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Abstract

In a recent article Agrawal et al. (STACS 2016) studied a simultaneous variant of the classic

Feedback Vertex Set problem, called Simultaneous Feedback Vertex Set (Sim-FVS).

In this problem the input is an n-vertex graph G, an integer k and a coloring function col :

E(G) → 2[α], and the objective is to check whether there exists a vertex subset S of cardinality

at most k in G such that for all i ∈ [α], Gi − S is acyclic. Here, Gi = (V (G), {e ∈ E(G) |

i ∈ col(e)}) and [α] = {1, . . . , α}. In this paper we consider the edge variant of the problem,

namely, Simultaneous Feedback Edge Set (Sim-FES). In this problem, the input is same

as the input of Sim-FVS and the objective is to check whether there is an edge subset S of

cardinality at most k in G such that for all i ∈ [α], Gi − S is acyclic. Unlike the vertex variant

of the problem, when α = 1, the problem is equivalent to finding a maximal spanning forest and

hence it is polynomial time solvable. We show that for α = 3 Sim-FES is NP-hard by giving a

reduction from Vertex Cover on cubic-graphs. The same reduction shows that the problem

does not admit an algorithm of running time O(2o(k)nO(1)) unless ETH fails. This hardness

result is complimented by an FPT algorithm for Sim-FES running in time O(2ωkα+α log knO(1)),

where ω is the exponent in the running time of matrix multiplication. The same algorithm gives

a polynomial time algorithm for the case when α = 2. We also give a kernel for Sim-FES

with (kα)O(α) vertices. Finally, we consider the problem Maximum Simultaneous Acyclic

Subgraph. Here, the input is a graph G, an integer q and, a coloring function col : E(G) → 2[α].

The question is whether there is a edge subset F of cardinality at least q in G such that for

all i ∈ [α], G[Fi] is acyclic. Here, Fi = {e ∈ F | i ∈ col(e)}. We give an FPT algorithm

for Maximum Simultaneous Acyclic Subgraph running in time O(2ωqαnO(1)). All our

algorithms are based on parameterized version of the Matroid Parity problem.
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1 Introduction

Deleting at most k vertices or edges from a given graph G, so that the resulting graph

belongs to a particular family of graphs (F), is an important research direction in the

fields of graph algorithms and parameterized complexity. For a family of graphs F , given a

graph G and an integer k, the F-deletion (Edge F-deletion) problem asks whether we

can delete at most k vertices (edges) in G so that the resulting graph belongs to F . The

F-deletion (Edge F-deletion) problems generalize many of the NP-hard problems like

Vertex Cover, Feedback vertex set, Odd cycle transversal, Edge Bipartization,

etc. Inspired by applications, Cai and Ye introduced variants of F-deletion (Edge F-

deletion) problems on edge colored graph [7]. Edge colored graphs are studied in graph

theory with respect to various problems like Monochromatic and Heterochromatic

Subgraphs [15], Alternating paths [6, 8, 20], Homomorphism in edge-colored graphs [3],

Graph Partitioning in 2-edge colored graphs [5] etc. One of the natural generalization

to the classic F-deletion (Edge F-deletion) problems on edge colored graphs is the

following. Given a graph G with a coloring function col : E(G) → 2[α], and an integer k, we

want to delete a set S of at most k edges/vertices in G so that for each i ∈ [α], Gi −S belongs

to F . Here, Gi is the graph with vertex set V (G) and edge set as {e ∈ E(G) | i ∈ col(e)}.

These problems are also called simultaneous variant of F-deletion (Edge F-deletion).

Cai and Ye studied the Dually Connected Induced subgraph and Dual Separator

on 2-edge colored graphs [7]. Agrawal et al. [1] studied a simultaneous variant of Feedback

Vertex Set problem, called Simultaneous Feedback Vertex Set, in the realm of

parameterized complexity. Here, the input is a graph G, an integer k, and a coloring function

col : E(G) → 2[α] and the objective is to check whether there is a set S of at most k vertices in

G such that for all i ∈ [α], Gi − S is acyclic. Here, Gi = (V (G), {e ∈ E(G) | i ∈ col(e)}). In

this paper we consider the edge variant of the problem, namely, Simultaneous Feedback

Edge Set, in the realm of parameterized complexity.

In the Parameterized Complexity paradigm the main objective is to design an algorithm

with running time f(µ) · nO(1), where µ is the parameter associated with the input, n is the

size of the input and f(·) is some computable function whose value depends only on µ. A

problem which admits such an algorithm is said to be fixed parameter tractable parameterized

by µ. Typically, for edge/vertex deletion problems one of the natural parameter that is

associated with the input is the size of the solution we are looking for. Another objective in

parameterized complexity is to design polynomial time pre-processing routines that reduces

the size of the input as much as possible. The notion of such a pre-processing routine

is captured by kernelization algorithms. The kernelization algorithm for a parameterized

problem Q takes as input an instance (I, k) of Q, runs in polynomial time and returns an

equivalent instance (I ′, k′) of Q. Moreover, the size of the instance (I ′, k′) returned by the

kernelization algorithm is bounded by g(k), where g(·) is some computable function whose

value depends only on k. If g(·) is polynomial in k, then the problem Q is said to admit a

polynomial kernel. The instance returned by the kernelization is referred to as a kernel or

a reduced instance. We refer the readers to the recent book of Cygan et al. [9] for a more

detailed overview of parameterized complexity and kernelization.

A feedback edge set in a graph G is S ⊆ E(G) such that G − S is a forest. For a graph

G with a coloring function col : E(G) → 2[α], simultaneous feedback edge set is a subset

S ⊆ E(G) such that Gi − S is a forest for all i ∈ [α]. Here, Gi = (V (G), Ei), where

Ei = {e ∈ E(G) | i ∈ col(e)}. Formally, the problem is stated below.
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Simultaneous Feedback Edge Set (Sim-FES) Parameter: k, α

Input: An n-vertex graph G, an integer k and a coloring function col : E(G) → 2[α]

Question: Is there a simultaneous feedback edge set of cardinality at most k in G

Feedback Vertex Set (FVS) is one of the classic NP-complete [13] problems and has

been extensively studied from all the algorithmic paradigms that are meant for coping with

NP-hardness, such as approximation algorithms, parameterized complexity and moderately

exponential time algorithms. The problem admits a factor 2-approximation algorithm [4],

an exact algorithm with running time O(1.7217nnO(1)) [12], a deterministic parameterized

algorithm running in O(3.619knO(1)) time [16], a randomized algorithm running in O(3knO(1))

time [10], and a kernel with O(k2) vertices [24]. Agrawal et al. [1] studied Simultaneous

Feedback Vertex Set (Sim-FVS) and gave an FPT algorithm running in time 2O(αk)nO(1)

and a kernel of size O(αk3(α+1)). Finally, unlike the FVS problem, Sim-FES is polynomial

time solvable when α = 1, because it is equivalent to finding maximal spanning forest.

Our results and approach. In Section 3 we design an FPT algorithm for Sim-FES by

reducing to α-Matroid Parity on direct sum of elongated co-graphic matroids of Gi,

i ∈ [α] (see Section 2 for definitions related to matroids). This algorithm runs in time

O(2ωkα+α log knO(1)). Unlike the vertex counterpart, we show that for α = 2 (2-edge colored

graphs) Sim-FES is polynomial time solvable. This follows from the polynomial time

algorithm for the Matroid parity problem. In Section 4 we show that for α = 3, Sim-FES

is NP-hard. Towards this, we give a reduction from the Vertex Cover in cubic graphs

which is known to be NP-hard [22]. Furthermore, the same reduction shows that the problem

cannot be solved in 2o(k)nO(1) time unless Exponential Time Hypothesis (ETH) fails [14]. We

complement our FPT algorithms by showing that Sim-FES is W[1]-hard when parameterized

by the solution size k (Section 5). When α = O(|V (G)|), we give a parameter preserving

reduction from the Hitting Set problem, a well known W[2]-hard problem parameterized by

the solution size [9]. However, Sim-FES remains W[1]-hard even when α = O(log(|V (G)|)).

We show this by giving a parameter preserving reduction from Partitioned Hitting Set

problem, a variant of the Hitting set problem, defined in [1]. In [1], Partitioned Hitting

Set was shown to be W[1]-hard parameterized by the solution size. In Section 6 we give a

kernel with O((kα)O(α)) vertices. Towards this we apply some of the standard preprocessing

rules for obtaining kernel for Feedback Vertex Set and use the approach similar to the

one developed for designing kernelization algorithm for Sim-FVS [1]. In Section 7 we give

an FPT algorithm for the problem, when parameterized by the dual parameter. Formally,

this problem is defined as follows.

Maximum Simultaneous Acyclic Subgraph (Max-Sim-Subgraph) Parameter: q

Input: An n-vertex graph G, a positive integer q and a function col : E(G) → 2[α].

Question: Is there a subset F ⊆ E(G) such that |F | ≥ q and for all i ∈ [α], G[F ∩E(Gi)]

is acyclic?

For solving Max-Sim-Subgraph we reduce it to an equivalent instance of the α-Matroid

Parity problem. As an immediate corollary we get an exact algorithm for Sim-FES running

in time O(2ωnα2

nO(1)).

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N, by [n] we denote the set {1, . . . , n}.

For a set X, by 2X we denote the set of all subsets of X. We use the term ground set/ universe

ISAAC 2016
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to distinguish a set from its subsets. We will use ω to denote the exponent in the running

time of matrix multiplication, the current best known bound for which is ω < 2.373 [25].

Graphs. We use the term graph to denote undirected graph. For a graph G, by V (G) and

E(G) we denote its vertex set and edge set, respectively. We will be considering finite graphs

possibly having loops and multi-edges. In the following, let G be a graph and let H be a

subgraph of G. By dH(v), we denote the degree of the vertex v in H, i.e, the number of

edges in H which are incident with v. A self-loop at a vertex v contributes 2 to the degree

of v. For any non-empty subset W ⊆ V (G), the subgraphs of G induced by W , V (G) \ W

are denoted by G[W ] and G − W respectively. Similarly, for F ⊆ E(G), the subgraph of G

induced by F is denoted by G[F ]; its vertex set is V (G) and its edge set is F . For F ⊆ E(G),

by G − F we denote the graph obtained by deleting the edges in F . We use the convention

that a double edge and a self-loop is a cycle. An α-edge colored graph is a graph G with

a color function col : E(G) → 2[α]. By Gi we will denote the color i (or i-color) graph of

G, where V (Gi) = V (G) and E(Gi) = {e ∈ E(G)|i ∈ col(e)}. For an α-edge colored graph

G, the total degree of a vertex v is
∑α

i=1 dGi
(v). We refer the reader to [11] for details on

standard graph theoretic notations and terminologies.

Matroids and Representable Matroids. A pair M = (E, I), where E is a ground set and

I is a family of subsets (called independent sets) of E, is a matroid if it satisfies the following

conditions: (I1) φ ∈ I. (I2) If A′ ⊆ A and A ∈ I then A′ ∈ I. (I3) If A, B ∈ I and |A| < |B|,

then there is e ∈ (B \ A) such that A ∪ {e} ∈ I. We refer the reader to [23] for more details.

Let A be a matrix over an arbitrary field F and let E be the set of columns of A. For A,

we define matroid M = (E, I) as follows. A set X ⊆ E is independent (that is X ∈ I) if the

corresponding columns are linearly independent over F. The matroids that can be defined by

such a construction are called linear matroids, and if a matroid can be defined by a matrix A

over a field F, then we say that the matroid is representable over F. A matroid M = (E, I)

is called representable or linear if it is representable over some field F.

Direct Sum of Matroids. Let M1 = (E1, I1), M2 = (E2, I2), . . . , Mt = (Et, It) be t

matroids with Ei ∩ Ej = ∅ for all 1 ≤ i 6= j ≤ t. The direct sum M1 ⊕ · · · ⊕ Mt is a matroid

M = (E, I) with E :=
⋃t

i=1 Ei and X ⊆ E is independent if and only if X ∩ Ei ∈ Ii for

all i ∈ [t]. Let Ai be the representation matrix of Mi = (Ei, Ii) over field F. Then, a

representation matrix of M1 ⊕ · · · ⊕ Mt over F can be found in polynomial time [21, 23].

Uniform Matroid. A pair M = (E, I) over an n-element ground set E, is called a uniform

matroid if the family of independent sets is given by I = {A ⊆ E | |A| ≤ k}, where k is some

constant. This matroid is also denoted as Un,k.

◮ Proposition 2.1 ([9, 23]). Uniform matroid Un,k is representable over any field of size

strictly more than n and such a representation can be found in time polynomial in n.

Graphic and Cographic Matroid. Given a graph G, the graphic matroid M = (E, I) is

defined by taking the edge set E(G) as universe and F ⊆ E(G) is in I if and only if G[F ] is a

forest. Let G be a graph and η be the number of components in G. The co-graphic matroid

M = (E, I) of G is defined by taking the the edge set E(G) as universe and F ⊆ E(G) is in

I if and only if the number of connected components in G − F is η.

◮ Proposition 2.2 ([23]). Graphic and co-graphic matroids are representable over any field

of size ≥ 2 and such a representation can be found in time polynomial in the size of the graph.
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Elongation of Matroid. Let M = (E, I) be a matroid and k be an integer such that

rank(M) ≤ k ≤ |E|. A k-elongation matroid Mk of M is a matroid with the universe as E

and S ⊆ E is a basis of Mk if and only if, it contains a basis of M and |S| = k. Observe

that the rank of the matroid Mk is k.

◮ Proposition 2.3 ([18]). Let M be a linear matroid of rank r, over a ground set of size n,

which is representable over a field F. Given a number ℓ ≥ r, we can compute a representation

of the ℓ-elongation of M , over the field F(X) in O(nrℓ) field operations over F.

α-Matroid Parity. In our algorithms we use a known algorithm for α-Matroid Parity.

Below we define α-Matroid Parity problem formally and state its algorithmic result.

α-Matroid Parity Parameter: α, q

Input: A representation AM of a linear matroid M = (E, I), a partition P of E into

blocks of size α and a positive integer q.

Question: Does there exist an independent set which is a union of q blocks?

◮ Proposition 2.4 ([18, 21]). α-Matroid Parity can be solved in O(2ωqα||AM ||O(1)) time.

3 FPT Algorithm for Simultaneous Feedback Edge Set

In this section we design an algorithm for Sim-FES by giving a reduction to α-Matroid

Parity on the direct sum of elongated co-graphic matroids associated with graphs restricted

to different color classes.

We describe our algorithm, Algo-SimFES, for Sim-FES. Let (G, k, col : E(G) → 2[α]) be

an input instance to Sim-FES. Recall that for i ∈ [α], Gi is the graph with vertex set as V (G)

and edge set as E(Gi) = {e ∈ E(G) | i ∈ col(e)}. Let n = |V (G)|. Note that n = |V (Gi)| for

all i ∈ [α]. Let ηi be the number of connected components in Gi. To make Gi acyclic we

need to delete at least |E(Gi)| − n + ηi edges from Gi. Therefore, if there is i ∈ [α] such that

|E(Gi)| − n + ηi > k, then Algo-SimFES returns No. We let ki = |E(Gi)| − n + ηi. Observe

that for i ∈ [α], 0 ≤ ki ≤ k. We need to delete at least ki edges from E(Gi) to make Gi

acyclic. Therefore, the algorithm Alg-SimFES for each i ∈ [α], guesses k′
i, where ki ≤ k′

i ≤ k

and computes a solution S of Sim-FES such that |S ∩ E(Gi)| = k′
i. Let Mi = (Ei, Ii) be

the k′
i-elongation of the co-graphic matroid associated with Gi.

◮ Proposition 3.1 (∗1). Let G be a graph with η connected components and M be an r-

elongation of the co-graphic matroid associated with G, where r ≥ |E(G)| − |V (G)| + η. Then

B ⊆ E(G) is a basis of M if and only if the subgraph G − B is acyclic and |B| = r.

By Proposition 3.1, for any basis Fi in Mi, Gi − Fi is acyclic. Therefore, our objective

is to compute F ⊆ E(G) such that |F | = k and the elements of F restricted to the

elements of Mi form a basis for all i ∈ [α]. For this we will construct an instance of

α-Matroid Parity as follows. For each e ∈ E(G) and i ∈ col(e), we use ei to denote

the corresponding element in Mi. For each e ∈ E(G), by Original(e) we denote the set of

elements {ej | j ∈ col(e)}. For each edge e ∈ E(G), we define Fake(e) = {ej | j ∈ [α]−col(e)}.

Finally, for each edge e ∈ E(G), by Copies(e) we denote the set Original(e) ∪ Fake(e). Let

Fake(G) =
⋃

e∈E(G) Fake(e). Furthermore, let τ = |Fake(G)| =
∑

e∈E(G) |Fake(e)| and

1 Proofs of results marked with (∗) can be found in the full version of the paper [2].

ISAAC 2016
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Algorithm 1: Pseudocode of Algo-SimFES

Input: A graph G, k ∈ N and col : E(G) → 2[α].

Output: Yes if there is a simultaneous feedback edge set of size ≤ k and No

otherwise.

1 Let ηi be the number of connected components in Gi for all i ∈ [α]

2 ki := |E(Gi)| − n + ηi for all i ∈ [α]

3 if there exists i ∈ [α] such that ki > k then

4 return No

5 for (k′
1, . . . , k′

α) ∈ ([k] ∪ {0})α such that ki ≤ k′
i for all i ∈ [α] do

6 Let Mi be the k′
i-elongation of the co-graphic matroid associated with Gi.

7 Let Mα+1 = Uτ,k′ over the gound set Fake(G), where, k′ =
∑

i∈[α](k − k′
i).

8 Let M :=
⊕

i∈[α+1] Mi.

9 For each e ∈ E(G), let Copies(e) be the block of elements of M .

10 if there is an independent set of M composed of k blocks then

11 return Yes

12 return No

k′ =
∑

i∈[α](k − k′
i). Let Mα+1 = (Eα+1, Iα+1) be a uniform matroid over the ground

set Fake(G). That is, Mα+1 = Uτ,k′ . By Propositions 2.1 to Proposition 2.3 we know

that Mis are representable over Fp(X), where p > max(τ, 2) is a prime number and their

representation can be computed in polynomial time. Let Ai be the linear representation of

Mi for all i ∈ [α + 1]. Notice that Ei ∩ Ej = ∅ for all 1 ≤ i 6= j ≤ α + 1. Let M denote

the direct sum M1 ⊕ · · · ⊕ Mα+1 with its representation matrix being AM . Note that the

ground set of M is
⋃

e∈E(G) Copies(e). Now we define an instance of α-Matroid Parity,

which is the linear representation AM of M and the partition of ground set into Copies(e),

e ∈ E(G). Notice that for all e ∈ E(G), |Copies(e)| = α. Also for each i ∈ [α], rank(Mi) = k′
i

and rank(Mα+1) = k′ =
∑

i∈[α](k − k′
i). This implies that rank(M) = αk.

Now Algo-SimFES outputs Yes if there is a basis (an independent set of cardinality αk)

of M which is a union of k blocks in M and otherwise outputs No. Algo-SimFES uses the

algorithm mentioned in Proposition 2.4 to check whether there is an independent set of M ,

composed of blocks. A pseudocode of Algo-SimFES can be found in Algorithm 1.

◮ Lemma 3.2. Algo-SimFES is correct.

Proof. Let (G, k, col : E(G) → 2[α]) be a Yes instance of Sim-FES and let F ⊆ E(G), where

|F | = k be a solution of (G, k, col : E(G) → 2[α]). Let ki = |E(Gi)| − n + ηi, where ηi is the

number of connected components in Gi, for all i ∈ [α]. For all i ∈ [α], let k′
i = |F ∩ E(Gi)|.

Since F is a solution, ki ≤ k′
i for all i ∈ [α]. This implies that Algo-SimFES will not execute

Step 4. Consider the for loop for the choice (k′
1, . . . , k′

α). We claim that the columns

corresponding to S =
⋃

e∈F Copies(e) form a basis in M and it is union of k blocks. Note

that |S| = αk by construction. For all i ∈ [α], let F i = {ei | e ∈ F, i ∈ col(e)}, which is

subset of ground set of Mi. By Proposition 3.1, for all i ∈ [α], F i is a basis for Mi. This

takes care of all the edges in ∪e∈F Original(e). Now let S∗ = S − ∪i∈[α]F
i = ∪e∈F Fake(e).

Observe that |S∗| =
∑

i∈[α](k − k′
i) = k′. Also, S∗ is a subset of ground set of Uτ,k′ and

thus is a basis since |S∗| = k′. Hence S is a basis of M . Note that S is the union of blocks

corresponding to e ∈ F and hence is union of k blocks. Therefore, Algo-SimFES will output

Yes.
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In the reverse direction suppose Algo-SimFES outputs Yes. This implies that there is a

basis, say S, that is the union of k blocks. By construction S corresponds to union of the

sets Copies(e) for some k edges in G. Let these edges be F = {e1, . . . , ek}. We claim that F

is a solution of (G, k, col : E(G) → 2[α]). Clearly |F | = k. Since S is a basis of M , for each

i ∈ [α], B(i) = S ∩ {ei | e ∈ E(Gi)} is a basis in Mi. Let F (i) = {e | ei ∈ B(i)} ⊆ F . Since

B(i) is a basis of Mi, by Proposition 3.1, Gi − F (i) is an acyclic graph. ◭

◮ Lemma 3.3. Algo-SimFES runs in deterministic time O(2ωkα+α log k|V (G)|O(1)).

Proof. The for loop runs (k +1)α times. The step 10 uses the algorithm mentioned in Propos-

ition 2.4, which takes time O(2ωkα||AM ||O(1)) = O(2ωkα|V (G)|O(1)). All other steps in the al-

gorithm takes polynomial time. Thus, the total running time is O(2ωkα+α log k|V (G)|O(1)). ◭

Since α-Matroid Parity for α = 2 can be solved in polynomial time [19] algorithm

Algo-SimFES runs in polynomial time for α = 2. This gives us the following theorem.

◮ Theorem 3.4. Sim-FES is in FPT and when α = 2 Sim-FES is in P.

4 Hardness results for Sim-FES

In this section we show that when α = 3, Sim-FES is NP-Hard. Furthermore, from

our reduction we conclude that it is unlikely that Sim-FES admits a subexponential-time

algorithm. We give a reduction from Vertex Cover (VC) in cubic graphs to the special

case of Sim-FES where α = 3. Let (G, k) be an instance of VC in cubic graphs, which

asks whether the graph G has a vertex cover of size at most k. We assume without loss

of generality that k ≤ |V (G)|. It is known that VC in cubic graphs is NP-hard [22] and

unless the ETH fails, it cannot be solved in time O⋆(2o(|V (G)|+|E(G)|))2 [17]. Thus, to prove

that when α = 3, it is unlikely that Sim-FES admits a parameterized subexponential time

algorithm (an algorithm of running time O⋆(2o(k))), it is sufficient to construct (in polynomial

time) an instance of the form (G′, k′ = O(|V (G)| + |E(G)|), col′ : E′ → 2[3]) of Sim-FES

that is equivalent to (G, k). Refer Figure 1 for an illustration of the construction.

To construct (G′, k′, col′ : E(G′) → 2[3]), we first construct an instance (Ĝ, k̂) of VC in sub-

cubic graphs which is equivalent to (G, k). We set V (Ĝ) = V (G) ∪ (
⋃

{v,u}∈E(G){xv,u, xu,v}),

and E(Ĝ) = {{xv,u, xu,v} : {v, u} ∈ E(G)} ∪ (
⋃

{v,u}∈E(G){{v, xv,u}, {u, xu,v}}). That is,

the graph Ĝ is obtained from the graph G by subdividing each edge in E(G) twice.

◮ Lemma 4.1 (∗). G has a vertex cover of size k if and only if Ĝ has a vertex cover of size

k̂ = k + |E(G)|

Observe that in Ĝ every path between two degree-3 vertices contains an edge of the form

{xv,u, xu,v}. Thus, the following procedure results in a partition (M1, M2, M3) of E(Ĝ) such

that for all i ∈ [3], {v, u} ∈ Mi and {v′, u′} ∈ Mi \{{v, u}}, it holds that {v, u}∩{v′, u′} = ∅.

Initially, M1 = M2 = M3 = ∅. For each degree-3 vertex v, let {v, x}, {v, y} and {v, z} be

the edges containing v. We insert {v, x} into M1, {v, y} into M2, and {v, z} into M3 (the

choice of which edge is inserted into which set is arbitrary). Finally, we insert each edge of

the form {xv,u, xu,v} into a set Mi that contains neither {v, xv,u} nor {u, xu,v}.

We are now ready to construct the instance (G′, k′, col′ : E(G′) → 2[3]). Let V (G′) =

V (Ĝ) ∪ V ⋆, where V ⋆ = {v⋆ : v ∈ V (Ĝ)} contains a copy v⋆ of each vertex v in V (Ĝ). The

2
O

⋆ notation suppresses polynomial factors in the running-time expression.
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Input (partial) Output (partial)

Figure 1 The construction given in the proof of Theorem 4.3.

set E(G′) and coloring col′ are constructed as follows. For each vertex v ∈ V (Ĝ), add an

edge {v, v⋆} into E(G′) and its color-set is {1, 2, 3}. For each i ∈ [3] and for each {v, u} ∈ Mi,

add the edges {v, u} and {v⋆, u⋆} into E(G′) and its color-set is {i}. We set k′ = k̂. Clearly,

the instance (G′, k′, col′ : E(G′) → 2[3]) can be constructed in polynomial time, and it holds

that k′ = O(|V (G)| + |E(G)|).

Lemma 4.2 proves that (Ĝ, k̂) is a Yes instance of VC if and only if (G′, k′, col′ : E(G′) →

2[3]) is a Yes instance of Sim-FES. Observe that because of the above mentioned property

of the partition (M1, M2, M3) of E(Ĝ), we ensure that in G′, no vertex participates in

two (or more) monochromatic cycles that have the same color. By construction, each

monochromatic cycle in G′ is of the form v − v⋆ − u⋆ − u − v, where {v, u} ∈ E(Ĝ), and for

each edge {v, u} ∈ E(G′), where either v, u ∈ V (Ĝ) or v, u ∈ V ⋆, G′ contains exactly one

monochromatic cycle of this form.

◮ Lemma 4.2 (∗). (Ĝ, k̂) is a Yes instance of VC if and only if (G′, k′, col′ : E(G′) → 2[3])

is a Yes instance of Sim-FES.

We get the following theorem and its proof follows from Lemma 4.1 and Lemma 4.2.

◮ Theorem 4.3. Sim-FES where α = 3 is NP-hard. Furthermore, unless the Exponential

Time Hypothesis (ETH) fails, Sim-FES when α = 3 cannot be solved in time O∗(2o(k)).

5 Tight Lower Bounds for Simultaneous Feedback Edge Set

We show that Sim-FES parameterized by k is W [2] hard when α = O(|V (G)|) and W [1]

hard when α = O(log(|V (G)|)). Our reductions follow the approach of Agrawal et al. [1].

W[2] Hardness of Sim-FES when α = O(|V (G)|). We give a reduction from Hit-

ting Set (HS) to Sim-FES where α = O(|V (G)|). Let (U = {u1, u2, . . . , u|U |}, F =

{F1, F2, . . . , F|F|}, k) be an instance of HS, where F ⊆ 2U , which asks whether there exists

a subset S ⊆ U of size at most k such that for all F ∈ F , S ∩ F 6= ∅. It is known that HS

parameterized by k is W[2]-hard (see, e.g., [9]). Thus, to prove the result, it is sufficient to

construct (in polynomial time) an instance of the form (G, k, col : E(G) → 2[α]) of Sim-FES

that is equivalent to (U, F , k), where α = O(|V (G)|). We construct a graph G such that

V (G) = O(|U ||F|) and the number of colors used will be α = |F|. The intuitive idea is to

have one edge per element in the universe which is colored with all the indices of sets in the

family F that contains the element and for each Fi ∈ F creating a unique monochromatic

cycle with color i which passes through all the edges corresponding to the elements it contain.

We explain the reduction formally in the next paragraph.
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Without loss of generality we assume that each set in F contains at least two elements

from U . The instance (G, k, col : E(G) → 2[α]) is constructed as follows. Initially, V (G) =

E(G) = ∅. For each element ui ∈ U , insert two new vertices into V (G), vi and wi, add

the edge {vi, wi} into E(G) and let {j | Fj ∈ F , ui ∈ Fj} be its color-set. Now, for all

1 ≤ i < j ≤ |U | and for all 1 ≤ t ≤ |F| such that ui, uj ∈ Ft and {ui+1, . . . , uj−1} ∩ Ft = ∅,

perform the following operation: add a new vertex into V (G), si,j,t, add the edges {wi, si,j,t}

and {si,j,t, vj} into E(G) and let their color-set be {t}. Moreover, for each 1 ≤ t ≤ |F|, let ui

and uj be the elements with the largest and smallest index contained in Ft, respectively, and

perform the following operation: add a new vertex into V (G), si,j,t, add the edges {wi, si,j,t}

and {si,j,t, vj} into E(G), and let their color-set be {t}. Observe that |V (G)| = O(|U ||F|)

and that α = |F|. Therefore, α = O(|V (G)|). It remains to show that the instances

(G, k, col) and (U, F , k) are equivalent. By construction, each monochromatic cycle in G

is of the form vi1
− wi1

− si1,i2,t − vi2
− wi2

− si2,i3,t − · · · − vi|Ft|
− wi|Ft|

− si|Ft|,i1,t − vi1
,

where {ui1
, ui2

, . . . , ui|Ft|
} = Ft ∈ F , and for each set Ft ∈ F , G contains exactly one such

monochromatic cycle.

◮ Lemma 5.1 (∗). (U, F , k) is a Yes instance of HS if and only if (G, k, col : E(G) → 2[α])

is a Yes instance of Sim-FES.

◮ Theorem 5.2. Sim-FES parameterized by k, when α = O(|V (G)|), is W [2]-hard.

W[1] Hardness of Sim-FES when α = O(log |V (G)|). We modify the reduction given

in the proof of Theorem 5.2 to show that when α = O(log |V (G)|), Sim-FES is W[1]-hard

with respect to the parameter k. This result implies that the dependency on α of our

O((2O(α))knO(1))-time algorithm for Sim-FES is optimal in the sense that it is unlikely that

there exists an O((2o(α))knO(1))-time algorithm for this problem.

We give a reduction from a variant of HS, called Partitioned Hitting Set (PHS), to

Sim-FES where α = O(log |V (G)|). The input of PHS consists of a universe U , a collection

F = {F1, F2, . . . , F|F|}, where each Fi is a family of disjoint subsets of U , and a parameter k.

The goal is to decide the existence of a subset S ⊆ U of size at most k such that for all f ∈

(
⋃

F ∈F F ), S∩f 6= ∅. It is known that the special case of PHS where |F| = O(log(|U ||(
⋃

F)|))

is W[1]-hard when parameterized by k (see, e.g., [1]). Thus, to prove the theorem, it is

sufficient to construct (in polynomial time) an instance of the form (G, k, col : E(G) → 2[α])

of Sim-FES that is equivalent to (U, F , k), where α = O(log |V (G)|). The construction of

the graph G is exactly similar to the one in Theorem 5.2. But instead of creating a unique

monochromatic cycle with a color i for each fi ∈
⋃

F , for each Fi ∈ F we create |Fi| vertex

disjoint cycles of same color i. Since for each F ∈ F the sets in F are pairwise disjoint,

guarantees the correctness. Formal description of the reduction is given below.

Without loss of generality we assume that each set in
⋃

F ∈F F contains at least two

elements from U . The instance (G, k, col : E(G) → 2[α]) is constructed as follows. Initially,

V (G) = E(G) = ∅. For each element ui ∈ U , insert two new vertices vi and wi into V (G),

and add the edge {vi, wi} into E(G) with its color-set being {j : Fj ∈ F , ui ∈ (
⋃

Fj)}. Now,

for all 1 ≤ i < j ≤ |U | and for all 1 ≤ t ≤ |F| such that there exists f ∈ Ft satisfying

ui, uj ∈ f and {ui+1, . . . , uj−1} ∩ f = ∅, perform the following operation: add a new vertex

si,j,t into V (G), add the edges {wi, si,j,t} and {si,j,t, vj} into E(G) with both of its color-set

being {t}. Moreover, for each 1 ≤ t ≤ |F| and f ∈ Ft, let ui and uj be the elements

with the largest and smallest index contained in f , respectively, we perform the following

operation: add a new vertex into V (G), si,j,t, add the edges {wi, si,j,t} and {si,j,t, vj} into

E(G), and let their color-set be {t}. Observe that |V (G)| = O(|U ||(
⋃

F)|) and that α = |F|.
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Since |F| = O(log(|U ||(
⋃

F)|)), we have that α = O(log |V (G)|). Since the sets in each

family Fi are disjoint, the construction implies that each monochromatic cycle in G is of

the form vi1
− wi1

− si1,i2,t − vi2
− wi2

− si2,i3,t − · · · − vi|f|
− wi|f|

− si|f|,i1,t − vi1
, where

{ui1
, ui2

, . . . , ui|Ft|
} = f for a set f ∈ Ft ∈ F , and for each set f ∈ Ft ∈ F , G contains a

monochromatic cycle of this form. By using the arguments similar to one in the proof of

Lemma 5.1, we get that the instances (G, k, col : E(G) → 2[α]) and (U, F , k) are equivalent.

Hence we get the following theorem.

◮ Theorem 5.3. Sim-FES parameterized by k, when α = O(log |V (G)|) is W [1]-hard.

6 Kernel for Simultaneous Feedback Edge Set

In this section we give a kernel for Sim-FES with O((kα)O(α)) vertices. We start by applying

preprocessing rules similar in spirit to the ones used to obtain a kernel for Feedback Vertex

Set, but it requires subtle differences due to the fact that we handle a problem where edges

rather than vertices are deleted, as well as the fact that the edges are colored (in particular,

each edge in Sim-FES has a color-set, while each vertex in Sim-FVS is uncolored). We

obtain an approximate solution by computing a spanning tree per color. We rely on the

approximate solution to bound the number of vertices whose degree in certain subgraphs of

G is not equal to 2. Then, the number of the remaining vertices is bounded by adapting the

“interception”-based approach of Agrawal et al. [1] to a form relevant to Sim-FES.

Let (G, k, col : E(G) → 2[α]) be an instance of Sim-FES. For each color i ∈ [α] recall Gi

is the graph consisting of the vertex-set V (G) and the edge-set E(Gi) includes every edge in

E(G) whose color-set contains the color i. It is easy to verify that the following rules are

correct when applied exhaustively in the order in which they are listed. We note that the

resulting instance can contain multiple edges.

Reduction Rule 1: If k < 0, return that (G, k, col : E(G) → 2[α]) is a No instance.

Reduction Rule 2: If for all i ∈ [α], Gi is acyclic, return that (G, k, col : E(G) → 2[α]) is

a Yes instance.

Reduction Rule 3: If there is a self-loop at a vertex v ∈ V (G), then remove v from G

and decrement k by 1.

Reduction Rule 4: If there exists an isolated vertex in G, then remove it.

Reduction Rule 5: If there exists i ∈ [α] and an edge whose color-set contains i but

it does not participate in any cycle in Gi, remove i from its color-set. If the color-set

becomes empty, remove the edge.

Reduction Rule 6: If there exists i ∈ [α] and a vertex v of degree exactly two in G,

remove v and connect its two neighbors by an edge whose color-set is the same as the

color-set of the two edges incident to v (we prove in Lemma 6.1 that the color set of two

edges are same).

◮ Lemma 6.1 (∗). Reduction rule 6 is safe.

We apply Reduction Rule 1 to 6 exhaustively (in that order). The safeness of Reduction

Rules 1 to 5 are easy to see. Lemma 6.1 proves the safeness Reduction Rule 6. After this, we

follow the approach similar to that in [1] to bound the size of the instance. This gives the

following theorem.

◮ Theorem 6.2 (∗). Sim-FES admits a kernel with (kα)O(α) vertices.
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7 Maximum Simultaneous Acyclic Subgraph

In this section we design an algorithm for Maximum Simultaneous Acyclic Subgraph.

Let (G, q, col : E(G) → 2[α]) be an input to Max-Sim-Subgraph. A set F ⊆ E(G) such that

for all i ∈ [α], G[Fi] is acyclic is called simultaneous forest. Here, Fi = {e ∈ F | i ∈ col(e)},

denotes the subset of edges of F which has the integer i in its image when the function col is

applied to it. We will solve Max-Sim-Subgraph by reducing to an equivalent instance of

the α-Matroid Parity problem and then using the algorithm for the same.

We start by giving a construction that reduces the Max-Sim-Subgraph to α-Matroid

Parity. Let (G, q, col : E(G) → 2[α]) be an input to Max-Sim-Subgraph. Given, (G, q, col :

E(G) → 2[α]), for i ∈ [α], recall that by Gi we denote the graph with the vertex set

V (Gi) = V (G) and the edge set E(Gi) = {ei | e ∈ E(G) and i ∈ col(e)}. For each edge

e ∈ E(G), we will have its distinct copy in Gi if i ∈ col(e). Thus, for each edge e ∈ E(G),

by Original(e) we denote the set of edges {ej |j ∈ col(e)}. On the other hand for each edge

e ∈ E(G), by Fake(e) we denote the set of edges {ej |j ∈ [α] − col(e)}. Finally, for each

edge e ∈ E(G), by Copies(e) we denote the set Original(e) ∪ Fake(e). Let Mi = (Ei, Ii)

denote the graphic matroid on Gi. That is, edges of Gi forms the universe Ei and Ii

contains, S ⊆ E(Gi) such that Gi[S] forms a forest. By Proposition 2.2 we know that

graphic matroids are representable over any field and given a graph G one can find the

corresponding representation matrix in time polynomial in |V (G)|. Let Ai denote the linear

representation of Mi. That is, Ai is a matrix over F2, where the set of columns of Ai are

denoted by E(Gi). In particular, Ai has dimension d × |E(Gi)|, where d = rank(Mi). A

set X ⊆ E(Gi) is independent (that is X ∈ Ii) if and only if the corresponding columns

are linearly independent over F2. Let Fake(G) denote the set of edges in
⋃

e∈E(G) Fake(e).

Furthermore, let τ = |Fake(G)| =
∑

e∈E(G) |Fake(e)|. Let Mα+1 be the uniform matroid over

Fake(G) of rank τ . That is, Eα+1 = Fake(G) and Mα+1 = Uτ,τ . Let Iτ denote the identity

matrix of dimension τ × τ . Observe that, Aα+1 = Iτ denotes the linear representation of

Mα+1 over F2. Notice that Ei ∩ Ej = ∅ for all 1 ≤ i 6= j ≤ α + 1. Let M denote the direct

sum of M1 ⊕ · · · ⊕ Mα+1 with its representation matrix being AM .

Now we are ready to define an instance of α-Matroid Parity. The ground set is the

columns of AM , which is indexed by edges in
⋃

e∈E(G) Copies(e). Furthermore, the ground

set is partitioned into Copies(e), e ∈ E(G), which are called blocks. The main technical

lemma of this section on which the whole algorithm is based is the following.

◮ Lemma 7.1 (∗). Let (G, q, col : E(G) → 2[α]) be an instance of Max-Sim-Subgraph.

Then G has a simultaneous forest of size q if and only if (AM ,
⊎

e∈E(G) Copies(e), q) is a Yes

instance of α-Matroid Parity. Furthermore, given (G, q, col : E(G) → 2[α]) we can obtain

an instance (AM ,
⊎

e∈E(G) Copies(e), q) in polynomial time.

We will use the polynomial time reduction provided in Lemma 7.1 to get the desired FPT

algorithm for Max-Sim-Subgraph. Towards this will use the following FPT result regarding

α-Matroid Parity for our FPT as well as for an exact exponential time algorithm.

Given an instance (G, q, col : E(G) → 2[α]) of Max-Sim-Subgraph we first apply

Lemma 7.1 and obtain an instance (AM ,
⊎

e∈E(G) Copies(e), q) of α-Matroid Parity and

then apply Proposition 2.4 to obtain the following result.

◮ Theorem 7.2. Max-Sim-Subgraph can be solved in time O(2ωqα|V (G)|O(1)).

Let (G, q, col : E(G) → 2[α]) be an instance of Max-Sim-Subgraph. Observe that

q is upper bounded by α(|V (G)| − 1). Thus, as a corollary to Theorem 7.2 we get an
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exact algorithm for finding the largest sized simultaneous acyclic subgraph, running in time

O(2ωnα2

|V (G)|O(1)).
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