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In a turbulent wall shear flow, we explore, for the first time, the stochastic mechanics of loose boundary

particle transport, having variable particle protrusions due to various cohesionless particle packing

densities. The mean transport probabilities in contact and detachment modes are obtained. The mean

transport probabilities in these modes as a function of Shields number (nondimensional fluid induced

shear stress at the boundary) for different relative particle sizes (ratio of boundary roughness height

to target particle diameter) and shear Reynolds numbers (ratio of fluid inertia to viscous damping) are

presented. The transport probability in contact mode increases with an increase in Shields number

attaining a peak and then decreases, while that in detachment mode increases monotonically. For the

hydraulically transitional and rough flow regimes, the transport probability curves in contact mode for

a given relative particle size of greater than or equal to unity attain their peaks corresponding to the

averaged critical Shields numbers, from where the transport probability curves in detachment mode

initiate. At an inception of particle transport, the mean probabilities in both the modes increase feebly

with an increase in shear Reynolds number. Further, for a given particle size, the mean probability in

contact mode increases with a decrease in critical Shields number attaining a critical value and then

increases. However, the mean probability in detachment mode increases with a decrease in critical

Shields number. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984042]

I. INTRODUCTION

Loose boundary particle transport in turbulent wall shear

flow is a key topic of interest in many scientific and engineer-

ing disciplines. Due to its immense practical applications in

Aeolian and fluvial sediment transport,1–7 slurry pipelines,8

and many others,9–11 this topic dwells in the core contents of

classical physics and fluid mechanics. The particle transport in

near-boundary region is randomly governed by the localized

turbulence,12–16 while that in far-boundary region is controlled

by complex advection mechanism.17,18 Although a plethora of

studies were carried out to grasp the underlying flow physics of

near-boundary particle transport,19–28 it is no way exaggeration

to declare that a complete understanding of this phenomenon

is still in an embryonic stage. The semi-analytical study on this

topic dates back to 1936 due to Shields’29 pioneering contribu-

tion to the inception of rheological transport of particles. The

Shields curve that represents a curve of critical Shields num-

ber Θc [= τ0c/(ρp ☞ ρf )gDp] versus shear Reynolds number

R∗ (= u∗ks/ν) is still in use to determine the critical bound-

ary shear stress τ0c for a given particle size Dp. Here, ρp is

the mass density of particles, ρf is the mass density of fluid,

g is the gravitational acceleration, u* is the shear velocity, ks

is the roughness height, ν is the coefficient of kinematic vis-

cosity of fluid, and subscript c denotes the critical criterion.

After Shields,29 more researchers came up with number of
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theoretical analyses, based on the deterministic and stochastic

approaches, and conducted numerous experiments over a wide

range of particle sizes and for different flow regimes.7 White12

argued that the inception of loose boundary particle transport

is practically governed by the instantaneous boundary shear

stress rather than its time-averaged value. He emphasized that

even if the time-averaged boundary shear stress is less than

its critical value, the instantaneous boundary shear stress can

cause particles to be transported. Recently, Ali and Dey30 put

forward a comprehensive deterministic analysis of inception

of particle transport in a streamflow. However, this study aims

to gain insight into the stochastic processes of loose boundary

particle transport driven by a turbulent wall shear flow.

Einstein2 was the first to envision the particle transport

phenomenon as a probability of instantaneous hydrodynamic

lift arising from the turbulence to exceed the effective grav-

ity of the particles. However, after the discovery of turbulent

bursting phenomenon,31 the particle transport problem has

received a new look. During the intermittent events (ejections

and sweeps), the conditional Reynolds shear stresses signif-

icantly depart from the time-averaged Reynolds shear stress,

and thus, such events strongly contribute to the particle trans-

port process.13,32 Several studies on stochastic dynamics of

near-boundary particle transport were carried out experimen-

tally,19,21,22,33 analytically,20,24,34–36 and numerically.15,37–39

Despite several attempts, an in-depth analysis of the stochas-

tic mechanics of near-boundary particle transport in a gen-

eralized sense (having variable particle protrusions due to

various packing densities of boundary particles) is still lack-

ing. Importantly, little attention has so far been paid on the
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stochastic mechanics of particle transport in different flow

regimes. The measurements revealed that sweeps are predom-

inant at the particle transport in a turbulent flow condition.32,33

Dey et al.32 reported that for a mobile boundary stream, sweeps

contribute approximately 70% to the total Reynolds shear

stress. The most provoking turbulence characteristic towards

the particle transport can be envisaged as a near-boundary low-

pressure field induced by sweeps.32 Therefore, the inclusion of

such an aspect in the mathematical analysis, proper selection

of the probability density function (PDF) of near-boundary

instantaneous streamwise velocity, is an essential prerequi-

site. The link between the kurtosis of the PDF and the spectral

slope reveals that the PDF of near-boundary instantaneous

streamwise velocity has a departure from the Gaussianity.40 It

essentially concludes that the analysis of the particle transport

phenomenon can thus be improved by considering a non-

Gaussian PDF.

In this study, we explore the turbulent wall shear flow

driven cohesionless particle transport from an array of loosely

packed boundary particles considering the three-dimensional

(3-D) organizations of the particles. The compactness of the

boundary particles and their protrusions to the flow are intro-

duced. The analysis is pursued to investigate the particle

transport phenomenon in contact and detachment modes by

considering the laws of the wall in hydraulically smooth, tran-

sitional, and rough flow regimes. Then, the stochastic analysis

of particle transport is introduced from the perspective of the

dynamics of near-boundary turbulence structures by applying

the fourth-order Gram-Charlier probability density function

(GC PDF) of the near-boundary instantaneous streamwise

velocity. The probabilities of particle transport in contact and

detachment modes for various boundary particle conditions

are correlated with the fluid induced boundary shear stress. In

essence, this study provides a comprehensive understanding of

the turbulent wall shear flow driven particle transport in terms

of probabilities in contact and detachment modes stemming

from the near-boundary turbulence.

The paper is structured as follows. In Sec. II, the phys-

ical system under consideration is described. The stochastic

analysis of particle transport is presented in Sec. III. The com-

putational results and discussion are furnished in Sec. IV.

Finally, the conclusion is drawn in Sec. V.

II. DESCRIPTION OF PHYSICAL SYSTEM

A. Organization of boundary particles

We consider a fully developed unidirectional turbulent

shear flow over an array of cohesionless spherical boundary

particles of diameter 2r. The flow has an infinite width and

the flow depth is much larger compared to the particle rough-

ness height. The local instantaneous streamwise velocity u is

decomposed as u = ū + u′, where an over-bar denotes the

time-averaged quantity and a prime denotes the fluctuations.

We now pay our attention to a target particle of diameter 2a

resting on three boundary particles. The roughness height of

the boundary particles is taken as ks = 2r. The packing con-

dition of the boundary particles is relaxed indicating that the

boundary particles may not be tightly packed [Figs. 1(a) and

1(b)]. In this loosely packed particle organization, the center of

FIG. 1. Schematic of the physical system of a loose boundary: (a) isometric

view and velocity field, (b) sectional view and force system, and (c) enlarged

view of tetrahedron CC1C2C3 and pivoting angles.

the target particle is connected to the centers of the bound-

ary particles to form a tetrahedron CC1C2C3, having G1, G2,

and G3 as the contact points [Fig. 1(c)]. Note that the effect

of the slip at the pivoting points between the particles dur-

ing the motion of the target particle is absent because the

contacts of the particles are considered to be firm due to

adequate inter-particle friction. Let us define two key param-

eters: the protrusion of the target particle l [Fig. 1(b)] and

the relative particle size N(= r/a). For the mathematical

treatment, we set the virtual boundary level (z = 0) at a ver-

tical distance 2ξr below the summits of the boundary par-

ticles. Here, ξ is a proper fraction (<1). The relationship

of mean pivoting angle φm with a, r, and l is derived in

Appendix A.

B. Force system

The force system is illustrated in Fig. 1. The instantaneous

hydrodynamic drag FD and lift FL act on the target particle in

the streamwise and vertically upward directions, respectively;

while, the effective gravity FG of the particle acts through its

center of gravity vertically downward.

The hydrodynamic drag FD comprises of the form drag

(that is, the drag induced by the pressure difference p) and skin

friction drag (that is, the drag induced by the shear stress τ act-

ing on the surface S of the particle). Thus, the FD is expressed
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as

FD =

∫

S

(−pn + nτ) · idS. (1)

On the other hand, the hydrodynamic liftFL is the integral

of the pressure forces over the surface S of the particle. Thus,

the FL is expressed as

FL = −
∫

S

pn · kdS. (2)

In Eqs. (1) and (2), n is the unit vector perpendicular to the S
and i and k are the unit vectors along the x- and z-direction,

respectively. To calculate these surface integrals, exact expres-

sions for the distributions of pressure and shear stress are the

essential prerequisite. However, the evaluation of these sur-

face integrals is not straightforward due to two reasons. First,

p and τ are the instantaneous quantities. Second, the descrip-

tion of p and τ becomes uncertain due to the boundary layer

separation. Thus, as a first approximation, the drag and lift are

expressed as a function of dynamic pressure. It is pertinent to

discuss that the development of a more generalized framework

for the particle transport phenomenon considering the arbitrary

shape, texture, and macro-roughness of particles over a broad

spectrum of turbulent flow conditions is a difficult proposi-

tion, if not impossible. The difficulties primarily arise from

the high intricacy of near-boundary turbulence interaction with

the irregular shaped particles, hindering an exceedingly com-

plex analysis of the force system from a micro-mechanistic

viewpoint.

The instantaneous drag acting at a distance z = z⊗ is

FD =
1

2
CDρf u2

z=z⊗Af , (3)

where CD is the drag coefficient, uz=z⊗ is the instantaneous

streamwise velocity at z = z⊗, and Af is the frontal area (that

is, the flow facing area) of the target particle protruding to the

flow. The Af is considered as the projected area of the target

particle above an imaginary plane at z = 2ξr and is given byAf

= (1/4){[4πa2
☞ cos☞1(2l ☞ 2a)] + 4(l ☞ a)[l(2a ☞ l)]1/2}. The

drag coefficient CD is a function of particle Reynolds num-

ber Rp (= 2ūz=z⊗ a/ν). Morsi and Alexander41 studied the

response of a spherical particle to a unidirectional flow and

extended the Stokes law over a broad spectrum of Rp. They

proposed the expression for CD as CD = A1 + A2R
−1
p + A3R

−2
p ,

which is used in this study. Here, A1, A2, and A3 are the func-

tions of Rp. The z⊗ is given by z⊗ = 2ξr + h, where h is the

vertical distance of the point of action of drag from the summits

of the boundary particles [Fig. 1(b)]. The h can be obtained by

equating the summation of the moment of the distributed drag

force with the moment of the resulting drag force about the

pivoting point. The lower and upper limits of the distributed

force system are considered as (2ξr, 2a + δ).

For a simple shear flow with velocity U having a weak

rotation around a stationary spherical particle, Auton42 showed

that Eq. (2) can be expressed as FL = (4πa3/3)CLAρf (U ×Ω),

where CLA is the Auton lift coefficient and Ω is the curl of

reference velocity at the particle center (= ∇×U). However,

analogy to the drag, the lift allows us to express the instan-

taneous lift acting through the center of the target particle

as

FL =
1

2
CL ρf u2

z=z⊗Af , (4)

where CL is the lift coefficient. In this study, we performed a

sensitivity analysis of CL (not shown here) by varying it over

a certain range. It was found that CL = 0.3 provided the best

prediction of the model results.

In addition, the effective gravity of the target particle is

expressed as

FG =
4π

3
a3
∆ρf g, (5)

where ∆ is the submerged relative density of particles [=(ρp

☞ ρf )/ρf ].

C. Phenomenology of particle transport

It has been discovered recently that the scaling laws of

near-boundary particle transport are inherently linked with

the laws of turbulent spectrum.43 However, in a lucid way,

the phenomenology of particle transport can be grasped

by setting two distinct transport modes: contact mode and

detachment mode. In contact mode, the target particle has two

limits either to roll over the crest of a single boundary parti-

cle or to roll over the valley formed by the two neighboring

boundary particles. On the other hand, in detachment mode,

the instantaneous lift exceeds the effective gravity of the tar-

get particle. To better elucidate the transport modes, the time

series of u2(t) is schematically plotted in Fig. 2. Let the con-

tact inception be QC and the detachment inception be QD. The

QC and QD can be determined from the moment and the force

balance of the forces acting on the particle, respectively. In

addition to the magnitude of the instantaneous hydrodynamic

forces, their durations may also be important to transport the

particles as argued by Celik et al.44 They revealed that the

impulse triggered by the turbulent flow must exceed the critical

impulse value to particle transport. Moreover, the dependency

of impulse on the force duration indicated that although the

drag is a prerequisite to the particle transport phenomenon, it

FIG. 2. Conceptual description of contact inception QC and detachment

inception QD in u2(t) plane.
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is not the only motivating force to initiate the particle motion.

However, in absence of clear-cut information, the duration of

the flow events is not considered here. Further, the instanta-

neous streamwise velocity is considered as solely responsible

for the particle transport rather than the consideration of a more

complex situation linked to the burst cycle. Reverting back to

Fig. 2, we see that there are three plausible cases. When the

magnitude of the instantaneous hydrodynamic forces is con-

siderably small to satisfy the condition u2 ∈ (0, Q2
C

) ∀R∗, that

is, the point A in Fig. 2, the target particle cannot completely

roll over the pivoting point. However, in this case, the tar-

get particle may still have a feeble transport in contact mode

remaining within the groove or may remain stationary. For

u2 ∈ (Q2
C

, Q2
D

) ∀ R∗, that is, the point B in Fig. 2, the particle

transports in a pure contact mode keeping in contact to the

boundary. On the other hand, for u2 ∈ (Q2
D

, ∞) ∀R∗, that is,

the point C in Fig. 2, the transport occurs simultaneously in

contact and detachment modes. To be explicit, the third case of

transport implies that the particles are lifted off the boundary

as they just begin to roll. To determine the QC and QD, we

proceed as follows.

In contact mode, when the target particle is on the verge of

rolling, the moment balance about the pivoting point satisfies

the criterion (FL −FG)Lx + FDLz ≥ 0, where Lx and Lz are

the horizontal and the vertical lever arms, respectively. The

equality of both the sides in the above criterion represents the

inception of particle transport criterion in contact mode, while

the inequality signifies the particle transport in contact mode.

Substituting Eqs. (3)–(5) into the above criterion yields

u2
z=z⊗ ≥ Q2

C =
8πa3

∆gLx

3Af (CDLz + CLLx)
∀ R∗ ∈ (0,∞). (6)

In detachment mode, when the target particle is on the

verge of detachment, the force balance in vertical direction

satisfies the criterion FL ≥ FG. Thus,

u2
z=z⊗ ≥ Q2

D =
8πa3

∆g

3Af CL

∀ R∗ ∈ (0,∞). (7)

From physical intuition [also evident from Eqs. (6) and

(7)], we perceive that the inception of particle transport in

detachment mode is greater than that in contact (QD >QC). The

expressions of lever arms Lx and Lz are derived in Appendix

B.

To determine the time-averaged critical boundary shear

stress, we perform the averaging of Eqs. (6) and (7) over tur-

bulence, yielding the time-averaged critical Shields numbers,

ΘCc and ΘDc, in contact and detachment modes as

ΘCc,ΘDc =
4πa2

3Af

u2
∗c

(ū2 + σ2
u)z=z⊗

[
Lx

CDLz + CLLx

,
1

CL

]
, (8)

where Θ is u2
∗/(2a∆g) and σu is the streamwise turbulence

intensity.

D. The laws of the wall and turbulence intensity

The flow regimes are distinguished by the shear Reynolds

number R∗. In a transitional flow regime (3 < R∗ < 70), the

law of the wall proposed by Reichardt45 used in this study is

ū(z) =
u∗
κ

{

ln

(

1 + κ
u∗z

ν

)

−
[
1 − exp

(

− 1

11.6

u∗z

ν

)

− 1

11.6

u∗z

ν
exp

(

−1

3

u∗z

ν

)]
ln

(

κ
u∗z0

ν

)

}

, (9)

where κ is the von Kármán constant and z0 is the zero-velocity

level [Fig. 1(a)]. It is worth noting that Eq. (9) provides a

reasonable estimation even for R∗ < 3 and R∗ > 70 over a

certain range. Therefore, in this study, we apply Eq. (9) for the

hydraulically smooth flow regime (0.1 ≤ R∗ ≤ 3) as well.

In a hydraulically rough flow regime (R∗ ≥ 70), the law

of the wall obeys the logarithmic law,

ū(z) =
u∗
κ

ln

(

z

z0

)

. (10)

Experimental observations revealed that the values of κ in

a shear flow over mobile boundaries decrease from its universal

value (= 0.41).32,46 An average value of κ = 0.385 was reported

by Best et al.46 Then, van Rijn19 argued that the logarith-

mic law over a boundary could be preserved fixing the virtual

boundary level at 0.5r below the summits of the boundary par-

ticles (that is, ξ = 0.25) and considering the zero-velocity level

z0 = 0.03 ks. However, Dey et al.32 reported that the ξ (=0.21)

and the z0 (=0.04 ks) shift upward in case of weakly mobile

boundaries. Therefore, in this study, we consider the values of

κ = 0.385, ξ = 0.21, and z0 = 0.08r.

The expression for the streamwise turbulence intensityσu

is as follows:47

σu = 0.31(1 − VD)
u2
∗z

ν
+ 2.3VD exp

(

− z

ks

)

. (11)

In Eq. (11), VD is the van Driest damping function. It is

given by VD = 1 ☞ exp[u*z(Df ν)
☞1], where Df is the damping

factor. The Df can be considered as 10.47

III. STOCHASTIC ANALYSIS OF PARTICLE
TRANSPORT

The stochastic analysis is carried out on the basis of the

stochastic nature of instantaneous streamwise velocity in the

immediate upstream vicinity of the target particle. The typical

PDF f u(u|xp) of near-boundary instantaneous velocity u(xp) in

the immediate upstream vicinity of the particle is illustrated

FIG. 3. Schematic of PDF fu(u|xp) of u(xp).
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in Fig. 3. The probability of u exceeding its critical value Q is

represented by the shaded area in Fig. 3, and it is expressed as

P(u(xp) > Q(xp)) =

∞∫

Q(xp)

fu(u| xp)du. (12)

In Eq. (12), subscript p denotes the particle and the stream-

wise and vertical coordinates are given by xp [=(xp, zp)]. Note

that the critical value Q(xp) is also a random variable due

to variable boundary packing condition and pocket geome-

try. Thus, another PDF f Q[Q(xp)] of Q(xp) is introduced in

order to obtain the mean transport probability. It is then given

by

〈P〉 =
∞∫

−∞

P(u(xp) > Q(xp))fQ(Q(xp))du

=

∞∫

−∞


∞∫

Q(xp)

fu( u| xp)du


fQ(Q(xp))dQ. (13)

A. PDFs of near-boundary instantaneous streamwise
velocity and particle protrusion

Jiménez40 reported that the velocity fluctuations in homo-

geneous turbulence are often close to a Gaussian distribution,

although the high resolution data tend towards a non-Gaussian

statistics. The non-Gaussian statistics result from the steep-

ness of the energy spectrum and the properties of the energy

containing eddies. In a turbulent wall shear layer flow, it was

found that the Gram-Charlier (GC) PDF provides a satisfactory

description of the near-boundary instantaneous velocity fluc-

tuations.48 The primary advantage of using the fourth-order

GC PDF is that it involves the higher-order correlations to

account for the important stochastic information related to the

turbulent coherent structures. The fourth-order GC PDF of

the near-boundary streamwise velocity fluctuations is given

by

fU(Uz=z⊗ ) =

{

exp(−0.5U2)

(2π)1/2

[
1 + p0(U3 − 3U)

+ p1(U4 − 6U2 + 3)
]}

z=z⊗

∀ Uz=z⊗ ∈ (−∞, ∞) ,

(14)

where U is u′/σu, p0 is Su/6, and p1 is (Ku ☞ 3)/24. The Su

and Ku are referred to as the skewness and kurtosis of u′,

respectively. Thus, Su is u′3/σ3
u and Ku is u′4/σ4

u . The PDF of

the near-boundary instantaneous streamwise velocity is given

by

fu(uz=z⊗ ) =
1

σu |z=z⊗

f

(

u − ū

σu

)

z=z⊗

∀ uz=z⊗ ∈ (−∞, ∞) .

(15)

Since the critical value Q(xp) is a function of bound-

ary packing and pocket geometry, the PDF of Q(xp) can be

replaced by considering the PDF of relative protrusion l+

(= l/2a). Due to a complex geometry, an accurate description

of the PDF of l+ is a difficult proposition. However, the exper-

iments evidenced that the l+ can be considered as a uniformly

distributed random variable.49,50 Therefore, the PDF of l+ is

given by

fl+ {l+ ∈ [0, l+
max]} = 1/l+

max. (16)

B. Higher-order moments of velocity fluctuations

Experimental observation of Antonia and Atkinson51

showed that close to the boundary, the Su is positive, whereas

away from the boundary, it is negative. This suggests that in

close proximity to the boundary, the large streamwise velocity

fluctuations are primarily attributed to the arrival of high-speed

fluid streaks from the region away from the boundary. In con-

trast, away from the boundary, the large streamwise velocity

fluctuations are primarily attributed to the arrival of low-speed

fluid streaks from the near-boundary flow region. On the other

hand, the Ku decreases with an increase in vertical distance

from the boundary becoming minimum in the close proximity

of the boundary; and thereafter, it increases with the vertical

distance.52

Interestingly, the Ku can be linked with the spectral slope

α of the power spectrum E(k) = kα, where k is the wavenum-

ber. Considering a one-dimensional case, Jiménez40 showed

that for a steep spectral slope (α < ☞1), the Ku(α < ☞1) =

3(1 ☞ 0.5S−2
2

S4), where Sn = ζ(☞0.5αn) and ζ is the Rie-

mann zeta function. It may be noted that the Ku (α → ☞∞)

= 1.5. On the other hand, for a mild spectral slope (α ≥ ☞1),

the Ku(α ≥ ☞1) = 3. The main feature of Ku(α) is that the

Gaussian distribution cannot be truly applicable in a homoge-

neous turbulent flow for variables whose spectral slopes are

steeper than “☞1” (α < ☞1). Therefore, the velocity fluctu-

ations, which are in general featured by the “☞5/3” scaling

law (spectral slope), depict a departure from the Gaussian

distribution.

In this study, the Su and Ku are considered as35

(

Su

Ku

)

=

(

p11 p12

p21 p22

) (

1

ln R∗

)

, (17)

where (p11, p12, p21, p22) = (0, 0.102, 2.3, 0.136)∀R∗
< 70 and (p11, p12, p21, p22) = (0.43, 0, 2.88, 0) ∀R∗ ≥ 70.

Figure 4 shows the fourth-order GC PDF of near-boundary

streamwise velocity fluctuations for different shear Reynolds

numbers R∗ = 1 (smooth), 12 (transitional), and 70 (rough),

obtained from Eq. (14). The Gaussian PDF is also overlapped

for the comparison. It is evident that with an increase inR∗, the

fourth-order GC PDFs become more peaked and skewed to the

left (that is, positively skewed). It indicates that the arrival of

high-speed fluid streaks in a hydraulically rough flow regime

is at a much faster rate as compared to those in the hydrauli-

cally smooth and transitional flow regimes. Furthermore, the

turbulence in a hydraulically rough flow regime is highly inter-

mittent in the vicinity of the boundary as compared to that in the

hydraulically smooth and transitional flow regimes. It is dis-

cernible that in the hydraulically smooth flow regime (R∗ = 1),

the application of the Gaussian PDF overestimates the kurto-

sis of the fourth-order GC PDF, whereas in the hydraulically

transitional flow regime (R∗ = 12), it overestimates the kur-

tosis of the fourth-order GC PDF and underestimates the
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FIG. 4. Typical PDF fU of near-boundary streamwise velocity fluctuations U.

skewness of the fourth-order GC PDF. On the other hand, in

the hydraulically rough flow regime (R∗ = 70), the Gaus-

sian PDF underestimates the skewness of the fourth-order

GC PDF. Another drawback of employing the Gaussian PDF

in characterizing the instantaneous velocity (or the velocity

fluctuations) is that the Gaussian PDF is invariant of R∗, as

evident from Fig. 4. Thus, it is unable to capture the differ-

ences in transport processes in different flow regimes. More-

over, the Gaussian PDF does not account for the higher order

moments, which are essential for understanding the dynamics

of near-boundary turbulence structures.

C. Probabilities of particle transport

The probability PC of particle transport in contact mode

is expressed as

PC = P[u2
z=z⊗ ∈ (Q2

C , Q2
D)]

= P[uz=z⊗ ∈ (−QD,−QC)] + P[uz=z⊗ ∈ (QC , QD)]

=


−QC∫

−QD

fu(u)du +

QD∫

QC

fu(u)du

 z=z⊗

=



− QC +ū

σu∫

− QD+ū

σu

fU(U)dU +

QD−ū

σu∫
QC−ū

σu

fU(U)dU

 z=z⊗

=

4
∑

j=1

(−1)jH(aj).

(18)

In Eq. (18), the H(aj) is given by

H(aj) =
1

2
erf

( aj

21/2

)

− 1

(2π)1/2

×
exp(−0.5a2

j
)[4(a2

j
− 1)Su + aj(a

2
j
− 3)(Ku − 3)]

24
,

(19)

and aj, after using Eqs. (6) and (7), can be expressed as

aj = −
1

λ

sgn(m1)*,
8π∆ga3

3Af ū2
z=z⊗

+-
1/2

×
[
m2

1

CL

+ m3

Lx

CDLz + CLLx

]1/2

+ 1
 , (20)

where λ is (σu/ū)z=z⊗ , m1(j = 1, 2) > 0, m1(j = 3, 4) < 0, (m2,

m3) = (1, 0) for j = 1, 4, and (m2, m3) = (0, 1) for j = 2, 3.

On the other hand, the probability PD of particle transport

in detachment mode is expressed as

PD = P[u2
z=z⊗ ∈ (Q2

D,∞)] = 1 − P[uz=z⊗ ∈ (−QD, QD)]

= 1 −


QD∫

−QD

fu(u)du

 z=z⊗

= 1 −



QD−ū

σu∫

− QD+ū

σu

fU(U)dU

 z=z⊗

= 1 + H(a1) − H(a4). (21)

The mean transport probabilities, 〈PC〉 and 〈PD〉, in con-

tact and detachment modes are the mean values of Eqs. (18)

and (21), respectively. They are expressed as

〈PC , PD〉 =
l+
max∫

0

(PC , PD)fl+ (l+)dl+. (22)

IV. RESULTS AND DISCUSSION

To prepare the graphical illustrations, characteristic val-

ues of ρp, ρf , and ν are considered as 2.65 × 103 kg m☞3,

103 kg m☞3, and 10☞6 m2 s☞1, respectively.

A. Mean transport probabilities in contact
and detachment modes

To explore the particle transport phenomenon, we are

interested to know the transport probabilities for a given rel-

ative particle size N. It provides a continuum description of

the transport probabilities of particles rather than limiting the

transport phenomenon from a discrete viewpoint. The mean

transport probabilities, 〈PC〉 and 〈PD〉, in contact and detach-

ment modes, therefore, represent a comprehensive picture of

the stochastic characteristics of the particles over the full

range of protrusion or packing density. The 〈PC〉 and 〈PD〉
are computed from Eq. (22).

The variations of mean transport probabilities, 〈PC〉 and

〈PD〉, in contact and detachment modes with Shields number

Θ for different relative particle sizes N = 0.25, 0.5, 1, and

1.5 and shear Reynolds numbers R∗ (= 1, 12, and 100) are

furnished in Figs. 5(a)–5(c). For all the values of R∗, the 〈PC〉
decreases with an increase in N up to the occurrence of a peak

of the 〈PC〉(Θ) for N = 0.25, and thereafter, for a largerΘ, the

〈PC〉 increases with an increase in N. On the other hand, for a

givenΘ, the 〈PD〉 decreases with an increase in N. For a given

N, the peak of the 〈PC〉(Θ) occurs early in the hydraulically

smooth flow regime (R∗ = 1) than those in the hydraulically
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FIG. 5. Variations of mean transport probabilities, 〈PC〉 and 〈PD〉, in contact

and detachment modes with Shields number Θ for different relative particle

sizes N (= 0.25, 0.5, 1, and 1.5) and shear Reynolds numbers (a) R∗ = 1, (b)

R∗ = 12, (c) R∗ = 100. The points of averaged critical Shields number Θc0

are marked on 〈PC〉(Θ) curves.

transitional (R∗ = 12) and rough (R∗ = 100) flow regimes.

Further, for a given N, the separation between the rising and

the recession limbs of the 〈PC〉(Θ) curve is narrowed down

with an increase in R∗. The separation between the 〈PD〉(Θ)

curves for different N values is also narrowed down with an

increase in R∗.

To be more specific, it is further evident that for all the

values of R∗, the 〈PC〉 increases with an increase in Θ attain-

ing a peak and then decreases. On the other hand, the 〈PD〉
increases monotonically with an increase in Θ. The averaged

critical Shields numbersΘc0 for different N and R∗, obtained

from the Θc0(R∗) curves,53 are also marked on the 〈PC〉(Θ)

curves in Figs. 5(a)–5(c). Interestingly, in the hydraulically

transitional (R∗ = 12) and rough (R∗ = 100) flow regimes, the

〈PD〉(Θ) curves for N ≥ 1 almost attain their peaks at Θ

≈ Θc0, and the 〈PD〉(Θ) curves initiate from that point (Θ

= Θc0). Figs. 5(a)–5(c) show that in the hydraulically tran-

sitional (R∗ = 12) and rough (R∗ = 100) flow regimes, the

dominant mode of transport for a smaller Θ (approximately

Θ < 0.1) is contact, while for a larger Θ (approximately

Θ > 0.2), the particles primarily transport as a detachment

mode. These results are in conformity with the argument of

Hu and Guo.54 Based on the experimental observations of Hu

and Hui,55 Hu and Guo54 reported that the contact mode is

dominant for Θ < 0.1, while the detachment mode is preva-

lent for Θ > 0.2 for N = 1. A qualitative description of

the transport probabilities in contact and detachment modes

in a hydraulically transitional flow regime was given using

the visual observation of bedload transport of uniform fine

gravels (N = 1), as was done by Drake et al.56 They found

that for Θ < 0.12, the dominant mode of transport is contact,

while forΘ > 0.18, the dominant mode of transport is detach-

ment. Reverting to this study, the 〈PC〉(Θ) and 〈PD〉(Θ) curves

in the hydraulically transitional flow regime (R∗ = 12) com-

pletely corroborate with the qualitative observation of Drake

et al.56

The variations of mean transport probabilities, 〈PC〉 and

〈PD〉, in contact and detachment modes with Shields num-

ber Θ for a relative particle size N= 1 and a shear Reynolds

number R∗ = 100 (hydraulically rough flow regime) are fur-

ther depicted in Fig. 6. The 〈PD〉(Θ) curve obtained by Wu

and Yang35 is also shown for the comparison. It may be noted

that Wu and Yang35 did not calculate the 〈PC〉(Θ) curve. The

experimental data of 〈PC〉(Θ)55 and 〈PD〉(Θ)55,57–60 are also

plotted for the validation of the model results. In particular,

the 〈PC〉(Θ) curve shown in Fig. 6 underestimates the exper-

imental data of 〈PC〉(Θ). The reason is attributed to the fact

FIG. 6. Variations of mean transport probabilities, 〈PC〉 and 〈PD〉, in contact

and detachment modes with Shields number Θ for a relative particle size

N = 1 and a shear Reynolds number R∗ = 100.
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FIG. 7. Variation of maximum mean transport probability 〈PC〉max in con-

tact mode with relative particle size N for different shear Reynolds numbers

R∗ (= 1, 12, and 100).

that the theoretical 〈PC〉(Θ) curve signifies the mean proba-

bility curve being averaged over the entire range of particle

protrusion. However, the experimental data of 〈PC〉(Θ) can

be considered for the surface particles which are more pro-

truded than the remaining particles whose transport in con-

tact mode is less probable. The 〈PD〉(Θ) curve, in general,

corresponds well with the experimental data for CL = 0.3.

Specifically, the experimental data of Guy et al.57 involved

a dunal flow regime. Moreover, for a larger Θ, an increas-

ing number of transported boundary particles can cause a

flow retardation in the close proximity of the boundary. As

a consequence, such flow retardation can affect the resulting

PDF.

The maximum mean transport probability 〈PC〉max in con-

tact mode as a function of relative particle size N for different

shear Reynolds numbers R∗ (= 1, 12, and 100) is illustrated

in Fig. 7. In the hydraulically smooth (R∗ = 1) and rough

(R∗ = 100) flow regimes, both the 〈PC〉max slowly increase

with an increase in N and after attaining their individual

peak values, they reduce with a further increase in N. How-

ever, for the hydraulically transitional flow regime (R∗ = 12),

the 〈PC〉max decreases with an increase in N. Remarkably,

for N ≥ 1, all the N(〈PC〉max) curves merge together, sug-

gesting that the 〈PC〉max is virtually independent of R∗ for

N ≥ 1. Another important aspect of Fig. 7 is that for N
≥ 1.9, the 〈PC〉max for all the R∗ becomes absolutely zero,

indicating that for N ≥ 1.9, the mean transport probabil-

ity in contact mode essentially vanishes. This phenomenon

is practically feasible because for a larger N (N ≥ 1.9), the

probability of a particle to be transported in a contact mode

becomes vanishingly small since the target particle receives

weak hydrodynamic forces due to hiding of the particle within

the pocket of the boundary particles for all possible protru-

sions. Therefore, the critical value of N, for which the mean

probability of the particle transport in contact mode vanishes,

is 1.9. Since every point on the N (〈PC〉max) curves represents

the maximum mean probability of particle transport in con-

tact mode, the space on the right side of the N (〈PC〉max)

curves therefore represents no particle transport in contact

mode.

B. Mean transport probabilities in contact
and detachment modes at an inception
of particle transport

Here, we are interested to investigate the characteristics

of mean transport probabilities at an inception in contact and

detachment modes. The variations of mean transport probabili-

ties at an inception, 〈PC〉c and 〈PD〉c, in contact and detachment

modes with critical shear Reynolds number R∗c for different

relative particle sizes N = 0.25, 0.5, 1, and 1.5 are demon-

strated in Fig. 8. For a given N and R∗c, the ΘCc and ΘDc

corresponding to the mean l+ are first obtained from Eq. (8).

Then, the 〈PC〉c(R∗c) and 〈PD〉c(R∗c) are obtained from the

proposed 〈PC〉(Θ) and 〈PD〉(Θ) relationships as developed in

Eq. (22). It is evident that the 〈PC〉c(R∗c) and 〈PD〉c(R∗c)

marginally increase with an increase in R∗c. However, for a

given R∗c, the 〈PC〉c(R∗c) and 〈PD〉c(R∗c) decrease with an

increase inN. Overall, the variations of 〈PC〉c(R∗c) withN are

more prominent than that of 〈PD〉c(R∗c) with N. Importantly,

the 〈PC〉c(R∗c) and 〈PD〉c(R∗c) become invariant of R∗c for

R∗c > 100 and R∗c > 70, respectively.

The variations of mean transport probabilities at an incep-

tion, 〈PC〉c and 〈PD〉c, in contact and detachment modes with

critical Shields numberΘc for different relative particle sizesN
= 0.25, 0.5, 1, and 1.5 are illustrated in Fig. 9. Figure 9 reveals

that for a given Θc, the 〈PC〉c(Θc) and 〈PD〉c(Θc) decrease

with an increase in N. However, the 〈PC〉c(Θc) and 〈PD〉c(Θc)

curves comprise of three segments separated by two small cir-

cles. These segments represent the domains of different flow

regimes (smooth, transitional, and rough). The evolution of

〈PC〉c(Θc) and 〈PD〉c(Θc) curves is shown by the curved arrow

tips. In a hydraulically smooth flow regime, the 〈PC〉c, orig-

inating from the right tail of the 〈PC〉c(Θc) curve, increases

with a decrease in Θc. On the other hand, in a hydraulically

transitional flow regime, the 〈PC〉c increases with a decrease in

Θc attaining a critical value (minimum value of Θc) and then

increases [the 〈PC〉c(Θc) curve takes a sharp turn towards right]

with an increase inΘc. However, in a hydraulically rough flow

regime, the 〈PC〉c slowly increases with Θc becoming a con-

stant. Importantly, for a givenN and a specific value ofΘc, two

values of 〈PC〉c are obtained. These two values of 〈PC〉c(Θc)

curve correspond to the same or two different flow regimes.

For instance, for N = 0.25, 0.5, and 1, two values of 〈PC〉c

FIG. 8. Variations of mean transport probabilities at an inception, 〈PC〉c and

〈PD〉c, in contact and detachment modes with critical shear Reynolds number

R∗c for different relative particle sizes N (= 0.25, 0.5, 1, and 1.5).
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FIG. 9. Variations of mean transport probabilities at an inception, 〈PC〉c and

〈PD〉c, in contact and detachment modes with critical Shields number Θc for

different relative particle sizes N (= 0.25, 0.5, 1, and 1.5).

correspond to the hydraulically transitional and transitional-

rough flow regimes, while for N = 1.5, two values of

〈PC〉c correspond to the hydraulically transitional, transitional-

rough, and smooth-rough flow regimes. Further, the 〈PD〉c(Θc)

increases with a decrease in Θc becoming a constant at the

extremity of the hydraulically transitional flow regime. Impor-

tantly, this extremity represents the hydraulically rough flow

regime, as in a hydraulically rough flow regime (R∗c ≥ 70),

the 〈PD〉c(R∗c) is invariant of R∗c (Fig. 8).

Therefore, this study is capable to capture the essen-

tial stochastic processes of loose boundary particle transport

elucidating the underlying physics. In this regard, it is impor-

tant to note that Ali and Dey30 deterministically analyzed the

inception of particle transport based on a static configura-

tion of compact boundary particles. Moreover, a preliminary

stochastic analysis by Dey and Ali36 assumed an idealized

configuration of compact boundary particles. They character-

ized the near-boundary instantaneous streamwise velocity by

the log-normal probability density function. By contrast, the

core content of this study focuses on a new realistic stochas-

tic notion of boundary particle transport by treating a more

generalized configuration of loose (non-compact) boundary

particles and by applying a more suitable fourth-order Gram-

Charlier probability density function of the near-boundary

instantaneous streamwise velocity. Further, the most important

features that are the relationships of the mean transport prob-

abilities with the Shields number for different relative particle

sizes and shear Reynolds numbers were not studied by Dey

and Ali.36

Finally, this study can be effectively applied in various

engineering disciplines including fluvial morphodynamics.

For example, for a given flow condition, the sediment parti-

cle transport in a gravel-bed stream is generally accompanied

by a partial transport condition, where active particles being

exposed at the surface are transported sporadically. In contrast,

the partially exposed particles remain immobile for the same

flow condition. However, under a full-transport condition,

almost all the sediment particles at the surface are transported

into the bedload layer. This study effectively addresses such

features to model the transport phenomenon of mixed-size

sediment particles. The mean transport probabilities, in con-

tact and detachment modes, for a given relative size of parti-

cles can be helpful in assessing the entrainment risk, flushing

flow carrying excess amount of sediment particles, proper

design to channel networks, and protective measures against

erosion.

V. CONCLUSION

We explore the turbulent wall shear flow driven transport

of near-boundary particles having variable protrusions due to

variable boundary packing densities considering the microme-

chanics of the cohesionless boundary particles in a 3-D

organization and using the laws of the wall for hydraulically

smooth, transitional, and rough flows. The criteria for particle

transport in contact and detachment modes are obtained by

applying the equilibria of the force moments and the forces,

respectively. The mean transport probabilities in contact and

detachment modes are obtained as a function of Shields num-

ber for different relative particle sizes and shear Reynolds

numbers. For a given relative particle size, the mean trans-

port probability in contact mode increases with an increase in

Shields number to attain its peak value and then decreases. On

the other hand, the mean transport probability in detachment

mode increases monotonically with an increase in Shields

number. One of the interesting features is that for the hydrauli-

cally transitional and rough flow regimes, the transport prob-

abilities in contact mode for a given relative particle size of

greater than or equal to unity attain their peak values corre-

sponding to the averaged critical Shields numbers, where the

transport probabilities in detachment mode have their initi-

ation. The curves of maximum mean transport probability in

contact mode as a function of relative particle size for different

shear Reynolds numbers are furnished. The influence of shear

Reynolds number on these curves is prominent only for a rel-

ative particle size being less than unity. For a relative particle

size of 1.9 and above, the maximum mean transport proba-

bility in contact mode for different shear Reynolds numbers

vanishes.

At an inception of particle transport, the variation of

mean transport probabilities in contact and detachment modes

with shear Reynolds number for different relative particle

sizes reveals that the mean transport probabilities marginally

increase with an increase in shear Reynolds number. However,

for a given shear Reynolds number, the mean transport prob-

abilities in these modes decrease with an increase in relative

particle size. For a given relative particle size, the mean trans-

port probability at an inception in contact mode increases with

a decrease in critical Shields number, attaining a minimum

value of critical Shields number and then increases with an

increase in critical Shields number. However, the mean trans-

port probability at an inception in detachment mode increases

with a decrease in critical Shields number.
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APPENDIX A: RELATIONSHIP OF MEAN PIVOTING
ANGLE WITH PARTICLE SIZES AND PROTRUSION

Referring to Fig. 1(b), let δ be the distance of the bottom-

most point of the target particle from z = 0. Thus, we can write

δ = r(2ξ ☞ 1) ☞ a + dCJ [Fig. 1(c)], where dCJ denotes the dis-

tance between points C and J. If φ1 is the angle making the line

connecting the center of the target particle to one of the points

of contact with the vertical line passing through the center of

the target particle, then we can write dCJ = (a + r) cos φ1.

Therefore, we get δ = 2ξr ☞ (a + r) (1 ☞ cos φ1). Further with

respect to Fig. 1(b), we obtain δ = 2ξr + l ☞ 2a. Equating these

relationships of δ yields

φ1 = cos−1

(

r − a + l

a + r

)

. (A1)

In a contact mode, when the target particle rolls in the

direction JC2, the pivoting angle is φ1 [Fig. 1(c)]. On the other

hand, when the target particle rolls in the direction JP, the piv-

oting angle is φ2 [Fig. 1(c)]. When the target particle is fully

protruded, the l attains its peak value lmax and the correspond-

ing pivoting angle φ1 attains its minimum value. For such a

situation, we get dC2J = 2r/31/2. Therefore, the φ1min is given

by

φ1 min = cos−1

(

dCJ

dCC2

)

= cos−1

(6a + 12r − 4r2)

1/2

2
√

3(a + r)

 .

(A2)

Equating (A1) and (A2) yields

lmax = a − r +
(6a + 12r − 4r2)

1/2

2
√

3
. (A3)

Let the most likely path followed by the target particle

during the contact mode be in the direction JQ, where JQ ∈
[JP, JC2]. For such a situation, the mean pivoting angle ∠QCJ

is φm ∈ [φ2, φ1]. Considering an angle ∠PJQ = θ, the mean

value of dJQ is obtained as

dJQ =
3

π

π/3∫

0

dJQdθ =
3

2π
ln(2 +

√
3)[(2r + l)(2a − l)]1/2.

(A4)

From the geometry, we have the ratio dIK /dJQ = a/(a + r)

and the dCI = a cos φ1. Therefore, the mean pivoting angle φm

is

φm = tan−1 dIK

dCI

= tan−1

[
1

cos φ1(a + r)
dJQ

]
. (A5)

Substituting (A1) and (A4) into (A5) yields

φm = tan−1


3 ln(2 +
√

3)[(2a − l)(2r + l)]1/2

2π(r + l − a)

 . (A6)

APPENDIX B: DETERMINATION OF MOMENT ARMS

Depending on the flow direction with respect to the ori-

entation of the boundary particles, the moments of the forces

FD, FL, and FG are taken about the point G2 or the line G2G3

[Fig. 1(c)]. The horizontal lever arms for various orientations

vary within two bounds as dG2I and dHI . Thus, for an arbi-

trary streamwise orientation of the boundary particles, the Lx

must satisfy Lx ∈ [dG2I , dHI ]. Hence, the mean value of Lx is

Lx = dIK [Fig. 1(c)]. From the geometry, the Lx is given by

Lx =
3a ln (2 +

√
3)[(2r + l)(2a − l)]1/2

2π(a + r)
. (B1)

Then, the vertical lever arm is expressed as Lz = dC0I

= z⊗ − δ − a(1− cosφ1) [Fig. 1(c)]. Using the expression of

δ (= 2ξr + l ☞ 2a) and (A1), the Lz is given by

Lz = z⊗ − 2ξr +
(2a − l)r

a + r
. (B2)
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