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1 Introduction

The last element of the Standard Model (SM) was the Higgs boson which was discovered

at the CMS and ATLAS detectors of the Large Hadron Collider (LHC) [1, 2]. The spin,

parity measurements and the combined analysis show the SM-like behaviour of the Higgs

boson [3–5]. However it has been shown that Standard Model electroweak (EW) vacuum

on its own can run into metastability due to quantum corrections [6–9]. It is well known

that the addition of scalars enhance the stability of the EW vacuum via positive loop

contributions to the Higgs quartic coupling. Various models, which include scalars from

different gauge representations have been proposed [10–53] to enhance the stability of EW

vacuum. On the contrary an extension with fermion often gives negative contributions

to the Higgs quartic couplings that it couples to. Such negative contributions then tend

to pull such Higgs quartic couplings toward instability much faster. Thus models with

extra fermions and where Majorana masses of the fermions are spontaneously generated

are constrained from the vacuum stability [54–76].

Apart from the problem of vacuum metastability in SM which depends on the top

quark and Higgs boson masses [77–79], the theory also fails to provide a stable dark matter
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(DM) candidate, as well as to give successful explanation for the very tiny eV scale neutrino

masses, and their mixings. In this work, we focus on these two aspects by extending the

SM with SU(2)L triplet fermions, and SU(2)L inert doublet scalar. The triplet fermion

generates the eV light neutrino mass via Type-III seesaw mechanism, while the inert Higgs

doublet provides a dark matter candidate, as well as stabilizes the EW vacuum.

The minimal Type-III extensions have one to three generations of SU(2)L fermions with

hypercharge zero, which mix with the SM charged and neutral fermions, and also generates

tiny eV neutrino mass via electroweak symmetry breaking [80–83]. Different extensions of

Type-III seesaw and their collider signatures have been studied in [84]–[90], including their

spin measurement at the LHC [91]. The stability of EW vacuum in some of these scenarios

are studied in [92–95]. In this article, we consider the inverse seesaw mechanism of neutrino

mass generation with two generations of triplet fermions. One among them couples with

the SM Higgs boson via Type-III Yukawa coupling, and generates the Dirac mass term.

The other triplet fermion generates the Majorana mass term for the triplet fermion.

As discussed earlier an extension with scalar enhances stability of EW vacuum and if

the scalar is in the form of SU(2)L inert (Z2-odd) doublet then it also provides the much

needed dark matter candidate [34–36]. SM extension with such inert doublet in the context

of vacuum stability have been studied extensively [34–39, 54]. Fields in inert doublet have

very interesting phenomenology due to their compressed spectrum and the possibility of

real and pseudoscalar dark matter particle [96]–[107]. In this article we will investigate the

effect of inert doublet in the context of Type-III fermions.

In our model we have both SU(2)L triplet fermion and SU(2)L doublet scalar. Being

in the triplet representation of SU(2)L the new fermions contribute in the evolution of

weak gauge coupling g2 such that g2 now increases with running scale. This behaviour

substantially changes the dynamics of couplings responsible for the EW vacuum stability.

We shall see how an enhanced g2 causes a much lower perturbative scale compared to

Type-I [54, 55] or only IDM case [38]. Specially we see that with three generations of Type-

III fermions it is difficult to attain Planck scale perturbativity and thus two generations

are more favoured.

The paper is organised as follows. In section 2, we describe the model, and present

the EW symmetry breaking conditions for this model. We discuss the perturbativity and

the interplay of two and three generations of SU(2)L triplet fermions in section 3. The

EW vacuum stability with all three posibilites are covered in section 4. In section 5, we

discuss the phenomenological consequences and present our conclusion. The expressions of

the two-loop beta functions used in our analysis are presented in appendix A.

2 The model

The SM is augmented with an inert doublet (ID) and three Type-III fermions with ISS

mechanism. We first discuss the scalar sector of the model in section 2.1. We consider

two different scenarios, viz., a canonical Type-III seesaw with small Yukawa couplings and

an inverse seesaw (ISS) with large Yukawa couplings to study effects in perturbativity of

dimensionless couplings and vacuum stability. The fermionic sector with Type-III seesaw

and inverse seesaw is discussed in section 2.2.
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2.1 The scalar sector

The scalar part consists of two SU(2)L-doublets Φ1 and Φ2, both with hypercharge 1/2:

Φ1 =

(
G+

h+ iG0

)
, Φ2 =

(
H+

H + iA

)
. (2.1)

The tree-level SM gauge invariant scalar potential i.e., invariant under SU(2)L×U(1)Y
is given by [108, 109]

Vscalar = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 +H.c)

+ λ1(Φ
†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
[
λ5(Φ

†
1Φ2)

2 + λ6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + H.c

]
, (2.2)

where we have chosen all the Higgs quartic couplings λ1,2,3,4 and mass terms m2
11,m

2
22 as

real. While m2
12 and the λ5,6,7 couplings are in general complex but for this study we also

have taken them as real number. A Z2 symmetry is imposed to prohibit the flavor changing

neutral currents at tree-level. Under this Z2 symmetry Φ2 is odd and Φ1 is even. This

choice also make Φ2 as inert which can be DM candidate. The λ6, λ7 and m12 also get

removed and eq. (2.2) reduces to

Vscalar = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 + λ1(Φ

†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

[
λ5(Φ

†
1Φ2)

2 +H.c
]
. (2.3)

The Φ1 takes a real vacuum expectation value (VEV) which breaks the EW symmetry

as follows

〈Φ1〉 =
1√
2

(
0

v

)
, (2.4)

here we choose v ≃ 246GeV guided by the masses of gauge bosons and SM-like Higgs

boson. Φ2, being Z2-odd, does not have any part in breaking the EW symmetry, so it

behaves like a ‘inert’ Higgs doublet. Such model is often named as inert doublet model

(IDM). We replace m2
11 by the minimzation condition follows:

m2
11 = −λ1v2 , (2.5)

where the respective physical mass eigenvalues can be written as

M2
h = 2λ1v

2 ,

M2
H0

=
1

2
[2m2

22 + v2(λ3 + λ4 + 2λ5)] ,

M2
A =

1

2
[2m2

22 + v2(λ3 + λ4 − 2λ5)] ,

M2
H± = m2

22 +
1

2
v2λ3 . (2.6)

This is to note that, being Z2 odd Φ2 is inert, which prohibits any mixing between Φ2 and

Φ1. This also implies that the gauge eigenstates and the mass eigenstates are the same for
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the Higgs bosons from both Z2 odd or even multiplets. In this scenario, Φ2 being Z2-odd

does not talk to the fermions. Moreover, we get two CP even neutral Higgs bosons h and

H0. Here we choose h as the SM-like Higgs boson with mass around 125GeV discovered at

the LHC. The spectrum has one pseudoscalar Higgs boson A and a pair of charged Higgs

bosons H±. It is evident from eq. (2.6) that the heavy Higgs bosons H0, A and H± are

from Φ2 so they are nearly degenerate in mass spectrum with possible splitting by the help

of λ5. The sign of λ5 is crucial in making one of the scalars between A and H0 as the

lightest, and possible DM candidate. The Z2-odd symmetry prohibits some of the decays

of Φ2-type Higgs bosons. . .

2.2 The Type-III and inverse seesaw Lagrangians

In addition to the SM particle contents, the Type-III seesaw model contains SU(2)L
fermionic triplets Σ with zero hypercharge. Being in the adjoint representation of the

SU(2)L group, the Majorana mass term MN of such triplets is gauge invariant. In terms

of the usual two-by two notation for triplets, the beyond SM interactions are described by

the Lagrangian:

LIII = Tr[Σi /DΣ]− 1

2
Tr[ΣMNΣc +ΣcM∗

NΣ]−
√
2(Φ̃†

1ΣYNL+ LY †
NΣΦ̃1), (2.7)

where L ≡ (ν, ℓ)L corresponds to the SM lepton doublet, while Φ̃1 = iσ2Φ
⋆
1 (with σ2 is the

second Pauli matrix), Σc ≡ CΣ
T
for each fermionic triplet as shown below.

Σ =

(
Σ0/

√
2 Σ+

Σ− −Σ0/
√
2

)
, Σc =

(
Σ0c/

√
2 Σ−c

Σ+c −Σ0c/
√
2

)

We drop the generation indices here, but this is to remind that there are three set of

fermionic triplets for three leptonic doublets. The covariant derivative generates the cou-

pling between the W bosons and the triplet fermions and they are proportional to g2 as

shown below,

/Dµ = /∂µ − i
√
2g2

(
W 3

µ/
√
2 W+

µ

W−
µ −W 3

µ/
√
2

)
.

Without loss of generality, we start from the basis, where MN is real and diagonal. In

order to consider the mixing of fermionic triplets with the charged leptons, it is convenient

to express the four degrees of freedom of each charged triplet in terms of a single Dirac

spinor:

ψ = Σ+c
R +Σ−

R. (2.8)

On the other hand the neutral fermionic triplet components can be left in two-component

notation, since they have only two degrees of freedom and mix with neutrinos, which are

also described by two-component fields. This leads to the Lagrangian as follows

LIII = ψ̄i/∂ψ +Σ0
Ri/∂Σ

0
R − ψMNψ −

(
Σ0
R

MN

2
Σ0c
R + h.c.

)

+g
(
W+

µ Σ0
RγµPRψ +W+

µ Σ0c
R γµPLψ + h.c.

)
− gW 3

µψγµψ

−
(
Φ0Σ0

RYNνL +Φ+Σ0
RYNℓL +

√
2(Φ0ψYNℓL − Φ+νcLY

T
N ψ) + h.c.

)
. (2.9)
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The mass term of the charged sector shows the usual aspect for Dirac particles:

L ∋ −
(
lR ψR

) ( ml 0

YNv MN

) (
lL
ψL

)
−
(
lL ψL

) (ml Y
†
Nv

0 MN

) (
lR
ψR

)
,

where mℓ = yℓ < φ0 > with yℓ is leptonic Yukawa coupling and v =
√
2 < φ0 >= 246GeV.

On the other hand the symmetric mass matrix for the neutral states is given by

L ∋ −
(
νL Σ0c

)( 0 Y †
Nv/2

√
2

Y ∗
Nv/2

√
2 MN/2

)(
νcL
Σ0

)

−
(
νcL Σ0

)( 0 Y T
N v/2

√
2

YNv/2
√
2 MN/2

)(
νL
Σ0c

)
.

The neutrino mass matrix in this case can be written as

Mν =

(
0 MD

M⊺
D MN

)
where MD =

v√
2
YN . (2.10)

Thus the light neutrino mass can be written as

mν = −v
2

2
Y T
N

1

MN
YN , (2.11)

which mixes the left-handed neutrinos and the neutral fermionic triplet components (right-

handed neutrinos). This leads to the full mass matrix for the neutral states as:

Mν =

(
0 MD

M⊺
D MN

)
. (2.12)

Diagonalizing the mass matrix we obtain one small neutrino eigenvalue in the limit of

||MD|| ≪ ||MN || as:

mν ≃ −MDM
−1
N M⊺

D , (2.13)

where the triplet fermions take the mass values around MN . From eq. (2.13), it is evident

that to have the light neutrino mass mν . 0.1 eV, we need YN . O(10−6) for MN ∼
O(100) GeV. However, such choices of small couplings cannot affect the RG evolution of

other couplings [54], a coupling motivated by inverse seesaw can be relevant here.

The collider signatures of heavy neutrinos and leptons rely upon larger Yukawa cou-

plings. These are further restricted from electroweak precision data [110–114]. In the in-

verse seesaw frame work [115–118], we introduce another set of fermions which are SU(2)L
triplet, Σ2i (with i = 1, 2, 3) accompanying the Σ1i. The inverse seesaw Lagrangian is

given by,

LISS = Tr[Σ1i /DΣ1i] + Tr[Σ2i /DΣ2j ]−
1

2
Tr[Σ2iµΣij

Σc
2j +Σc

2iµ
∗
Σij

Σ2j ]

−
(
Φ̃†
1Σ1i

√
2YNij

Lj + Tr[Σ1iMNij
Σ2j ] + H.c.

)
, (2.14)
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where MD is a 3×3 Dirac mass mixing matrix, MN is the mixing mass term between the

two triplets and µΣ is the small lepton number violating mass term for the Σ2-fields. In

the basis of {νcL,Σ0
1,Σ

0
2}, the full 9× 9 neutral components mass matrix can be written as

Mν =




0 MD 0

M⊺
D 0 MN

0 M⊺
N µΣ


 . (2.15)

one obtains the three light neutrinos diagonalizing the mass matrix eq. (2.15) as described

below

mν ≃ MDM
−1
N µΣ(M

⊺
N )−1M⊺

D , (2.16)

other neutrino masses are heavy and they are given by MN ± µΣ/2. Here the small µΣ
share the load of seesaw making YN ∼ O(0.1). Such large Yukawa couplings give significant

negative contributions in the stability of EW vacuum [119].

3 Perturbativity

To illustrate the theoretical bounds from perturbativity behaviour of the dimensionless cou-

plings, we impose the following conditions on the dimensionless couplings as perturbative

limit at a given scale µ,

|λi| ≤ 4π, |gj | ≤ 4π, |Yk| ≤
√
4π , (3.1)

where gj with j = 1, 2 are the EW gauge couplings,1 λi with i = 1, 2, 3, 4, 5 are the quartic

couplings corresponding to the scalars and Yk with k = u, d, ℓ are the Yukawa couplings

for the quarks and leptons. The extension of SM with a SU(2)L inert doublet as well as by

SU(2)L triplet fermions can change the running g2(µ), which in turn affects the progression

of other couplings namely the λi relevant for the vacuum stability and perturbativity. Below

we discuss that how g2(µ) gets affected via the extra scalar and fermions of this model.

3.1 Running of gauge couplings

Eqs. (3.2)–(3.4) and figure 1(c) describe the evolution of the SM gauge couplings at a given

scale µ (not explicitly mentioned in those eqs.) at two-loop level. Both g2 and g3 decrease

with the increase in the running scale µ and remain perturbative in the high scale limit.

However, such behaviour can change substantially with the inclusion of other SU(2)L fields

such as ID and Type-III Seesaw fermions, which are in the triplet of SU(2)L representation.

βg1 =
1

16π2

[
21

5
g31

]
+

1

(16π2)2

[
1

50
g31

(
180g22 + 208g21 − 25Tr

(
YdY

†
d

)

+440g23 − 45Tr
(
YNY

†
N

)
− 75Tr

(
YeY

†
e

)
− 85Tr

(
YuY

†
u

))]
, (3.2)

1The running of g3 remains the as in the SM, as the new fields do not have SU(3) charges.
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Figure 1. (a) Running of g2 with the scale µ for the SM in blue, SM + ID in green, SM + ITM in

pink, SM + three generations of Type-III fermions in red, SM+ID + three generations of Type-III

fermions in sky-blue and SM+ ID+ two generations of Type-III fermions in purple in two-loop. (b)

Running of all three gauge couplings gi at two-loop for the SM+ ID+ two generations of Type-III

fermions. (c) Running of all three gauge couplings gi at two-loop for the SM.

βg2 =
1

16π2

[
− 19

6
g32

]
+

1

(16π2)2

[
1

30
g32

(
− 15Tr

(
YeY

†
e

)
+ 175g22 + 27g21

+360g23 − 45Tr
(
YdY

†
d

)
− 45Tr

(
YuY

†
u

))]
, (3.3)

βg3 =
1

16π2

[
− 7g33

]
+

1

(16π2)2

[
− 1

10
g33

(
− 11g21 + 20Tr

(
YdY

†
d

)

+20Tr
(
YuY

†
u

)
+ 260g23 − 45g22

)]
. (3.4)

In eqs. (3.5)–(3.9), we show the modified evolution of the gauge couplings in the pres-

ence of the ID and triplet fermions. Eq. (3.5) shows that an inclusion of inert SU(2)L
doublet makes βg2 less negative at one-loop and so as at two-loop. The behaviours can be

verified from the figure 1(a), where the blue curve implies SM and green line represents

SM with ID. For the comparison we also show that an addition of a Y = 0 SU(2)L triplet

scalar also reduces the negative impact in βg2 , as can be read from eq. (3.6), which is

– 7 –
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also evident from figure 1(a) pink curve. However, from eq. (3.7) we can see that even

at one-loop βg2 has become positive with the factor changed to
5g3

2

6 if we extend the SM

with three generations of Type-III fermions. This behaviour continues even at two-loop.

The running of g2 in this case has been depicted by red curve of figure 1(a). Unlike the

SM, or ID scenario, the coupling g2 in this case increases with increasing µ. In addition

to the three generations of Type-III fermions if we add a SU(2)L inert doublet which gives

the much needed DM candidate, the factor at one-loop is enhanced to 5g32 with further

enhancement at two-loop and also visible by the sky-blue curve in figure 1(a). Certainly we

can see that g2 coupling remians perturbative till Planck scale for all the scenarios except

ID + Type-III + ISS scenario with three generations of fermionic triplet. It is evident

that with three generations of fermionic triplet g2 coupling loses perturbativity around

1015GeV. However, restricting it only to two generations of triplet fermions, and one ID,

this perturbativity scale pushes till the Planck scale. This prompt us to choose only two

generations of Type-III fermions along with ID, rather than the three generations. The

running of the gauge coupling g2 for the two generation scenario is evident from the purple

curve of figure 1(a), and also from eq. (3.9). Figure 1(b) represents running of all the three

gauge couplings for the two generation scenario. Therefore, from EW scale point of view,

SM extension with an ID and two generations of Type-III fermions with ISS mechanism

are more motivated, as this accommodates perturbativity of the gauge couplings till Planck

scale, as well as, can explain two small light neutrino masses, and provide a dark matter

candidate from the ID. However, one lives with the different asymptotic behaviour of g2 as

compared to SM.

βgIDM

2

=
1

16π2

[
− 3g32

]
+

1

(16π2)2

[
1

10
g32

(
120g23 + 12g21 − 15Tr

(
YdY

†
d

)

−15Tr
(
YuY

†
u

)
− 5Tr

(
YeY

†
e

)
+ 80g22

)]
. (3.5)

βgITM

2

=
1

16π2

[
− 17

6
g32

]
+

1

(16π2)2

[
1

30
g32

(
− 15Tr

(
YeY

†
e

)
+ 27g21 + 360g23

+455g22 − 45Tr
(
YdY

†
d

)
− 45Tr

(
YuY

†
u

))]
. (3.6)

βType−III
g2, 3gen

=
1

16π2

[
5

6
g32

]
+

1

(16π2)2

[
1

60
g32

(
− 165Tr

(
YeY

†
e

)
− 30Tr

(
YeY

†
e

)

+4190g22 + 54g21 + 720g23 − 90Tr
(
YdY

†
d

)
− 90Tr

(
YuY

†
u

))]
, (3.7)

βg2, 3gen =
1

16π2

[
5g32

]
+

1

(16π2)2

[
1

10
g32

(
120g23 + 12g21 + 1360g22 − 15Tr

(
YdY

†
d

)

−15Tr
(
YuY

†
u

)
− 55Tr

(
YNY

†
N

)
− 5Tr

(
YeY

†
e

))]
, (3.8)

βg2, 2gen =
1

16π2

[
7

3
g32

]
+

1

(16π2)2

[
1

30
g32

(
− 15Tr

(
YeY

†
e

)
− 165Tr

(
YNY

†
N

)

+2800g22 + 360g23 + 36g21 − 45Tr
(
YdY

†
d

)
− 45Tr

(
YuY

†
u

))]
. (3.9)
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Figure 2. Bounds on Perturbative scale of the scalar quartic couplings verses λ3 at two-loop for

Yukawa coupling YN = 0.02, considering three generations of fermionic triplet. Different initial

values are designated as red, green, blue and purple curves for λi = 0.01, 0.1, 0.4, 0.8 respectively at

the EW scale.

The perturbative nature of the scalar quartic couplings are also modified by the inclu-

sion of ID and triplet fermions. Below, we first focus on the analysis of the perturbative

behaviour of the scalar quartic couplings with respect to λ3 in the scenario with SM as-

sociated with an ID, and three generations of fermionic triplet. The perturbative limit is

calculated if at least one of the coupling crosses the perturbativity or hits Landau pole.

Figure 2 describes the perturbative behaviour of λ3 with the scale µ for YN = 0.02, where

the other quartic couplings λ(i=2,4,5) are kept at different values at the electroweak scale.

For the coupling λ1, we choose λ1 = 0.1264, which gives SM like Higgs boson mass around

125.5GeV. Here λi, i = 2, 4, 5 at the EW scale are chosen in very weak (λi = 0.01 in red),

weak (λi = 0.10 in green), moderate (λi = 0.40 in blue) and strong (λi = 0.80 in purple)

coupling limits respectively.

In ID+Type-III+ ISS scenario we have three generations of fermionic triplet Σ1i which

generates the Dirac term and three generations of additional fermionic triplet Σ2j instru-

mental for inverse seesaw mechanism. Having SU(2)L charge they contribute to the beta

functions of the SU(2)L gauge coupling, i.e. βg2 positively; which is somewhat different

than normal Type-I + ISS case [54]. Additionally YN also contributes positively to the

beta functions of λ3,4,5 at one-loop and negative effects only comes at two-loop. Both YN

and βg2 push the λ3,4,5 towards non-perturbative limit. The Higgs quartic couplings λ1
get negative corrections from the Yukawa coupling YN , pushing the Higgs potential toward

instability at one-loop and two-loop. The detailed two-loop beta functions are given in

appendix A, where only two generation effects are shown. However, in figure 2 we have

considered all three generations of SU(2)L triplet fermions along with ID which makes the

theory more stable, but simultaneously becomes non-perturbative below Planck scale for

all corresponding values of λi and YN. Thus for the Planck scale perturbativity we should

restrict ourselves to two generations of fermionic triplets. For λi = 0.01, 0.10 which is less
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than λ1 = 0.1264, λ1 hits Landau pole before going into instability around 1015GeV (red

and green lines). This happens due to positive effect of g2, which is different than the

Type-I case [54]. The bending happens due to further positive effects of λ1Tr(Y
†
NYN) and

other quadratic terms involving λis. Such bending effects grows from λi = 0.01 (brown

line) to λi = 0.10 (green line). For λi ≥ 0.2 the perturbative limits come at much smaller

case as other λis hit the Landau pole before λ1.

In figure 3, we present the perturbative behaviour of the Higgs quartic couplings for SM

extension with ID + Type-III + ISS with two generations of fermionic triplets. The per-

turbativity behaviour of the scalar quartic couplings λ3, 4, 5 are studied in figures 3(a)–3(f)

respectively for two different choices of the coupling YN , i.e. YN = 0.01, 0.40. The other

quartic couplings λi are chosen to be 0.01, 0.1, 0.4 and 0.8 which are shown by the red, green,

blue and purple lines, respectively. Higgs quartic coupling λ3 is perturbative till Planck

scale for λ3 . 0.56, 0.37 for λi(EW) = 0.01, 0.10 respectively, as shown in figure 3(a). For

a larger coupling λi(EW) = 0.40, 0.80 theory becomes non-perturbative at much lower

scale ∼ 108.9, 105.7GeV for almost all initial values of λ3, and for a coupling YN = 0.01.

Figure 3(b) shows the similar behaviour of λ3 for a larger YN , where we choose YN = 0.40

and the other quartic couplings λi(EW) = 0.01, 0.10. As is evident from figure 3(b), the

Higgs quartic coupling λ3 is perturbative till Planck scale for λ3 . 0.47, 0.26 for the above

choices of λi(EW). For λi(EW) = 0.40, 0.80, theory again becomes non-perturbative at

much lower scale ∼ 108.4, 105.4GeV for almost all initial values of λ3. Similarly, the per-

turbative bounds on Higgs quartic coupling λ4 are shown in figures 3(c)–3(d). The results

are very similar to the case of λ3. Here for the choice of λi(EW) = 0.01, 0.10 the pertur-

bative limits remain valid till the Planck scale for λ4 . 0.64, 0.36 and for YN = 0.01. For

a larger YN = 0.40, the corresponding perturbative limit turns out to be λ4 . 0.54, 0.24.

For higher values of λi(EW), theory becomes non-perturbative at much lower scale, i.e.

∼ 109.2, 106.1GeV for YN = 0.01 and ∼ 108.8, 105.9GeV for almost all initial values of

λ4 and for the choice of Yukawa couplings YN = 0.01 and YN = 0.40, respectively. As

depicted in figures 3(e)–3(f), Higgs quartic coupling λ5 is perturbative till Planck scale

for λ5 . 0.29, 0.22 for YN = 0.01 and λ5 . 0.24, 0.16 for YN = 0.40 for the choice

of λi(EW) = 0.01, 0.10 respectively. For higher values of λi(EW), theory becomes non-

perturbative at much lower scale ∼ 1010.1, 106.2GeV for YN = 0.01 and ∼ 109.8, 106.1GeV

for YN = 0.4 respectively for almost all initial values of λ5. The perturbative scale decreases

for larger choices of YN as λ3,4,5 increases with YN and even faster than Type-I case [54]

with the stringent constraint comes from the perturbativity bound of λ5. Here the theory

becomes non-perturbative before Planck scale for λi(EW) = 0.40, 0.80 respectively. For

λi(EW) = 0.01, 0.10 the Planck scale validity can be achieved for λ5 ≤ 0.30, 0.22 and

λ5 ≤ 0.25, 0.17 for the choices of YN = 0.01, 0.40 respectively.

Figure 4 depicts the bounds on perturbative scale (log10µ) with respect to the Yukawa

coupling YN for different choices of initial values of λ(i=2,3,4,5). For YN values up to 0.1,

the effect of triplet fermions on the perturbativity of λi is hardly noticeable as shown in

figure 4. The exact value of YN where it starts affecting the perturbativity depends on

the initial value of λi at EW scale. However, due to enhanced g2 in the case of Type-III,

λi attains perturbation limit before than Type-I case and the effect is more prominent
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(b) YN = 0.4
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(e) YN = 0.01
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(f) YN = 0.4

Figure 3. Perturbative limits of λ3, λ4 and λ5 for various λis and YN = 0.01, 0.40 at EW scale.

The colour codes are presented as: very weak (λi = 0.01 in red), weak (λi = 0.10 in green), moderate

(λi = 0.40 in blue) and strong (λi = 0.80 in purple) couplings respectively with two generations of

fermionic triplet in the SM plus ID plus Type-III ISS scenario.
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Figure 4. Bounds from perturbativity scale on YN as a function of µ for different values of λi with

yt = 0.9369, MN = 100GeV. The red curve and the green curve corresponds to the ID plus Type-

I ISS scenario and ID plus Type-III ISS scenario respectively with two generations of fermionic

triplets.

for lower values of λi(EW). For λi(EW) = 0.1 in ID+Type-III+ISS, the λ1 hits Landau

pole before other λs as λ1(EW) = 0.1264 and gets large positive contribution form the

enhanced g2 in this case. Effects of other λis are negligible in this case until a particular

value of YN . Large g2 effect brings the perturbative scale to 1028.07GeV with prolonged

effect till YN . 0.23 after which λ1Tr(Y
†
NYN) effect takes over bringing perturbative scale

further down as can be seen from the green line with the bending effect. Compared to

that in ID+Type-I+ISS case, for λi = 0.1, the perturbativity scale is ∼ 1033.29GeV and

the effect starts showing up for YN > 0.15 in ID+Type-I+ISS as can be seen in red line.

Here perturbative limits are obtained via the Landau poles of other λi as g2 decreases with

the scale in this case and large YN pushes λ1 towards negative values of instability [54].

However, other λi gets positive contributions λiTr(Y
†
NYN) towards their Landau pole. Like

the Type-III case here also being very small λi effects are negligible.

For higher values of λi(EW), the perturbativity limits are obtained when other λs hit

Landau pole before λ1 and mostly controlled by λi (see appendix A) and λ1 runs towards

instability by large YN effect. This also results in lesser splitting in the perturbative scale

between Type-III and Type-I until λiTr(Y
†YN) effects creep in with larger factor for Type-

III as compared to Type-I. For λi = 0.2, the perturbativity limit comes around the GUT

scale 1016−15GeV and the fermion effect starts for YN >∼ 0.3 in both scenarios but the effect

of YN is much stronger in ID+Type-III+ISS.

For further higher values of λi = 0.8, the perturbativity scales are almost the same ∼
105GeV for both Type-I and Type-III cases mostly governed by the λi effects. The effect of

new fermion comes much later for YN > 0.60. Higher values of λis can accommodate higher

values of YN for vacuum stability in λ1 direction. On the other hand, the theory becomes
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non-perturbative at much lower scale. One can read the upper bounds on perturbativity

from figure 4 for λi and YN values. We see that for the λi ≤ 0.15 and YN ≤ 0.25 , YN ≤ 0.3

the theory remains perturbative till the Planck scale for Type-III and Type-I respectively.

4 Stability bound

In this section we analyse the stability of Higgs potential via two different approaches.

Firstly via calculating two-loop scalar quartic couplings and checking if the SM Higgs like

quartic coupling λh becomes negative at some higher scale. In this case λh = λ1 at tree-

level, but at one-loop and two-loop levels λh gets contribution from SM fields as well as the

ID and the Type-III fermions. The details are provided in subsection 4.1. For simplicity,

we only present the expressions of the corresponding beta functions at one-loop in the next

subsection. The expressions for the two-loop beta functions are given in the appendix A.

Secondly we follow the effective potential approach as described in detail in section 4.3.

4.1 RG evolution of the scalar quartic couplings

To study the evolutions of dimensionless couplings we have implemented the ID + Type-III

Seesaw + ISS scenario in SARAH 4.13.0 [120] for two generations SU(2)L triplet fermions.

The corresponding β-functions for various gauge, quartic and Yukawa couplings are cal-

culated at one- and two-loop. The full two-loop β-functions can be found in appendix A,

and used for our numerical analysis of vacuum stability which will be described here. We

first look at the one-loop β-function of λh to observe the effect of the Yukawa and other

scalar quartic couplings. λh = λ1 at tree-level and effects of other particles start entering

at one-loop level. The β-function of the SM-like Higgs quartic coupling λh in this model

receives three different types of contributions: one from the SM gauge, Yukawa, quartic

interactions, the second from the Type-III Seesaw Yukawa couplings, and the third from

the inert scalar sector (ID):

βλh
= βλ1

= βSMλ1
+ βType−III+ISS

λ1
+ βIDλ1

, (4.1)

with

βSMλ1
=

1

16π2

[
27

200
g41 +

9

20
g21g

2
2 +

9

8
g42 −

9

5
g21λ1 − 9g22λ1 + 24λ21

+12λ1Tr
(
YuY

†
u

)
+ 12λ1Tr

(
YdY

†
d

)
+ 4λ1Tr

(
YeY

†
e

)

−6Tr
(
YuY

†
uYuY

†
u

)
− 6Tr

(
YdY

†
d YdY

†
d

)

−2Tr
(
YeY

†
e YeY

†
e

)]
, (4.2)

βType−III+ISS
λ1

=
1

16π2

[
12λ1Tr

(
YNY

†
N

)
− 10Tr

(
YNY

†
NYNY

†
N

)]
, (4.3)

βIDλ1
=

1

16π2

[
2λ23 + 2λ3λ4 + λ24 + 4λ25

]
. (4.4)

Here Yu, Yd, Ye represent the up, down and electron-type Yukawa couplings and other

Yukawa couplings are neglected [9] and g1, g2 are the U(1)Y , SU(2)L gauge couplings re-

spectively their values at the EW scale [77] are: λ1 = 0.1264, g1 = 0.3583, g2 = 0.6478,
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Figure 5. Two loop running of the SM like Higgs quartic coupling as a function of energy. Here

the red, green, blue and the purple curve correspond to the Type-III Seesaw, Type-III Seesaw+ISS,

ID+Type-III Seesaw and ID+Type-III Seesaw+ISS scenarios. The left and right plot represent

three generations and two generations of fermionic triplets, respectively.

yt = 0.9369. In this analysis the ISS contribution to the RG evolution of λ1 starts only at

the scale above MN .

In figures 5(a)–5(b), we show the respective λh running with the scale µ. The plot

in the left panel represents the three generation scenario, and the plot in the right panel

represents two generations scenario. The two plots describe the behaviour of λh at two-loop

level for four different cases as before with three and two generations of triplet fermions,

where MN = 100GeV, λ1 = 0.1264, λi = 0.01 (with i = 2, 3, 4, 5) at the EW scale. The

RG evolution of λ1 ≡ λh is described by the red curve as a function of the scale µ where

λh has contributions of βSMλ1
+ βType−III

λ1
only. The green curve shows the evolution using

βSMλ1
+βType−III

λ1
+βISSλ1

, blue curve describes the evolution using βSMλ1
+βType−III

λ1
+βIDλ1

, and

finally the purple curve shows the full evolution using βλ1
≡ βSMλ1

+ βType−III
λ1

+ βISSλ1
+ βIDλ1

[cf. eq. (4.1)]. The added effects of the new contributions to λ1 ≡ λh at one-loop are given

in eq. (4.1) and the detailed two-loop expressions are written in appendix A.

In figure 5(a), the three generations of fermionic triplet make the g2 contribution too

large (see eq. (3.8)) for both Type-III+ISS (green) and ID+ Type-III +ISS (purple), such

that βλ1
hits the Landau pole at ∼ 1015.4GeV and ∼ 1015.1GeV respectively before hitting

the instability scale (at which λh ≤ 0). This makes the theory non-perturbative below

Planck scale. Without ISS the βg2 is relatively smaller (see subsection 3.1) which restrains

λh from hitting the Landau pole. Thus for Type-III Seesaw scenario βλh
becomes unstable

∼ 1010.7GeV but bounce back to stability (where λh ≥ 0) at ∼ 1014GeV. For ID+ Type-III

scenario, βλh
remains stable till Planck scale for λi = 0.01 and YN = 0.06 respectively.

Figure 5(b) describes the behaviour of two generations of fermionic triplet with reduced

positive g2 effect, which prohibits the Landau pole of λ1. We can see the ID+Type-III+ ISS

(purple curve) is more stable than Type-III+ISS (green curve). Again without ISS, the g2
contribution is less so Type-III (red) and ID+Type-III (blue) have gone more negative; es-

pecially Type-III (red) is even more negative due to the lack of positive effects of ID scalars.

– 14 –



J
H
E
P
0
2
(
2
0
2
1
)
0
7
5

Y N = 0.01

Λ i = 0.01

M N =100

ID + Type - III+ ISS

ID + Type - III

Type - III+ ISS

Type - III

5 10 15 20
- 0.010

- 0.005

0.000

0.005

0.010

0.015

0.020

log10 Μ @GeV D

Λ
h

(a)

Y N = 0.23

Λ i = 0.01

M N =100

5 10 15 20
- 0.010

- 0.005

0.000

0.005

0.010

0.015

0.020

log10 Μ @GeV D

Λ
h

(b)

Y N = 0.02

Λ i = 0.1

M N =100

5 10 15 20
- 0.04

- 0.02

0.00

0.02

0.04

log10 Μ @GeV D

Λ
h

(c) 3 gen

Y N = 0.334

Λ i = 0.1

M N =100

5 10 15 20
- 0.04

- 0.03

- 0.02

- 0.01

0.00

0.01

0.02

log10 Μ @GeV D

Λ
h

(d)

Y N = 0.01

Λ i = 0.1

M N =100

5 10 15 20
- 0.01

0.00

0.01

0.02

0.03

0.04

log10 Μ @GeV D

Λ
h

(e)

Y N = 0.334

Λ i = 0.1

M N =100

5 10 15 20
- 0.04

- 0.03

- 0.02

- 0.01

0.00

0.01

0.02

log10 Μ @GeV D

Λ
h

(f) 3 gen

Figure 6. Two-loop running of the SM-like Higgs quartic coupling λh as a function of scale

(µ). Here the red, green, blue and the purple curve corresponds to the Type-III, Type-III+ISS,

ID+Type-III and ID+Type-III +ISS scenarios respectively for four different benchmark values of

YN and Higgs quartic couplings (λ1=2,3,4,5) with two generations of fermionic triplet. (c) and (f)

are with three-generations of triplet fermions.

In figure 6 we describe the behaviour of two-loop running of the SM-like Higgs quartic

coupling λh as a function of scale (µ) for six benchmark points. We follow the same colour

code as figure 5 and λ1(EW ) = 0.1264 chosen for all the graphs. Figure 6(a) describes

for the benchmark points of λi = 0.01, YN = 0.01 and MN = 100GeV where i = 2, 3, 4, 5
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with two generations of Type-III fermions. We can clearly see that the stability scales for

ID+Type-III+ISS (purple curve) and Type-III+ISS (green) are enhanced to Planck scale.

Type-III (red) and ID+ Type-III (blue) hit instability around 109.5GeV. Now if we increase

YN = 0.23 as shown in figure 6(b), we can see that red and blue curve hit instability earlier

around 108.5GeV due to larger negative effects of YN . Even green and purple curves also

hit λh = 0 due to this negative effect. For a comparative study with figure 6(a) we plot the

running of the λh for three generations of Type-III fermions in figure 6(c). We see that the

purple and the green curve hits Landau pole again due to larger positive g2 contributions as

explained earlier. Blue and red curve also move towards stability in this case. Figure 6(e)

we restrict the fermion generation only to two and with the reduced positive effect the

Landau poles are gone with overall shift towards the left.

Figure 6(d) shows the comparison with figure 6(b) with two Type-III fermion gener-

ation with YN enhanced to 0.334. We notice the overall negative effect that shifts all the

curves towards the left reducing the instability scale with red curve hitting instability at

first at 107GeV. If we increase the number of fermion generation to three in figure 6(f) the

effect will be enhanced as red curve crosses zero at around 106GeV before acquiring the

Landau pole at 1015GeV. The shapes of all the curves becomes more steeper as compared

to figure 6(d). Compared to figure 6(c) where YN = 0.02, if we increase YN = 0.334 in

figure 6(f), we see that the negative effect creeps in and the Type-III + ISS i.e. green the

green curve does not hit the Landau pole. However, in ID+Type-III +ISS case due to the

positive contributions from λi the purple curve hits the Landau pole at 1015GeV.

4.2 Variation perturbativity and stability with YN

Figure 7 describes the variation of the stability scale with YN and λi. We notice that for

the smaller values of λi ∼ 0.1 (green circles), the Planck scale stability can be achieved till

YN ≤ 0.32. In this case λ1 strikes the perturbative bounds before other quartic couplings

due to the strong g2 effect and as λ1(EW ) = 0.1264. The other quartic coupling effects

are negligible in this region as explained earlier. After YN ≥ 0.32 (green line) the negative

contribution from the new fermions become very strong and push λh towards negative

values at around 109GeV.

For example as we enhance the λi at EW scale the effect of quartic couplings in their

beta functions increase as λiTr(Y
†
NYN) along with the enhanced g2 effect. These inflate

βλ1
towards the higher scale stability compared to the SM but leads to non-perturbative

limit for the other λis at lower scale. The point to be noted here is that for the choices

of λi > λ1 at the EW scale, other λi( i = 2, 3, 4, 5) are most likely to hit the Landau pole

before λ1. For example as we enhance the λi = 0.2 with λ1 = 0.1264 at the EW scale, one

of the λis afflicts the landau pole (shown by pink color diamond) around 1015 − 1012GeV,

even before λ1 enters into instability at YN = 0.47 for 106.24GeV (shown by pink line).

The bending of the curves for higher YN are due to the positive λiTr(Y
†
NYN) effect for

perturbativity and negative Tr(Y†
NYNY

†
NYN) effect for the instability respectively.

For λi = 0.3, one of the λis hits the Landau pole at much lower scale around 1010GeV

(cyan colour star) due to large quartic coupling contributions along with λiTr(Y
†
NYN). In
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Figure 7. Effect of Yukawa coupling on the perturbativity and stability bound for different values

of λi. λi = 0.10 (green curve) ensures Planck scale perturbativity and stability for YN ≤ 0.32. The

pink curve corresponds to λi=0.2 which gives Landau pole for YN ≤ 0.47 (shown by diamond).

After YN = 0.47, the negative fermionic contribution starts dominating which makes the λh ≤ 0 for

106.24 GeV (shown by pink line) before hitting the Landau pole. For λi = 0.3, the running of βλ1

hits the Landau pole till YN ≤ 0.57 (described by cyan color star) and later the effect of fermions

makes the λh ≤ 0 for 105.23 GeV (described by cyan line).

this case the negative effect of YN in λ1 starts much later due to larger value of λi and at

YN ≥ 0.57 the effect of fermions make the λh ≤ 0 for 105.23GeV (cyan line).

4.3 Vacuum stability: RG-improved potential approach

We study the stability of the EW vacuum via the Coleman and Weinberg [121] prescription

of RG-improved effective potential at one-loop. The effective potential at one-loop has been

calcualted for SM + Type-III-ISS + ID with two generations of fermions. The potential

then analysed for the stability, metastability and instability by observing the behaviour of

the effective Higgs quartic coupling. For this purpose we scan the parameter space of the

model and then segregate them as above mentioned three regions.

Eq. (2.3) describes the tree-level Higgs potential for the model. The tree-level stability

conditions of the potential are given by [108]

λ1 ≥ 0 , λ2 ≥ 0 , λ3 ≥ −
√
λ1λ2 , λ3 + λ4 − |λ5| ≥ −

√
λ1λ2 . (4.5)

In SM λh receives negative effects from the top quark loop which makes the potential

unstable at around 1010−11GeV. There is also a possibility of second minima in the h

direction due to quantum fluctuation. In this article we will see how different beyond

SM fields can contribute to that possibility of second minima. However, such possibility

can only occur at higher field values which justifies the choice of effective potential as
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given below:

Veff(h, µ) ≃ λeff(h, µ)
h4

4
, with h≫ v , (4.6)

where λeff(h, µ) is the effective Higgs quartic coupling and the calculation of which is

described below. Then the stability of the vacuum then be guaranteed for the scale µ by

assuring that λeff(h, µ) ≥ 0.

4.4 Effective potential

In our model the one-loop RG-improved effective potential can be written as

Veff = V0 + V SM
1 + V ID

1 + V ISS+Type−III
1 , (4.7)

where V0 is the tree-level potential given by eq. (2.3), V SM
1 is the effective Coleman-

Weinberg potential in the SM that contains all the one-loop corrections involving the

SM particles at zero temperature with vanishing momenta. The other two terms V ID
1 and

V ISS+Type−III seesaw
1 represent the corresponding one-loop effective potential terms from the

inert scalar doublet, and fermionic triplet, respectively. V1 describes one-loop Coleman and

Weinberg effective potential which can be written as

V1(h, µ) =
1

64π2

∑

i

(−1)FniM
4
i (h)

[
log

M2
i (h)

µ2
− ci

]
, (4.8)

where the summation is over all the fields interacting with the h-field. F = 0, 1 for bosons

and fermions respectively, ni is the total of degrees of freedom of the particle and M2
i are

the field-dependent mass terms

M2
i (h) = κih

2 − κ′i , (4.9)

with the corresponing coefficients are shown in table 1 in the last column. Note that the

massless fileds do not contribute to eq. (4.9), and to eq. (4.8). Hence, we only include

top quark from SM, and the other contributions are neglected. For Type-III+ISS, their

contributions comes after the mass threshold MNi
. The full effective potential can be read

from eq. (4.7), where each of these extra one-loop terms can be explained from eq. (4.8).

The effective poential with only SM like Higgs field can be explained as eq. (4.6) with the

effective coupling given as follows:

λeff (h, µ) ≃ λh (µ)︸ ︷︷ ︸
tree-level

+
1

16π2

{
∑

i=W±,Z,t,

h,G±,G0

niκ
2
i

[
log

κih
2

µ2
− ci

]

︸ ︷︷ ︸
Contribution from SM

+
∑

i=H,A,H±

niκ
2
i

[
log

κih
2

µ2
− ci

]

︸ ︷︷ ︸
Contribution from ID

+ 2
∑

i=1,2

niκ
2
i

[
log

κih
2

µ2
− ci

]

︸ ︷︷ ︸
Contribution from Type-III+ISS

}
. (4.10)
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Particles i F ni ci κi κ′i

W± 0 6 5/6 g22/4 0

Z 0 3 5/6 (g21 + g22)/4 0

SM t 1 12 3/2 Y 2
t 0

h 0 1 3/2 λh m2
1

G± 0 2 3/2 λh m2
1

G0 0 1 3/2 λh m2
1

H± 0 2 3/2 λ3/2 m2
2

Inert H 0 1 3/2 (λ3 + λ4 + 2λ5)/2 m2
2

A 0 1 3/2 (λ3 + λ4 − 2λ5)/2 m2
2

Type3seesaw +ISS Σ1i 1 2 3/2 Y 2
N/2 0

Table 1. Coefficients in the Coleman-Weinberg effective potential needed for the study, cf. eq. (4.8).

In the case of inverse seesaw in the limit µΣ → 0, the triplet fermion masses are double-

degenerate per generation. Thus we take an extra factor of two for each new Type-III

fermion contribution in eq. (4.10). We then study the λeff(h, µ) in our model to distinguish

the stability, metastability and instability regions. h = µ is taken for the numerical analysis

as at this scale we have scale-invariant potential [122].

4.5 Phase diagrams: stable, metastable and unstable regions

For λeff ≥ 0 the potential is bounded from below and the region is termed as the stable

region. In this region we expect to have a global EW minimum. On the other hand, for

λeff < 0 the potential develops a second minima and there can be tunnelling to the global

second minima sufficiently faster. But there exists regions when such tunnelling is not fast

enough and EW minimum still can survive due to the tunnelling rate which is greater than

the age of the Today’s universe. Such possibilities are known as metastable vacuua. The

tunnelling rate at zero temperature has been calculated as

P = T 4
0 µ

4 exp

[ −8π2

3λeff(µ)

]
, (4.11)

where T0 is time corresponds to the age of the universe, and µ is the scale with maximum

probability, i.e. ∂P
∂µ

= 0. The λ values at different scales can be obtained as:

λeff(µ) =
λeff(v)

1− 3
2π2 log

(
v
µ

)
λeff(v)

, (4.12)

where v ≃ 246GeV. If we substitute P = 1, T = 1010 years and µ = v in eq. (4.11), one

finds λeff(v) =0.0623. Demanding P < 1, for T = 1010 years old universe would estimate

the condition that such tunnelling rates corresponds to the metastability as given by [6]:

0 > λeff(µ) &
−0.065

1− 0.01 log
(

v
µ

) . (4.13)
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The condition of λeff < 0 but outside region eq. (4.13), corresponds to when potential

develops a second minima as mentioned before and if the tunneling rate from the EW

vacuum to this second vacuua is less than the age of the universe then it depicts the

unstable region. It is evident from eq. (4.10), these different solutions are sensitive to the

choices of the scale µ and other model parameters such as bare masses and couplings.

Figure 8 represents the phase diagrams in terms of Higgs boson mass and top quark

pole mass in GeV. Different regions of the solution spaces corresponding to the unstable,

metastable and stable regions are depicted in red, yellow and green colours respectively.

The contours describe the current experimental 1σ, 2σ, 3σ values with the dot specifying the

central value in the (Mh,Mt) plane [9, 63]. To obtain the regions we vary all the λi = 0.1–

0.8 while the λ1 and yt are varied to attain the Higgs boson mass within 120–128GeV and

top quark mass within 168–182GeV respectively. In figure 8 we fix MN = 100GeV and

vary YN = 0.1–0.4 for two generations of SU(2) triplet fermions. Figure 8(a) and figure 8(b)

present the scenarios with ID+Type-III+ISS for relatively lower values of YN = 0.1, 0.3.

It is realized that the scenarios are stable till Planck scale.

As shown in figure 8(a), in this scenario, λeff becomes more positive and the region is

fully in the stable region till Planck scale. This occurs, as there is more positive contribution

from g2 compared to negative effect from fermions for lower values of YN . Additionally,

the inert doublet also adds more scalars to the effective potential, leading to the enhanced

stability. In figure 8(b) we depict the scenario for YN = 0.3, where negative fermionic

effect starts showing up which is compensated by the scalar effect of IDM. As is evident,

the stability is still more than SM, and hence, the 3σ contour in mh−mt plane just touches

the region of metastability. Further enhancement in the value of YN counters the positive

scalar effect of IDM, and for YN = 0.4 the 2σ region enters in the unstable region as

described in figure 8(c).

Figure 8(d) describes the scenario for Type-III seesaw with two generations of triplet

fermions, assuming YN = 0.4. It can be seen that the whole region is unstable. Further

addition of ISS SU(2)L triplet fermions which directly do not give negative contributions

but enhance g2 to more positive value as discussed before leads to Type-III seesaw+ISS

scenario marginally extending into the metastable region for YN = 0.4, as depicted in

figure 8(e). Instead of ISS fermions addition of inert doublet also have the similar effect

and pushes the potential into the metastable region as shown in figure 8(f). This further

motivates the extension of Type-III seesaw scenario with ISS and IDM to achieve the

stability at larger values of YN as described in figure 8(d).

Figure 9 we increase MN = 103GeV and analyse the phase diagrams as before. Due

to this enhancement in SU(2)L triplet fermion mass their negative loop effects will now

be reduced. This can be realised from figures 9(a)–9(b), where λeff is highly positive and

the regions are fully stable as compared to figures 8(a)–8(b). As we increase YN = 0.4,

the negative fermionic effect starts showing up in figure 9(c). The region now lies in the

metastable region, however touching the stable region, contrary to figure 8(c) where some

part is in unstable region.

Figure 9(d) describes the only Type-III scenario for YN = 0.4 in which the central

value in the (Mh,Mt) plane lies in the unstable region similar to figure 8(d). An extension
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Figure 8. Phase diagram in terms of Higgs and top pole masses in GeV with MN = 100GeV in fig-

ure 8(a), 8(b), 8(c) for ID+Type-III+ISS scenarios with YN = 0.1, 0.3, 0.4 respectively. Figure 8(d)

is for Type-III only and figures 8(e), 8(f) are for Type-III+ISS with YN = 0.4. The unstable,

metastable and stable regions are depicted by the colours red, yellow and green respectively. The

contours describe the current experimental 1σ, 2σ, 3σ values with the dot specifying the central

value in the (Mh,Mt) plane.

of Type-III seesaw with ISS in figure 9(e) and an extension of Type-III seesaw with inert

doublet in figure 9(f) moves the potential into the metastable region similar to MN =

100GeV case in figures 8(e)–8(f) respectively.
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Figure 9. Phase diagram in terms of Higgs and top pole masses in GeV with MN = 103 GeV

in figures 9(a), 9(b), 9(c) for ID+Type-III+ISS scenarios with YN = 0.1, 0.3, 0.4 respectively. Fig-

ure 9(d) is for Type-III only and figures 9(e), 9(f) are for Type-III+ISS with YN = 0.4. The

unstable, metastable and stable regions are depicted by the colours red, yellow and green respec-

tively. The contours describe the current experimental 1σ, 2σ, 3σ values with the dot specifying the

central value in the (Mh,Mt) plane.

The inert Higgs doublet model provides a dark matter in terms of either A or H0

whichever is lighter [38, 54, 67]. Being SU(2) doublet the dominant mode of annihilation is

DMDM → W±W∓ with sub-dominant annihilation and co-annihilation modes of ZZ and
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ZW± depends on the gauge couplings for MA > Mh. It was shown that correct DM relic

puts a lower bounds on the DM mass of 700GeV and eq. (2.6) implies m22 >∼ 665GeV.

This is very crucial in terms of figure 8 and figure 9 as we vary λi(EW) = 0.01-0.8 while

the λ1 and yt are varied to attain the Higgs boson mass within 120-128GeV and top quark

mass within 168–182GeV. However, the RGE evolution of the quartic couplings that we

use in figure 8 and 9 is independent of the value of m22. Since, the mass spectra of H0

and A depend on the m22 and λ345(= λ3+λ4−2λ5) the quartic coupling combination (see

eq. (2.6)) and we can always choose m22 in such a way that the DM mass will satisfy the

correct DM relic density. Thus above conclusions are consistent with the DM relic bounds.

Similarly, the EW value of µΣ will not effect the RGE evolution of the quartic couplings.

Figure 8 and 9 fix MN as 100GeV and 1000GeV for three diffrent fixed values of YN . Still,

we can choose µΣ in such a way to satisfy the eV order light neutrino mass (see eq. (2.16)).

Thus the chosen benchmark points can satisfy both DM mass compatible with correct relic

density and eV scale neutrino mass.

5 Discussions and conclusion

In this article we studied the vacuum stability of the electroweak vacuum in the presence of

Type-III fermions along with inverse seesaw fermions. Unlike Type-I seesaw case, Type-III

fermions are in the triplet representation of SU(2) which contribute to the beta-function

of the gauge coupling g2 even at one-loop level. This is a positive effect and increases from

Type-III to Type-III+ISS+ID case step wise and makes the g2 grow to higher values as

scale increases. g2 certainly becomes not perturbative below Planck scale or GUT scale for

three generations of Type-III fermions. It is only with the two generation that we are able

to acquire the Planck or GUT scale stability.

The enhancement of g2 also has impact on the scalar quartic couplings which makes

them non-perturbative much before compared to SM or SM+Type-I+ISS [54]. For lower

values of quartic couplings the g2 effect is the dominant. At larger values of λi (except

the λ1 which is fixed by the Higgs mass at EW scale) λiTr(Y
†
NYN) effect creeps in making

the quartic couplings further divergent. However, a further increment of YN will bring

down the stability bound by pushing λ1 to negative direction which is proportional to

Tr(Y†
NYNY

†
NYN). For Planck scale perturbativity we can go up to λ5 ∼ 0.17 with λ1 =

0.126 and other λi = 0.10 at the EW scale for YN = 0.40. The effective potential approach

calculations show that even for YN = 0.30 for mN = 100, 1000GeV the model ID+Type-

III+ISS with two generations of new fermions lies in the stable region for lower values of YN
and draws to metastable region for higher values of YN . However, only Type-III scenario

belongs to unstable regions in both cases, whereas ID+Type-III and Type-III+ISS scenarios

can be in between metastable and unstable regions.

IDM is generally motivated to provide the much needed DM to explain the DM relic

and other experimental observations. Nevertheless, it is also supported to enhance the

stability of electroweak vacuum. Being in Z2-odd multiplet it does not couple to the SU(2)

triplet fermions which makes their phenomenology more illusive. No two-body decays are

allowed for the Type-III fermions into any of the inert Higgs bosons. In [38, 54] authors
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have shown that due to compressed spectrum only some three- and four-body decays are

allowed maintaining the Z2 symmetry of the Lagrangian. In [37, 38, 123–126] a detailed

relic calculations has been carried out including the direct, indirect DM searches and col-

lider phenomenology. It has been found out that the lightest Z2-odd particles should be

heavier than 700GeV in ID and 1176GeV in IT to satisfy the DM relic constraints which

can be in the desired range to explain the AMS-02 positron excess observation [38, 127].

The decays of charged Higgs boson can give rise to mono-lepton plus missing energy sig-

natures [38] which can be isolated from displaced mono-leptonic signatures in real scalar

and complex triplet scenarios [38, 128] and other charged Higgs signatures [118, 129–131].

Similar displaced charged leptonic signatures can be observed in the models with Type-I

seesaw [118, 132–137] and Type-III seesaw [82, 138, 139].

The triplet fermions are searched a the LHC at 13TeV centre of mass energy with

democratic branching fractions [140] and a lower bound of 620–840GeV has been put at

2σ level. However, due the presence and mixing with other set of SU(2) triplet fermions

involving in inverse seesaw and non-democratic branching can substantially reduce the mass

limit allowing even smaller triplet fermion mass. Type-III fermions can also be looked via

their angular distributions at the LHC [91].
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A Two-loop β-functions with two generations

A.1 Scalar quartic couplings
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