-fucose, L-rhamnose, or uronic
acids (Kumar et al., 2007), and Klebsiella is no exception. For
example, hexasaccharide repeats of Klebsiella I-714 EPS have
a high L-rhamnose content in addition to D-galactose and D-
glucuronic acid (López-Santin, 1995; Roca et al., 2015). The
primary structures of EPS extracted from K. pneumoniae strain
KpTs113 have K24 CPS-repeating units and the K. pneumoniae
strain KpTs101 is identical to the O1 antigen of LPS. This
observation is supported by the finding that CPS and LPS are
required for building the mature biofilm architecture (Balestrino
et al., 2008; Benincasa et al., 2016; Cescutti et al., 2016). However,
the KpMn7 strain has a rare sugar (rhamnose) in the repeating
unit and is highly similar (but not identical) to the K24 CPS unit.
Given this intriguing finding, further research is warranted on
novel EPS structures found in Klebsiella spp. (Kubler-Kielb et al.,
2013; Bellich et al., 2018). T
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EXTRACELLULAR POLYSACCHARIDE
BIOSYNTHESIS AND TRANSPORTATION
PATHWAYS

The aforementioned extracellular polysaccharide virulence
factors are biosynthesized in the cytoplasm and transported
through sophisticated proteinaceous nano-machines onto the
bacterial surface. In general, bacteria use three different pathways
for the transport of extracellular polysaccharides: (i) a Wzx/Wzy-
dependent pathway (Rahn et al., 1999; Whitfield, 2006; Kalynych
et al., 2014), (ii) an adenosine tri-phosphate (ATP)-binding
cassette (ABC) transporter-dependent pathway (Cuthbertson
et al., 2010; Greenfield and Whitfield, 2012; Kalynych et al.,
2014), and (iii) a synthase-dependent pathway (Whitney and
Howell, 2013). In addition to these, a fourth pathway (the
dextrase/sucrase-dependent pathway) has also been identified
for EPS secretion (Whitney and Howell, 2013; Schmid et al.,
2015; Schmid, 2018).

Klebsiella spp. use a Wzx/Wzy-dependent pathway for CPS
secretion (Rahn et al., 1999) that is similar to Group 1 CPS surface
export in E. coli (Rahn et al., 1999; Whitfield and Paiment, 2003;
Sachdeva et al., 2017). Klebsiella spp. use three independent ABC
transporter-dependent pathways for LPS secretion. Although
it is known that E. coli uses a Wzx/Wzy-dependent pathway
for EPS secretion (Reid and Whitfield, 2005), there is no
information available regarding EPS secretion in Klebsiella spp.
Understanding the mechanisms of transport and the structural
features of the proteins involved in such transport is essential
for the identification of potential antimicrobial targets and the
development of novel antimicrobials. As information on the
EPS-secretion pathway is not available for Klebsiella spp., the
following sections are limited to a review of CPS and LPS
transportation strategies used by Klebsiella. The structures of
the proteins involved in Klebsiella CPS and LPS export (with
the exceptions of LptDE and LptB2FG) have been obtained by
homology modeling using known template structures from other
organisms (see Table 3).

The Wzx/Wzy-Dependent Secretion
Pathway
The chromosomal cps gene cluster harbors genes that are
essential for the biosynthesis of sugar precursor molecules,
assembly of the repeating unit, flipping of the repeating unit
to the periplasmic side, polymerization of the repeating unit,
transport of the nascent CPS, and anchorage of CPS onto the
surface of Klebsiella (Pan et al., 2015). Klebsiella spp. utilize a
Wzx/Wzy-dependent CPS secretion pathway, which is similar to
that for Group 1 capsule production in E. coli (Whitfield and
Paiment, 2003; Sachdeva et al., 2017). The process of CPS export
in Klebsiella spp. begins with the biosynthesis of nucleotide
sugar precursors corresponding to a particular K-type and the
assembly of the repeat unit at the cytoplasmic face. This occurs
with the help of sugar-specific glycosyl transferases encoded by
genes such as wbaP, wcaN, manC, rmlA, wcaA, wcuD, wcuM,
wckA, and wclH (Rahn et al., 1999; Shu et al., 2009; Pan et al.,
2015). Subsequently, recognition of the specific CPS-repeating

unit by the flippase Wzx occurs with the first sugar linked to
undecaprenol-pyrophosphate (Und-PP), followed by flipping to
the periplasmic side. Repeat unit polymerization is facilitated
by Wzy copolymerase (Whitfield and Paiment, 2003; Li et al.,
2016). Finally, Wza (an outer-membrane translocon), Wzc (a
tyrosin autokinase), and Wzb (a phosphatase) synergistically
transport CPS onto the bacterial surface and anchor the CPS onto
the outer-membrane protein Wzi (Rahn et al., 2003; Whitfield,
2006; Woodward et al., 2010). This CPS export pathway is
common to all Klebsiella spp. (as they all have cps locus genes).
Gene sequences of the cps locus (specifically wzi and wzc) are
used in the K-typing of Klebsiella spp., owing to limitations in
conventional K-typing (Brisse et al., 2013; Pan et al., 2013; Wyres
et al., 2016). Klebsiella spp. cps gene sequences (e.g., wzi, wza,
wzb, wzc, wbap, wcaj, wzx, and wzy) vary according to their K-
antigen composition and are used in genome-based surveillance
of Klebsiella spp. (Pan et al., 2015; Wyres et al., 2016) (https://
iith.ac.in/K-PAM/, unpublished work). Notably, a recent study
has shown that the arrangement of the genes in the CPS locus
is K-type-specific and this finding has been successfully applied
to Klebsiella spp. K-typing (Pan et al., 2015; Wyres et al., 2016;
Wick et al., 2018). It has been found that a Klebsiella spp. strain
can either contain initialization glycosyl transferase WbaP or
WcaJ, but not both (Shu et al., 2009). Sugar composition analysis
indicates that the serotypes K1, K2, K4-K8, K11, K13, K14, K16,
K17, K22–K25, K28, K30, K31, K33–K35, K37, K39, K44, K45,
K48, K54, K55, K58–K61, K64, K67, K69, K71–K73, andK82 have
WcaJ and use glucose-Und-PP as an initializing sugar. On the
other hand, K3, K9, K10, K12, K15, K18–K21, K26, K27, K32,
K36, K38, K40, K41–K43, K46, K47, K49–K53, K56, K57, K62,
K63, K66, K68, K70, K74, and K79–K81 use galactose-Und-PP as
the initializing sugar and have WbaP in their cps gene cluster.

LPS Biosynthesis in the Cytoplasm by
ABC-Dependent Pathway
LPS are glycolipids that encompass three structural moieties,
namely, lipid A, core oligosaccharides (core-OS), and the O-
antigenic polysaccharide (O-PS) (Whitfield and Trent, 2014).
The lipid A (the lipid moiety of LPS) is highly conserved and
anchors the LPS on the outer leaflet of the outer bacterial
membrane. The core-OS is conserved and acts as a linkage
between the lipid A and O-PS. The O-PS is highly variable across
different Klebsiella spp.

Such complexity in the LPS structure leads to a complex
biosynthesis pathway that takes place at the cytosolic and
periplasmic faces of the inner membrane: (i) biosynthesis of
lipid A through the Raetz pathway, (ii) attachment of core-
OS to the lipid A, (iii) flipping of the lipid A-core-OS to the
periplasmic end, (iv) biosynthesis of O-PS at the cytoplasmic
end, (v) flipping of O-PS to the periplasmic region, and (vi)
ligation of O-PS to lipid A-core-OS in the periplasmic region
(Raetz and Whitfield, 2002; Whitfield and Trent, 2014). Finally,
the LPSmolecule assembled in the periplasmic region is exported
to the bacterial surface wherein lipid A acts as the anchorage
point for the LPS (Okuda et al., 2016). The entire process of
LPS biosynthesis and surface export involves four different gene
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TABLE 3 | Details of the protein structures used in Figures 1, 2.

Components of CPS/LPS biosynthesis and

transportation pathway

PDB ID

(available)

Organism name for which crystal

structure is available

Genbank ID of the Klebsiella sequences used for the

homology modeling (% sequence identity with available

PDB structure)

CPS BIOSYNTHESIS AND TRANSPORTATION PATHWAY (FIGURE 1)

Wzi 2YNK Escherichia coli BAF47011.1 (99.78%)

Wza 2J58 Escherichia coli BAF47012.1 (99.44%)

Wzb 2WMY Escherichia coli BAF4703.1 (99.32%)

Wzc (cytoplasmic domain) 3LA6 Escherichia coli (strain K12) BAF47029.1 (57.93%)

Wzx 3MKU Escherichia coli BAT24471.1 (14.11%)

LPS BIOSYNTHESIS AND TRANSPORTATION PATHWAY (FIGURE 2)

Wzm 6AN7/6OIH Aquifex aeolicus (strain VF5) CZQ25306.1 (34.5%)

Wzt-NBD 6AN5 Aquifex aeolicus (strain VF5) CZQ25307.1 (46.32%)

Wzt-CBD 2R5O Escherichia coli CZQ25307.1 (100%)

MsbA 3B60 Salmonella typhimurium SSW84925.1 (94.7%)

LptB2FG 5L75 K. pneumoniae

LptDE 5IV9 K. pneumoniae

clusters: lpx, waa, rfb, and lpt. The gene products of lpx, waa, and
rfb are involved in the biosynthesis of lipid A, core-OS, and O-
PS, respectively (Regue et al., 2005; Fresno et al., 2007; Okuda
et al., 2016). The lpt gene products are involved in the transport of
the LPS molecule to the extracellular side of Klebsiella. The other
protein involved in this biosynthesis process is MsbA, which is
part of a different gene cluster. Intriguingly, Klebsiella spp. LPS
biosynthesis and transportation are driven by ATP hydrolysis at
three different stages: flipping of the lipid A-core-OS, flipping
of O-PS, and transport of LPS from the periplasmic end to the
bacterial extracellular region. These steps are outlined below.

Biosynthesis of Kdo2-lipid A–core-OS
The biosynthesis of lipid A begins in the cytosolic region with
the involvement of nine enzymes synthesized from the lpx gene
cluster (Raetz et al., 2009). The first step is the substitution
of an acyl chain to the 3-OH group of uridine diphosphate
N-acetylglucosamine (UDP-GlcNAc) (Anderson et al., 1985;
Anderson and Raetz, 1987), followed by the release of an
acetate group and the addition of the second acyl side chain.
Two such monosaccharides are glycosylated, wherein one is
phosphorylated (called lipid X) prior to the reaction, following
which disaccharide-1-phosphate is again phosphorylated to
synthesize Lipid IVA at the cytoplasmic face of the inner
membrane. The matured lipid IVA is glycosylated with two 3-
deoxy-D-manno-oct-2-ulosonic acid (Kdo) residues, which are
incorporated by WaaA (a product of the waa gene cluster)
to produce Kdo2-lipid IVA. Subsequently, Kdo2-lipid A is
synthesized by the acylation of Kdo2-lipid IVA. This entire
Raetz pathway takes place in the cytoplasmic end of the inner
membrane and is mediated by several glycosyltransferases, along
with other enzymes (Raetz and Whitfield, 2002).

In the next step, core-OS is synthesized by extending Kdo2-
lipid A with the help of several glycosyltransferase enzymes
(which vary as per the sugar components of different O-antigens).
In general, the core-OS is conceptually divided into two regions,

namely, the conserved inner core and the variable outer core.
The inner core typically has Kdo2 and L-glycero-D-manno-
heptopyranose (L, D-Hep). The outer core consists of three to
six sugars, whose compositions are variable.

Export of Kdo2-lipid A–core-OS Across the Inner

Membrane
The nascent Kdo2-lipid A–core-OS intermediate is subsequently
flipped to the periplasmic end of the inner membrane through
an ABC transporter, MsbA. MsbA is a “half ” transporter
as it contains two different polypeptide chains wherein each
chain contains a nucleotide-binding domain (NBD) and a
transmembrane domain (TMD). MsbA uses an “outward only”
mechanism to flip Kdo2-lipid A–core across the inner bacterial
membrane. In this mechanism, MsbA remains in a resting state
with an (inward) open conformation at the cytoplasmic side
when ATP is not bound. This inward open form allows Kdo2-
lipid A–core-OS entry. Stable Kdo2-lipid A–core-OS binding
aligns TMD for ATP binding and restricts the opening of
TMD. Upon ATP binding, the NBD domain intertwines, and
Kdo2-lipid A–core-OS moves toward the periplasmic side. This
coordinated movement of MsbA conformational change and
LPS translocation leads to ATP hydrolysis, thus restoring the
ground state inward for open confirmation of MsbA. This
“outward only” mechanism for Kdo2-lipid A–core-OS export
across the inner membrane is established based on different
conformations of MsbA, derived from different Gram-negative
bacterial species (Doerrler et al., 2004; Arai et al., 2017; Mi et al.,
2017; Ford and Beis, 2019). Upon transport to the periplasmic
region, Kdo2-lipid A–core-OS can undergo environmentally
regulated modifications.

O-PS Biosynthesis and Transportation Machinery
Klebsiella spp. O-PS biosynthesis takes place separately at the
cytoplasmic end of the inner bacterial membrane. The O-
PS has four conceptually different regions: primer, adaptor,
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FIGURE 1 | Schematic representation of Klebsiella spp. CPS biosynthesis and surface export machinery. The sugar precursors biosynthesized in the cytoplasm are

subsequently assembled in the cytoplasmic face of the inner membrane to form the repeating unit with the help of sugar-specific glycosyl transferases WbaP (or

WcaJ), followed by WbaZ, WcaN, WcaJ, and WcaO. The recognition of the CPS repeating unit by the first sugar linked to undecaprenol-pyrophosphate (Und-PP) by

Wzx (a flippase) facilitates the flipping of the repeating unit to the periplasmic side. Subsequent to this event, Wzy (a copolymerase) polymerizes the repeating units.

Finally, Wza (an outer-membrane translocon), Wzc (a tyrosin autokinase), and Wzb (a phosphatase) synergistically transport CPS onto the bacterial surface and anchor

the CPS onto the outer-membrane protein Wzi (a lecto-aqua-porin). As structural information on the representative proteins from Kp is unknown, the structures of Wzi,

Wza, Wzb, Wzc (cytoplasmic domain), and Wzx have been modeled from available reference structures through the SWISS-MODEL server (Schwede et al., 2003).

Klebsiella pneumoniae (K20) accession numbers corresponding to Wzi, Wza, Wzb, Wzc, and Wzx are BAF47011.1, BAF47012.1, BAF4703.1, BAF47029.1, and

BAT24471.1, respectively. The corresponding PDB IDs used as templates in the modeling are 2YNK (99.78%), 2J58 (99.44%), 2WMY (99.32%), 3LA6 (57.93%), and

3MKU (14.11%), respectively. The sequence identity between the query and template is indicated in the bracket.

repeating unit, and terminal modification domains (Raetz and
Whitfield, 2002). In general, Klebsiella spp. have two to five
sugars in the O-PS repeating unit that are highly variable for
different O-antigens (Clarke et al., 2018). The O-PS repeating
unit is assembled on a lipid carrier undecaprenyl phosphate
(embedded in the inner membrane) with the help of several
glycosyltransferases encoded by wecA, gmlABC, wbbMNO,
wbmV, wbmW, and wbmX genes and is transported to the
periplasm with the help of an ABC transporter (Clarke et al.,
2018). O-PS biosynthesis requires a polyisoprenoid derivative,
namely, C55-undecaprenol phosphate (Und-P), which serves
as an acceptor for O-PS chain assembly. The reaction begins
with the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate
onto Und-P. This reaction is facilitated by GlcNAc-1-phosphate

transferase (WecA) and produces Und-PP-GlcNAc, which is
the primer region of O-PS. The O-PS is extended on Und-
PP-GlcNAc with the help of glycosyltransferases, depending on
the sugar composition of the O-PS (Meier-Dieter et al., 1992;
Rick et al., 1994; Clarke et al., 1995; Guan et al., 2001; Kos
et al., 2009). Depending on the O-antigen, the O-PS biosynthesis
rfb gene cluster has 6 to 13 genes that are required for O-PS
synthesis, of which 6 are essential genes (Clarke and Whitfield,
1992; Clarke et al., 2018). The 5′ end of the gene cluster has
genes that encode for ABC transporters, and the 3′ end of the
cluster has genes that produce glycosyltransferases. The adaptor
domain, which occurs only once in an O-PS chain and acts as
the connection between Und-PP-GlcNAc and the repeat unit
domain, is subsequently attached to the growing O-PS. The
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FIGURE 2 | Schematic representation of Klebsiella spp. ABC transporter-dependent LPS assembly and transport. The O-antigen repeating unit is synthesized in the

cytosol with the help of the corresponding glycosyltransferases and is subsequently polymerized by Wzy and transferred to the periplasm by an ABC transporter

(Wzm/Wzt complex). In a similar fashion, the Kdo2-lipid A–core oligosaccharide biosynthesized in the cytoplasmic region is flipped to the periplasmic region through

the ATP-driven MsbA. Following this, the matured O-polysaccharide and lipid A-core-oligosaccharide are ligated by WaaL ligase in the periplasmic region. The

completely grown LPS is transported to the bacterial surface through LptA-G assembly as indicated. For the purpose of illustration, the LptB2FG (PDB ID: 5L75) and

LptDE (PDB ID: 5IV9) structures are taken directly from Kp, while the Wzm/Wzt complex and MsbA proteins are homology-modeled using structures available in other

organisms as templates. The reference PDB IDs for Wzm, Wzt-NBD, and Wzt-CBD are 6AN7 (34.5%), 6AN5 (46.32%), and 2R5O (100%), respectively. The sequence

identity between the template and the Kp are given in brackets. The NCBI accession numbers corresponding to the Kp protein sequences are CZQ25306.1 (Wzm)

and CZQ25307.1 (Wzt-NBD and Wzt-CBD). LptA and LptC are indicated by schematic representation. The helical and beta-jelly conformation of LptC is shown in

red. The beta-jelly conformation of LptA is colored dark gold. As WaaL structural information for any Gram-negative organism is unavailable, the two domains of WaaL

are represented in yellow and peach-colored ovals. Note that for the purpose of illustration, O3 has been considered as a case in point. Individual parts of the LPS and

O-antigen are annotated separately at the bottom of the figure.

O-PS chain extension takes place by the addition of a repeat-
unit domain. The growth of O-PS occurs at the non-reducing
end of the polysaccharide chain. Finally, the O-antigen length is
regulated either through a covalent modification at the terminal
residue of the O-PS (terminal capping/modification) or as a
result of the stoichiometry of the Wzm-Wzt ABC transporter

that transfers the Und-PP linked O-PS to the periplasmic end
(see below).

O-antigen Transport Through the Wzm/Wzt System
After polymerization, the O-antigens are transported to the
periplasmic-leaflet of the innermembrane by an ABC transporter
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FIGURE 3 | An amino acid sequence logo constructed using the multiple sequence alignment of 139 Wza protein sequences (A) and 138 Wzi protein sequences (B).

Note the variation observed in the C-terminal region (transmembrane region) of Wza that faces the extracellular region of the bacterial cell (dash-box) (A). In contrast,

Wzi sequences are highly conserved between different serotypes of Klebsiella spp. Note that non-redundant sequences that have a defined K-type are used to

generate sequence logo.
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that has two transmembrane domains (TMDs) (named Wzm)
and two nucleotide-binding domains (NBDs) (namedWzt) (Kos
et al., 2009). This O-antigen ABC transporter system is common
in most of the Gram-negative bacteria. Intriguingly, in some
of the Klebsiella spp., the O-antigen ABC transporter has an
additional carbohydrate-binding domain (CBD) that is fused to
the C-terminus of theNBD (Cuthbertson et al., 2005, 2007; Liston
et al., 2017). Chemical modifications, such as the addition of a
phosphate or methyl group at the non-reducing end of some O-
antigens, provide the biosynthesis completion signal, which is
recognized by the CBD to accomplish the transport (Liston et al.,
2017). O12 is one such antigen that has the CBD, while such a
mechanism is absent in the uncapped O-antigen biosynthesis in
Kp (Bi et al., 2018).

Although structural information pertaining to the Klebsiella
spp. Wzm/Wzt ABC transporter is unavailable, its homologous
structure from Aquifex aeolicus has provided insights into
the mechanism of O-antigen transport. Wzm/Wzt structures
determined from A. aeolicus in ATP-free (Bi et al., 2018)
and ATP-bound (Caffalette et al., 2019) forms reveal that the
formation of a continuous inner transmembrane (TM) channel
is wide enough to accommodate an O-antigen chain in the
nucleotide-unbound conformation. ATP is seen in the bound
conformation at the conserved Walker A, Walker B, and H-
loop signature motifs of NDB (Davidson et al., 2008; Locher,
2016). These motifs are conserved between Klebsiella spp. and
A. aeolicus and are essential for the transport of O-antigens
across the inner membrane. In the complex form, the NBD
adopts a compact structure and interacts with the Wzm dimer.
The O-antigen chain bound to the Wzm/Wzt transporter is
passed through the TM channel to reach the periplasmic face of
the inner membrane, following which the lipid portion of the
Und-PP-N-acetamido sugar moiety is inserted into the inner-
membrane periplasmic leaflet (onto which the O-antigen is
anchored) (Figure 2, left).

LPS Maturation in the Periplasm
The LPS intermediates (Und-PP-linked O-PS and Kdo2-lipid A–
core-OS) that are transported to the periplasm are ligated with
the help ofWaaL ligase (a product of thewaa gene cluster) (Regue
et al., 2005). The Und-PP-linked O-PS is transferred to Kdo2-
lipid A–core-OS by the formation of a glycosidic bond between
the first sugar of the O-PS and the sugar in the outer core.

LPS Transport to the Outer Membrane Through

LptA-G
The LPS is transported to the outer membrane through
a transport system comprising seven proteins, namely,
LptABCDEFG (LptA–G) (Sperandeo et al., 2007; Ruiz et al.,
2008; Freinkman et al., 2011, 2012; Villa et al., 2013). All seven
of the protein structures of the LPS transport system have been
fully characterized (Botos et al., 2016; Dong et al., 2017; Vetterli
et al., 2018; Li et al., 2019; Owens et al., 2019). Among these
proteins, the LptDE and LptB2FG complex structures are known
for Klebsiella spp. (Table 3), while structural information for
the remaining components is available for other Gram-negative
bacterial species (Vetterli et al., 2018; Li et al., 2019; Owens

et al., 2019). This structural information, combined with existing
knowledge of the associated transport mechanisms, has been
used here to explain LPS transport in Klebsiella spp. Strikingly,
the portal for transport of LPS molecules is formed by LptD
and LptE, which is connected to a pump-like system formed by
the LptB2FG ABC-transporter through a bridge-like structure
consisting of LptA and LptC (Bishop, 2019; Li et al., 2019;
Owens et al., 2019). The individual sections of this integrated
LPS transporter are discussed below. As the LptA–G transporter
is distributed across the inner membrane, periplasmic region,
and outer membrane, this nano-machine represents a promising
antimicrobial target.

Insertion and Translocation of LPS Into LptB2FG
LPS is driven across the ABC transporter LptB2FG (Okuda
et al., 2012; Sherman et al., 2014) in a continuous flow from
the periplasmic leaflet of the inner membrane to the periplasmic
domain of LptC and through the transmembrane helix of LptC
(Sperandeo et al., 2008, 2011; Narita and Tokuda, 2009). This
is accomplished by utilizing energy derived from the ATP-
hydrolysis activity of LptB (Narita and Tokuda, 2009; Sherman
et al., 2014). The LptB2FG complex contains two transmembrane
domains (LptF and LptG) and two nucleotide-binding domains
(LptB2) (Ruiz et al., 2008; Narita and Tokuda, 2009). Both
LptF and LptG contain a periplasmic β-jelly roll domain that
is unique to this ABC transporter (LptB2FG). LPS passes into
LptFG through a lateral opening formed by transmembrane helix
1 (TM1) of LptF and TM5 of LptG through an electrostatic
gating mechanism (Dong et al., 2017). The LPS subsequently
travels to the periplasmic domain helix (locked in-between TM1
of LptG and TM5 of LptF) of LptC (Okuda et al., 2016) in a
stepwise manner (Owens et al., 2019). The soluble periplasmic
protein LptA bridges LptC and the N-terminal domain of outer-
membrane protein LptD by forming a head-to-tail oligomer
(Suits et al., 2008) with a continuous hydrophobic groove
(Bowyer et al., 2011; Sperandeo et al., 2011; Grabowicz et al.,
2013; Villa et al., 2013). LptA shares a β-jelly roll fold with
the periplasmic domain of LptC (Tran et al., 2010) and the N-
terminal domain of LptD (Qiao et al., 2014). Strikingly, a β-jelly
roll fold arrangement with a similar hydrophobic groove has also
been observed in the periplasmic domain of LptF (Dong et al.,
2017; Li et al., 2019; Owens et al., 2019), which could explain
the transport of LPS to the outer membrane of the bacteria (as
mediated by the LptFG complex).

LPS Assembly Onto the Outer Leaflet of the Outer

Membrane
The N-terminal domain of the outer-membrane LptD is thought
to be very flexible in order to maintain the physical connection
and integrity of the LptCAD scaffold (Botos et al., 2016).
Soon after the N-terminal domain of LptD accepts the LPS
from the periplasmic protein LptA, it undergoes a significant
conformational change in such a way as to open up a luminal
gate formed by two periplasmic loops of LptE with LptD. The
opening of the LptDE lateral gate facilitates LPS transit through
the periplasmic hydrophobic groove to the extracellular region
(Botos et al., 2016). Subsequent to this, the lipid A section of
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LPS is inserted directly into the membrane and facilitates the
transition of the polysaccharide fragment through the barrel
lumen to the extracellular space (Gu et al., 2015; Botos et al., 2016;
Dong et al., 2017).

A THERAPEUTIC PERSPECTIVE FOR
COMBATING KLEBSIELLA SPP.
INFECTIONS

Although antibiotics such as third-generation cephalosporins,
aminoglycosides, fluoroquinolones, and carbapenems (Navon-
Venezia et al., 2017; The European Antimicrobial Resistance
Surveillance Network, 2018) have contributed dramatically to the
reduction of morbidity and mortality associated with Klebsiella
spp. infections, the continued emergence of cKp strains with
extreme drug resistance and the newly emerged multidrug-
resistant hypervirulent Klebsiella strains (Gu et al., 2018) limit
current treatment options to eradicate infections (Brisse et al.,
2009; Magiorakos et al., 2012; Doorduijn et al., 2016; Navon-
Venezia et al., 2017; Martin and Bachman, 2018). Alarmingly,
recent evidence suggests that Klebsiella has also evolved
mechanisms to actively suppress innate immune responses
(Bengoechea and Sa Pessoa, 2019), in addition to other well-
known stealthy Klebsiella immune evasion strategies. Although
many virulence factors are thought to be involved in the
counteraction of host defenses by Klebsiella, only a few of these
are well-studied, including CPS, LPS, fimbriae, and siderophores
(Paczosa and Mecsas, 2016). As CPS and LPS actively participate
in hijacking host defenses to establish infection, targeting these
can prevent the growth of Klebsiella spp. (rather than killing
the pathogen) by imposing less intense selective pressure.
Ultimately, this may limit the evolution of resistant strains.
Here, the biosynthesis and export of these surface-associated
polysaccharides are discussed from the perspective of the
treatment of Klebsiella infections.

CPS and LPS protect Klebsiella spp. from the action of
complement cascade and antimicrobial peptides, as well as from
engulfment and phagocytosis by host immune cells (Alvarez
et al., 2000; Regueiro et al., 2006; Pan et al., 2011). In addition,
CPS acts as a physical barrier to protect LPS (Merino et al.,
1992; Alvarez et al., 2000). EPS (another surface-associated
polysaccharide) is a component of biofilm and has been shown
to interfere with the action of antimicrobial peptides of the host
immune system (Bellich et al., 2018). Thus, inhibition of the
LPS, CPS, and EPS biosynthesis and surface expression would
be an effective approach to counteract Klebsiella anti-immune
strategies. As the EPS secretion pathway and its structural
composition in Klebsiella spp. is not well-understood, this review
discusses the treatment strategies ofKlebsiella infections from the
perspective of CPS and LPS.

CPS and LPS are biosynthesized in cytoplasmic/periplasmic
regions of the inner bacterial membrane and are transported to
the bacterial surface with the help of sophisticated proteinaceous
nano-machines. Thus, blocking the biosynthesis of CPS and
LPS or disrupting the assembly of these nano-machineries
can block the surface expression of these molecules that offer

protection from the host immune response. For instance, LPS
biosynthesis can be targeted in three different stages: lipid A,
core-OS, and O-PS biosynthesis. Targeting the components of
biosynthesis may prevent the formation of LPS and render
Klebsiella vulnerable to host defenses. A possibility for novel
antibiotic development could involve targeting the lipid A
synthesizing enzymes (synthesized by the lpx locus), as there
are no human homologs for them (Whitfield and Trent, 2014).
Indeed, a recent study drawing on multi-omics data from
sources including genomics, transcriptomics, structuromic, and
metabolic information has listed LpxA, LpxB, LpxC, and LpxD as
prioritized non-host homologous protein targets (Ramos et al.,
2018). Targeting the LPS export pathway proteins represents
yet another strategy. Specifically, the outer-membrane proteins
[LptD and LptE (Figure 2)] involved in LPS export represent
potential antibiotics targets, given that they are easily accessible
(Srinivas et al., 2010; Robinson, 2019). Producing antibodies
against these outer-membrane proteins is also of particular
clinical interest (Storek et al., 2019). Similarly, Wzm, Wzt,
and MsbA could also be targets for the development of novel
antimicrobials (Alexander et al., 2018; Ho et al., 2018).

Targeting the proteins that participate in Wzx/Wzy-
dependent CPS transport and the surface expression pathway
(Figure 1) may interfere with CPS export to the bacterial surface
(Sachdeva et al., 2017). For instance, manipulating the function
of the aqua-lecto-porin Wzi (Bushell et al., 2013; Sachdeva et al.,
2016), as well as capping the extracellular side of Wza (Dong
et al., 2006) involved in CPS surface expression through a novel
antibiotic, would be potential targets similar to that for E. coli.
It is worth noting that a similar strategy has been successfully
demonstrated in E. coli Wza (Kong et al., 2013; Sachdeva et al.,
2017). However, the sequence diversity of the surface-exposed
region of Wza across various K-types may present a challenge in
designing a common antibiotic (boxed region in Figure 3A). In
contrast, Wzi is highly conserved and is a potential target for all
Klebsiella spp. (Figure 3B).

Another approach for the treatment of Klebsiella infection
involves the development of antibodies targeting CPS and LPS
(Szijarto et al., 2017; Diago-Navarro et al., 2018; Kobayashi
et al., 2018). Cell surface carbohydrate-based vaccines (Hutter
and Lepenies, 2015) can be an effective choice for combating
Klebsiella infections (Cryz et al., 1985; Cross, 2014; Seeberger
et al., 2017; Adamo and Margarit, 2018; Hegerle et al., 2018;
Micoli et al., 2018). Glycan epitopes, namely, the antibody-
interacting and minimal antigenic determinant of O- or K-
antigens, can be used in vaccine development. The heterogeneity
and complexity of O- and K-antigens of different Klebsiella
serotypes may pose a challenge to the development of a
polyvalent vaccine against all Klebsiella infections. Fortunately,
only a few O- and K-antigens are found in clinical isolates; thus,
they can be used in the development of a novel immunogenic
polyvalent glycoconjugate Klebsiella vaccine with the help of
improved vaccine technology. Multiple interactions between
protein and glycan is essential at different stages of the immune
response. Identification of surface saccharide epitope patterns
in clinical/hypervirulent strains and their use in the design
of a unique synthetic glycan epitope conjugated with an
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immunogenic carrier protein may be useful in the development
of an effective multivalent glycoconjugate Klebsiella vaccine.

Although Klebsiella spp. have 12 O-antigens,
seroepidemiological investigations have revealed only four
Klebsiella O serotypes found in clinical isolates (Edelman et al.,
1994; Cryz et al., 1995; Trautmann et al., 2004). Thus, Klebsiella
anti-endotoxin vaccines/antibodies can be developed based on
the O-antigen structure of clinical isolates of Klebsiella spp.
Protection against Kp through anti-LPS antibodies has been
successfully demonstrated (Cohen et al., 2017; Pennini et al.,
2017; Hegerle et al., 2018). Although thermostable LPS is a
strong immune activator, Kp quite often uses modifications of
lipid A of LPS in such a way that it is no longer recognized by
certain immune receptors such as TLR4 (Llobet et al., 2015).
This helps it evade the complement system and to survive within
the host during colonization and infection (Llobet et al., 2011,
2015; Kidd et al., 2017; Mills et al., 2017). Modification of the
polysaccharide composition of the O-antigen side chain (which
is exposed to antibodies) and elongation of the O-antigen has
also been documented (Doorduijn et al., 2016). Kp strains with
a long O-antigen produce a high-molecular-weight (smooth
phenotype) LPS that is less susceptible to serum killing, as
compared to strains lacking an O-antigen side chain with a
low-molecular-weight (rough phenotype) LPS (Ciurana and
Tomas, 1987; Mccallum et al., 1989). For example, D-galactan
I to D-galactan III structure modification of the O-antigen is
found to improve Kp survival in human serum compared to
strains expressing D-galactan I (Szijarto et al., 2016). Similarly,
an epidemic multidrug-resistant Kp clone (Tzouvelekis et al.,
2013) was found to have a modified O-antigen structure (Wyres
et al., 2015; Szijarto et al., 2016). Modification of the glycan
structures at the terminal end of the O-antigen has also been
shown to alter complement activation in Kp (Tytgat and Lebeer,
2014; Adamo and Margarit, 2018).

CPS could also be exploited to counteract Klebsiella anti-
immune strategies. Recognition of this possibility has led to
the development of a 24-valent CPS-based vaccine for Klebsiella
(Cryz et al., 1991; Edelman et al., 1994; Campbell et al., 1996;
Donta et al., 1996). Although a phase 1 trial of the vaccine
has shown it to be immunogenic and non-toxic (Edelman
et al., 1994), no further developments have been reported in
the last two decades. Similar to LPS, the capsule also undergoes
modifications to resist the host complement system (Wyres
et al., 2015; Szijarto et al., 2016). This may pose a challenge in
developing a vaccine against Klebsiella spp. infections. Chemical
modifications in K-antigen structures, such as acetylation and
deacetylation (Hsu et al., 2016), may also bring about differential
effects in CPS antigenicity, representing yet another challenge in
the development of vaccines against Klebsiella spp. K2-antigen-
lacking mannobiose or rhamnobiose produced by a Kp strain

escapes host recognition during the host innate immune response
(Sahly et al., 2009). It is worth noting that hvKp strains are
frequently found to have K2 antigens.

Use of exogenous cholesterol and bacteriophage depolymerase
against Klebsiella infections represents yet another promising
approach. It has been shown that exogenous cholesterol increases
macrophage-mediated phagocytosis by down-regulating the
expression of genes responsible for LPS core oligosaccharides
production, as well as reducing the anti-phagocytic properties
of the Kp capsule (Ares et al., 2019). The discovery that
bacteriophage capsule depolymerases can be used against
Klebsiella capsule types KN1, KN3, KN4, and K56 represents a
potential approach for the treatment of Kp infections (Pan et al.,
2019).

Significant progress has been made in understanding
Klebsiella immune evasion strategies. As the CPS and LPS of
Klebsiella spp. play an important role in hijacking host defenses,
targeting these virulence factors may be an efficient strategy
against Klebsiella infections. The known structural components
of Klebsiella CPS and LPS export machineries could be useful
in the design of novel antibiotics. However, heterogeneity in
sugar composition, glycosidic linkage, stereoisomeric forms,
and the concomitant variation in the proteins involved in
biosynthesis and transport may pose a challenge in the design
of antibiotics and vaccines that can be used against diverse
Klebsiella spp. In addition, the ability of Klebsiella spp. to
modify components of the CPS and LPS may be another
concern. Recent developments in gene sequencing techniques in
combination with a metagenomic approach to the investigation
of Kp clinical strains help in the design of polyvalent vaccines.
A combinatorial therapy involving Klebsiella vaccines against
surface polysaccharides and antibiotics inhibiting surface antigen
assembly may represent the most promising approach.
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