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Abstract

It is known that problems like Vertex Cover, Feedback Vertex Set and Odd Cycle Trans-

versal are polynomial time solvable in the class of chordal graphs. We consider these problems in a

graph that has at most k vertices whose deletion results in a chordal graph, when parameterized

by k. While this investigation fits naturally into the recent trend of what are called “structural

parameterizations”, here we assume that the deletion set is not given.

One method to solve them is to compute a k-sized or an approximate (f(k) sized, for a function f)

chordal vertex deletion set and then use the structural properties of the graph to design an algorithm.

This method leads to at least kO(k)nO(1) running time when we use the known parameterized or

approximation algorithms for finding a k-sized chordal deletion set on an n vertex graph.

In this work, we design 2O(k)nO(1) time algorithms for these problems. Our algorithms do not

compute a chordal vertex deletion set (or even an approximate solution). Instead, we construct a

tree decomposition of the given graph in time 2O(k)nO(1) where each bag is a union of four cliques

and O(k) vertices. We then apply standard dynamic programming algorithms over this special tree

decomposition. This special tree decomposition can be of independent interest.

Our algorithms are, what are sometimes called permissive in the sense that given an integer k,

they detect whether the graph has no chordal vertex deletion set of size at most k or output the

special tree decomposition and solve the problem.

We also show lower bounds for the problems we deal with under the Strong Exponential Time

Hypothesis (SETH).
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1 Introduction and Motivation

Main motivation for parameterized complexity and algorithms is that hard problems have a

number of parameters in their input, and feasible algorithms can be obtained when some

of these parameters tend to be small. However, barring width parameters (like treewidth

and cliquewidth), early parameterizations of problems were mostly in terms of solution size.
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19:2 Structural Parameterizations with Modulator Oblivion

However starting from the work of Fellows et al. [16] and Jansen et al. [26, 17], there has

been a lot of study on parameterizations by some structure of the input. The motivations

for these parameterizations are that many problems are computationally easy on special

classes of graphs like edge-less graphs, forests and interval graphs. Thus parameterizing by

the size of a modulator (set of vertices in the graph whose removal results a graph in easy

graph class) became a natural choice of investigation. Examples of such parameterizations

include Clique and Feedback Vertex Set parameterized by the size of minimum vertex

cover (i.e., modulator to edge-less graphs), Vertex Cover parameterized by the size of

minimum feedback vertex set (i.e., modulator to forests) [26, 27]. See also [33, 34] for more

such parameterizations.

We continue this line of work on problems in input graphs that are not far from a chordal

graph. By distance to a chordal graph, we mean the minimum number of vertices in the

graph whose deletion results in a chordal graph. We call this set as a chordal vertex deletion

set (CVD). Specifically, we look at Vertex Cover, Feedback Vertex Set and Odd

Cycle Transversal and some generalizations of these problems, parameterized by the

size of a CVD, as these problems are polynomial time solvable in chordal graphs [22, 38, 10].

In problems for which the parameter is the size of a modulator, it is also assumed that the

modulator is given with the input. This assumption can be removed if finding the modulator

is also fixed-parameter tractable (FPT) parameterized by the modulator size. However, there

are instances where finding the modulator is more expensive than solving the problem if the

modulator is given. For example, finding a subset of k vertices whose deletion results in a

perfect graph is known to be W -hard [24], whereas if the deletion set is given, then one can

show (as explained a bit later in this section) that Vertex Cover (thus Independent

Set) is FPT when parameterized by the size of the deletion set.

Hence Fellows et al. [17] ask whether Independent Set (or equivalently, Vertex

Cover) is FPT when parameterized by a (promised) bound on the vertex-deletion distance

to a perfect graph, without giving a minimum deletion set in the input. While we do not

answer this question, we address a similar question in the context of problems parameterized

by the distance to chordal graphs, another well-studied class of graphs where Vertex

Cover is polynomial time solvable whereas the best-known algorithm to find a k-sized

chordal deletion set takes O∗(kO(k)) 1 time [8]. We also do not know of a constant factor

(FPT) approximation algorithm for CVD even with 2O(k)nO(1) running time. There are

many recent results on polynomial time approximation algorithms for Chordal Vertex

Deletion [28, 1, 30] with the current best algorithm having a O(opt log opt) ratio, where opt

is the size of minimum CVD [30]. If we use this approximation algorithm and do branching

(see Section 1.1 below), then we can obtain a 2O(k2 log k)nO(1) time algorithm for Vertex

Cover.

Hence, in a similar vein to the question by Fellows et al., we ask whether (minimum)

Vertex Cover (and other related problems) can be solved in O∗(2O(k)) time with only

a promise on the size k of the chordal deletion set, and answer the question affirmatively.

Our algorithms even go one step further, in not even needing the promise. They solve the

problem or determine that the chordal deletion set is of size more than k.

1
O

∗ notation hides polynomial factor in the input length
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Our Results. Specifically we give O∗(2O(k)) algorithms for the problems defined below.

Weighted d-Colorable Subgraph by CVD

Input: A graph G = (V, E) , a weight function w : V (G) → R and k, ℓ, d ∈ N.

Parameter: k

Question: Determine if there is a vertex set X of weight at most ℓ in G such that

G − X is d-colorable or output that minimum chordal vertex deletion set of G is of size

more than k?

When d = 1 and d = 2, the problem reduces to Weighted Vertex Cover by CVD

(WVC By CVD) and Weighted Odd Cycle Transversal by CVD (WOCT by CVD)

where we require the graph G − X to be an independent set and bipartite, respectively. We

also define Weighted Feedback Vertex Set by CVD ( WFVS by CVD) where we

require the graph G − X to be a forest.

If all the weights are 1, we call them the unweighted version of these problems. We

remark that our algorithms do not necessarily address the question of whether the input

graph has a CVD of size at most k, and may actually solve the problem sometimes even

when the CVD size is more than k.

We also show that the unweighted versions of all the problems mentioned above cannot

be solved in O∗((2 − ǫ)k) time under Strong Exponential Time Hypothesis (SETH) even if a

CVD of size k is given as part of the input. This matches the upper bound of the known

algorithm for WVC By CVD when the modulator is given.

1.1 Related Work

When CVD is given. If we are given a CVD S of size k along with an n-vertex graph G as

the input, then one can easily get a 2knO(1) time algorithm (call it A) for Vertex Cover

as follows. First, we guess the subset X of S that is part of our solution. Let Y be the subset

of vertices in V (G) \ S such that for each y ∈ Y there is an edge between y and a vertex

in S \ X. Clearly, X ∪ Y is part of the Vertex Cover solution and it will cover all the

edges incident on S. Then we are left with finding an optimum weighted vertex cover in

G − (S ∪ Y ) which is a chordal graph. This can be done in polynomial time. As we have

2k choices for X, the total running time of the algorithm is 2knO(1). An FPT algorithm

with O∗(kO(k)) time for WFVS by CVD is given by Jansen et al [29] where they first find

the modulator. This algorithm follows the algorithm to find a minimum FVS in bounded

treewidth graphs and a similar trick works for Odd Cycle Transversal too, when the

modulator is given.

When the modulator is given, the FPT algorithms discussed above have been generalized

for other problems and other classes of graphs (besides those that are k away from the class

of chordal graphs). Let Φ be a Counting Monadic Second Order Logic (CMSO) formula

and t ≥ 0 be an integer. For a given graph G = (V, E), the task is to maximize |X| subject

to the following constraints: there is a set F ⊆ V such that X ⊆ F , the subgraph G[F ]

induced by F is of treewidth at most t, and structure (G[F ], X) models Φ. Note that the

problem corresponds to finding a minimum vertex cover and a minimum feedback vertex set

when t = 0 and t = 1 respectively when Φ is a tautology. For a polynomial poly, let Gpoly

be the class of graphs such that, for any G ∈ Gpoly, graph G has at most poly(n) minimal

separators. Fomin et al [20] gave a polynomial time algorithm for solving this optimization

problem on the graph class Gpoly. Consider Gpoly + kv to be the graph class formed from

Gpoly where to each graph we add at most k vertices of arbitrary adjacencies. Liedloff et

al. [31] further proved that, the above problem is FPT on Gpoly + kv, with parameter k,

IPEC 2020



19:4 Structural Parameterizations with Modulator Oblivion

where the modulator is also a part of input. As a chordal graph has polynomially many

minimal separators [22], we obtain that WVC By CVD and WFVS by CVD are FPT

when the modulator is given.

Other “permissive” problems. Similar problems have been termed as “permissive problems”

in the context of testing satisfiability of CSPs (constraint satisfaction problems) with small

sized strong backdoors [21]. While detecting strong backdoors to a general CSP is hard, the

authors address the question of satisfiability of CSPs where the backdoor set is not given,

and the algorithm was supposed to solve satisfiability or determine that the backdoor set

size is more than k.

An example line of work where faster constant factor approximation algorithm is available,

is in the context of optimization problems parameterized by treewidth. For example, the

Independent Set problem parameterized by treewidth of the graph tw can be solved

using standard dynamic programming (DP) in 2tw · twO(1) · n time[12]. But the best known

algorithm for outputting a tree-decomposition of minimum width takes time twO(tw
3)n [2].

Thus, the total running time is twO(tw
3)n, when a tree decomposition is not given as an

input. But one can overcome this by obtaining a tree decomposition of width 5tw in time

2O(tw)n [4] and then applying the DP algorithm over the tree decomposition.

One previous example we know of a parameterized problem where the FPT algorithm

solves the problem without the modulator or even the promise, is Vertex Cover paramet-

erized by the size of König Vertex Deletion set k. A König vertex deletion set of G is

a subset of vertices of G whose removal results in a graph where the size of its minimum

vertex cover and maximum matching are the same. In Vertex Cover by König Vertex

Deletion, we are given graph G = (V, E), k, ℓ ∈ N and an assumption that there exists a

König vertex deletion set of size k in G, here k is parameter. We want to ask whether there

exist a vertex cover of size ℓ in G? Lokshtanov et al. [32] solve Vertex Cover by König

Vertex Deletion in O∗(1.5214k) time without the promise.

Finally we remark that there is an analogous line of work in the classical world of

polynomial time algorithms. For example, it is known that finding a maximum clique in a

unit disk graph is polynomial time solvable given a unit disk representation of the unit disk

graph [9], though it is NP -hard to recognize whether a given graph is a unit disk graph [7].

Raghavan and Spinrad [36] give a permissive algorithm that given a graph either finds a

maximum clique in the graph or outputs a certificate that the given graph is not a unit disk

graph. See also [6, 23, 20] for some other examples of permissive algorithms.

1.2 Our Techniques

The first step in our algorithms is to obtain, what we call a semi clique tree decomposition

of the given graph if one exists. It is known [22] that every chordal graph has a clique-tree

decomposition, i.e., a tree decomposition where every bag is a clique in the graph. If the

modulator is given, then we can add it to each bag, and obtain a tree-decomposition where

each bag is a clique plus at most k vertices. In our case (where the modulator is not given),

we obtain a tree decomposition in 2O(k)nO(1) time where each bag can be partitioned into

C ⊎ N , where C can be covered by at most 4 cliques in G and |N | ≤ 7k + 5. Here we

also know a partition C1 ⊎ C2 ⊎ C3 ⊎ C4 of C where each Ci is a clique. We call this tree

decomposition a (4, 7k + 5)-semi clique tree decomposition. Our result in this regard is

formalized in the following theorem.



A. Jacob, F. Panolan, V. Raman, and V. Sahlot 19:5

◮ Theorem 1. There is an algorithm that given a graph G and an integer k runs in time

O(27k · (kn4 + nω+2)) where ω is the matrix multiplication exponent and either constructs a

(4, 7k + 5)-semi clique tree decomposition T of G or concludes that there is no chordal vertex

deletion set of size k in G. Moreover, the algorithm also provides a partition C1 ⊎ C2 ⊎ C3 ⊎

C4 ⊎ N of each bag of T such that |N | ≤ 7k + 5 and Ci is a clique in G for all i ∈ {1, 2, 3, 4}.

After getting a (4, 7k + 5)-semi clique tree decomposition, we then design DP algorithms

for Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal on this tree

decomposition. Since the vertex cover of a clique has to contain all but one vertex of the

clique, the number of ways the solution might intersect a bag of the tree is at most O(27kn4).

Using this fact, one can bound the running time for the DP algorithm to O(27kn5). The

overall running time would be the sum of the time taken to construct a (4, 7k + 5)-semi

clique tree decomposition and the time of the DP algorithm on this tree decomposition

which is bounded by O(27kn5). In the case of Feedback Vertex Set and Odd Cycle

Transversal, again from each clique all but two vertices will be in the solution. Using

this fact one can bound the running time of WFVS By CVD and WOCT by CVD to be

O∗(2O(k)).

Very recently, Fomin and Golovach [18] give subexponential algorithms to various problems

on graphs which can be turned into a chordal graph by adding k edges. Similar to the line

of work in this paper, they come up with an almost-clique tree decomposition (where each

bag can be converted to a clique by adding k edges) and then apply dynamic programming

algorithms on this tree decompositions. We use the dynamic programming algorithms in

this paper on the tree decomposition we constructed to give algorithms for Weighted

d-Colorable Subgraph parameterized by minimum CVD size.

Organization of the paper. In Section 2, we state the notations used in this paper and give

the necessary preliminaries on tree decomposition and parameterized complexity. In Section

3, we prove Theorem 1. In Section 4, we first address Weighted d-Colorable Subgraph

by CVD using dynamic programming on semi clique tree decomposition. We then give more

direct and faster algorithms for WVC By CVD and WOCT by CVD and also for WFVS

by CVD. We then conclude this section with lower bounds on these problems assuming

SETH.

2 Preliminaries

For n ∈ N, [n] denotes the set {1, . . . , n}. We use A ⊎ B to denote the set formed from the

union of disjoint sets A and B. For a function w : X → R, we use w(D) =
∑

x∈D w(x).

For V ′ ⊆ V , G[V ′] and G − V ′ denote the graph induced on V ′ and V \ V ′, respectively.

For a vertex v ∈ V , G − v denotes the graph G − {v}. For a vertex v ∈ V , NG(v) and

NG[v] denote the open neighborhood and closed neighborhood of v, respectively. That is,

NG(v) = {u : {v, u} ∈ E} and NG[v] = NG(v) ∪ {v}. Also we define for a subset X ⊆ V (G),

NG(X) =
⋃

v∈X(NG(v) \ X) and NG[X] = NG(X) ∪ X. We omit the subscript G, when the

graph is clear from the context.

We use the term graph for a simple undirected graph without loops and parallel edges.

For a graph G, we use V (G) and E(G) to denote its vertex set and edge set, respectively.

A graph is chordal if it does not contain a cycle of length greater than or equal to 4 as an

induced subgraph. A subset S ⊆ V (G) such that G − S is a chordal graph is called a chordal

vertex deletion set. We say that a graph G is a union of ℓ cliques if V (G) = V1 ⊎ . . . ⊎ Vℓ and

Vi is a clique in G for all i ∈ {1, . . . , ℓ}. We use standard notation and terminology from the

book [14] for graph-related terms which are not explicitly defined here.

IPEC 2020



19:6 Structural Parameterizations with Modulator Oblivion

A graph G is k-colorable if its vertices can be colored in such a way that the endpoints of

every edge of G has two different colors.

◮ Definition 2 (Separator and Separation). Given a graph G and vertex subsets A, B ⊆ V (G),

a subset C ⊆ V (G) is called a separator of A and B if every path from a vertex in A to a

vertex in B (we call it A − B path) contains a vertex from C. A pair of vertex subsets (A, B)

is a separation in G if A ∪ B = V (G) and A ∩ B is a separator of A \ B and B \ A.

◮ Definition 3 (Balanced Separator and Balanced Separation). For a graph G, a weight

function w : V (G) → R≥0 and 0 < α < 1, a set S ⊆ V (G) is called an α-balanced separator

of G with respect to w if for any connected component C of G − S, w(V (C)) ≤ α · w(V (G)).

A pair of vertex subsets (A, B) is an α-balanced separation in G with respect to w if (A, B)

is a separation in G and w(A \ B) ≤ α · w(V (G)) and w(B \ A) ≤ α · w(V (G)).

◮ Definition 4 (Tree decomposition). A tree decomposition of a graph G is a pair T =

(T, {Xt}t∈V (T )), where T is a tree and for any t ∈ V (T ), a vertex subset Xt ⊆ V (G) is

associated with it, called a bag, such that the following conditions holds.
⋃

t∈V (T ) Xt = V (G).

For any edge {u, v} ∈ E(G), there is a node t ∈ V (T ) such that u, v ∈ Xt.

For any vertex u ∈ V (G), the set {t ∈ V (T ) : u ∈ Xt} of nodes induces a connected

subtree of T .

The width of the tree decomposition T is maxt∈V (T ) |Xt| − 1 and the treewidth of G is the

minimum width over all tree decompositions of G.

◮ Proposition 5 ([15]). Let G be a graph and C be a clique in G. Let T = (T, {Xt}t∈V (T ))

be a tree decomposition of G. Then, there is a node t ∈ V (T ) such that C ⊆ Xt.

◮ Definition 6 (Clique tree decomposition). A clique tree decomposition of a graph G is a

tree decomposition T = (T, {Xt}t∈V (T )) where Xt is a clique in G for all t ∈ V (T ).

◮ Proposition 7 ([22]). A graph is chordal if and only if it has a clique tree decomposition.

◮ Definition 8. A graph G is called an (c, ℓ)-semi clique if there is a partition C ⊎ N of

V (G) such that G[C] is a union of at most c cliques and |N | ≤ ℓ.

◮ Definition 9 ((c, ℓ)-semi clique tree decomposition). For a graph G and c, ℓ ∈ N, a tree

decomposition T = (T, {Xt}t∈V (T )) of G is a (c, ℓ)-semi clique tree decomposition if G[Xt] is

a (c, ℓ)-semi clique for each t ∈ V (T ).

We define the Node Multiway Cut problem where we are given an input graph

G = (V, E), a set T ⊆ V of terminals and an integer k. We want to ask whether there

exists a set X ⊆ V \ T of size at most k such that any path between two different terminals

intersects X.

We use the following lemma in Section 3.

◮ Proposition 10 ([19]). Let T be a tree and x, y, z ∈ V (T ). Then there exists a vertex

v ∈ V (T ) such that every connected component of T −v has at most one vertex from {x, y, z}.

SETH. For q ≥ 3, let δq be the infimum of the set of constants c for which there exists an

algorithm solving q-SAT with n variables and m clauses in time 2cn · mO(1). The Strong

Exponential-Time Hypothesis (SETH) conjectures that limq→∞ δq = 1. SETH implies that

CNF-SAT on n variables cannot be solved in O∗((2 − ǫ)n) time for any ǫ > 0.

For definitions and notions on parameterized complexity, we refer to [12]. Throughout

the paper, ω denotes the matrix multiplication exponent.
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3 Semi Clique Tree Decomposition

Given a graph G and an integer k, our aim is to construct a (4, 7k + 5)-semi clique tree

decomposition T of G or conclude that G has no CVD of size at most k. We loosely follow

the ideas used for the tree decomposition algorithm in [37] to construct a tree decomposition

of a graph G of width at most 4tw(G) + 4, where tw(G) is the tree width of G. But before

that we propose the following lemmas that we use in getting the required (4, 7k + 5)-semi

clique tree decomposition.

◮ Lemma 11. Let G be a graph having a CVD of size k. Then G has a (1, k)-semi clique

tree decomposition.

◮ Lemma 12. For a graph G on n vertices with a CVD of size k, the number of maximal

cliques in G are bounded by O(2k · n). Furthermore, there is an algorithm that given any

graph G either concludes that there is no CVD of size k in G or enumerates all the maximal

cliques of G in O(2k · nω+1) time where ω is the matrix multiplication exponent.

Proof. Let X ⊆ V (G) be of size at most k such that G − X is a chordal graph. For any

maximal clique C in G let CX = C ∩ X and CG−X = C \ X. Since G − X is a chordal graph,

it has at most n − k maximal cliques [22].

We claim that for a subset CX ⊆ X and a maximal clique Q in G − X, there is at most

one subset Q′ ⊆ Q such that CX ∪ Q′ forms a maximal clique in G. If there are two distinct

subsets Q1, Q2 of Q such that CX ∪ Q1 and CX ∪ Q2 are cliques in G, then CX ∪ Q1 ∪ Q2

is a clique larger than the cliques CX ∪ Q1 and CX ∪ Q2. Thus, since there are at most 2k

subsets of X and at most n maximal cliques in G, the total number of maximal cliques in G

is upper bounded by 2k(n − k).

There is an algorithm that given a graph H, enumerates all the maximal cliques of

H with O(|V (H)|ω) delay (the maximum time taken between outputting two consecutive

solutions) [35]. If G has a CVD of size k, there are at most 2kn maximal cliques in G which

can be enumerated in O(2knω+1) time. So the algorithm to enumerate clique runs for at

most 2kn + 1 rounds, if we note that the number of maximal cliques enumerated is more

than 2kn then we return that G has no CVD of size k. ◭

◮ Lemma 13. Let G be a graph having a CVD of size k and w : V (G) → R≥0 be a weight

function on V (G). There exists a 2
3 -balanced separation (A, B) of G with respect to w such

that the graph induced on the corresponding separator G[A ∩ B] is a (1, k)-semi clique.

Proof. First we prove that there is a 1
2 -balanced separator X such that G[X] is a (1, k)-semi

clique. By Lemma 11, there is a (1, k)-semi clique tree decomposition T = (T, {Xt}t∈V (T )) of

G. Arbitrarily root the tree of T at a node r ∈ V (T ). For any node y ∈ V (T ), let Ty denote

the subtree of T rooted at node y and Gy denote the graph induced on the vertices of G

present in the bags of nodes of Ty. That is V (Gy) =
⋃

t∈V (Ty) Xt. Let t be the farthest node

of T from the root r such that w(V (Gt)) > 1
2 w(V (G)). That is, for all nodes t′ ∈ V (Tt) \ {t},

we have that w(V (Gt′)) ≤ 1
2 w(V (G)).

We claim that X = Xt is a 1
2 -balanced separator of G. Let t1, . . . , tp be the children

of t. Since X is a bag of the tree decomposition T , each of the connected components

of G − X are contained either in Gti
− X for some i ∈ [p] or G[V (G) \ V (Gt)]. Since

w(V (Gt)) > 1
2 w(V (G)), we have w(V (G) \ V (Gt)) < 1

2 w(V (G)). By the choice of t, we have

w(V (Gti
)) ≤ 1

2 w(V (G)) for all i ∈ [p].

Now we define a 2
3 -balanced separation (A, B) for G such that the set X = A ∩ B ( 1

2

balanced separator). Let D1, . . . , Dq be the vertex sets of the connected components of

G − X. Let ai = w(Di) for all i ∈ [q]. Without loss of generality, assume that a1 ≥ . . . ≥ aq.

IPEC 2020



19:8 Structural Parameterizations with Modulator Oblivion

Let q′ be the smallest index such that
∑q′

i=1 ai ≥ 1
3 w(V (G)) or q′ = q if no such index

exists. Clearly,
∑q

i=q′+1 ai ≤ 2
3 w(V (G)). We prove that

∑q′

i=1 ai ≤ 2
3 w(V (G)). If q′ = 1,

∑q′

i=1 ai = aq′ ≤ 1
2 w(V (G)) and we are done. Else, since q′ is the smallest index such that

∑q′

i=1 ai ≥ 1
3 w(V (G)), we have

∑q′−1
i=1 ai < 1

3 w(V (G)). We also note that aq′ ≤ aq′−1 ≤
∑q′−1

i=1 ai < 1
3 w(V (G)). Hence

∑q′

i=1 ai =
∑q′−1

i=1 ai + aq′ ≤ 2
3 w(V (G)).

Now we define A = X ∪
⋃

i∈[q′] Di and B = X ∪
⋃

i∈[q]\[q′] Di. Notice that X = A ∩ B

and (A, B) is a separation of G. Also notice that w(A \ B) =
∑q′

i=1 ai ≤ 2
3 w(V ) and

w(B \ A) =
∑q

i=q′+1 ai ≤ w(V (G)) − 1
3 w(V (G)) = 2

3 w(V (G)) as
q′

∑

i=1

ai ≥ 1
3 w(V (G)). Since

X is a bag of the tree decomposition T , G[X] is a (1, k)-semi clique. ◭

Using Lemmas 12 and 13, we obtain the following corollary.

◮ Corollary 14. Let G be a graph with a CVD of size k. Let N ⊆ V (G) with 5k + 3 ≤

|N | ≤ 6k + 4. Then there exists a partition (NA, NB) of N and a vertex subset X ⊆ V (G)

satisfying the following properties.

|NA|, |NB | ≤ 4k + 2.

X is a vertex separator of NA and NB in the graph G.

G[X] is a (1, k)-semi clique.

Moreover, there is an algorithm that given any graph G, either concludes that there is

no CVD of size k in G or computes such a partition (NA, NB) of N and the set X in

O(27k · (kn3 + nω+1)) time.

Proof. Let us define a weight function w : V (G) → R≥0 such that w(v) = 1 if v ∈ N and

0 otherwise. From Lemma 13, we know that there exists a pair of vertex subsets (A, B)

which is the balanced separation of G with respect to w where the graph induced on the

corresponding separator G[A ∩ B] is a (1, k)-semi clique.

Let us define the partition (NA, NB). We add (A \ B) ∩ N to NA and (B \ A) ∩ N to NB .

Since (A, B) is a balanced separation of G with respect to w, |(A \ B) ∩ N |, |(B \ A) ∩ N | ≤
2
3 |N | ≤ 4k + 2. For each vertex u ∈ (A ∩ B) ∩ N , we iteratively add u to the currently smaller

of the two sets of NA and NB . Since |N | ≤ 6k + 4 ≤ 2 · (4k + 2), we have |NA|, |NB | ≤ 4k + 2

even after this process. This shows the existence of subsets NA, NB and X = A ∩ B. But

the proof is not constructive as the existence of (A, B) uses the (1, k)-semi clique tree

decomposition of G which requires the chordal vertex deletion set.

We now explain how to compute these subsets without the knowledge of a (1, k)-semi

clique tree decomposition of G. Let X = C ′′ ⊎ N ′′ where C ′′ is a clique and |N ′′| ≤ k. We

use Lemma 12 to either conclude that G has no CVD of size k or go over all maximal cliques

of G to find a maximal clique D such that C ′′ ⊆ D. We can conclude that in the remaining

graph G[V \ D], there exists a separator Z ⊆ N ′′ = X \ C ′′ of size at most k for the sets NA

and NB .

We go over all 2|N | ≤ 26k+4 2-partitions of N to guess the partition (NA, NB). Then we

apply the classic Ford-Fulkerson maximum flow algorithm to find the separator Z of the sets

NA and NB in the graph G[V \ D]. If |Z| > k, we can conclude that G has no CVD of size

k in G. Thus, we obtained a set X ′ = D ⊎ Z such that G[X ′] is a (1, k)-semi clique and X ′

is a vertex separator of NA and NB in the graph G.

Now we estimate the time taken to obtain these sets. We first go over all O(2k ·n) maximal

cliques of the graph which takes O(2k · nω+1) time. Then for each of the O(2k · n) maximal

cliques, we go over at most 26k+4 guesses for NA and NB . Finally we use the Ford-Fulkerson

maximum flow algorithm to find the separator of size at most k for NA and NB which takes

O(k(n + m)) time. Overall the running time is O(2k · nω+1 + (2kn) · 26k · (k(n + m))) =

O(27k · (kn3 + nω+1)). ◭
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◮ Lemma 15. Let G be a graph having a CVD of size k. Let C1, C2, C3 be three distinct

cliques in G. Then there exists a vertex subset X ⊆ V (G) such that G[X] is a (1, k)-semi

clique and X is a separator of Ci and Cj for all i, j ∈ {1, 2, 3} and i 6= j. Moreover, there is

an algorithm that given any graph G, either concludes that there is no CVD of size k in G

or computes X in O(4k · (kn3 + nω+1)) time.

Proof. By Lemma 11, there is a (1, k)-semi clique tree decomposition T = (T, {Xt}t∈V (T ))

of G. By Proposition 5, we know that there exist nodes t1, t2, t3 ∈ V (T ) such that C1 ⊆ Xt1
,

C2 ⊆ Xt2
and C3 ⊆ Xt3

. If two of the three nodes t1, t2, t3 is the same node t, then it can

be easily seen that X = Xt is the required separator as only at most one of C1, C2, and C3

remains after its deletion.

Hence assume that all three nodes t1, t2, t3 are distinct. From Proposition 10, we know

that there exists a node t ∈ V (T ) such that (i) t1, t2 and t3 are in different connected

components of T − t. We claim that X = Xt is the required separator. Since X is a bag

in the (1, k)-semi clique tree decomposition T , G[X] is a (1, k)-semi clique. Because of

statement (i), we have that X is a separator of Ci and Cj for all i, j ∈ {1, 2, 3} and i 6= j.

The proof is not constructive as we do not have a (1, k)-semi clique tree decomposition of G.

We compute a set X ′ such that G[X ′] is a (1, k)-semi clique and X ′ is a separator of Ci

and Cj for all i, j ∈ {1, 2, 3} and i 6= j, without the knowledge of a (1, k)-semi clique tree

decomposition of G. Let X = C ′′ ⊎ N ′′ where C ′′ is a clique and |N ′′| ≤ k. Using Lemma 12,

we either conclude that G has no CVD of size k or we go over all the maximal cliques of

the graph G. We know that C ′′ ⊆ D for one of such maximal cliques D. Now in the graph

G[V \D], we know that there exists a set Z ⊆ N ′′ = X \C ′′ of size at most k which separates

the cliques Cx \ D, Cy \ D and Cz \ D. To find Z, we add three new vertices x′, y′ and z′.

We make x′ adjacent to all the vertices of Cx \ D, y′ adjacent to all the vertices of Cy \ D

and z′ adjacent to all the vertices of Cz \ D. We find the node multiway cut Y of size at

most k with the terminal set being {x′, y′, z′}. The set Y can be found in O(2kkm) using

the known algorithm for node multiway cut [13, 25]. If the algorithm returns that there is

no such set Y of size k, we conclude that there is no CVD of size at most k in G. Else we

get a set X ′ = D ⊎ Y which satisfies the properties of X.

Now we estimate the time taken to obtain X ′. We get all the O(2k · n) maximal cliques of

the graph in O(2k · nω+1) time. Now for each maximal clique we use the O(2kkm) algorithm

for node multiway cut. Thus, the overall running time is O(2k · nω+1 + (2kn) · (2kkm)) =

O(4k · (kn3 + nω+1)). ◭

Now we prove our main result (i.e., Theorem 1) in this section. For convenience we

restate it here.

Theorem 1. There is an algorithm that given a graph G and an integer k runs in time

O(27k · (kn4 + nω+2)) and either constructs a (4, 7k + 5)-semi clique tree decomposition T

of G or concludes that there is no chordal vertex deletion set of size k in G. Moreover,

the algorithm also provides a partition C1 ⊎ C2 ⊎ C3 ⊎ C4 ⊎ N of each bag of T such that

|N | ≤ 7k + 5 and Ci is a clique in G for all i ∈ {1, 2, 3, 4}.

Proof. We assume that G is connected as if not we can construct a (4, 7k + 5)-semi clique

tree decomposition for each connected components of G and attach all of them to a root

node whose bag is empty to get the required (4, 7k + 5)-semi clique tree decomposition of G.

To construct a (4, 7k+5)-semi clique tree decomposition T , we define a recursive procedure

Decompose(W, S, d) where S ⊂ W ⊆ V (G) and d ∈ {0, 1, 2}. The procedure returns a rooted

(4, 7k + 5)-semi clique tree decomposition of G[W ] such that S is contained in the root bag

of the tree decomposition. The procedure works under the assumption that the following

invariants are satisfied.
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G[S] is a (d, 6k + 4)-semi clique and W \ S 6= ∅.

S = NG(W \ S). Hence S is called the boundary of the graph G[W ].

To get the required (4, 7k+5)-semi clique tree decomposition of G, we call Decompose(V (G),

∅, 0) which satisfies all the above invariants. The procedure Decompose(W, S, d) calls proced-

ures Decompose(W ′, S′, d′) and a new procedure SplitCliques(W ′, S′) whenever d = 2. For

these subprocedures, we will show that |W ′ \S′| < |W \S|. Hence by induction on cardinality

of W \ S, we will show the correctness of the Decompose procedure.

The procedure SplitCliques(W, S) with S ⊂ W ⊆ V (G) also outputs a rooted (4, 7k + 5)-

semi clique tree decomposition of G[W ] such that S is contained in the root bag of the tree

decomposition. But the invariants under which it works are slightly different which we list

below.

G[S] is a (3, 5k + 3)-semi clique and W \ S 6= ∅.

S = NG(W \ S).

Notice that the only difference between invariants for Decompose and SplitCliques is the

first invariant where we require G[S] to be a (3, 5k + 3)-semi clique for SplitCliques and

(d, 6k + 4)-semi clique for Decompose.

The procedure SplitCliques(W, S) calls procedures Decompose(W ′, S′, 2) where we will

again show that |W ′ \ S′| < |W \ S|. Hence again by induction on cardinality of W \ S, we

will show the correctness. Now we describe how the procedure Decompose is implemented.

Implementation of Decompose(W, S, d): Notice that d ∈ {0, 1, 2}. Firstly, if |W \S| ≤ k+1,

we output the tree decomposition as a node r with bag Xr = W and stop. Clearly the graph

G[Xr] is a (4, 7k + 5)-semi clique and it contains S. Otherwise, we do the following.

We construct a set Ŝ with the following properties.

1. S ⊂ Ŝ ⊆ W ⊆ V (G).

2. G[Ŝ] is a (d + 1, 7k + 5)-semi clique. Let Ŝ = C ′ ⊎ N ′ where G[C ′] is the union of d + 1

cliques and |N ′| ≤ 7k + 5.

3. Every connected component of G[W \ Ŝ] is adjacent to at most 5k + 3 vertices of N ′.

Since G[S] is a (d, 6k + 4)-semi clique, we have that S = C ⊎ N , where G[C] is the union

of d cliques and |N | ≤ 6k + 4.

Case 1: |N | < 5k + 3. We set Ŝ = S ∪ {u}, where u is an arbitrary vertex in W \ S. Note

that this is possible as W \ S 6= ∅. Clearly Ŝ follows all the properties above.

Case 2: 5k + 3 ≤ |N | ≤ 6k + 4. Note that G[W ] being a subgraph of G also has a

chordal vertex deletion set of size at most k if G has it. Applying Corollary 14 for the graph

G[W ] and the subset N , we either conclude that G has no CVD of size k or get a partition

(NA, NB) of N , a subset X ⊆ W and a partition D ⊎ Z of X, where D is a clique in G[W ]

and |Z| ≤ k, in time O(27k · (kn3 + nω+1)) such that |NA|, |NB | ≤ 4k + 2 and X is a vertex

separator of NA and NB in the graph G[W ].

We define Ŝ = S ∪ X ∪ {u} where u is an arbitrary vertex in W \ S. We need to verify

that Ŝ satisfies the required properties.

⊲ Claim 16. The set Ŝ satisfies properties (1), (2) and (3).

Proof. Since u ∈ W \ S, S ⊂ Ŝ. Hence Ŝ satisfies property (1).

We now show that Ŝ satisfies property (2). Recall that S = C ⊎ N , where G[C] is the

union of d cliques and |N | ≤ 6k +4. We define sets C ′ = C ∪D and N ′ = ((N ∪Z)\C ′)∪{u}

Notice that Ŝ = C ′∪N ′. Clearly G[C ′] is the union of d+1 cliques. Also |N ′| ≤ |N |+|Z|+1 ≤

(6k + 4) + k + 1 ≤ 7k + 5. Thus Ŝ satisfies property (2).
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We now show that Ŝ satisfies property (3). Recall Ŝ = C ′ ∪ N ′, where C ′ = C ∪ D and

N ′ = ((N ∪ Z) \ C ′) ∪ {u}. Recall that X = D ∪ Z ⊆ Ŝ is separator of NA and NB . where

N = NA ⊎ NB and |NA|, |NB | ≤ 4k + 2. This implies that any connected component H

in G[W \ X] can contain at most 4k + 2 vertices from N as the neighborhood of V (H) is

contained in X, because X is a separator. Moreover |Z| ≤ k. This implies that any connected

component in G[W \ Ŝ] is adjacent to at most 4k + 2 vertices in N and at most k vertices in

Z, and hence at most 5k + 3 vertices in N ′ = ((N ∪ Z) \ C ′) ∪ {u}. ⊳

Now we define the recursive subproblems arising in the procedure Decompose (W, S, d) using

the constructed set Ŝ. If Ŝ = W , then there will not be any recursive subproblem. Otherwise,

let P1, P2, . . . , Pq be vertex sets of the connected components of G[W \ Ŝ] and q ≥ 1 because

Ŝ 6= W . We have the following cases:

Case 1: d < 2. For each i ∈ [q], recursively call the procedure Decompose(W ′ = NG[Pi], S′ =

NG(Pi), d + 1).

We now show that the invariants are satisfied for procedures Decompose(W ′ = NG[Pi], S′ =

NG(Pi), d + 1) for all i ∈ [q]. We start by noticing that since d < 2, d + 1 ≤ 2 which is

required for the validity of the procedure. Let Qi = S′ ∩ N ′. Note that from condition

(3) for Ŝ, we have |Qi| ≤ 5k + 3. Since S′ \ Qi ⊆ C ′ and G[C ′] is a union of d + 1 cliques,

G[S′] forms a (d + 1, 5k + 3)-semi clique which is also a (d + 1, 6k + 4)-semi clique. Also by

definition of neighbourhoods, Pi = NG[Pi] \ NG(Pi) = W ′ \ S′. Since Pi is a non-empty set

by definition, W ′ \ S′ is non-empty. Hence the first invariant required for the Decompose is

satisfied. Since S′ = NG(Pi) = NG(NG[Pi] \ NG(Pi)) = NG(W ′ \ S′), the second invariant is

satisfied.

Case 2: d = 2. For each i ∈ [q], recursively call the procedure SplitCliques(W ′ =

NG[Pi], S′ = NG(Pi)). We can show that the invariants for SplitCliques are satisfied with the

proofs similar to previous case.

We now explain how to construct the (4, 7k + 5)-semi clique tree decomposition using

Decompose(W, S, d). Here, we assume that Decompose(W ′, S′, d+ 1) and SplitCliques(W ′, S′)

return a (4, 7k + 5)-semi clique tree decomposition G[W ′] when |W ′ \ S′| < |W \ S|. That

is, we apply induction on |W \ S|. Look at the subprocedures Decompose(W ′, S′, d) and

SplitCliques(W ′, S′). We have W ′ \ S′ = NG[Pi] \ NG(Pi) = Pi which is a subset of W \ Ŝ

which in turn is a strict subset of W \S. Hence |W ′ \S′| < |W \S|. Hence we apply induction

on |W \ S| to the subprocedures. Let Ti be the (4, 7k + 5)-semi clique tree decomposition

obtained from the subprocedure with W ′ = NG[Pi] and S′ = NG(Pi). Let ri be the root of

Ti whose associated bag is Xri
. By induction hypothesis S′ ⊆ Xri

. We create a node r with

the corresponding bag Xr = Ŝ. For each i ∈ [q], we attach Ti to r by adding edge (r, ri). Let

us call the tree decomposition obtained so with root r as T . We return T as the output

of Decompose(W, S, d). By construction, it easily follows that T is a (4, 7k + 5)-semi clique

tree decomposition of the graph G[W ] with the root bag containing S. We note that when

W = Ŝ, the procedure returns a single node tree decomposition with Xr = W = Ŝ.

Implementation of SplitCliques Procedure: Again if |W \ S| ≤ k + 1, we output the tree

decomposition as a node r with bag Xr = W and stop. Clearly the graph G[Xr] is a

(4, 7k + 5)-semi clique and it contains S. Otherwise we do the following. Let S = C ⊎ N =

(Cx ⊎ Cy ⊎ Cz) ⊎ N where Cx, Cy and Cz are the vertex sets of the three cliques in G[C]. We

apply Lemma 15 to graph G[W ] and sets Cx, Cy and Cz, to either conclude that G has no

CVD of size k or obtain a set Y such that Y separates the sets Cx, Cy and Cz and G[Y ] is a

(1, k)-semi clique. Let Y = D ⊎ X where D is a clique and |X| ≤ k.
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Let Y ′ = Y ∪ {u} where u is any arbitrary vertex from W \ S which we know to be

non-empty. If S ∪ Y ′ = W , then it will not call any recursive subproblem. Otherwise, let

P1, P2, . . . , Pq be the connected components of the graph G[W \ (S ∪ Y ′)]. We recursively

call Decompose(W ′ = NG[Pi], S′ = NG(Pi), 2) for all i ∈ [q].

Since Y ′ is a separator of the cliques Cx, Cy and Cz, any connected component Pi will have

neighbours to at most one of the three cliques Cx \ Y ′, Cy \ Y ′ and Cz \ Y ′ in G[W \ (S ∪ Y ′)].

We show that the invariants required for the procedure Decompose are satisfied in these

subproblems. Let us focus on the procedure Decompose(W ′ = NG[Pi], S′ = NG(Pi), 2) which

has neighbours only to the set Cx\Y ′. We define sets C ′ = Cx∪D and N ′ = (N ∪X∪{u})\C ′.

The vertex set Pi has neighbours only to the set (Cx ⊎ N) ∪ Y ′ = (Cx ⊎ N) ∪ (D ⊎ X) ∪ {u} =

(Cx ∪ D) ∪ (N ∪ X ∪ {u}) = C ′ ⊎ N ′. Clearly G[C ′] is the union of at most two cliques and

|N ′| ≤ |N | + |X| + 1 = 5k + 3 + k + 1 ≤ 6k + 4. Hence the first invariant is satisfied for the

procedure Decompose(NG[Pi], NG(Pi), 2). The proof of the second invariant is the same as

to that of the subproblems of Decompose procedure. The satisfiability of invariants for other

subprocedures can also be proven similarly.

We now construct the (4, 7k + 5)-semi clique tree decomposition returned by SplitCliques

(W, S). Again we apply induction on |W \S|. Consider the subprocedures Decompose(W ′, S′, d).

We have W ′ \ S′ = NG[Pi] \ NG(Pi) = Pi which is a subset of W \ (S ∪ Y ′) which in turn

is a strict subset of W \ S as u ∈ W \ S is present in Y ′. Hence |W ′ \ S′| < |W \ S| and

we apply induction on |W \ S| to the subprocedures. Let Ti be the (4, 7k + 5)-semi clique

tree decomposition obtained from the subprocedure with W ′ = NG[Pi] and S′ = NG(Pi).

Let ri be the root of Ti whose bag Xri
we show contains S′. We create a node r with the

corresponding bag Xr = S ∪ Y ′ = (Cx ⊎ Cy ⊎ Cz ⊎ D) ⊎ N ′. For each i ∈ [q], we attach Ti to

r by adding edge (r, ri). Let us call the tree decomposition obtained so with root r as T . We

return T as the output of SplitCliques(W, S, d). By construction, it easily follows that T is a

(4, 7k + 5)-semi clique tree decomposition of the graph G[W ] with the root bag containing S.

We mention that when W = S ∪ Y ′, the procedure returns a single node tree decomposition

with Xr = W .

Running time analysis: In the procedure Decompose, we invoke Corollary 14 which takes

O(27k · (kn3 + nω+1)) time. For the procedure SplitCliques, we invoke Lemma 15 which takes

O(4k · (kn3 + nω+1)) time. All that is left is to bound the number of calls of the procedures

Decompose and SplitCliques. Each time Decompose or SplitCliques is called, it creates a set Ŝ

(in the case of SplitCliques, Ŝ = S ∪ Y ′) which is a strict superset of S. This allows us to map

each call of Decompose or SplitCliques to a unique vertex u ∈ Ŝ \ S of V (G). Hence the total

number of calls of Decompose and SplitCliques is not more than the total number of vertices

n. Hence the overall running time of the algorithm which constructs the (4, 7k + 5)-semi

clique tree decomposition of G is O(27k · (kn4 + nω+2)). ◭

4 Structural Parameterizations with Chordal Vertex Deletion Set

◮ Theorem 17. Weighted d-Colorable Subgraph by CVD can be solved in

d4d+7k+523(7k+5)nO(d) time.

Proof. First, we use Theorem 1 to construct a (4, 7k + 5)-semi clique tree decomposition

T = (T, {Xt}t∈V (T )) of G in O∗(27k) time. Now we use the dynamic programming algorithm

on tree decompositions given by Fomin and Golovach (Theorem 1 of [18]) on T to find the

maximum sized induced subgraph H of G such that H is d-colorable. Note that the set

V (G) \ V (H) is the solution that we are looking for and if its weight is at most ℓ, we return

YES. Else we return NO.
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This dynamic programming algorithm defines a state cost(t, S, c) for all nodes t ∈ V (T ),

subsets S ⊆ Xt such that G[S] is d-colorable and a function c : S → [d]. Since each bag

Xt of T is a (4, 7k + 5) semi clique, at most d vertices of each clique can be part of S as

else there is a presence of a (d + 1) sized clique in S which is not d-colorable. Hence we

can bound the size of S as 4d + 7k + 5 and also bound the number of possible subsets S as

n4d27k+5. Number of possible functions c is at most d|S| which is at most d4d+7k+5. Hence

we bound the number of states as d4d+7k+527k+5nO(d). For each state, the time taken is

O(|S|2). Hence the overall running time is d4d+7k+523(7k+5)nO(d). ◭

◮ Corollary 18. Weighted Vertex Cover by CVD and Weighted OCT by CVD can

be solved in 221knO(1) and 228knO(1) time, respectively.

We can directly use the dynamic programming on bounded treewidth to get algorithms

with better running times for WVC By CVD and WOCT by CVD and for WFVS by

CVD using the fact that any vertex cover contains all but one from each clique and any odd

cycle transversal and feedback vertex set contains all but two from each clique.

◮ Theorem 19 (⋆).2 Given a graph G and an integer k, there exist algorithms that determines

that G has no CVD of size k or

find a minimum weighted vertex cover in 27knO(1) time.

find a minimum weighted odd cycle transversal in 37knO(1) time.

find a minimum weighted feedback vertex set in 2ω7knO(1) time.

Proof.

Proof sketch of algorithm for WVC By CVD: First, we use Theorem 1 to construct a

(4, 7k + 5)-semi clique tree decomposition T = (T, {Xt}t∈V (T )) of G in O∗(27k) time. In

the tree decomposition T = (T, {Xt}t∈V (T )), for any vertex t ∈ V (T ), we call Dt to be

the set of vertices that are descendant of t. We define Gt to be the subgraph of G on the

vertex set Xt ∪
⋃

t′∈Dt
Xt′ . We briefly explain the DP table entries on T . Arbitrarily root

the tree T at a node r. Let Xt = Ct,1 ⊎ . . . ⊎ Ct,4 ⊎ Nt where |Nt| ≤ 7k + 5 and Ct,j is a

clique in G for all j ∈ {1, . . . , 4}. In a standard DP for each node t ∈ V (T ) and Y ⊆ Xt,

we have a table entry DP [Y, t] which stores the value of a minimum vertex cover S of Gt

such that Y = Xt ∩ S and if no such vertex cover exists, then DP [Y, t] stores ∞. In fact

we only need to store DP [Y, t] whenever it is not equal to ∞. Now consider a bag Xt in

T . For any Y ⊆ Xt, if |Ct,j \ Y | ≥ 2 for any j ∈ [4], then DP [Y, t] = ∞ because Ct,j is a

clique. Therefore, we only need to consider subsets Y ⊆ Xt for which |Ctj
\ Y | ≤ 1 for all

j ∈ [4]. The number of choices of such subsets Y is bounded by O(27kn4). This implies

that the total number of DP table entries is O(27kn5). All these values can be computed

in time O(27knO(1)) time using standard dynamic programming in a bottom up fashion.

For more details about dynamic programming over tree decomposition, see [12].

Proof sketch of algorithm for Weighted OCT By CVD: Let T = (T, {Xt}t∈V (T )) be a

(4, 7k + 5)-semi clique tree decompositionn of the input graph G. For any t ∈ V (T ),

let Xt = Ct,1 ⊎ . . . ⊎ Ct,4 ⊎ Nt where |Nt| ≤ 7k + 5 and Ct,j is a clique in G for all

j ∈ {1, . . . , 4}. Then, any odd cycle transversal contains all but at most two vertices from

each clique C1,j , i ∈ [4]. Using this fact we can bound the number of DP table entries

to be at most 37knO(1). Then, by compute the entries in a bottom up fashion in time

37knO(1) using standard arguments.

2 A more detailed proof is available in the full version of the paper.
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Proof sketch of algorithm for Weighted FVS By CVD: We use the ideas from the DP al-

gorithm for Feedback Vertex Set using the rank based approach [3]. We again use

Theorem 1 to construct a (4, 7k + 5)-semi clique tree decomposition of G. We create an

auxiliary graph G′ by adding a vertex v0 to G and making it adjacent to all the vertices of

G. Let E0 be the set of newly added edges. Thus we add v0 to all the bags to get the tree

decomposition T = (T, {Xt}t∈V (T )) of G′ and this can be done in O∗(27k) time. We use

a dynamic programming algorithm for Feedback Vertex Set on T where the number

of entries of the DP table we will show to be 27k+5n11. Let Xt = Ct,1 ⊎ . . . ⊎ Ct,4 ⊎ Nt

for all t ∈ V (T ) where |Nt| ≤ 7k + 5 and Ct,j is a clique in G for all j ∈ {1, . . . , 4}. For a

node t ∈ V (T ), a subset Y ⊆ Xt and integers i, j ∈ [n], we define the entry DP [t, Y, i, j].

The entry DP [t, Y, i, j] stores a partition P of Y if

there exists a vertex subset X ⊆ Dt , v0 ∈ X such that X ∩ Xt = Y and

there exists an edge subset X0 ⊆ E(Gt) ∩ E0 such that in the graph (X, E(Gt[X \

{v0}]) ∪ X0), we have i vertices, j edges, no connected component is fully contained in

Dt \ Xt and the elements of Y are connected according to the partition P.

We set DP [t, Y, i, j] = ∞ if the entry can be inferred to be invalid from Y .

We can claim that Feedback Vertex Set by CVD is a yes instance if and only if for

the root r of T with Xr = {v0} and some i ≥ |V | − ℓ, we have DP [r, {v0}, i, i − 1] to be

non-empty.

The recurrences for computing DP [t, Y, i, j] remains very similar to that in [3]. Since the

number of table entries is O(27kn13), U is at most 7k + 13 and A is at most 2|U |, we have

the total time bounded to be O(2(ω−1)7k(7k)O(1)27kn13) = O(2ω7k(7k)O(1)n13). Using

the ideas from [3], it can be proven that the number of table entries is O(27kn13) and the

total time is O(2ω7k(7k)O(1)n13). ◭

4.1 SETH Lower Bounds

A graph G is called a cluster graph if it is a disjoint union of complete graphs. It can be seen

that all cluster graphs are chordal. We define a problem called Vertex Cover by ClsVD.

Vertex Cover by ClsVD

Input: A graph G = (V, E), k, ℓ ∈ N and a set S ⊆ V (G) with |S| ≤ k such that

G[V \ S] is a cluster graph.

Parameter: k

Question: Is there a vertex cover of size ℓ in G?

Assuming SETH, we show that Vertex Cover by ClsVD, FVS by CVD and OCT

by CVD cannot have an O∗((2 − ǫ)k) FPT algorithm. As the class of all cluster graphs is

a subclass of the class of chordal graphs, deletion distance to a chordal graph is a smaller

parameter. Hence the lower bound also holds for WVC By CVD.

To show the following theorem, we give a parameterized reduction from Hitting Set

parameterized by the size of the universe n to Vertex Cover by ClsVD and use the fact

that assuming SETH, Hitting Set cannot be solved in O∗((2 − ǫ)n) time.

◮ Theorem 20. Vertex Cover by ClsVD cannot be solved in O∗((2 − ǫ)k) time for any

ǫ > 0 assuming SETH.

Proof. We give a reduction from Hitting Set defined as follows.

Hitting Set : In any instance of Hitting Set, we are given a set of elements U with

|U | = n, a family of subsets F = {F ⊆ U} and a natural number k. The objective is to find

a set F ⊆ U , |F | ≤ k such that S ∩ F 6= ∅ for all S ∈ F .
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The problem cannot be solved in O∗((2 − ǫ)n) time assuming SETH [11].

Consider a Hitting Set instance (U, F). We construct an instance of Vertex Cover

by ClsVD as follows. For each element u ∈ U , we add a vertex vu. For each set S ∈ F , we

add |S| vertices corresponding to the elements in S. We also make the vertices of S into a

clique. Finally, for each element u ∈ U , we add edges from vu to the vertex corresponding to

u for each set in S that contains u. See Figure 1.

vu1 vu2 vu3 vu4 vu5 vu
n−1

vun

S1 = {u1, u3, u4, up} S2 = {u2, u3, u4, . . .} Sm = {u1, u5, . . .}

U

F

Figure 1 Reduction from Hitting Set to Vertex Cover by ClsVD.

Note that the set of vertices
⋃

u∈U vu forms a cluster vertex deletion set of size n for the

graph G we constructed.

We claim that there is a hitting set of size k in the instance (U, F) if and only if there is

a vertex cover of size k +
∑

S∈F

(|S| − 1) in G.

Let X ⊆ U be the hitting set of size k. For each set S ∈ F , mark an element of X which

intersects S. Now we create a subset of vertices Y in G consisting of vertices corresponding

to elements in X plus the vertices corresponding to all the unmarked elements in S for every

set S ∈ F . Clearly |Y | = k +
∑

S∈F

(|S| − 1). We claim that Y is a vertex cover of G. Let us

look at an edge of G between an element vertex u and its corresponding copy vertex in S

containing u. If u is unmarked in S, then it is covered as the vertex corresponding to u in S

is present in Y . If it is marked, then the element vu is present in Y which covers the edge.

All the other edges of G have both endpoints in a set S ∈ F . Since one of them is unmarked,

it belongs to Y which covers the edge.

Conversely, let Z be a vertex cover of G of size k +
∑

S∈F

(|S| − 1). Since the graph induced

on vertices of set S forms a clique for each S ∈ F , Z should contain all the vertices of the

clique except one to cover all the edges of the clique. Let us mark these vertices. This means

that at least
∑

S∈F

(|S| − 1) of the vertices of Z are not element vertices vu. Now the remaining

k vertices of Z should hit all the remaining edges in G. Suppose it contains another vertex

x corresponding to an element u in set S ∈ F . Since x can only cover the edge from x to

the element vertex vu out of the remaining edges, we could remove x and add vu as it is

not present in Z and still get a vertex cover of G of the same size. Hence we can assume,

without loss of generality that all the remaining vertices of Z are element vertices vu. Let

X ′ be the union of the k elements corresponding to these element vertices. We claim that

IPEC 2020
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X ′ is a hitting set of (U, F) of size k. Suppose X ′ does not hit a set S ∈ F . Look at the

unmarked vertex x in the vertices of S. There is an edge from x to its element vertex vu.

Since u /∈ X ′, this edge is uncovered in G giving a contradiction.

Hence given a Hitting Set instance (U, F), we can construct an instance for Vertex

Cover by ClsVD with parameter n. Hence, if we could solve Vertex Cover by ClsVD

in O∗((2−ǫ)k) time, we can solve Hitting Set in O∗((2−ǫ)n) time contradicting SETH. ◭

The proof of the following theorem works by modifying the reduction in the above proof

to replace edges by triangles.

◮ Theorem 21. FVS by CVD and OCT by CVD given the modulator cannot be solved

in O∗((2 − ǫ)k) time for any ǫ > 0 assuming SETH.

Proof. To prove the above theorem, we again give a reduction very similar to the reduction

given in the proof of Theorem 20. Consider a Hitting Set instance (U, F). To create an

instance of Feedback Vertex Set by CVD or Odd Cycle Transversal by CVD, we

replace each edge in the above reduction by a triangle. It can be easily shown that the graph

obtained after removing the vertices corresponding to elements in U forms a chordal graph.

The proof follows on similar lines. ◭

5 Conclusion

Our main contribution is to develop techniques for addressing structural parameterization

problems when the modulator is not given. The question, of Fellows et al. about whether there

is an FPT algorithm for Vertex Cover parameterized by perfect deletion set with only a

promise on the size of the deletion set, is open. Regarding problems parameterized by chordal

deletion set size, though our algorithms are based on treewidth DP, we remark that not all

problems that have FPT algorithms when parameterized by treewidth necessarily admit an

FPT algorithm parameterized by CVD. For example, Dominating Set parameterized by

treewidth admits an FPT algorithm [12] while Dominating Set parameterized by CVD is

para-NP-hard as the problem is NP-hard in chordal graphs [5]. Generalizing our algorithms

for other problems, for example, for the optimization problems considered by Liedloff et

al. [31] would be an interesting direction.

Finally, we believe that this whole notion of permissive problems need to be explored in

many facets of structural parameterizations where finding the modulator is more expensive

than solving the problem when the modulator is given.
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