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The linear stability of the plane Couette flow of both power-law and Carreau fluids past a deformable,

neo-Hookean solid is analyzed at arbitrary Reynolds numbers. An algebraic error in the mathematical

formulation of the earlier studies (for the power-law fluid) is corrected and is shown to result in

quantitative differences in the predictions for the stability of the flow. Due to the lack of a proper (zero-

shear) viscosity scale and a time scale for the onset of shear thinning in the power-law model, we show

that the stability analysis of the flow yields vastly different scalings for the unstable mode depending

on the way the problem is scaled to render it dimensionless. When the deformable solid properties

are used to non-dimensionalize, we show that for the unstable modes (the so-called “wall modes” at

high Re) Γc ∝ Re
−1

(2n+1) , while when flow properties are used to non-dimensionalize, Γc ∝ Re
−1
3 much

akin to a Newtonian fluid, where Γ = V ∗mη
∗/G∗R∗ is the dimensionless shear rate in the flow, and Γc

denotes the minimum value required for instability. Here, V ∗m is the velocity of the top plate, G∗ is

the shear modulus of the solid, R∗ is the fluid thickness, and η∗ is the (arbitrary) viscosity scale in the

power-law model. Within the framework of the power-law model, it is not possible to discriminate

between the two predicted scalings. To resolve this in an unambiguous manner, we used the Carreau

model to account for shear thinning and to study its role on the stability of flow past deformable solid

surfaces. The Carreau model has a well-defined zero-shear viscosity η∗
0

as well as a time scale λ∗

that characterizes the onset of shear thinning. For fixed λ∗η∗
0
/(ρ∗R∗2), we show that the unstable wall

modes scale as Γc ∼ Re
(1−2n)

3 at high Re, thus providing a resolution to the ambiguity in the results

obtained using the power-law model. The present work thus shows that, at moderate to high Re, shear

thinning has a strongly stabilizing effect on the wall mode instability in flow past deformable solid

surfaces. Published by AIP Publishing. https://doi.org/10.1063/1.5041771

I. INTRODUCTION

The stability of fluid flow past deformable solid sur-

faces has garnered much attention in the last decade, from

both experimental and theoretical standpoints. The motiva-

tion for these studies stems from both biological settings1 and

microfluidic applications2 that use soft elastomeric platforms

in their design. However, much of the focus was restricted

to the flow of Newtonian fluids past deformable surfaces.

There are many instances where the non-Newtonian nature

of the fluid could become relevant to the instability of the

flow. This is particularly the case for biological fluids such as

blood, saliva, and synovial fluid. Even microfluidic applica-

tions often involve the flow of solutions of biopolymers which

also exhibit non-Newtonian effects. The experimental findings

by Krindel and Silberberg3 of an early onset to turbulence at

a Reynolds number (Re) ≈ 600 for the flow through a gel-

walled tube provided perhaps the first experimental evidence

that wall deformability can affect the laminar-turbulent transi-

tion in tubes with deformable walls. Significant efforts4,5 over

the past two decades have shed light on qualitatively differ-

ent mechanisms of instabilities that arise due to the flow in

a)Author to whom correspondence should be addressed: vshankar@iitk.ac.in

this coupled system. Technological devices such as lab-on-

a-chip applications and microfluidic devices6,7 use soft solid

elastomeric platforms for fabrication, and it is possible to tune

the elastic modulus in such systems to facilitate mixing in

channels at small length scales by inducing instabilities in the

system.

There are two key non-Newtonian features that can play

a role: (i) the viscoelastic nature of the fluid and (ii) the shear-

rate dependence of material properties like the viscosity of

the fluid. While in a real polymeric fluid both of these fea-

tures can become relevant simultaneously, from a theoretical

standpoint, it is often instructive to isolate these two effects

in order to study their consequences. Such an exercise would

help in identifying the consequences of these distinct non-

Newtonian effects of the polymer solution on the stability

of the flow. While the role of viscoelasticity of the fluid on

the stability has been addressed in some previous studies,8–12

the consequences of shear-rate dependent viscosity have not

received much attention barring a few studies.13,14 The aim of

the present work is to understand the role of shear-thinning on

the stability of the flow past a deformable solid, with the fluid

being modeled using both the power law and Carreau mod-

els.15,16 While the power-law model has been used in many

studies to analyze the stability of non-Newtonian flows, the
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model however introduces singularities in the limit of zero

shear-rates, which thence renders the model physically unreal-

istic.17 The Carreau model overcomes this limitation and has a

well-defined zero-shear viscosity. The study on the combined

plane Couette-Poiseuille flow of the Carreau fluid in a rigid

channel by Nouar and Frigaard18 explored the role of the wall

velocity and shear thinning behavior on the stability. The work

reported that wall velocity has a stabilizing effect on the plane

Couette-Poiseuille flow and that increasing the shear-thinning

behavior stabilizes the long wavelength modes.

The earlier studies on flow past deformable solid sur-

faces uncovered modes of instability not present in flow past

rigid surfaces. Gkanis and Kumar19 studied the instability

of a creeping Couette flow past a deformable solid modeled

as a frame-invariant neo-Hookean model, after initial studies

used a linear viscoelastic model20–23 and spring-backed plate

model24 to describe the deformable solid. The neo-Hookean

model is nonlinear in the deformation gradient and is valid for

finite deformations.25 Analysis of Hagen-Poiseuille flow in a

deformable tube predicted an instability in the creeping-flow

limit for the linear elastic model,26 while it did not for the neo-

Hookean model.27 These ambiguities were reconciled recently

by Patne et al.,28 who presented a consistent formulation for

different geometric configurations.

The recent experimental work of Srinivas and Kumaran29

showed for rectangular channel flows with deformable walls

that the addition of polyacrylamide to the flow reduced the

critical Re, thus showing that the addition of polymers has a

destabilizing effect on the instabilities present in Newtonian

flow past soft solid surfaces. The shear rates for the polymer

solutions flowing in the microchannels are extremely large.

Estimating the velocity of the fluid in the tube to be around

1 m/s and the channel half width to be 500 µm, the typical esti-

mate for the shear rate would be 2000 s−1. At such high shear-

rates, the shear-thinning behavior could play a very impor-

tant role in experimental observations involving microscale

flows.

The role of the fluid elasticity on the flow past a

deformable solid was theoretically explored first by Shankar

and Kumar8 in the creeping-flow limit. The analysis predicted

unstable modes beyond a critical strain rate and was successful

in recovering not only the stable modes found by Gorodtsov

and Leonov30 for a rigid surface but also the unstable viscous

modes reported by Kumaran et al.31 A subsequent study9 con-

tinued the unstable mode in the creeping-flow limit to high Re

and showed that Γ∝Re−1/3 for the unstable modes in that limit.

This scaling is characteristic of a class of modes called “wall

modes” in a Newtonian fluid32 wherein the perturbations in

the fluid are confined near the deformable wall in a thin region

of thickness O(Re−1/3). The results of Ref. 9 show that the

scaling exponent (−1/3) remains unchanged when viscoelas-

tic effects are present in the fluid. Chokshi et al.12 extended

the analysis of the stability of elastic fluids due to the addition

of dilute polymers past deformable surfaces to high Re. The

plane Couette flow of the Oldroyd-B fluid showed a scaling of

Γ ∼ Re−
1
3 for the wall modes and a scaling of Γ ∼ Re−1 for the

inviscid modes.

Although the study of viscoelastic fluids using the

Oldroyd-B model provides an insight into the stability of

fluids that are not Newtonian in nature, the model assumes

a constant shear-rate-independent viscosity. The role of shear-

rate dependent viscosity on the stability of fluid flow past

deformable solid surfaces was first explored by Roberts and

Kumar13 for a creeping Couette flow of a power-law fluid past

a neo-Hookean solid. The analysis showed that the role of

shear-thickening/thinning nature of the fluid on the stability of

the system is dependent on the thickness of the solid. It was

also reported that the critical shear-rate Γc decreases with an

increase in n for thin solids of thickness H < 3, and for thicker

solids, H > 3, Γc increases with an increase in n, where n is

the power-law index. Giribabu and Shankar14 extended this

work for the power-law fluid at finite Reynolds numbers and

found that the unstable wall modes scale as Γ ∼ Re
−1

2n+1 . This

dependence on n highlights the role of the non-Newtonian

nature of the fluid and it was shown to be consistent with

the previously established results for the Newtonian case.33

Pourjafar et al.34 analyzed the creeping plane Poiseuille flow

past a Mooney-Rivlin solid to investigate the role played by

the power-law index, n, on the critical pressure gradient. The

shear-thinning nature of the fluid was stabilizing and the shear-

thickening fluid was seen to be destabilizing in comparison to

the Newtonian fluid. An extension35 of this work showed that

at a non-zero Reynolds number, the effect of shear-thinning

on the flow could be stabilizing or destabilizing depending on

the power-law index n and Re.

The problem of the fluid flow past a deformable sur-

face involves the coupling of the fluid and wall dynamics.

The coupled system can be non-dimensionalized either by

using scales from the fluid flow properties (referred to here

as “rigid” scaling) or by using scales from the deformable

solid (referred to here as “deformable” scaling). The rigid

scaling uses a characteristic velocity scale that is imposed

by the base flow, while the deformable scaling is material-

dependent and uses the shear modulus of the solid to scale

the stresses. Although different scalings could reduce to dif-

fering governing equations, the solution and characteristics of

a given problem should remain similar, regardless of the non-

dimensionalization scheme. While this is true in most cases,

it turns out that for the power-law model that does not have an

intrinsic viscosity scale, there is some ambiguity in defining

the scales for non-dimensionalization. This aspect is further

discussed and clarified in detail in this work.

Previous studies13,14 on the stability of the power-

law fluid past the deformable solid use a deformable non-

dimensionalization scheme to analyze the problem. When we

revisited the previous formulations, we identified an algebraic

error in the studies of both Roberts and Kumar13 and Giribabu

and Shankar,14 which we now correct in the present study. We

show that when the appropriate corrections are made, there are

quantitative differences in the stability results. This discrep-

ancy is shown to arise from an incorrect usage of the deviatoric

stress tensor in the derivation of the linearised momentum

equations for the fluid flow. Upon comparing the formulations

of the previous studies that used deformable scalings with the

rigid scalings used in this study, we establish some fundamen-

tal shortcomings of the power-law fluid model in describing

the stability behavior. To address these shortcomings, we use

in this study the Carreau model which has a well-defined
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zero-shear rate viscosity. The advent of experimental stud-

ies29,36,37 to corroborate theoretical predictions reinforces the

importance of obtaining results that are unambiguous and are

independent of the non-dimensionalization scheme employed.

The main objective of this work is to resolve the inconsistency

inherently present in the power-law fluid, by carrying out the

analysis using the Carreau fluid. We further delineate the role

of the shear-rate dependent viscosity on the stability past a

deformable solid for a wide range of Re. The earlier study of

Chokshi et al.12 has shown that viscoelastic effects (as mod-

eled using the Oldroyd-B equation) have a destabilizing role

on the wall mode instability. However, while the experiments

of Srinivas and Kumaran29 also indicate a destabilizing role,

the shear rates prevailing in the experiments are very large

(∼5000 s−1). Thus, it can be expected that the shear thin-

ning nature of the fluid could be relevant to the experimental

conditions. The role of fluid shear thinning on the wall mode

instability has not been addressed thus far, and this provides

another motivation for the present study.

The remainder of this paper is organized as follows: The

problem is formulated and the governing equations of the cou-

pled system are presented in Sec. II for both the rigid and

deformable scalings. The results from the linear stability anal-

ysis are discussed in Sec. III. Finally, the salient conclusions

are summarized in Sec. IV.

II. PROBLEM FORMULATION

The schematic of the system under consideration, shown

in Fig. 1, is that of Couette flow of an incompressible, non-

Newtonian fluid of density, ρ∗, past a deformable solid. The

power-law and Carreau models15,16 are used to describe the

flow of the non-Newtonian fluid which occupies the region

0 < y∗ < R∗ where superscript asterisk (∗) denotes a dimen-

sional quantity. The deformable solid is modeled as an incom-

pressible, impermeable neo-Hookean solid with shear modu-

lus, G∗, and density ρ∗. The neo-Hookean solid is assumed

to be purely elastic and dissipative effects are negligible.

Although realistic elastomeric materials would have some dis-

sipative effects, previous studies38,39 have shown that the effect

of dissipation had a negligible effect on the finite-wavenumber

instabilities at both low and high Reynolds numbers. Hence,

we restrict this study to a purely elastic neo-Hookean solid.

The neo-Hookean solid of thickness HR∗ is perfectly bonded

onto a rigid surface at y∗ =−HR∗, with H being the dimension-

less ratio of solid to fluid thickness. The top rigid plate moves

with a dimensional velocity of V ∗m.

The stress tensor for a non-Newtonian fluid in its dimen-

sional form is given by the sum of a pressure contribution and

FIG. 1. Schematic representation of the plane Couette flow of a non-

Newtonian fluid past a deformable solid in the non-dimensional coordinate

system.

a deviatoric contribution, τ∗, T ∗ = −p∗
f
I + τ∗. The deviatoric

stress is given by

τ
∗
= η∗(II∗)γ̇∗, (1)

where γ̇
∗
= ∇v

∗ + (∇v∗)T is the rate-of-strain tensor. Here

v
∗
= (v∗x , v∗y , v∗z ) is the velocity field with v∗

i
representing the

dimensional velocity component in the i-direction. The second

invariant of the rate-of-strain tensor, II∗, is given by

II∗γ̇∗ =

√

1

2
(γ̇∗ij γ̇

∗
ji),

with i, j = 1, 2, 3 denoting the three Cartesian directions. The

dependence of the viscosity term on the shear-rate reflects

the non-Newtonian nature of the fluid. The simple power-law

model is given by17

η∗ = m∗II
∗(n−1)
γ̇∗

, (2)

where n is the power-law index and m∗ is the consistency index,

which has fractional dimensions because of the non-integral

values n can take. In order to render m∗ appear like a viscos-

ity, following Roberts and Kumar,13 we express m∗ = m̂∗η∗
f
,

where η∗
f

has the dimensions of viscosity. The arbitrariness

arises in the specification of m̂∗ in the different schemes

of non-dimensionalization. Previous studies by Roberts and

Kumar13 and Giribabu and Shankar14 use a non-dimensional

scheme (henceforth referred to as “deformable scaling”) to

non-dimensionalize the governing equations and constitu-

tive relations. This work explores the consequences of both

rigid and deformable scalings, the consequences of which are

presented in Sec. III. The shear-dependent viscosity for the

Carreau model15 is given by

η∗ = η∗∞ + (η∗0 − η
∗

∞)(1 + (λ∗II∗γ̇∗ )
2)

n−1
2 , (3)

where λ∗ is the time constant, n is a power-law like index,

η∗
0

represents the zero-shear viscosity, and η∗∞ represents the

infinite-shear viscosity. In the above equation, when the expo-

nent 2 in the γ∗2 term and the denominator of the exponent

(n − 1)/2 are different from 2, then the model is referred to

as the Carreau-Yasuda model.17 It can be seen that η∗
0

can

be used as an unambiguous viscosity scale in this model to

non-dimensionalize the constitutive relation. Figure 2 shows

the variation of the viscosity in the base state for the Carreau

fluid with the second invariant of the rate of strain tensor. At

low strain rates, the viscosity of the fluid is the zero-shear vis-

cosity, η∗
0
, and the fluid is Newtonian in nature. Similarly, at

high strain rates, the viscosity of the fluid is the infinite-shear

viscosity, η∗∞, and the fluid is Newtonian in nature.

We model the solid as a neo-Hookean solid using a

Lagrangian three-state (L3) formulation described by Patne

et al.28 The neo-Hookean model is considered due to its valid-

ity even at finite deformations. The three states of deformation

that are considered in the derivation are the undeformed, pre-

stressed, and perturbed states. The flow of the fluid past the

initially undeformed solid imposes a stress field on the solid.

We represent the reference position vector of a particle on the

initially undeformed solid at t∗ = 0 by X
∗
= (X∗

1
, X∗

2
, X∗

3
). The

position vector of the particle is given by

x̄
∗(X∗) = X

∗ + ū∗(X∗), (4)
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FIG. 2. Variation of the viscosity at the base state η̄ ≡ η∗/η∗
0

for the Carreau

fluid with the non-dimensional shear rate λr ≡ λ∗r R∗/V∗m for η∗∞/η
∗

0
= 0.2

and different values of n.

where x̄
∗
= (x̄∗

1
, x̄∗

2
, x̄∗

3
) is the position of the particle at any

time t∗ and ū∗ is the displacement vector of the particle arising

due to the fluid motion. The incompressibility condition of the

neo-Hookean solid at the base state gives

det(F̄∗) = 1, (5)

where F̄
∗
=

∂x̄
∗

∂X∗
is the base state deformation gradient. The

Cauchy stress tensor of the solid in dimensional form is

σ
∗
= −p∗gI + G∗(F∗ · F∗T), (6)

where G∗ is the shear modulus of the neo-Hookean solid.

The conservation of momentum in the neo-Hookean solid is

represented by

ρ∗g
∂2

u
∗

∂t∗2
= ∇X∗ · P

∗, (7)

where ρ∗g is the density of the solid and P
∗ is the first Piola-

Kirchoff stress tensor, which is defined as

P
∗
= F

∗−1
· σ
∗. (8)

A. Rigid scaling

While using the rigid scaling, the length scale is

non-dimensionalized by R∗, while the time scale is non-

dimensionalized by R∗/V ∗m. The continuity equation, which

is independent of the manner in which it is scaled, is given by

∇ · v = 0. (9)

The non-dimensional momentum equation for the fluid flow

using the rigid scaling is given by

Re
Dv

Dt
= −∇pf + ∇ · τ. (10)

The constitutive relation for the power-law fluid is given by

η = II
(n−1)
γ̇

, (11)

where the viscosity, η, is scaled by η∗
f
≡

m∗

m̂∗
and

mr
= m̂∗

( V ∗m
R∗

)n−1
is set to 1. The superscripts r for the con-

sistency index used in Eq. (11) denote the (“rigid”) scaling

used to non-dimensionalize the equations. The dimensionless

variable mr can be set to any numerical value based on the

consistency index of the fluid. Setting mr to unity implies a

particular choice for the (dimensional) consistency index of

the fluid. For the Carreau model, the constitutive relation is

η = η∞ + (1 − η∞)(1 + (λrIIγ̇)
2)

n−1
2 , (12)

where η∗
0

is used to scale viscosity and λr = λ
∗
r R∗/V ∗m. It

must be noted that the dimensionless parameter λr is a flow-

dependent quantity and represents the dimensionless shear

rate of the base flow. Thus if λr is fixed, then the shear rate

dependence of the viscosity is no longer present. It is possi-

ble to rewrite this in terms of a flow-independent quantity as

λr = λ̃rRe, where λ̃r ≡ λ
∗η∗

0
/(ρR∗2) is the flow-independent

quantity that denotes the onset of shear thinning. With this, the

above equation becomes

η = η∞ + (1 − η∞)(1 + (λ̃rReIIγ̇)
2)

n−1
2 . (13)

In the base state, the dimensionless second invariant (in rigid

scalings) becomes IIγ̇ = 1 and so the viscosity function (in the

base state only) in rigid scaling is given by

η = η∞ + (1 − η∞)(1 + (λ̃rRe)2)
n−1

2 . (14)

By fixing λ̃r constant, the viscosity in the above equation

undergoes shear thinning as Re is increased, unlike Eq. (12)

which does not exhibit shear thinning if λr is kept con-

stant. When we discuss the results in Sec. III, we explore the

consequences of keeping both λr and λ̃r constant.

The stresses (including pressure) are non-dimensionalized

by
η∗r

f
V ∗m

R∗
for the power-law fluid and by

η∗
0
V ∗m

R∗
for the Carreau

fluid. Non-dimensionalizing the governing equations for the

solid, we obtain the non-dimensionalized Cauchy stress tensor,

σ = −pgI +
1

Γr

(F · FT), (15)

where Γr is defined as the non-dimensional strain rate, given by
η∗r

f
V ∗m

G∗R∗
for the power-law fluid and by

η∗
0
V ∗m

G∗R∗
for the Carreau fluid.

The momentum conservation equation for the neo-Hookean

solid thus becomes

Re
∂2

u

∂t2
= ∇X · P. (16)

In the base state, we assume that the fluid and solid are at steady

state. The interface is flat and undeformed, at y = 0. For the

plane Couette flow, the base state velocity profile is given by

the linear velocity distribution v̄ = (y, 0, 0) for the following

reason. The linear velocity profile implies a constant shear rate

across the flow, and therefore, the viscosity remains a constant

in the flow domain. This thus implies that the linear velocity

profile for the plane Couette flow of a Newtonian fluid remains

a solution to the Carreau model as well. However, for pressure-

driven flows in a channel with varying shear-rates in the wall-

normal direction, the Newtonian velocity profile is no longer

valid for shear-thinning fluids. The base state deformation for

the solid is obtained by solving Eq. (16), which is the non-

dimensionalized momentum balance equation, at the base state

while factoring in the tangential stress balance at the interface

and no-slip conditions at the rigid wall. The first Piola-Kirchoff

stress tensor in the base state is related to the Cauchy stress

tensor as

P̄ = F̄
−1
· σ̄, (17)
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∇x̄ · P̄ = 0. (18)

The base states for the deformation of the solid for the power-

law and Carreau fluid are

ū1 = Γr(X2 + H), Power-law fluid, (19)

ū1 = Γr(η∞+(1−η∞)(1+ λ̃2
r Re2)

n−1
2 )(X2 +H), Carreau fluid.

(20)

It can thus generally be expressed as

ū1 = Γr tr
1(X2 + H). (21)

Here, tr
1

is specific to the non-Newtonian model used for the

fluid. The superscript, r, denotes the rigid scaling to make a

distinction from the deformable scaling,

tr
1 = 1, Power-law fluid, (22)

tr
1 = η∞ + (1 − η∞)

(

1 + λ̃2
r Re2)

n−1
2 , Carreau fluid. (23)

We impose two-dimensional, infinitesimal perturbations

which have normal modes of the form

f ′(x, y, t) = f̃ (y)eik(x−ct), (24)

where f ′ represents the perturbation to any dynamical quantity

in the fluid and solid. Here, k is the wavenumber and c is the

complex wave speed, which can be expressed as c = cr + ici.

The system is temporally unstable when the imaginary part

of the complex wave speed, ci > 0, indicating that the distur-

bances grow in time. The linearised perturbation equations for

the rigid scaling are

ik ṽx + Dṽy = 0, (25)

Re
(

ik(y − c)ṽx + ṽy
)

= −ikp̃f − tr
1(2k2 ṽx)

+ tr
2(D2 ṽx + ikDṽy), (26)

Re
(

ik(y − c)ṽy
)

= −Dp̃f + tr
2(ikDṽx − k2 ṽy)

+ tr
1(2D2 ṽy), (27)

where tr
2

is given by

tr
2 = n, Power-law fluid (28)

tr
2 = η∞ +

[

1 +
λ̃2

r Re2

1 + λ̃2
r Re2

(n − 1)

]

(1 − η∞)

×
(

1 + λ̃2
r Re2)

n−1
2 , Carreau fluid. (29)

For the solid, we perturb the current position vector of the pre-

stressed representative material points by means of applying

infinitesimal perturbations as follows:

x(x̄) = x̄ + u
′(x̄, t). (30)

The deformation gradient F highlights a relationship between

the undeformed state and the perturbed state. In order to obtain

a relationship between the overall deformation gradient and

the deformation gradients related to the pre-stressed state, the

following manipulation is made:40

F =
∂x

∂X
=

∂x

∂x̄
·
∂x̄

∂X
= F

′
· F̄, (31)

where F
′ denotes the perturbed state deformation gradient. The

incompressibility condition for the perturbed state becomes

det(F′) = 1. The first Piola-Kirchoff stress defined with respect

to the pre-stressed state as the reference is given by

P = F
′−1
· σ. (32)

The momentum balance equation, after perturbing the solid,

is given as

Re
∂2

u

∂t2
= ∇x̄ · P. (33)

The linearised equations for the solid using the L3 formulation

are

ikũ1 + Dũ2 = 0, (34)

− ikp̃g +
1

Γr

(D2
− k2)ũ1 − k2Γr t2r

1 ũ1 + 2tr
1ikDũ1 = −k2c2Reũ1,

(35)

−Dp̃g +
1

Γr

(D2
− k2)ũ2 − k2Γr t2r

1 ũ2 + 2tr
1ikDũ2 = −k2c2Reũ2,

(36)

where D = d
dx̄2

. The linearised interface conditions are

ṽy + ikcũ2 = 0, (37)

ikcũ1 + ṽx + ũ2 = 0, (38)

1

Γr

(

Dũ1 + ikũ2

)

= tr
2

(

Dṽx + ik ṽy
)

, (39)

−p̃g +
2

Γr

Dũ2 + 2iktr
1ũ2 +

k2T

Γr

ũ2 = −p̃f + 2tr
1Dṽy, (40)

where T denotes the surface tension at the interface. The

boundary conditions at y = 1 and y = 1 + H are

ṽx = 0, ṽy = 0 at y = 1, (41)

ũ1 = 0, ũ2 = 0 at y = −H . (42)

B. Deformable scaling

While using the deformable scaling, the length scale is

non-dimensionalized by R∗ and stresses (including pressure)

by G∗. The non-dimensionalized governing equation for the

fluid flow using the deformable scaling is given by

Re

Γd

Dv

Dt
= −∇pf + ∇ · τ. (43)

The non-dimensional strain-rate, Γd , is given by
ηd

f
V ∗m

G∗R∗
for the

power-law fluid and by
η∗

0
V ∗m

G∗R∗
for the Carreau fluid. It is worth

mentioning that for the Carreau fluid, Γ remains the same for

both rigid and deformable scalings, and hence, Γ will be pre-

sented without the subscript (d or r) for the Carreau fluid. The

simple power-law model is non-dimensionalized to obtain the

constitutive relation

η = II
(n−1)
γ̇

, (44)

where the viscosity, η, is scaled by η∗
f
≡

m∗

m̂∗
and

md
= m̂∗

(

G∗

η∗
f

)n−1

is set to 1. It is worth mentioning here that

different (non-dimensional) quantities are being set to unity in

both rigid and deformable scalings, which is the origin of the

difference between the two results. For the Carreau fluid, the

non-dimensionalized form becomes

η = η∞ + (1 − η∞)(1 + (λdIIγ̇)
2)

n−1
2 , (45)
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where η∗
0

is used to scale viscosity and η∗
0
/G∗ is used to scale

λd . It must be noted that λd is independent of the flow veloc-

ity V ∗m and can be written in terms of λ̃r as λd = λ̃rRe/Γ.

Thus, fixing λd constant and λ̃r constant is not equivalent,

although both are flow-independent dimensionless quantities.

In the base state (under deformable scalings), the second invari-

ant IIγ̇ = Γ and hence the above viscosity function becomes

(in the base state only)

η = η∞ + (1 − η∞)(1 + (λ̃rRe)2)
n−1

2 . (46)

When the above equation is compared with Eq. (14), we note

that both the equations are identical if λ̃r is kept constant. The

time scale is non-dimensionalized by η∗
f
/G∗ for the power-

law fluid and is scaled by η∗
0
/G∗ for the Carreau fluid. Having

established the scalings, it is easy to match the results between

the rigid and deformable scalings for the respective non-

Newtonian viscosity models by replacing a non-dimensional

scheme appropriately.

The base state velocity profile while using the deformable

scaling is v̄ = (Γdy, 0, 0). We proceed to evaluate the base

state deformation of the solid for the deformable scaling. The

non-dimensional Cauchy stress tensor obtained is of the form

σ = −pgI + (F · FT). (47)

The momentum balance equation for the neo-Hookean solid

using the deformable scaling is

Re

Γd

∂2
u

∂t2
= ∇x̄ · P. (48)

Solving the non-dimensionalized momentum balance equation

for the base state, we obtain the deformation of the solid

ū1 = Γd td
1 (X2 + H). (49)

The variables td
1

and td
2

for the deformable scaling are presented

below. For the Carreau fluid,

td
1 = η∞ + (1 − η∞)

(

1 + λ2
dΓ

2
d

)
n−1

2 ,

td
2 = η∞ +

[

1 +
λ2

d
Γ2

d

1 + λ2
d
Γ2

d

(n − 1)

]

(1 − η∞)
(

1 + λ2
dΓ

2
d

)
n−1

2 .

For the power-law fluid,

td
1 = Γ

n−1
d ,

td
2 = nΓn−1

d .

The base state deformations for the power-law and Carreau

fluids are

ū1 = Γ
n
d (X2 + H), Power-law fluid (50)

ū1 = Γd(η∞+(1−η∞)(1+λ2
dΓ

2
d )

n−1
2 )(X2 +H), Carreau fluid.

(51)

A key reason for the difference between Eqs. (19) and (50) for

the power-law fluid and Eqs. (20) and (51) for the Carreau fluid

stems from the base state velocity profile of the fluid region

in both the scalings, with v̄x being equal to y for the rigid

scaling and Γdy for the deformable scaling. Imposing two-

dimensional, infinitesimal perturbations and using the method

of normal modes defined in Eq. (24), we linearise the governing

equations for the system. The linearised governing equations

are

ik ṽx + Dṽy = 0, (52)

Re

Γd

(

ik(Γdy − c)ṽx + Γd ṽy
)

= −ikp̃f − td
1 (2k2 ṽx)

+ td
2 (D2 ṽx + ikDṽy), (53)

Re

Γd

(

ik(Γdy − c)ṽy
)

= −Dp̃f + td
2 (ikDṽx − k2 ṽy)

+ td
1 (2D2 ṽy). (54)

The linearised governing equations for the solid are

ikũ1 + Dũ2 = 0, (55)

− ikp̃g + (D2
− k2)ũ1− k2Γ2

d t2d
1 ũ1 + 2Γd td

1 ikDũ1 = −
Re

Γd

k2c2ũ1,

(56)

−Dp̃g + (D2
− k2)ũ2 − k2Γ2

d t2d
1 ũ2 + 2Γd td

1 ikDũ2 = −
Re

Γd

k2c2ũ2,

(57)

where D = d
dx̄2

. The linearised boundary conditions are

ṽy + ikcũ2 = 0, (58)

ikcũ1 + ṽx + Γd ũ2 = 0, (59)

Dũ1 + ikũ2 = td
2

(

Dṽx + ik ṽy
)

, (60)

− p̃g + 2Dũ2 + 2ikΓd td
1 ũ2 + k2Tũ2 = −p̃f + 2td

1 Dṽy. (61)

The boundary conditions at y = 1 and y = 1 + H are

ṽx = 0, ṽy = 0 at y = 1, (62)

ũ1 = 0, ũ2 = 0 at y = −H. (63)

This deformable formulation corrects the algebraic error in

the formulation of the linearised governing equations of the

power-law fluid past a neo-Hookean deformable solid in pre-

vious studies.13,14 In order to resolve Eq. (43) into its x and y

components, the divergence of the stress tensor is represented

as

∇ · τ =

(

∂

∂x
τxx +

∂

∂y
τyx

)

êx +

(

∂

∂x
τxy +

∂

∂y
τyy

)

êy,

where êx and êy are the unit vectors in the x and y directions,

respectively. While deriving the x- and y-momentum equa-

tions, Roberts and Kumar13 and Giribabu and Shankar14 erro-

neously considered the elements of both êx and êy directions

for the respective momentum equations. The extra, erroneous

terms vanish for the Newtonian case of n = 1 because they are

multiplied by a factor of n − 1 in the linearised momentum

equations of the studies of Roberts and Kumar13 and Giribabu

and Shankar.14 When considering the flow past a deformable

solid, the normal stress balance at the interface requires pres-

sure in the fluid at the interface, which when evaluated from

the (erroneous) x-momentum equation, gives rise to incor-

rect results for the eigenvalue c. This discrepancy therefore

does not allow for an accurate understanding of the stabil-

ity of the system. The fourth-order differential equation for

the fluid derived by Roberts and Kumar13 remains the same

however, despite the algebraic errors in the linearised momen-

tum equations, because the erroneous terms cancel out due to

a manifestation of the continuity equation, while eliminating

the pressure term. Thus, Giribabu and Shankar14 were able to

produce exact matches of the eigenvalue spectrum with that of

Liu and Liu41 because for the special case of a rigid channel,
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the fourth order differential equation used to obtain the results

was correct.

The stability of the system is governed by the Reynolds

number, Re, the power-law index, n, the non-dimensionalized

infinite-shear viscosity, η∞, the non-dimensional shear-rate,

Γ, the thickness ratio, H, and λ. The linearised differential

equations for the fluid-solid system along with the boundary

conditions of the geometry allow the determination of the sta-

bility of the system and form an eigenvalue problem of the

form c2
Ax + cBx + Cx = 0, where the matrix x contains the

eigenvectors of the system and A, B, C represent the respective

coefficient matrices. The eigenvalue problem is solved for c,

which is the wave speed of the system as a function of k, Re, Γ,

H, n, λ, and η∞ using a pseudo-spectral collocation method.42

The veracity of the eigenvalues is checked using a numerical

shooting procedure with ortho-normalization.23 This allows us

to numerically evaluate the eigenvalues and stability bound-

aries. We obtain the eigenspectra using the spectral methods for

different values of N (the number of Chebyshev polynomials

used to expand the unknown dynamical variables) and choose

the value of N for which there is convergence of eigenval-

ues with N. The shooting code uses an adaptive Runge-Kutta

integrator to numerically integrate the differential equations

coupled with a Newton-Raphson iterator for the solution of

the eigenvalue. The agreement for eigenvalues between the

spectral and shooting methods is typically up to six to eight

decimal places.

III. RESULTS

In this section, we present the results from the linear sta-

bility analysis of the non-Newtonian flow past a neo-Hookean

solid. Before analyzing the flow modeled by the Carreau fluid,

we first present the consequences of correcting the algebraic

error made in the previous studies,13,14 by comparing them

with the corrected results obtained in the present study for the

deformable scaling.

Figure 3 compares the variation of growth rate, α = −ikc,

of the most unstable (or least stable) eigenvalue with respect

to k for different values of the power-law index, n, for the

inaccurate formulation of Roberts and Kumar13 (denoted by

RK) and Giribabu and Shankar14 and the corrected deformable

scaling introduced in the present study. The real component

of the complex-valued growth rate is given by αr = kci. The

non-dimensional shear-rate, Γd , is chosen such that the sys-

tem is neutrally stable for the Newtonian case. For H = 10,

we see that shear thinning has a destabilizing effect and that

shear-thickening fluids are stabilizing. It is seen that as the

thickness of the solid with respect to the fluid decreases, the

effect of shear-thinning is reversed, with the shear-thickening

fluids being destabilizing and the shear-thinning fluids being

stabilizing in nature.

In an effort to examine the role of solid thickness on the

stability of the shear-thickening or shear-thinning fluids, the

results of the corrected deformable formulation are compared

with those of Roberts and Kumar13 in Fig. 4. The second sub-

plot of the figure shows an exact match for the Newtonian case.

This is because the extra, erroneous terms of the previous work

become identically zero when n = 1. We find that the results

FIG. 3. Results from the earlier formulation of Roberts and Kumar13 (denoted

by RK) and the corrected formulation of the present work are plotted to show

the difference in the predictions for the power-law fluid. The real part of

the growth rate, αr , vs. the wavenumber, k, is shown for Re = 0, T = 10,

Γd = 0.34245, H = 10, and for different values of the power-law index.

FIG. 4. Comparison of the real part of the growth rate, Re(α), vs. the

wavenumber, k, in the creeping-flow limit for T = 10, H = 0.7079, and for

different values of the power-law index. For the top plot, Γd = 4.258; for the

middle plot, Γd = 8.669; and for the bottom plot, Γd = 28.67.

of the present study differ only quantitatively with the earlier

results, but qualitatively the trends are similar. This assertion

is exemplified in Table I, which compares the eigenvalues for

the given set of parameters, while keeping H = 10 and T = 0.

The eigenvalues agree only for the case where n = 1. Figure 5

TABLE I. Complex wave speed (c) obtained (in the creeping-flow limit) from

the formulations of Giribabu and Shankar14 and the corrected formulation of

this work in the creeping-flow limit for H = 10. Data show agreement only

for n = 1.

Parameters k Giribabu and Shankar Present work

n = 1.0, Γd = 1.0 0.5 0.36337 + 0.04399i 0.36337 + 0.04399i

n = 1.0, Γd = 0.5 0.5 0.21070 ☞ 0.00235i 0.21070 ☞ 0.00235i

n = 0.7, Γd = 0.6 0.2 0.27181 + 0.02608i 0.27435 + 0.01856i

n = 1.2, Γd = 0.8 0.9 0.25873 ☞ 0.04278i 0.24483 ☞ 0.02320i
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FIG. 5. Comparison of the neutral stability curves in the creeping-flow limit

for the power-law fluid at H = 10. The top plot presents the results from rigid

scaling, while the bottom plot shows the results from deformable scaling.

explores the variation of Γ as a function of k for both the

rigid and deformable scalings, the minimum of which gives

the critical strain rate, Γc, for the corresponding kc. From the

results, it is necessary to note the difference in trend of the

shear-thickening and shear-thinning fluids. While the trend is

consistent for the rigid scaling, the deformable scaling shows

that the trend is dependent on the wavenumber k.

We next proceed to examine the effect of shear thinning

on the wall mode instabilities at a moderate to high Reynolds

number. Tracking the finite-wave mode for various values of

n to high Re, we observe that the scaling of Γd ∼ Re
−1

2n+1 for

Re ≫ 1 is obtained for the deformable scaling of the power-

law fluid and is in agreement with the work of Giribabu and

Shankar.14 Figure 6 shows the scaling for the different values of

n for the deformable scaling for power-law fluid. The similarity

in the slopes is represented in Table II.

Interestingly, however, we observe that a similar anal-

ysis for the rigid non-dimensionalization scheme shows a

FIG. 6. Variation of the critical strain-rate Γd ,c with Re for k = 0.45, H = 10,

and different values of n using the deformable scaling for the power-law fluid.

The slope of the curve at high Re varies with n.

TABLE II. The exponent β in the scaling relation Γd ∝ Reβ for different

values of the power-law consistency index, n.

Power-law index, n β from numerics β (Theoretical)

n = 0.5 ☞0.488 ☞0.50

n = 1.0 ☞0.318 ☞0.33

n = 1.5 ☞0.238 ☞0.25

scaling of Γr ∼ Re−1/3, regardless of the power-law index

n as shown in Fig. 7. Physically, this would mean that the

scaling for wall mode instability is independent of the shear-

thinning/thickening effect of the fluid at an arbitrary Re. The

curve as a whole displaces upward with decreasing n, show-

ing the stabilizing effect of the shear-thinning. While the

deformable scaling is in agreement with the work of Girib-

abu and Shankar,14 the rigid scaling shows that irrespective of

the power-law index n, the wall modes scale similarly to that

of a Newtonian fluid.23,43 This can be attributed to the way

the viscosity is scaled and the terms that are set to unity in the

deformable scaling. The relation between the Reynolds num-

bers using the deformable scaling and rigid scaling is given by

Red =

( η∗
f

G∗

)n−1 (V ∗m

R∗

)n−1

Rer ,

Rer = Γ
1−n
d Red ,

and the non-dimensional strain rate Γ using the deformable

scaling and rigid scaling is related by

Γr = Γ
n
d .

Using the scaling obtained for the rigid non-dimensionalization

scheme from Fig. 7, Γr ∼ Re
−

1
3

r , we substitute the rela-

tions established to obtain the scaling for the deformable

non-dimensionalization scheme seen in Fig. 6,

Γn
d ∼ Γ

n−1
3

d
Re
−

1
3

d
,

Γd ∼ Re
−1

2n+1

d
.

FIG. 7. Variation of the critical strain-rate Γr ,c with Re for k = 0.45, H = 10,

and different values of n using the rigid scaling for the power-law fluid.
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FIG. 8. Eigenvalue spectrum in the cr -ci plane for the Carreau fluid past

a deformable solid for parameters n = 0.5, Re = 1000, H = 10, Γd = 0.5,

k = 0.75, λd = 1, and η∞ = 10−3. The figure confirms the convergence for

different collocation points.

We thus show that the dependence of the Γ − Re scaling on the

power-law index n is purely a consequence of the deformable

scaling, since it is not seen in rigid scaling.

However, the question still remains whether the wall mode

instability is dependent on the strength of shear thinning, i.e.,

the power-law index n. This discrepancy of different scalings

being observed is due to the ambiguous viscosity scaling for

the power-law fluid. The term, ηf , introduced in Sec. II, merely

has dimensions of viscosity and bears no physical significance.

The inability to predict the viscosity at extremely low and high

shear-rates also adds to the shortcomings of the power-law

model. This warrants the need to explore the Carreau fluid to

better capture the physics of the non-Newtonian flow past a

deformable solid.

We next use the Carreau model to study the stability of

the non-Newtonian flow past the deformable surface. To estab-

lish the convergence of the eigenvalues by using the pseudo-

spectral method for the present problem, we plot the spectra

for different number of collocation points (N) in Fig. 8. The

inset plot highlights the extent of convergence for the eigen-

values. Although the Carreau model is defined only to describe

the shear thinning phenomena, it is successful in reconciling

the characteristics, regardless of the way the system was non-

dimensionalized. Contrary to the neutral stability curves for

the power-law fluid, Fig. 9 presents a consistent trend for both

the rigid and deformable scalings. Figure 10 presents this fact

showing a consistent scaling of Γ ∼ Re−
1
3 , where λd = 10 for

the deformable scaling plot and λr = 10 for the rigid scaling

plot. The variation of the critical shear-rate, Γc, for finite Re

for the Carreau fluid using a deformable scaling is shown in

Fig. 11. However, when λr is kept constant, then the base state

viscosity [Eq. (12)] gets immediately fixed and is independent

of Re, as λr is a flow-dependent dimensionless group. This

explains why the scaling for wall modes for a shear thinning

Carreau fluid is identical to that of a Newtonian fluid. For a

fixed λr , the fluid is effectively “Newtonian” as the shear-rate

dependence is masked by setting λr to a constant. As discussed

in Sec. II, it is also possible to keep λ̃r to be constant, and this

FIG. 9. Comparison of the neutral stability curves for the Carreau fluid at

H = 4, η∞ = 0.01 in the creeping-flow limit. The top plot depicts the rigid

scaling (with λr = 1) and the bottom plot is for the deformable scaling (with

λd = 1).

choice would allow the shear thinning nature of the fluid to

play a role [see Eq. (13)] in the scaling of the unstable wall

modes.

Indeed, a simple scaling argument illustrates this aspect

more clearly. For unstable wall modes, we postulate (following

Ref. 14) that the Newtonian wall mode scaling (Ref. 32) of Γ

∝ Re−1/3 holds even for the shear thinning Carreau fluid, but

with the viscosity in the scaling being replaced by the prevalent

viscosity at the shear-rate of the base flow. This yields

(

V ∗mη
∗
app

G∗R∗

)

∼

(

η∗app

ρ∗V ∗R∗

)1/3

, (64)

where ηapp is the viscosity corresponding to the prevalent shear

rate in the flow. For sufficiently high shear rates, the Car-

reau model yields η∗app ∼ η
∗

0
(λ̃rRe)(n−1). Upon substituting

this in the above equation and defining Γ = V ∗mη
∗

0
/(G∗R∗) and

FIG. 10. Comparison of the non-dimensional critical strain-rate,Γc, as a func-

tion of Re for the rigid and deformable non-dimensional scalings for the

Carreau fluid. The parameters used are n = 0.5, H = 10, and η∞ = 10−5.

For rigid scaling, λr = 10, and for deformable scaling, λd = 10.
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FIG. 11. Comparison of the non-dimensional critical strain-rate,Γc, as a func-

tion of Re for different n using the deformable non-dimensional scaling for

the Carreau fluid. The parameters used are λd = 1, η∞ = 0.5, and H = 10.

Re = ρ∗V ∗mR∗/η∗
0
, we obtain (for fixed λ̃r)

Γ ∼ Re
(1−2n)

3 . (65)

Thus, the wall mode scaling of a Carreau fluid indeed shows a

dependence on the power-law index n, and a decrease in n from

unity (Newtonian limit) leads to a stabilizing effect as shown

by the above scaling relation. Our numerical results shown in

Fig. 12 indeed conform to the above scaling argument, and at

Re≫ 1, the scaling exponent for different n from the numerics

is very close to the theoretical exponent of (1 − 2n)/3 derived

above.

A. Short-wave instability

For the Carreau model, in the creeping-flow limit, we

explore the short-wave instability and the criterion required

for it to be realized. The short-wave instability discussed by

FIG. 12. Comparison of the non-dimensional critical strain-rate,Γ, for neutral

modes as a function of Re for different n for the Carreau fluid. The parameters

used are λ̃r = 1, k = 0.45, η∞ = 10−5, and H = 10. The theoretically predicted

exponents for n = 0.5, 0.75, and 0.9 are, respectively, 0, −0.167, and −0.267.

Gaurav and Shankar27 is realized for a finite Reynolds num-

ber at a critical Γ which is an O(1) quantity. The neo-Hookean

solid exhibits a first normal stress difference in the base state

which gives rise to a short-wave instability for Γ ∼ O(1) or

higher and is convective in nature.44 For the Carreau model,

in the limit of η∞ = 0, it is known that

η ∼ η0(λdΓ)n−1.

The deformable scaling is used for this mathematical reduc-

tion. Using this relation into the condition for the short-wave

instability,
η∗

0
V ∗m

G∗R∗
∼ (λdΓ)1−n.

Re-arranging this simplification, we obtain the relation

Γ ∼ λ
1−n

n

d
. (66)

Similarly, we obtain the relation for the rigid scaling, by

incorporating the fact that λr = Γλd ,

Γ ∼ λ1−n
r . (67)

We show the agreement of this theoretical analysis in Fig. 13

for the rigid scaling using a shear-rate that is neutrally stable

for the system.

B. Effect of η∞ and λr on the stability

Finally, we explore the effect of the parameters of the

Carreau fluid on the stability of the system. We analyze the

effect of variation of the dimensionless relaxation time, λr , on

Γc for finite Reynolds numbers. The parameter λr represents

the time constant at which there is a transition from the zero-

shear Newtonian plateau to the power-law region. As can be

seen in Fig. 14, λr = 1 appears to be the most unstable, while

λr = 100 is the most stable. This could be interpreted by check-

ing the relative position of the graphs, with a higher critical

strain rate indicating that the flow is relatively stable. It has

been shown in this work that for the Carreau fluid, shear-

thinning has a stabilizing effect compared to the Newtonian

FIG. 13. Scaling of the non-dimensional strain rate, Γ, with λr for different

values of n at k = 0.2 and H = 10 for the short-wave mode in the creeping flow

limit for the Carreau fluid. The short-wave mode scales as Γ ∼ (λr )1−n.
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FIG. 14. Effect of the variation of λr on the stability for the Carreau fluid

with n = 0.5, H = 10, η∞ = 0.5, and k = 0.45.

fluid. Hence we observe that the increase in relaxation time

has a stabilizing effect for given values of η0 and η∞.

The effect of the non-dimensional infinite-shear viscosity,

η∞, which characterizes the high shear-rate asymptotic value

of η for the Carreau model is explored next. The role of the non-

dimensional viscosity at infinite shear-rate on the stability in

the Γc-Re plane is shown in Fig. 15. It can be seen that η∞ = 0.5

appears to be the most unstable, whereas η∞ = 0.001 is the most

stable. A low value of η∞ implies that the shear-thinning effect

is high. As η∞ tends to 1, the shear-thinning effect reduces and

the fluid remains Newtonian in nature. The shear-thinning fluid

(for which the Carreau model is applicable) has been shown in

this work to be more stable compared to the Newtonian fluid,

and hence, increasing the non-dimensional infinite shear-rate

proves to be de-stabilizing in nature.

Eigenfunctions are plotted at a high Reynolds number,

Re, to depict the perturbations in the stream-wise direction for

a neutrally stable eigenmode after normalizing them to unity

at the interface. A sharp variation in the stream-wise velocity

FIG. 15. Effect of the variation of η∞ on the stability for a Carreau fluid with

n = 0.5, H = 10, λr = 1, and k = 0.45.

FIG. 16. Streamwise velocity eigenfunction plotted for the Carreau fluid for

different values of n for the parameters H = 10, η∞ = 0.5, λr = 1, Γ = 0.0144,

k = 0.592, and Re = 3 × 103.

perturbation is seen near the fluid-solid interface which decays

to zero on progression to the top wall. Similar to the trend

observed by Roberts and Kumar13 for the power-law fluid, we

observe for the Carreau fluid in Fig. 16 that the magnitude

of the perturbation in the fluid side is lesser for the shear-

thinning fluid than the Newtonian case.43 The decrease in

boundary layer thickness for the shear-thickening fluids is con-

sistent with the behavior of the power-law fluid as reported by

Giribabu and Shankar.14 It is noteworthy that even for high

values of H, which indicates that the solid side is far thicker

than the fluid side, a perturbation can be seen in the x-direction

velocity for the solid.

IV. CONCLUSIONS

The linear stability of the plane Couette flow of shear-

thinning fluids past a neo-Hookean solid is analyzed using

both power-law and Carreau models. The role of the shear-

rate dependence of the viscosity of the fluid on the instabilities

in the flow past a deformable solid is explored in this work.

For the power-law model, an algebraic discrepancy in the for-

mulation of the previous studies is corrected and is shown to

result only in quantitative differences in the results. Because

the power-law fluid does not have a proper viscosity scale,

the problem is formulated using two different scalings for

non-dimensionalization for the power-law fluid. The “rigid”

scaling used can be considered to be flow-dependent, while

the “deformable” scaling is material-dependent in nature. For

the power-law fluid, at high Re, wall modes show a scaling of

Γ ∼ Re
−1

2n+1 for the deformable scaling as shown in the previ-

ous study of Giribabu and Shankar.14 However, using the rigid

scaling, wall modes show a scaling of Γ ∼ Re−
1
3 , independent

of the power-law index, n. This apparent discrepancy is shown

to arise because different quantities were set to unity in the two

scalings, and with this idea, it is possible to derive one scaling

from the other. However, this still does not answer the question

of whether the strength of shear thinning (as quantified by the

power-law index n) plays a role on the wall mode instability.
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This indeterminacy is argued to arise because of a lack

of a (zero-shear) viscosity scale in the power-law model. It is

not possible to discriminate between the two scaling behavior

for wall modes (obtained as a consequence of using two differ-

ent schemes for non-dimensionalization) within the power-law

model itself. To resolve this apparent paradox, it is necessary

to use a model that exhibits a well-defined zero-shear viscosity

plateau, and the Carreau model is one of the simplest models

that accomplishes this. To this end, we carried out stability

analysis of the plane Couette flow of a Carreau fluid past a

deformable solid surface. It has been shown that regardless of

the scaling used for the Carreau model, when the parameter

λr = λ
∗V ∗m/R

∗ is fixed, for high Re, Γ ∼ Re−
1
3 , which has

been previously seen for the Newtonian case.32 The invari-

ance in the scaling exponent arises because when λr is fixed,

the shear thinning nature of the fluid viscosity gets masked.

To circumvent this, a flow-independent dimensionless group

λ̃r = λ
∗η∗

0
/(ρ∗R∗2) is fixed, and this results in the unstable

wall modes to scale as Γ ∼ Re
(1−2n)

3 . This scaling behavior

was shown to arise out of a simple argument that the Newto-

nian wall mode scaling is applicable for a Carreau fluid with

the viscosity being interpreted as the viscosity prevalent at the

shear rate of the base flow. This scaling behavior is also con-

firmed from our numerical results. The role of the parameters

of the Carreau model on the stability of the system is inves-

tigated. A parametric sweep showed that the increase in η∞
de-stabilizes the system, while an increase in λ stabilizes the

system. Thus, we show that the shear-thinning fluid is more sta-

ble compared to the Newtonian fluid using the Carreau model.

An analysis for the short-wave instability in the limit of creep-

ing flow and η∞ = 0 showed a relation of Γ ∼ (λd)
1−n

n for the

deformable scaling and a relation of Γ ∼ (λr)1−n for the rigid

scaling.

The present study thus unambiguously demonstrates,

using the Carreau model, that shear-rate dependent viscosity

has a stabilizing effect on the instabilities present in the flow

past a deformable solid surface both at low and high Re. This

stabilization due to shear thinning is in marked contrast to the

experimental results of Srinivas and Kumaran29 which showed

that the consequence of polymer addition led to destabilization

of the instability present in a Newtonian fluid. It is useful to

estimate the dimensionless parameters in the experiments:29

the channel half width used was ∼100 µm, the elasticity mod-

ulus of the wall was 18 kPa, the relaxation time of the polymer

solution was ∼1 ms, and the flow velocities are in the range

of 5 ms−1. Thus Re ∼ 100 in their experiments, and the

nondimensional solid elastic modulus Γ ∼ 0.002. These val-

ues are similar to the regimes in which instability is predicted

in the present theoretical study (see Figs. 10 and 11). While

an Oldroyd-B model qualitatively predicts the destabilization,

it does not predict a change in the scaling exponent in the

Γ-Re relation. Thus, it appears that in order for an accurate

description of the experimental results, both elasticity and

shear-thinning nature of the polymer solution must be taken

into account. This could be achieved, perhaps, with the use of

a White-Metzner model with the Carreau model for viscosity

variation with the shear rate, and such models could be used in

future theoretical efforts. The predictions of this study will be

relevant to the flow of dilute and semi-dilute polymer solutions,

especially in microscale flows, past deformable solid surfaces.

In particular, such instabilities may be potentially exploited in

the enhancement of mixing in the flow of polymer solutions

in microfluidic applications.
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