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Abstract. The present paper discusses the study of longitudinal vibrations in turbomachines 

coupled with skewed slotted bar cage induction motors and which are of the typical configurations 

in refinery industries. Based on vibration data, the severe longitudinal vibrations in tilting pad 

thrust bearing assembly and its failure mechanism during start up transient and steady-state 

operations has been observed. The excitation sources for these longitudinal vibrations originates 

from asymmetric air gaps in cage induction motors. Hereby, the study of longitudinal vibrations 

in turbomachines with thrust bearing is found to be necessary. A simplified Single degree freedom 

(SDOF) analytical model is proposed to estimate the peak response based on tuned variable 

stiffness method. Uniform air gap with rotor skew causes fixed thrust and is proportion to square 

of the load current. Static eccentricity across the rotor motor air gap causes variations in gap length 

and intern creates the torque fluctuations. This value is proportional to variance in square of the 

load current. In the proposed model evaluates the cascade effect of preloaded thrust due to rotor 

motor skewness and followed by compressor thrust due to differential pressure across the impeller 

in the form of the variable stiffness. This model has advantage in analysing the coupled motor and 

turbomachinery system response in longitudinal direction in a simple manner. The longitudinal 

vibrations estimate at thrust bearing and compared with experimental vibration data obtained from 

the field machinery. There is a good convergence between results of the analytical model and 

experimental field vibration data. 

Keywords: rotor skew, induction motor, asymmetric air gaps, electrodynamic currents, thrust 

bearing hydrodynamics, longitudinal vibrations in turbomachinery. 

1. Introduction 

Generally, turbomachinery manufacturers follow established design codes like API 617 [1] for 

sequential phases of designs to ensure equipment integrity through fluid process designs for 

freezing the sizing of flow path in the first phase, followed by mechanical design of the compressor 

components for mechanical strength and metallurgical aspects and finally to tuning out the rotating 

equipment dynamics. In practice, the centrifugal compressor design codes are being followed so 

far for general refinery service using the vibrations with respect to lateral and torsional dynamics 

only. API 684 [2] standard was focused on the recommended practice regarding rotor dynamics 

for coupled lateral and torsional vibrations only. These design codes consider longitudinal forces 

as a fixed thrust without considering dynamic effects in longitudinal direction. But, thrust collar 

failures are observed in gas compressors coupled with cage induction motors, where coupling 

detachment of boiler feed pumps are observed due to longitudinal forces and vibrations. 

Edgar J. Gunter et al. [3] discussed Lund’s contribution in modern compressor designs for 

rotor bearing system stability by using transfer matrix method and FEM methods. His research 

work was incorporated in compressor API design codes. Lund’s studied Jeffcott rotor with gas 

bearings, multi lobed fluid bearings including tilting pad bearings, unbalance response, stability 

and transient response using Jeffcott model. Whirling of rotors around the origin studied with two 
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degrees of freedom model in polar coordinates for turbo-rotors and analyzed lateral dynamics 

successfully. T. H. Young et al. [4] studied dynamic stability of rotor-bearing systems subjected 

to random axial forces. In this study, the coupling between bending and longitudinal vibrations in 

the shaft is considered without coupled induction motor. 

Bradford et al. [5] studied the axial magnetic forces in induction motors. The induction motor 

was taken as the driving unit and it induced the electromagnetic force component as axial thrust 

(due to skew in rotor bar slots). The axial displacement was because of variations in the air gap 

magnetic energies intensities and which causes vibrations. V. Subramanyam [6] made 

comprehensive analytical study of axial force experienced by the rotor of an induction motor and 

tried to establish axial force as a function of slip. The calculated forces were compared with strain 

gauge measurements and the effect of airgap on axial force was studied. Juha Phyhonen et al. [7] 

discussed design of high speed electrical induction motors to avoid excessive iron loss. They also 

provided an empirical relation to estimate the nominal airgap as a function of power for induction 

motor rotating at 3000 rpm and above. Komatani [8] made 3D electromagnetic analysis of cage 

induction motor with rotor skew slots and with various slot designs of three phase induction motor 

using Brand ford formulation. Heineman [9] discussed the formulations to calculate the motor 

torque in terms of current in the proposed induction motor design. Also discussed the selection of 

motor designs with various angles of skew in squirrel cage induction motor rotors to avoid 

clogging effect, reduction in current harmonics and noise. 

Thomson et al. [10] used the vibration and current signature analysis to diagnose induction 

motor problems. The frequency associated with the defects in the current signature analysis is a 

function of rotational speed. Thomson et al. [11] used motor current analysis to diagnose the 

problems related to motor bar defects and air gap eccentricities. The static and dynamic air gap 

eccentricity are correlated with the unbalanced magnetic pull (UMP) and rotor motor stiffness and 

it was concluded that excessive eccentricities cause stress in rotor and damage to the bearings. 

Costello [12] studied the vibration forces in the induction motors and explained with operating 

principles. He integrated the vibration diagnostics with rotor dynamics and correlated the 

unbalanced magnetic pull with eccentricity. Narendra [13] reviewed the eccentric and asymmetry 

air gap problems in squirrel cage motors. The common eccentric problems in three phase induction 

motors were modelled with FEM and validated with the motor current analysis data. Tehunen et 

al. [14] studied the electromagnetic forces acting between the rotor and the stator having an 

eccentric airgap. For cylindrical circular whirling motion, symmetric conical whirling motion and 

their combinations has been studied both numerically by using finite element analysis (FEM) and 

experimentally by test rig method. Resolved by using principle of superposition.  

Zeidan et al. [15] in their 1991 paper point out that the vibration levels in turbomachinery 

would be high under the action of cyclic or dynamic loading. In their study regarding the 

application of fluid film bearings in rotating machinery, Zeidan [16] investigated some of the 

important parameters in the design and application of high-performance fluid film bearings, 

bearing failures, their effect on the performance of a machine and the changes that can be brought 

about in the design parameters that can help in eliminating or at the least reduce the impact of such 

failures. It is also mentioned that the variable geometry tilting pad bearings have low or negligible 

cross coupling, and they are inherently stable. From experimental test rigs, measuring bearing 

operating parameters like oil temperatures, oil-film thickness, and pressure of a tilting pad thrust 

bearings were developed by Guo et al. [17] and these parameters determine the pad static and 

dynamic properties converged by the oil film and they are influencing the operating conditions.  

Srikanth et al. [18] used the finite difference method using the two-dimensional Reynolds 

equation during modelling the large tilting pad thrust bearings to find the pressure distribution. 

Baldassarre et al. [19] in their work developed a software tool used in determine the axial thrust 

force acting on the rotors for a centrifugal compressor which in turn useful in bearing sizing and 

avoids the thrust bearing failures. Childs et al. [20] studied the frequency dependent stiffness and 

damping coefficients of tilting pad bearings in modelling and where the direct real parts of the 

dynamic-stiffness coefficients obtain from quadratic functions of the excitation frequency and by 
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adding a mass matrix to the conventional [C][K] model to produce a frequency-independent 

[M][C][K] model. In this work, direct damping was modelled with the help of a constant, 

frequency-independent coefficient. Lucy Yu Zhao et al [21] discussed the axial vibrations in a 

synchronous motor driving compressor connected with gear box. They modelled the system as a 

lumped parameter model consisting compressor, coupling and rotor motor masses and where 

thrust bearing stiffness infinitely rigid and damping is ignored. Finally, concluded that 

longitudinal dynamics were not discussed in API standards. The longitudinal vibrations in a 

marine propulsion system has been studied by Zhang et al. [22] using transfer matrix method. 

Hydrodynamic lubrication theory and small perturbation method were used to determine the axial 

stiffness and damping of oil film. Similarly, finite element analysis used by Huang et al. [23] to 

analyze the coupled transverse and longitudinal vibrations in a marine propulsion shaft system for 

idling and loading conditions. Both coupled natural frequencies and the maximum acceleration 

were determined and it was seen that with increase in rotational speed, there was an increase in 

the maximum transverse and longitudinal acceleration responses and whereas the natural 

frequencies for the coupled vibrations remained unchanged. 

These studies are mainly focused on estimating the axial thrust forces due to rotor bar skew 

effect. So, there exists a research gap regarding the effect of longitudinal vibrations in 

turbomachinery coupled with cage induction motors. This paper was presenting the study of single 

stage gas compressor installed at Khammam chemical refinery and handles the sour gas and the 

equipment designed as per code API 617 [1]. This machine is continuously monitored during 

steady operations and as well as transient run ups for critical speeds and vibration response 

measurements at thrust collar position. During regular maintenance of the machine, a thrust collar 

failure was observed. Krishna Reddy et al. [24] discussed the experimental observations of the 

severe vibrations in a turbomachinery coupled with induction motor. The root cause for 

longitudinal vibrations is due to airgap variation in the motor due to static eccentricity. These 

experimental observations are basis for developing analytical model in this manuscript. 

A detailed analysis of the root cause is discussed in the present paper. The experimental field 

observations have been supported with analytical study and a single degree freedom system with 

tuned stiffness model. This model is for estimating the critical resonance frequencies and 

longitudinal vibration response at thrust collar location. The first step in the analytical formulation 

is to calculate the longitudinal force from skew slotted induction motor and the second step is to 

estimating the dynamic stiffness, mass and damping properties of the rotor bearing system. 

Stiffness of the single degree freedom system is expressed as a tuned variable stiffness. In this 

regard, tuned stiffness consists the preloaded stiffness from coupled induction motor and followed 

by speed dependent centrifugal compressor preload stiffness. Uniform air gap with rotor skew 

causes fixed thrust and is proportion to square of the load current. Static Eccentricity causes 

variations in gap length which leads to the torque fluctuations. This value is proportional to 

variance in square of the load current. In the proposed model captures the cascade effect of thrust 

due to rotor motor skewness and followed by compressor thrust due to differential pressure across 

the impeller in the form of variable stiffness. There by two stiffnesses are tuned to inertial 

equilibriums with the same rotor mass inertia. The estimation of tuned stiffness to study 

longitudinal dynamics of turbomachinery coupled with induction motor is the novelty of this 

analytical vibration model. In the last step, these measured vibration responses have been used to 

validate the analytical results. 

2. Experimental vibration study and phenomenon of observations 

A single stage centrifugal gas compressor with volute casing coupled with squirrel cage 

induction motor is shown in Fig. 1. Gas compressor is coupled with induction motor drive of 

2.5 MW power rating with 6.6 KV supply and three phase stator winding construction. This single 

stage centrifugal compressor handles H2S gas. The components mounted on the shaft are impeller, 

thrust collar and gear coupling hub. Both the driver and the driven shafts were coupled by float 
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end gap gear coupling. The rotor system was supported radially on compressor side with two lobe 

journal bearings housed in compressor casing and similarly the motor rotor was supported with 

symmetrically plain sleeve bearings. The entire rotor system axially located by thrust bearing 

assembly has active and inactive sides constructed with tilting pad mechanism. The entire system 

installed on rigid foundation. These radial and thrust bearings supports the entire rotor. ISO VG 

46 lube oil was supplied to the bearings to establish full film hydrodynamic lubrication in steady 

state operations. The compressor has a wet gas seal and seal balance was maintained by reference 

discharge gas.  

 
Fig. 1. Schematic diagram of turbo machinery coupled with cage induction motor 

The sources for the thrust force generation in the compressor are discharge pressure in the 

impeller and axial force in the motor. The thrust bearing is under longitudinal force because of 

initial thrust force produced by run up of motor due to skewed bar rotor (𝐹௅) and subsequently by 

the compressor while building the discharge pressure i.e. centrifugal impeller produced thrust. 

Both thrust forces produced by motor and impeller have same direction for a single stage 

compressor, which do not have balancing device. These axial forces are dynamic. 

 
Fig. 2. Skew slotted rotor with cage induction motor having symmetric air gap 

The induction motor coupled with turbomachinery has a skewed rotor slot. The skewness in 

rotor slots helps to avoid the cogging effect/locking tendency of the rotor during start-ups and 

continuity of rotor movements. This slotted skew effect produces longitudinal force component, 

(𝐹௅), as shown in Fig. 2. This constant force carries over to the thrust bearing as a thrust load as 

shown in Fig. 3(a), where skew slotted rotor has been installed asymmetrically in the stator which 

causes the dynamic eccentricity of the rotor which results in change of air gap permeability and 

subsequently changes in the twisting torque (∆𝑇). Further, changes in the twisting torque causes 

longitudinal vibrations in the thrust collar. Fig. 3(b) shows schematic diagram of two types of air 

gap eccentricities such as static and dynamic eccentricity. In static air gap eccentricity where the 

rotor centre (𝑆) is fixed rotation centre at (𝑅) spins. The minimum air gap (𝐿𝑔ଵ) and maximum air 

gap (𝐿𝑔ଶ) are shown in the Fig. 3(b). In dynamic eccentricity, the rotor centre (𝑆) whirls/orbits 
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around rotation center (𝑅) due to flexible rotor stiffness. In the present study, the eccentric air gap 

in three phase induction motor considered it as static air gap eccentricity. 

Fig. 4 shows the failure of thrust collar of a single stage gas compressor rotor assembly 

observed during the regular maintenance operations. The failure morphology shows the fretting 

wear of the thrust collar joint and key due to longitudinal vibrations. To understand the root cause 

of these thrust collar failures and longitudinal vibration amplitude, the regularly monitored 

operational vibration data was analyzed. 

 
a) 

 
b) 

Fig. 3. a) Skew slotted rotor with cage induction motor having asymmetric air gap,  

b) schematic diagram of static and dynamic air gap eccentricity in induction motor 

Fig. 5 shows four bearing locations for overall vibration measurement indicated on 

turbomachinery locations with acceleration pickup. The measured overall vibration velocities (in 

rms values) on bearing housing in the vertical, horizontal, and longitudinal directions are given in 

Table 1. The chosen turbomachinery, as per ISO 10816-3 classification, referred under group I 

machinery with power rating between 300 KW and 50,000 KW installed on rigid foundation. For 

group I machines, vibrations are good up to 2.8 mm/sec rms velocity beyond which are restricted 

operation and for damage control. 

From the Table 1 measurements, the motor bearing (locations 3 and 4) housing vibration 

amplitudes in longitudinal direction are more than 2.8 mm/s as prescribed by ISO 10816-3. These 

values show that the motor operations must be restricted for limited operations and corrective 

actions are required. Therefore, frequency analysis has been carried out and it was found that 

longitudinal vibrations are pre-dominant at synchronous sinusoidal force associated with rotating 

speed (1X harmonic) and further analysis performed to identify the source of excitation in the 

longitudinal vibrations by shaft vibration measurements. 

The shaft longitudinal vibration measurements were done during steady state operations and 

transient run-up at thrust collar location using non-contact eddy current transducer. These 

longitudinal vibration transducers are like radial vibration measurement with eddy current 

vibration transducer and it works on Faraday’s inductive principle. The eddy current vibration 

transducer used in the measurement having 8 mV/μm sensitivity. This vibration spectral data to 
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identify the critical speeds. The machine monitoring system used to measure shaft vibrations, axial 

displacement/thrust monitor, bearing metal temperatures and lube oil temperatures were installed 

as per API 670 standard. The shaft vibration limits are set according to API 617 [1] design code 

for centrifugal compressors. As per API 617 [1], allowable unfiltered vibration displacement limit 

at rated speed of 3000 rpm equals to 51 μm peak to peak. Similarly alarm and trip value for 

3000 rpm is 71 μm peak to peak and 87 μm peak to peak, respectively. Overall unfiltered shaft 

longitudinal vibration measurements were found to be 71 μm (peak to peak) which is in the alarm 

zone. Fig. 6 shows the longitudinal vibration spectrum at thrust collar location for steady state 

operational speed of 3000 rpm. It is observed that 1X harmonic component is predominant. 

 
a) Rotor motor coupled system 

 
b) View 1: Damage thrust collar 

 

 
c) View 2: Damage thrust collar 

 

 
d) View 3: Frettage wear on thrust 

collar contact mounting surface 

 
e) View of forged rotor shaft 

 
f) Thrust collar locking sleeve 

 
g) Thrust collar split locking rings 

 
h) Thrust mounting surface on shaft 

Fig. 4. Overview of turbomachinery rotor assembly and failure observations  

of thrust collar assembly for typical turbomachinery  

Table 1. Overall vibration velocity measurements on turbomachinery bearing housing under steady state 

Locations Overall velocity vibrations on bearing surfaces in rms values and its harmonics 

Measurement points 

Directional overall vibration  

velocity in mm/sec [rms] 
Longitudinal  

vibration harmonics 
Vertical Horizontal Longitudinal 

1 1.5 1.9 1.3 1X harmonic is predominant 

2 1.4 1.8 1.4 1X harmonic is predominant 

3 3.4 4.8 4.3 1X harmonic is predominant 

4 3.3 4.8 4.2 1X harmonic is predominant 

Fig. 7 shows the vibration spectrum at thrust collar location during machine run up and was 

seen to be having two critical speeds, which were two inertial equilibriums with preload stiffness 

of thrust bearing. The first critical speed was observed to be at 17.5 Hz due to the pre-load thrust 

from motor. The second critical speed is due to subsequent building of discharge pressure by 

single stage centrifugal compressor and it provided the additional preload to thrust bearing lube 

oil film and its centered frequency was identified to be 37 Hz with broad envelope. These critical 
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speeds were observed during run-up of the turbomachinery and are a result of synchronous 

excitation caused by dynamic eccentricity due to asymmetric air gap in the induction motor. From 

the machine’s operation history, it was understood that the amplitude of the longitudinal vibrations 

was going up to alarm and trip levels during night hours when the temperature was not maintained. 

The lube oil, ISO VG 46, has a kinematic viscosity of 46 centistokes at 40 °C. The lubricant oil 

temperature drop causing increase in oil viscosity which in turn increases the hydrodynamic full 

film thrust bearing oil film stiffness which subsequently increases the natural frequency from 

37.5 Hz and takes it towards the operation frequency of 50 Hz, there by amplifying the 

longitudinal vibrations to alarm and trip levels. 

 
Fig. 5. Schematic diagram showing vibration monitoring locations 

 
Fig. 6. Vibration spectrum measured at thrust collar location longitudinal vibrations in steady state 

 
Fig. 7. Vibration spectrum during transient run up longitudinal vibrations response  

as function of speed at measured thrust collar location 

The high longitudinal vibrations in the cage induction motor are due to asymmetric air gap 

installations. These vibrations are micro level motions and caused the fretting wear between thrust 

collar and shaft mating contact surface, followed by secondary damages of the thrust collar 
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assembly. The thrust collar being is an axial locating dynamic support of the entire rotor assembly 

which effects the primary mechanical safety of such Sour gas handling turbomachinery. 

3. Analytical modelling and analysis 

The experimentally observed critical frequencies and vibration response in longitudinal 

direction have been discussed in the previous section was predicted by the single degree of 

freedom (SDOF) tuned stiffness model. Primarily, the dynamic properties of the system such as 

two inertial equilibriums with mass (𝑀), tuned longitudinal stiffness of the rotor bearing system 

(𝐾) and damping’s (𝐶) were estimated and then the free and forced vibration analysis were 

performed.  

 
Fig. 8. SDOF model with tuned stiffness for turbo machinery coupled  

with induction motor longitudinal vibration response 

Fig. 8 shows the single degree freedom model of turbo machinery coupled with induction 

motor under longitudinal excitation. The entire rotor system including motor rotor, coupling and 

compressor shaft with impeller masses has been considered as lumped mass [𝑀], thrust bearing 

oil film with preloads were considered as longitudinal stiffness of the rotor bearing system [𝐾] 

from thrust preloads and the oil film damped property was taken as damping coefficient [𝐶]. The 

chosen damping ratio for ISO VG 46 at 40 °C is 0.1 for the current model. 𝐹(𝑡) is longitudinal 

synchronous excitation harmonic force due to skewed rotor motor with static air gap eccentricity: 𝑀𝑋ሷ  +  𝐶𝑋ሶ + 𝐾𝑋 = 𝐹(𝑡). (1)

Critical frequencies of the system can be obtained by doing free vibration analysis. The mass 

of the rotor system and the initial thrust generated from motor remains constant and corresponding 

stiffness [𝐾ଵ] followed by increase in dynamic preloading of the compressor due to build up 

pressure in compressor during run- up and corresponding combined preload stiffness [𝐾ଶ ]. 

Therefore, 𝑓௖ଵ was the first natural frequency that can be observed because of motor axial force 

pre-load of thrust bearing oil film whereas 𝑓௖ଶ was the second natural frequency observed because 

of combined impeller thrust and the motor thrust preload. Hence, the critical frequencies of the 

rotor system can be written as: 

𝑓௖ଵ =
1

2𝜋ඨ𝐾ଵ𝑀 , (2)

where, 𝐾ଵ is the preload stiffness from induction motor axial force: 

𝑓௖ଶ =
1

2𝜋ඨ𝐾ଶ𝑀 , (3)

where, 𝐾ଶ is the total dynamic stiffness from combined thrust. For forced vibration model excited 
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by longitudinal synchronous excitation harmonic force from skewed rotor motor at “1X” harmonic 

can be written as: 𝑀𝑋ሷ  +  𝐶𝑋ሶ + 𝐾𝑋 = 𝐹௔ sin(𝜔𝑡), (4)

where, 𝑋 is the dynamic response of longitudinal vibration displacement in peak to peak and is 

given as: 𝑋 =
𝐹௔ඥ(𝐾 −𝑀𝜔ଶ)ଶ + (𝐶𝜔)ଶ, (5)𝑋ௗ௬௡௔௠௜௖𝑋௦௧௔௧௜௖ =

1ඥ( 1 −  𝑟ଶ)ଶ + ( 2𝜁𝑟)ଶ, (6)

where, 𝜁 = 𝐶/𝐶𝑐 and 𝑟 = 𝜔/𝜔௡. 

3.1. Calculation of longitudinal dynamic force 

As shown in Fig. 2, the longitudinal force component (𝐹௅) in Newton is a function of average 

load torque (𝑇) in N-m, diameter of rotor (𝐷) in meter and skew slotted rotor bar angle (𝜃) in 

degrees: 

𝐹௅ =
2𝑇 tan𝜃𝐷 . (7a)

This constant force carries over to the thrust bearing as a thrust load as shown in Fig. 3, where 

skew slotted rotor has been installed asymmetrically in the stator. This configuration causes the 

dynamic eccentricity of the rotor which in turn results in change of air gap permeability and the 

twisting torque (∆𝑇). The change in torque is proportional to the square of the current variation in 

a rotation of the motor rotor and causes variation in the phase load currents. Further, the dynamic 

eccentricity of rotor causes fluctuation of longitudinal force and it can be calculated as: 

𝐹௔ =
 2[∆𝑇] tan(𝜃 )𝐷 . (7b)

Total longitudinal force (𝐹௅) is sum of fixed axial component force (𝐹଴) and axial displacement 

harmonic force (𝐹௔) for a fixed asymmetric air gap flux: 𝐹௅ = 𝐹(𝑡) = 𝐹଴ + 𝐹௔ sin(𝜔𝑡). (8)

For induction motors at steady state [5, 6], the load torque (𝑇) is equal to the product of square 

of the load current (𝐼) and ratio of resistance and slip. In steady state, resistance of stator phase 

winding and slip are constant. Therefore, torque is proportional to the square of phase current: 𝑇 ∝ 𝐼ଶ, (9)

where ‘𝑇’ is average torque (in Nm) and ‘𝐼’ is the load current (in Ampere). The change in the 

torque is proportional to square of the variations in the load current in a rotation. 𝐼ଵ and 𝐼ଶ are the minimum and maximum ammeter readings of the phase load current of motor 

in steady state in Amperes: Δ𝑇 = [𝑇ଶ − 𝑇ଵ] ∝ [(𝐼ଶ)ଶ − (𝐼ଵ)ଶ], (10)
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∆𝑇𝑇 =  
√3[𝐼ଶଶ − 𝐼ଵଶ]𝐼ଵଶ , (10b)

∆𝑇 = 𝑇 ቊ√3[𝐼ଶଶ − 𝐼ଵଶ]𝐼ଵଶ ቋ. (10c)

The longitudinal dynamic force 𝐹௔ which is a sinusoidal harmonic force can be obtained by 

substituting the Eq. (10c) in Eq. (7b).  

3.2. Total thrust force on bearing (𝑭𝑻𝑻) 

The total thrust force on the bearing is sum of total longitudinal forces (𝐹௅) and thrust from 

compressor impeller 𝐹்஼ and it is given as: 𝐹்் = 𝐹௅ + 𝐹்௖ , (11a) 𝐹்் =  
2𝑇 tan𝜃𝐷 + [𝑃ଶ(𝐴ଷ − 𝐴ଶ) − 𝑃ଵ𝐴ଵ], (11b)

where, 𝑃ଵ and 𝑃ଶ are the suction and discharge pressures of the single stage gas compressor as 

shown in Fig. 9; 𝐴ଵ is suction opening of impeller area; 𝐴ଶ is the impeller hub area and 𝐴ଷ is the 

shroud areas. 

 
Fig. 9. Thrust estimation of turbo machinery coupled with cage induction motor 

3.3. Estimation of longitudinal dynamics parameters for turbomachinery: 

One of the dynamic parameters is the longitudinal stiffness which is effectively governed by 

thrust bearing hydrodynamic lube oil film stiffness. The rotor stiffness (𝐾௥  =  𝐴𝐸/𝐿) is very high 

when compared to stiffness of lube oil film (𝐾) and they are in series in axial direction. Therefore, 

the effective stiffness of the system is dominated by the oil film stiffness. This stiffness is 

proportional to the preload acting on tilting pad thrust bearing and can be written as: 𝐾 =  
𝐹்்𝛿 , (12)

where, 𝐹்் is the total thrust force and 𝛿 is the axial displacement. 𝐹்் (54991 N) was directly 

estimated from total thrust calculations and 𝛿 (431.8 μm) was read from the thrust monitor of 

turbomachinery.  

Similarly, 𝐾ଵ is the dynamic stiffness and is proportional to the pre-load from motor thrust 

force (𝐹௅). By assuming the linear behavior of the dynamic stiffness as a function of pre-load 𝐾ଵ 

and 𝐾ଶ can be related as: 
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𝐾ଵ𝐾2
=

𝐹௅𝐹்். (13)

The mass of entire rotor can be estimated using density of the material (low alloy steel density 

having 𝜌 = 7850 Kg/m3). In this study, the mass of rotor was approximated to 2413 kg. Typical 

stiffness and damping properties of hydrodynamic tilting pad bearing were 131000 N/mm and 

damping ratio of 0.1 according to API 684 standard. The stiffness arrived from total thrust (𝐹்்) 

and thrust monitor deflection (𝛿) is 1,36,008 N/mm using Eq. (12) and using damping ratio  

(𝜁 = 𝐶/𝐶𝑐 = 0.1) for ISO VG 46, the damping (𝐶 ) is 112.45 N-s/mm. Both API 684 and 

Measured 𝐾 and C are comparable. 

Dynamic viscosity (𝜇) of lube oil is proportional to viscous shear force (𝐹௦) as per Newton’s 

law of viscosity when speed and thrust bearing geometry is constant. Similarly, for full film 

lubrication, as per law of friction, viscous shear force (𝐹௦) is proportional to preload of thrust 

bearing (𝐹்்). The full lubricant film stiffness (𝐾) is proportional to dynamic viscosity: 𝐹௦ଵ𝐹௦ଶ =
𝜇ଵ𝜇ଶ =

𝐾ଵ𝐾ଶ. (14)

From Ref. [7], empirical formulation of static air gap for induction motors at high speeds  

(≥ 3000 rpm) to avoid excessive iron loss is given in Eq. (15). This equation is a function of power 

(𝑃). The calculated nominal air gaps (𝐿𝑔) from empirical equation for choosing induction motors 

are in line with the measured air gap lengths: 𝐿𝑔௡௢௠௜௡௔௟ = 0.2 + 0.01𝑃଴.ସ. (15)

4. Results and discussion 

The measured steady state and trainset vibration response of machine 1 in longitudinal 

direction is shown in Figs. 6 and 7. The steady state longitudinal shaft dynamic spectral response 

vibrations at thrust collar location is 51.41 μm peak to peak at 48.57 Hz. It is observed that the 

dominance of synchronous harmonic (1X) response in longitudinal vibration spectrum. Hence, it 

is inferring to static air gap eccentricity. Similarly, Fig. 7, indicating the transient vibrations 

spectral response during run up. It is observed that first resonance at 17.5 Hz and corresponding 

frequency response is 571.5 μm and second resonance at 37 Hz and corresponding frequency 

response is 200 μm peak to peak. The first resonance is associated with motor thrust and is 

modeled as dynamic stiffness. At this stage pressure was not built in the compressor. As the 

operating speed increases the differential pressure across the impeller increases which can be 

modeled as variable stiffness.  

Table 2 gives the dimensions and measured parameters of chosen machine configuration in 

terms of geometry, gas pressures, electrodynamics, air gap lengths and including lubricant 

damping ratio for Machine 1. The machine 1 details in the Table 2 are used for analytical study 

and comparison of response. Table 3 shows the calculated parameters and vibration response from 

the proposed analytical formulation. The steady state longitudinal vibration response was 

evaluated using Eqs. (5 and 6). and was found to be 51 μm and the measured value (51.4 µm). The 

other machines (2, 3 and 4) have geometrically similar construction and same longitudinal 

dynamic characteristics such as stiffness (𝐾), mass of the rotor (𝑀) and viscous damping of oil 

film (𝐶 ) including power rating. Table 4 shows the vibration displacements of four similar 

turbomachinery which have different static air gap eccentricity values with integrated 

measurements. This static air gap eccentricity created the variation in the phase currents of the 

motor and dynamic force. Analytical results are in good agreement with experimental results. 

Similarly, critical frequencies were evaluated for two different inertial equilibriums with 

preloaded dynamic stiffness using Eqs. (2 and 3). The first critical speed (𝑓௖ଵ) varied from 18 Hz 
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and the second critical speed (𝑓௖ଶ) from 37.78 Hz. The natural frequencies obtained from the 

analytical model matches with the experimentally measured critical speeds 17.5 Hz and 37 Hz. 

Table 2. Machine 1 geometry and operating conditions data 

Operating parameter Units Measured values 𝑇 – average load torque Nm 7003 𝐷 – skewed rotor diameter m 0.32 𝜃 – skew slot angle of cage rotor In degrees 16° 𝑃ଵ – gas inlet gauge pressure of compressor bar 17.652 to 18.633 𝑃ଶ – gas outlet gauge pressure of compressor bar 20.103 to 21.084 𝐴ଵ – area of impeller suction [diameter is 649 mm] mm2 330810 𝐴ଶ – area of the impeller shroud [outer diameter is 900 mm, 

inner diameter 649 mm] 
mm2 305362 𝐴ଷ – area of impeller hub [outer diameter is 900 mm and shaft 

diameter are 154 mm] 
mm2 617546 𝐼ଵ – minimum phase current of motor on load Amperes 200 𝐼ଶ – phase current total variation Amperes 224 𝛿 – static deflection at thrust monitor μm 431.8 

ISO VG 46 lubricant damping ratio 𝜁 = 𝐶/𝐶𝑐 ratio 0.1 𝐿𝑔 – length of the air gap mm 3.824 

Static air gap eccentricity mm 0.41 𝐿𝑔ଵ – minimum air gap length (static) mm 3.414 𝐿𝑔ଶ – maximum air gap length (static) mm 4.234 

Table 3. Machine 1 geometry and operating conditions data 

Parameter Calculated value 

Fluctuating torque (refer Eq. (10)) 3086 Nm 

Fluctuating axial load on the bearing (refer Eq. (7b)) 5531 N 

Total thrust (𝐹்்) on the bearing (refer Eq. (11)) 56187.8 N to 54360.5 N 

Average total thrust  55274.2 N 

The component of compressor thrust (𝐹்஼) 43,636.8 N to 41809.5 N 

Average compressor thrust 42724 N 

Total longitudinal dynamic stiffness of the oil film (𝐾) 1,36,009.3 N/mm 

Stiffness of oil film (𝐾ଵ), produced due to preload thrust from motor 30,882 N/mm 

Steady state longitudinal vibration response (Refer Eqs. (5-6)) 51 μm 

From calculated dynamic response parameters, the steady state vibration displacement at 1X 

is estimated using Eqs. (5-6) and was found to be 51 μm for the chosen configuration and the 

experimentally measured value was 51.4 µm. Thus, shows the analytical and experimental results 

are in good agreement. Thereby, the proposed analytical model was verified with similar 

configuration data of turbomachinery.  

Based on the experimental observations, the lubricant low temperatures are the cause for 

increasing the vibration response and it leads to machine vibration protection trips. The same was 

studied by parametric study and verified with analytical model. Table 5 shows the ISO VG 46 

lube oil properties as a function of temperature and stiffness calculation and the predicted vibration 

response of Machine 1 in longitudinal direction as function of temperature. The machine 1 is 

rotating at 3000 rpm. In this study, the thrust bearing lube oil film stiffness varies with respect to 

temperature changes has been estimated using Eq. (14). The predicted vibration response at 1X in 

longitudinal direction of machine 1 at 40 °C indicated in Table 5 and is matching with measured 

vibration data as mentioned in Table 4. The vibration response increases as the lubricant 

temperature decreases because of the critical speed is shifting towards the operating speed which 

causes response amplification. 

The calculated longitudinal vibration response using simple analytical model and measured 
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values are in good agreement for the chosen configurations. 

Table 4. Measurement parameters and longitudinal vibration displacement of various compressors 

C
o
m

p
re

ss
o
rs

 

Measurements and geometry parameters 

Vibration 

displacement  

(µm in peak to peak) 𝑇 

(N-m) 

𝐷 

(m) 
𝜃 

Nominal air 

gap (mm) 

Static air gap 

eccentricity (mm) 

𝐼ଵ 

(Amp) 

𝐼ଶ 

(Amp) 

Δ𝑇 

(N-m) 

𝐹𝑎 

(N) 

Calculated 

[1X] 

Measured 

[1X] 

1 7003 0.32 16° 3.824 0.41 200 224 3086 5531 51 51.4 

2 7003 0.32 16° 3.824 0.30 210 228 2169 3887 35.1 37 

3 7003 0.32 16° 3.824 0.26 212 228 1890 3387 30.8  32 

4 7003 0.32 16° 3.824 0.20 210 222 1426 2556 23.1 24 

Table 5. Dynamic stiffness variation of thrust bearing oil film with change in viscosity 

ISO VG 

46 

Dynamic 

viscosity, 𝜇 

(cP) 

Thrust 

preload, 𝐹௔ (N) 

Lube oil film 

stiffness (𝐾) 

(N/mm) 

Second critical 

speed (𝑓௖ଶ) (Hz) 

Longitudinal 

vibration response 

(μm peak-peak) 

At 40 °C 43 5531 136008 37.7 51 

At 35 °C 60 5531 189779 44.6 85.8 

At 30 °C 78 5531 246712 50.9 112.3 

5. Conclusions 

The present paper has discussed the effects of longitudinal vibrations on tilting pad bearing in 

a turbomachinery coupled with squirrel cage induction motors with skew slotted bar rotor. Thrust 

bearing failures such as fretting wear and looseness of thrust collar assembly was observed in 

regular maintenance activities. Severe longitudinal vibration values were recorded during 

operations. The longitudinal vibrations were due to static air gap eccentricity of the rotor which 

causes thrust collar damages. A simple analytical formulation has been developed to calculate the 

longitudinal vibrations. Fluctuating longitudinal load is estimated from the fluctuating motor 

torque which is proportional to variation in square of the measured phase current of the motor. 

The predicted analytical results are in good agreement with experimental measurements. Similar 

observations were made for other compressors having the same load rating, speed and dynamic 

parameters identified with different static air gap eccentricities. Where steady state response 

vibration spectrum clearly indicating synchronous harmonic response infers the machines are 

having static eccentric air gaps. The key indicators in determining the longitudinal vibration 

response are rotor motor skewness, air gap static eccentricity and variation in electrodynamic 

current, thrust bearing hydrodynamics stiffness and temperature of the lubricant (ISO VG 46). 

During run-up of the gas compressor spectrum shows that two critical speeds are the result of 

pre-load stiffness of thrust bearing lube oil film. Particularly, second critical speed response 

envelope changes during steady-state operations, when the lube oil temperature changes with 

respect to viscosity of the oil film which in turn increases the stiffness. The evaluated longitudinal 

vibration response using simple analytical model and measured values are in good agreement. 
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