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First-principles density functional calculations are performed to investigate the lattice dynamics,

Infrared reflectivity, and Raman intensity spectra of a lead-free ferroelectric K1/2Bi1/2TiO3 sys-

tem. In particular, the A-site cation ordering in K1/2Bi1/2TiO3 and its effects on lattice dynamics

and the Raman spectrum are explored. The results suggest that the cation ordering at the A-site in

K1/2Bi1/2TiO3 significantly influences its Raman spectra. From the analysis of theoretical and

experimental Raman spectra, it is suggested that randomly arranged cation ordered nanoregions

with different A-site orderings are formed in K1/2Bi1/2TiO3 samples. The random arrangement is

favored by entropy contributions to free energy and may explain the lack of observed long-range

A-site cation ordering in K1/2Bi1/2TiO3. Further, it is suggested that partial A-site cation ordering

may also occur in K1/2Bi1/2TiO3 favored by kinetic factors during sample preparation. The Born

effective charges of K and Bi ions at the A-site are computed and found to be significantly dispa-

rate, thereby suggesting hetero-polar activity at the A-site in K1/2Bi1/2TiO3. The formation of

A-site hetero-polar cation ordered nanoregions and their random or/and partially ordered arrange-

ment in K1/2Bi1/2TiO3 may play an important role in the determination of its relaxor properties

apart from the dominant role played by polar nanoregions. The computed Infrared reflectivity

and Raman intensity spectra are expected to provide benchmark first-principles results for

further analysis of experimental spectra and results. Published by AIP Publishing.

https://doi.org/10.1063/1.5021410

I. INTRODUCTION

Complex oxides exhibit fascinating structures and physi-

cal properties which make them highly promising for a vari-

ety of technological applications. In particular, lead-based

oxides such as Pb(Zr1-xTix)O3 (PZT) and related composi-

tions have been widely used as primary functional materials

in high-performance sensors, actuators, and transducers for

many years.1,2 PZT and related compositions near the mor-

photropic phase boundaries (MPBs) are particularly advanta-

geous for electromechanical device applications due to their

superior dielectric and piezoelectric properties. However,

lead-based PZT and related materials also pose serious

health and environmental risks due hazardous nature of lead.

This has led to an enormous push in the last two decades

towards the development of lead-free and environmentally

friendly high performance piezoceramics.3–5 In recent years,

bismuth (Bi) containing perovskite oxides such as K1/2Bi1/2TiO3

(KBT), Na1/2Bi1/2TiO3 (NBT), and their solid solutions have

emerged as promising alternative materials that may be

developed as high performance lead-free piezoceramics.6–10

The piezoelectric and dielectric properties in these oxides

comparable to those for PZT are indeed expected due to the

presence of the bismuth cation (Bi3þ). The Bi3þ ion contains

a 6s2 lone electron pair which is known to play a critical role

in driving ferro- and piezoelectric properties in lead-based

ceramics. K1/2Bi1/2TiO3 is an excellent relaxor ferroelectric

that exhibits a broad dielectric peak at the frequency-

dependent dielectric maximum temperature of Tm � 380�

C.9,11,12 It undergoes phase transformation with the structure

changing from cubic (Pm3-m) to pseudocubic at TC �
410 �C and from pseudocubic to tetragonal (P4mm) at a tem-

perature of �270 �C.13 Pure K1/2Bi1/2TiO3 exhibits moderate

dielectric and piezoelectric properties (er � 770, d33
� 80–100 pC/N, and Smax=Emax � 130 pm/V).3 Nevertheless,

improved piezoelectric properties have been achieved in

K1/2Bi1/2TiO3 based solid solutions as well as in K1/2Bi1/2TiO3

with cations substituted at the A and B-sites. For over many

years, the cation substitution in perovskite oxides has been

successfully exploited to tailor physical properties and to

introduce novel functionalities. In cation substituted perov-

skites, the arrangement of cations on different sublattices can

vary from fully ordered to fully random. Furthermore, the

degree of ordering can have significant and remarkable

effects on various structure-property relations.14 In general,

the ordering of B-site cations in the ABO3 type perovskite is

more common than that of A-site cations. Cation ordering is

driven by electrostatic considerations arising due to the dif-

ference in the radius and oxidation states (formal charge) of

the cations. On the other hand, disorder is favored by config-

urational entropy in case the cation sizes and formal charges

are similar. Thus, the ordered arrangement of cations is

expected if the oxidation states of cations on A or B sites dif-

fer by more than two, whereas the disordered arrangement is

expected if the difference is less than two. However, if the

oxidation states of cations differ exactly by two, then the
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arrangement may be fully disordered, partially ordered, or

fully ordered depending on bonding preference or/and differ-

ences in the size of cations. In the case of Na1/2Bi1/2TiO3,

the Naþ (1.32 Å) and Bi3þ (1.31 Å) cations on A-sites have

similar ionic radii and have a relative charge difference of

2e. Therefore, the cation arrangement on the A-site sublattice

is expected to be disordered. This is also in agreement with

experimental and first-principles theoretical studies reported

on Na1/2Bi1/2TiO3.
15–17 On the other hand, in the case of

K1/2Bi1/2TiO3, the Kþ ion has an ionic radius of 1.65 Å

which is much larger than the Bi3þ radius of 1.31 Å. Thus,

the difference in ionic radii of A-site cations can be expected

to provide the driving mechanism for cation ordering on the

A-site sublattice in K1/2Bi1/2TiO3.
14 However, no conclusive

evidence of ionic ordering in K1/2Bi1/2TiO3 has been

reported so far.9,18,19 K1/2Bi1/2TiO3 and its solid solutions

are also interesting for further investigations as origins of its

various intrinsic properties and structure-property correla-

tions have not been fully explored. Recently, based on X-ray

absorption fine structure (XAFS) studies, it was reported that

the local environment of Bi ions in K1/2Bi1/2TiO3 is much

more distorted than that determined earlier from conven-

tional diffraction experiments.19 For many years, various

structural aspects in oxides such as local distortions and ionic

configurations have been widely explored using Raman and

Infrared (IR) spectroscopy. In particular, the presence of new

phases or structural changes can be very effectively deter-

mined using Raman spectroscopy, even in systems which

exhibit no long-range structural ordering.20,21 Although sev-

eral experimental studies of K1/2Bi1/2TiO3 and its solid solu-

tions have been reported due to its technological importance,

reported theoretical studies of K1/2Bi1/2TiO3 are scarce.22,23

Further, though few experimental Raman spectroscopic stud-

ies of K1/2Bi1/2TiO3 have been reported,9,24,25 no experimen-

tal Infrared (IR) study of K1/2Bi1/2TiO3 has been reported to

the best of our knowledge. Moreover, no theoretical study of

Infrared and Raman intensity spectra of K1/2Bi1/2TiO3 has

been reported. Theoretical studies of Raman and Infrared

spectra of K1/2Bi1/2TiO3 are important in that local environ-

ment and cation ordering configurations may be identified

from the features of these spectra.

Here, we present a first-principles study of cation order-

ing and its effect on Raman intensity and Infrared reflectivity

spectra in K1/2Bi1/2TiO3 within the framework of density-

functional theory. From the analysis of the theoretical

Raman study and our recently reported experimental study,25

it is suggested that the cation ordering in K1/2Bi1/2TiO3 sig-

nificantly influences the Raman spectra. Further, it is sug-

gested that randomly arranged nanoscale size regions with

different A-site orderings may be formed in K1/2Bi1/2TiO3

samples. This randomness in arrangement may explain the

lack of observation of long-range cation ordering despite the

significant size difference of Kþ and Bi3þ ions on A-sites in

K1/2Bi1/2TiO3. The study also suggests that the variance in

reported experimental Raman modes may be indicative of

different partial A-site cation ordering in K1/2Bi1/2TiO3 sam-

ples. The formation of A-site cation ordered nanoregions in

K1/2Bi1/2TiO3 may be considered qualitatively similar to

compositionally ordered regions (CORs) formed in well-

known relaxor ferroelectrics of type A(B
0
B00)O3 such as

Pb(Mg1/3Nb2/3)O3.
26–28 Thus, in addition to polar nanore-

gions (PNRs), the cation ordered regions and their coupling

to PNR in K1/2Bi1/2TiO3 may also play a critical role in

determination of its relaxor properties. Besides theoretical

Raman and Infrared spectra, the local structure of K1/2Bi1/2TiO3

and, in particular, Bi-O and Ti-O bond distances are com-

puted and the results are compared with reported X-ray

absorption fine structure (XAFS) spectroscopy results.

Further, the spontaneous polarization, Born-effective charge

tensors of ions, oscillator strengths, and effective charges of

phonon modes are computed and various atomistic mecha-

nisms relevant to physical properties of K1/2Bi1/2TiO3 are

determined.

The rest of the article is organized as follows. Theoretical

details are presented in Sec. II. In Sec. IIA, the computational

methodology is presented. The structure and energies of

A-site cation ordering configurations of K1/2Bi1/2TiO3 are pre-

sented in Sec. IIB. Calculations of phonon mode frequencies

at Brillouin zone-center and Born effective charges are pre-

sented in Secs. II C and IID. Analyses of computed Infrared

reflectivity and Raman intensity spectra are presented in Secs.

II E and II F. Finally, conclusions are presented in Sec. III.

II. THEORETICAL DETAILS

A. Computational methodology

Density functional theoretical framework (DFT) is used

to perform calculations within local density approximation

(LDA) as implemented in PWscf package.29 The core and

valence electron interactions are approximated using the

Troullier-Martins (TM) form of norm-conserving pseudopo-

tential (NCPP).30 A plane wave basis set with a kinetic

energy cutoff of 100Ry is used to expand the Kohn-Sham

wavefunctions. Sampling of Brillouin zones of 1� 1� 2 (10

atoms) and 2� 2� 2 (40 atoms) K1/2Bi1/2TiO3 unit cells is

performed using 8� 8� 4 and 4� 4� 4 Monkhorst-Pack

k-point meshes, respectively. Self-consistency in the calcula-

tions is achieved with total energies converging to 10�6eV/

cell. The ionic relaxations are performed until the largest

force on each ion is reduced to less than 0.005 eV/Å. The

DFT-Linear response scheme with iterative Green’s function

approach of density-functional perturbation theory is used to

compute the zone-center (k¼ 0) phonon frequencies, Born-

effective charge tensors, dielectric permittivity tensors, and

linear optical susceptibility.29

B. Crystal structure and A-site cation ordering
in K1/2Bi1/2TiO3

At room temperature, K1/2Bi1/2TiO3 crystallizes in the

tetragonal structure with P4mm space group symmetry.

The reported experimental lattice parameters for tetragonal

K1/2Bi1/2TiO3 are a¼ b¼ 3.913 Å and c¼ 3.990 Å.25,31

Figure 1 shows the computed total and projected density of

electronic states for K1/2Bi1/2TiO3. The width of the valence

band (VB) is computed to be �5.3 eV. The valence band is

primarily composed of O-2p states. The O-2p and Bi-6p

orbitals in the lower energy segment and O-2p and Ti-3d

244106-2 Niranjan et al. J. Appl. Phys. 123, 244106 (2018)



orbitals in the higher energy segment of the VB are weakly

hybridized resulting in mixed ionic-covalent bonding in

K1/2Bi1/2TiO3. The covalent-ionic type bonding between

Bi and O atoms is also indicative of the lone pair effect

similar to that of Pb2þ in PZT ceramics. The conduction

band (CB) in the range of 2.0–5.8 eV is composed mainly

of Ti-3d orbitals and some contribution from Bi-6p states.

Recently, using X-ray absorption fine structure (XAFS)

spectroscopy, Shuvaeva et al.19 reported the local environment

of Bi and Ti atoms and, in particular, Bi-O and Bi-Ti distances

in K1/2Bi1/2TiO3. It was reported that the local environment of

Bi is significantly distorted as compared to that determined

from neutron diffraction data. The shortest Bi-O bond lengths

of 2.22 Å were reported from the XAFS study which were

shorter by 0.3 Å than those reported on the basis of crystallo-

graphic studies. In our study, the shortest Bi-O bond distance is

computed to be 2.21 Å and thus is in good agreement with the

experimental value obtained from the XAFS study. The short

Bi-O distances indicate strong off-centering of Bi atoms in the

oxygen polyhedral in K1/2Bi1/2TiO3. The computed Bi-Ti dis-

tance is 3.22 Å which is also in good agreement with the

reported value of 3.24 Å from the XAFS study.19

Next, we study A-site cation (Bi and K) ordering in

K1/2Bi1/2TiO3 by computing total energies of 2� 2� 2

supercells of tetragonal K1/2Bi1/2TiO3. Cation ordering at the

A-site sublattice is simulated using 2� 2� 2 tetragonal

supercells containing 40 atoms. In the present study, the ionic

positions in the supercells are relaxed while the lattice con-

stants are kept fixed to experimental values (a¼ b¼ 3.13 Å; c/a

¼ 1.021). Figure 2 shows different A-site ordering configura-

tions in tetragonal K1/2Bi1/2TiO3 supercells. The configurations

are chosen and named following the works of Refs. 22 and 23.

As can be seen in Fig. 2, the [001], [110], and [111] are layer,

columnar, and rock-salt ordering configurations.14 The energy

is computed to be the lowest for the [001] or layered ordering

configuration and the highest for the [111] or rock-salt configu-

ration. The energies for different A-site ordering configurations

relative to that of the [001] configuration are shown in Fig. 3. It

may be noted that, in general, the layered ordered configuration

is favored by A-site cations whereas rock salt ordering is

favored by B-site cations.14 The ordering configurations are

favored by different oxygen anion environments around A- and

B-site cations. As mentioned earlier, A-site cation ordering is

expected in K1/2Bi1/2TiO3 due to the sizeable difference in ionic

radii of Kþ and Bi3þ ions. Further, cation ordering is expected

if the difference in ionic charge is more than two whereas disor-

dered arrangement is expected if the difference is less than two.

Since the ionic charge of Kþ and Bi3þ cations differs by two,

partially or fully ordered arrangement at the A-site is expected

due to differences in the size of these cations. As can be seen in

Fig. 3, the energy difference between different ordering config-

urations in tetragonal K1/2Bi1/2TiO3 is less than 40meV/f.u.

Thus, no particular configuration is energetically favorable for

long range A-site cation ordering. Nevertheless, nanoscale size

regions or domains with random arrangement and with differ-

ent A-site orderings may still be formed in K1/2Bi1/2TiO3 as dis-

cussed further in Sec. II F. The randomness in ionic

arrangement may explain as to why long-range A-site cation

ordering has not been observed in K1/2Bi1/2TiO3 though

expected due to the significant difference in ionic radii of

A-site cations.

C. Phonon frequencies at the C-point (k5 0)

The tetragonal unit cell of K1/2Bi1/2TiO3 consists of ten

atoms which gives rise to 27 optical phonon modes for

wave-vector at the Brillouin zone center (k¼ 0). Kriesel

et al.31 proposed symmetry classification of Raman-active,

Infrared (IR)-active, and silent modes for K1/2Bi1/2TiO3 with

disorder at the A-sites as

C ¼ 3B1�2B2
|fflfflfflfflffl{zfflfflfflfflffl}

Raman

� 3A1�7E
|fflfflfflfflffl{zfflfflfflfflffl}

RamanþIR

� 5A2
|{z}

Silent

: (1)

The E modes are degenerate whereas A1, A2 and B1, B2

modes are non-degenerate. Computed frequencies of phonon

modes and associated IR and Raman activities are shown in

Table I and Fig. 4. It may be seen that modes with frequen-

cies of 117, 278, 384, 468, and 589 cm�1 have negligible IR

and Raman activities and thereby can be considered as silent

FIG. 1. (a) Total density of states in K1/2Bi1/2TiO3. Partial density of states

in K1/2Bi1/2TiO3 projected onto orbitals of (a) Ti atom. (b) Bi atom, (c) O

atom, and (d) K atom. Top of the valence band (VBM) is indicated by the

dotted line at 0 eV.
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modes. Table I also shows that degeneracy of expected E

modes is lifted by a frequency of�3 cm�1 or less. These differ-

ences from the reported experimental results may be partially

attributed to implicit A-site ordering in the K1/2Bi1/2TiO3 tetrag-

onal unit cell. The tetragonal unit cell of K1/2Bi1/2TiO3 has the

[001] or layer ordering configuration which is also the lowest

energy configuration (see Sec. II B). As seen in Fig. 4, the

mode frequencies form four major bands with the frequency

range of 66–168 cm�1, 218–285 cm�1, 334–384 cm�1, and

467–608 cm�1. Recently, we had reported an experimental

study of Raman spectra and other physical properties of

K1/2Bi1/2TiO3.
25 The computed and experimental Raman

mode frequencies are shown and compared in Fig. 4.9,24,25

As can be seen, the calculated mode frequencies are in rea-

sonable agreement with experimental frequencies. It may

be noted that theoretical mode frequencies correspond to

zero temperature values whereas experimental values are

obtained at room temperature. The mode frequencies are

expected to be lowered by �3–4 cm�1 for temperature

increment from 0 to 300 K due to anharmonic contributions

arising from thermal expansion and phonon–phonon cou-

pling.32 It may be noted that mode frequencies reported in

different experimental works also show some degree of

variance. For instance, mode frequencies of 345, 500, and

544 cm�1 were reported in Ref. 24 whereas 332 and

529 cm�1 were reported in Ref. 9. The mode frequencies of

345, 487, and 536 cm�1 were reported by us in Ref. 25. As

FIG. 2. A-site cation ordering configurations in 2 � 2 � 2 tetragonal K1/2Bi1/2TiO3 unit cells. Types of different orderings are (a) [001], (b) [100], (c) [111],

(d) [110], (e) [011], (f) [all3þ 1], (g) [10–01z], (h) [11–01xy], (i) [11–10xy], and (j) [00–01z]. K and Bi atoms are indicated by yellow and purple balls. (Only

A-site cations and sublattice are shown.)

FIG. 3. Total energies of different ordering configurations (see Fig. 2) with

respect to energy of the [001] or layered configuration. (Energy of the [001]

configuration is set at 0.0 eV.)

TABLE I. Computed frequencies (cm�1) of zone-center phonon modes, IR

oscillator strength tensor coefficients ð�10�5a:uÞ, mode effective charges and

relative IR activity and relative Raman activity for tetragonal K1/2Bi1/2TiO3.

� Sxx Syy Szz Z�
m;x Z�

m;y Z�
m;z IR act.

Raman

Act. I/Imax

66 0.0 22.7 0.0 0.0 �4.1 0.0 0.16 0.03 0.78

117 0.1 0.0 0.0 �0.3 �0.04 0.0 0.00 0.01 0.12

121 0.0 0.0 25.8 0.0 0.0 3.7 0.18 0.03 0.24

129 0.0 0.0 17.9 0.0 0.0 3.4 0.13 0.00 0.03

140 0.0 23.6 0.0 0.02 �3.7 0.0 0.17 0.01 0.09

143 0.0 0.0 0.04 0.0 0.0 0.1 0.00 0.02 0.15

166 0.0 0.0 25.1 0.0 0.0 3.3 0.18 0.01 0.06

168 8.0 0.0 0.0 �2.2 �0.01 0.0 0.06 0.03 0.14

218 0.0 0.0 143.3 0.0 0.0 8.8 1.00 0.08 0.26

230 0.0 60.6 0.0 0.01 �4.8 0.0 0.43 0.11 0.33

240 1.4 0.0 0.0 0.7 0.1 0.0 0.01 0.03 0.09

251 0.0 0.0 0.0 0.0 0.0 0.02 0.00 0.06 0.18

278 0.0 0.0 1.5 0.0 0.0 0.8 0.01 0.01 0.02

284 12.2 10.6 0.0 �2.2 2.0 0.0 0.16 0.05 0.11

285 1.35 107.1 0.0 0.7 6.4 0.0 0.77 0.06 0.14

335 63.1 0.0 0.0 �4.7 0.04 0.0 0.45 0.27 0.47

350 0.1 17.6 0.0 �0.2 2.3 0.0 0.13 0.00 0.00

355 101.1 0.0 0.0 5.9 0.1 0.0 0.71 0.62 1.00

369 0.0 0.0 40.0 0.0 0.0 �3.6 0.28 0.01 0.01

384 0.6 0.0 0.0 0.4 0.0 0.0 0.00 0.04 0.06

468 0.0 0.0 8.9 0.0 0.0 1.6 0.06 0.00 0.00

523 21.5 0.0 0.0 �3.0 �0.01 0.0 0.15 0.36 0.34

527 0.0 0.0 0.0 0.0 0.0 0.02 0.00 0.24 0.22

551 0.0 45.6 0.0 �0.02 �3.7 0.0 0.32 0.06 0.06

589 0.0 0.0 2.6 0.0 0.0 �0.9 0.02 0.03 0.03

608 125.1 0.0 0.0 6.2 �0.01 0.0 0.88 1.00 0.77

732 0.0 0.0 70.1 0.0 0.0 4.6 0.50 0.06 0.04
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discussed further in Sec. II F, the disparity in experimental

mode frequencies may be indicative of different configura-

tions of local A-site cation ordering in nanoregions of

K1/2Bi1/2TiO3. The lower frequency modes below �150cm�1

are primarily due to Bi ion vibrations whereas K-O and

TiO6 vibrations contribute to modes in the frequency

band of 166–251 cm�1 and 277–468 cm�1, respectively.

Oxygen ion vibrations contribute to higher frequency

modes in the range of 523–732 cm�1.

D. Born and mode effective charge tensors

The Born effective charge tensor component, Z�
ij;s, of an

atom s is the measure of induced polarization along the ith

direction caused by unit displacement of the s atom sublattice

in the jth direction. In general, the deviation of Born effective

charge of an ion from its nominal charge is indicative of its

off-centering which in turn is measure of its ferroactivity.33

Table II presents the computed effective charge tensor compo-

nents of cations (K, Bi, and Ti) and anions (O). Z* tensor of K,

Bi, and Ti cations is almost diagonal due to higher local site

symmetries. However, O has lower local site symmetry and

hence Z* of O ions is quite anisotropic with independent com-

ponents. As can be seen in Table II, Z* of Bi, Ti, and O ions

exhibits significant deviation from their nominal ionic charge

values. This deviation is indicative of large covalent character

in mixed ionic-covalent Bi-O and Ti-O bonding which results

from hybridization of O-2p orbitals with Bi-6p and Ti-3d orbi-

tals. In the case of the K ion, the deviation of Z* from its nomi-

nal ionic value of þ1e is very small, which indicates that K-O

bonding is primarily ionic in character. The Z* of the Bi atom

has diagonal components of þ3.58e, þ5.05e, and þ4.16e

which are higher than the ionic value of þ3e. Likewise, the Z*

of two Ti atoms has diagonal components of þ6.44e, þ5.59e,

and þ6.16e which are higher than the ionic value of þ4e. It is

interesting to note that the Z* of the two Ti ions in K1/2Bi1/2TiO3

is not disparate as compared to those reported for Na1/2Bi1/2TiO3

in the R3C phase.17 Thus, no hetero-ferroactive (or heteropo-

lar) order or disorder is expected and relevant on the B-site

Ti cations in K1/2Bi1/2TiO3 similar to that proposed for

Na1/2Bi1/2TiO3. The diagonal components of Z� tensor of O

atoms vary from �1.21e to �6.51e deviating from the nomi-

nal ionic value of �2e. The mode effective charges (Z�
m;a)

are also computed in order to assess effective charge associ-

ated with individual phonon modes.34 The computed values

of Z�
m;a are presented in Table I. As can be seen, computed

values of Z�
m;a are significant for modes with frequencies of

218 cm�1, 285 cm�1, 355 cm�1, and 608 cm�1. The magni-

tude of Z�
m;a for these modes is 8.8e, 6.4e, 5.9e, and 6.2e,

respectively. Using the Berry phase method,35 the spontane-

ous polarization (Ps) of K1/2Bi1/2TiO3 is computed to be

42.9lC/cm2. The computed value of spontaneous polarization

is in reasonable agreement with the reported experimental val-

ues which vary in the range of 22�49lC/cm2.12,25,36,37

E. Dielectric permittivity and infrared reflectivity
spectrum

The frequency dependent complex dielectric permittiv-

ity tensor of a dielectric material can be expressed as32,33

eab xð Þ ¼ e1ab þ
X

m

em;ab xð Þ

¼ e1ab þ
4p

X

X

m

Sm;ab

x2
m � x2 þ icmx

; (2)

FIG. 4. Computed frequencies of (a) phonon modes of tetragonal K1/2Bi1/2TiO3.

Experimental frequencies of Raman-active modes (b) Ref. 25, (c) Ref. 9, and (d)

Ref. 24.

TABLE II. Computed Born effective charge tensor components of K, Ba, Ti, and O ions in tetragonal K1/2Bi1/2TiO3. The last three columns show the eigenval-

ues of the symmetric part of the full tensor.

Z�
xx Z�

xy Z�
xz Z�

yx Z�
yy Z�

yz Z�
zx Z�

zy Z�
zz Z�

1 Z�
2 Z�

3

K 1.00 0.00 0.00 0.00 1.04 0.00 0.00 0.00 1.20 1.00 1.04 1.20

Bi 3.58 0.00 0.00 0.00 5.05 0.00 0.00 0.00 4.16 3.58 4.16 5.05

Ti1 6.44 0.00 �0.16 0.00 5.59 0.00 0.40 0.00 6.16 6.48 5.59 6.12

Ti2 6.44 0.00 0.16 0.00 5.59 0.00 �0.40 0.00 6.16 6.48 5.59 6.12

O1 �1.31 0.00 0.00 0.00 �1.20 0.00 0.00 0.00 �6.51 �1.31 �1.20 �6.51

O2 �1.91 0.00 0.00 0.00 �3.43 0.00 0.00 0.00 �3.25 �1.91 �3.43 �3.25

O3 �5.26 0.00 �0.39 0.00 �1.78 0.00 �0.55 0.00 �1.78 �5.32 �1.78 �1.72

O4 �5.26 0.00 0.39 0.00 �1.78 0.00 0.55 0.00 �1.78 �5.32 �1.78 �1.72

O5 �1.86 0.00 0.54 0.00 �4.54 0.00 0.58 0.00 �2.18 �1.44 �4.54 �2.60

O6 �1.86 0.00 �0.54 0.00 �4.54 0.00 �0.58 0.00 �2.18 �1.44 �4.54 �2.60
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where e1ab is the electronic dielectric permittivity tensor. emab
is the contribution of the mth mode to the dielectric permit-

tivity. Sm;ab, xm, and cm are the oscillator-strength, angular

frequency, and damping coefficient for the mth optical pho-

non mode. X is the volume of the primitive cell. The oscilla-

tor strengths (Sm;ab) are obtained from Born effective charge

tensors (Z�
s;ab) (see Sec. II D) and the eigendisplacements

(UmðsbÞ) as33

Sm;ab ¼
X

sa0
Z�
s;aa0U

�
m sa0ð Þ

� � X

s0b0
Z�
s0;bb0U

�
m s0b0
� �� �

: (3)

The eigen-displacements satisfy the normalizing condition

which is expressed as

X

sb

MsU
�
m sbð ÞUn sbð Þ ¼ dmn; (4)

where Ms is the mass of ion s.

The Infrared reflectivity of optical radiation normal to

the surface is given as33

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

e~̂q xð Þ
q

� 1
ffiffiffiffiffiffiffiffiffiffiffiffi

e~̂q xð Þ
q

þ 1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

; (5)

where the dielectric permittivity function along the direction

~̂q is given as

e~̂q xð Þ ¼
X

ab

q̂aeab xð Þq̂b:

The computed oscillator strengths of phonon modes for

K1/2Bi1/2TiO3 are shown in Table I. As can be seen, the

oscillator strengths are significant for modes with frequencies

of 218, 230, 285, 335, 355, 551, 608, and 732cm�1. The

diagonal components and the average values of e1 and e0

are shown in Table III. The average values of e1 and e0 are

computed to be 5.8 and 51.7 which are obtained by taking

one-third of the trace of respective dielectric tensors. The

LDA computed values of e1 components are expected to be

overestimated by �10%. This is due to underestimated val-

ues of bandgaps and thus screening due to the lack of polari-

zation dependence in the exchange-correlation functional.38,39

Nevertheless, accuracy achieved in LDA computed values of

several quantities which may critically depend on dielectric

screening is much better than that for e1.40 Next, the real

and imaginary parts of complex dielectric permittivity as a

function of frequency in the range of 0–800 cm�1 are calcu-

lated using a damping constant of �10 cm�1 for all modes.

As can be seen in Fig. 5, the absorption peaks are centered

at modes having significant oscillator strengths (see Table I).

The strong absorption peaks are centered at �218cm�1,

284 cm�1, 334 cm�1, 354 cm�1, and 607 cm�1. Figure 6

shows the IR reflectivity spectra for K1/2Bi1/2TiO3 calculated

using Eq. (5). The average reflectivity spectrum is shown in

Fig. 6(a), whereas Figs. 6(b)–6(d) show the IR spectra at

normal incidence on [100], [010], and [100] surfaces of sin-

gle crystal K1/2Bi1/2TiO3. The shape of the spectrum origi-

nates from the selective absorption at mode frequencies. At

�342cm�1, the IR reflectivity decreases sharply for [100]

and [010] surfaces, whereas it reduces to zero for the [001]

surface. At �500cm�1, the reflectivity reduces to zero for

the [010] surface and attains the maximum for [001] inci-

dence. The reflectivity increases and then reduces to zero at

�530cm�1 for the [100] surface. Further, at �610cm�1, the

reflectivity is reduced to zero for the [001] surface and attains

the maximum for [100] and [010] surfaces. The experimental

IR spectra for tetragonal K1/2Bi1/2TiO3 have not been reported

to the best of our knowledge. Although the computed IR

spectra of K1/2Bi1/2TiO3 are expected to be in reasonable

agreement with experimental spectra, some disagreement may

nevertheless be expected. In our calculations, the mode inde-

pendent damping factor is used to calculate IR spectra shown

in Fig. 6. However, the damping factors may vary with mode

frequencies, and in particular, the variation may be significant

for low frequency modes.32 Furthermore, the experimental IR

spectrum may lack features contributed by modes with low

oscillator strengths.41 Additionally, the modes which are

heavily damped and close in frequency may not be resolved

TABLE III. Computed electronic and static dielectric tensors of tetragonal

K1/2Bi1/2TiO3.

e1 e1x e1y e1z e0 e0x e0y e0z

Theory 5.75 5.87 5.66 5.73 51.69 22.50 73.93 58.64

Exp. … … … … … … … …

FIG. 5. Computed (a) real and (b) imaginary parts of dielectric permittivity

as a function of frequency for tetragonal K1/2Bi1/2TiO3.
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unambiguously. Thus, in general, only a few modes are

required to fit the experimental IR spectrum.

F. Raman intensity spectrum

Raman scattering in crystals refers to inelastic light scat-

tering by the optical phonons. Within Placzek approxima-

tion,42 the non-resonant Stokes Raman scattering intensities

can be computed using the approach developed by Porezag

et al.43 and Lazzeri et al.44 The first-order non-resonant

Stokes differential Raman cross section for the mth eigen-

mode can be expressed as43,45

drm

dX
¼ 2p�sð Þ4

c4
j~eS � A

$
m � e$Lj2

h nbm þ 1
� �

8p2�m
; (6)

nbm ¼ exp
h�m
kT

� �

� 1

	 
�1

; (7)

Am;ij ¼
X

s;p

Rij spð Þ
Um spð Þ

ffiffiffiffiffiffi
Ms

p ; (8)

Rij spð Þ ¼
X

4p

@e1ij
@usp

; (9)

where �S is the frequency of the scattered light,~eS and~eL are
the polarization or unit vectors of the electric-field direction

for the scattered and the incident light, nbm is the Bose-

Einstein statistical factor, usp is the displacement of the sth

atom in the p direction, UmðspÞ is the orthonormal vibra-

tional eigen-displacement of the mth mode, and Ms is the

mass of atom s. For single crystals, the Raman intensity can

be computed using Eq. (6). However, for polycrystals, the

expression for Raman intensity should be appropriately

space averaged which depends on the relative orientations of

the polarization and direction of the scattered and incident

beams. Most Raman scattering experiments involve a plane-

polarized incident laser beam wherein direction and the

polarization of the incident beam are perpendicular to the

direction of observation. For such cases, the Raman cross

section can be expressed as

drm

dX
¼

2p2 �L � �mð Þ4
c4

h nbm þ 1
� �

�m

IAct:m

45
; (10)

IActm ¼ IActm;jj þ IActm;?; (11)

IActm;jj ¼ 45a2m þ 4b2m; (12)

IActm;? ¼ 3b2m; (13)

where

am ¼ Am;xx þ Am;yy þ Am;zzð Þ=3; (14)

b2m ¼ ½ Am;xx � Am;yyð Þ2 þ Am;xx � Am;zzð Þ2

þ Am;yy � Am;zzð Þ2 þ 6ðA2
xy þ A2

yz þ A2
xzÞ	=2; (15)

Im / nbm þ 1
� �

�m
IActm ; (16)

where Im and IActm are the averaged Raman scattering inten-

sity and Raman activity of the mth mode. IAct
m;jj and IActm;? are

the Raman activities parallel and perpendicular to the inci-

dent polarization. Finally, the Raman intensity spectrum can

be plotted using the Lorentzian line shape as

I �ð Þ ¼
X

m

Im
Cm

� � �mð Þ2 þ C
2
m

; (17)

where Cm is the damping coefficient of the mth mode.

The computed relative values of averaged Raman activities

and intensities of phonon modes of tetragonal K1/2Bi1/2TiO3 are

listed in Table I. As can be seen, Raman activity is signifi-

cant for modes having frequencies of 230, 335, 355, 523,

527, and 608 cm�1. The mode with a frequency of 608 cm�1

exhibits significant IR as well as Raman activity. Further,

due to the Bose-Einstein statistical factor and inverse fre-

quency dependence, the modes with frequencies of 66 cm�1,

and 121 cm�1 exhibit significant relative Raman intensities

despite low Raman activities. Figure 7 shows the computed

Raman intensity spectrum for K1/2Bi1/2TiO3. As can be seen,

strong Raman peaks are centered at modes of 66, 284, 335,

FIG. 6. Computed IR reflectivity spectra for (a) polycrystal (b)–(d) single

crystal tetragonal K1/2Bi1/2TiO3.
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355, 525, and 607 cm�1. The theoretical Raman spectrum is

in reasonable agreement with the experimental spectrum

which is also shown in Fig. 7.25 It may be noted that the

theoretical Raman spectrum (Fig. 7) is calculated using the

K1/2Bi1/2TiO3 unit cell which consists of 10 atoms and has

[001] or layered ordering configuration. The Raman intensity

spectrum for single crystal tetragonal K1/2Bi1/2TiO3 and for

different polarization of incident and scattered beam is

shown in Fig. 8.

Next, we study the effect of A-site cation (Bi and K)

ordering on the Raman intensity spectrum of tetragonal

K1/2Bi1/2TiO3. Figure 9 shows the computed Raman spec-

trum of K1/2Bi1/2TiO3 with different A-site cation orderings

(see Fig. 1). The experimental Raman spectrum is also

shown in Fig. 9 for comparison with the theoretical spec-

trum.25 As can be seen, the experimental spectrum consists

of features which may be attributed to vibrational modes of

K1/2Bi1/2TiO3 with different ordering configurations. In par-

ticular, two major peaks at 277 cm�1 and 345 cm�1 in the

spectrum clearly indicate the presence of different ordering

configurations in the K1/2Bi1/2TiO3 sample. Figure 9 shows

that the peak intensity is centered at modes of 276, 275,

263, 278, and 277 cm�1 for K1/2Bi1/2TiO3 with [111],

[all3þ 1], [10–01z], [11–10xy], and [00–01z] ordering con-

figurations, respectively. These computed values are in

good agreement with the reported experimental values of

270 cm�1,25 274 cm�1,9 and 277 cm�1.25 For other ordering

configurations in K1/2Bi1/2TiO3 shown in Figs. 1 and 9, the

Raman intensity is significantly reduced for these modes.

The Raman intensity peak is centered at mode 350 cm�1

for K1/2Bi1/2TiO3 with [001] ordering which is in good

agreement with the experimental value of 345 cm�1

reported in Refs. 24 and 25. In the case of K1/2Bi1/2TiO3

with [100], [110], and [11–01xy] orderings, the intensity

peak is centered at modes of 333 cm�1, 328 cm�1, and

320 cm�1, respectively. These mode frequency values are

more in agreement with the experimental value of

332 cm�1 reported in Ref. 9. For K1/2Bi1/2TiO3 with [011]

and [100] orderings, the Raman peaks are also centered at

316 cm�1 and 362 cm�1. In the case of modes with fre-

quencies higher than 400 cm�1, the peak is centered at a

mode of 495 cm�1 in the intensity spectrum of K1/2Bi1/2TiO3

with [100] ordering. This mode frequency is in good

agreement with the reported value of 487 cm�1 (Ref. 25)

and 500 cm�1.24 Further, the peaks are centered at modes

of 525 cm�1 and 535 cm�1 in the intensity spectrum of

K1/2Bi1/2TiO3 with [001] and [100] ordering configurations.

These mode frequency values are in good agreement with

the reported values of 529 cm�1 in Ref. 9, 536 cm�1 in

Ref. 33, and 545 cm�1 in Ref. 32. Further, as evident from

Fig. 9, the peak positions and the intensities in Raman

spectrum are significantly influenced by cation ordering in

K1/2Bi1/2TiO3. Moreover, the variance in experimental

mode values reported in different studies may be indicative

of A-site cation ordering in nanoscale size ordered regions.

As discussed in Sec. IIB, these ordered nanoregions are

expected to be arranged randomly as no single ordering

configuration is energetically favorable (see Sec. IIB). The

random arrangement of nanoscale cation ordered regions is

favored by entropy contributions to free energy at finite

temperatures. This randomness in arrangement of nanoscale

cation ordered regions may explain why long-range A-site

cation ordering in K1/2Bi1/2TiO3 has not been observed till

FIG. 7. Computed (solid line) and experimental (dotted line) (Ref. 25)

Raman intensity spectra for polycrystalline tetragonal K1/2Bi1/2TiO3.

FIG. 8. Computed Raman intensity spectra for single crystal tetragonal

K1/2Bi1/2TiO3. The subscript denotes the polarization of incident and scat-

tered beams.
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date in diffraction based experiments. Nevertheless, some

degree of A-site cation ordering in K1/2Bi1/2TiO3 may still

be expected due to kinetic factors which may be dependent

on sample preparation conditions. The comparison of theo-

retical and experimental results suggests that a careful anal-

ysis of the Raman intensity spectrum may be exploited to

reveal the short range A-site cation ordering in K1/2Bi1/

2TiO3.

The suggested formation of A-site cation ordered nano-

regions in K1/2Bi1/2TiO3 may have important implications

for its relaxor properties similar to that observed in lead

based relaxor ferroelectrics of type A(B
0
B

00
)O3 such as

Pb(Mg1/3Nb2/3)O3 (PMN).26–28 In ergodic relaxor phase of

ferroelectrics such as PMN, the polar nanoregions (PNRs)

are formed and embedded into the non-polar matrix of the

paraelectric phase. In addition to the mixture of polar and

nonpolar regions, compositionally (chemical) ordered

nanoregions (CORs) are also formed in these relaxor ferro-

electrics. However, unlike PNRs, the location, dimensions,

and the degree of compositional order inside COR are not

dependent on temperature and thereby remain unchanged. It

has been suggested that the positions of CORs and PNRs

coincide and CORs act as sites to localize the PNRs which

emerge below Burns temperature TB.
27,46 Further, while

some reports have suggested that the formation of nanoscale

CORs is necessarily required for the appearance of PNRs,

others have suggested that dynamics of PNRs is not affected

by the morphology of CORs.26 In the case of K1/2Bi1/2TiO3

too, qualitatively similar CORs with different A-site order-

ings are expected to form and are likely to be embedded ran-

domly in compositionally disordered matrix (A-site cation

disorder). However, partial ordering in arrangement of these

CORs may also result due to kinetic factors during sample

preparations and besides other experimental probes, a

FIG. 9. Computed (solid red line)

Raman intensity spectra for different

A-site cation orderings in 2 � 2 � 2

tetragonal K1/2Bi1/2TiO3. The types of

orderings are (a) [001], (b) [100], (c)

[111], (d) [110], (e) [011], (f)

[all3þ 1], (g) [10–01z], (h) [11–01xy],

(i) [11–10xy], and (j) [00–01z] (See

Fig. 1). The experimental Raman spec-

trum is shown by a thin red line

reported in Ref. 25.
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detailed analysis of Raman spectra may be used to reveal

their presence.

III. CONCLUSIONS

Theoretical investigations of lattice dynamics, dielectric

and ferroelectric properties, Infrared reflectivity, and Raman

intensity spectrum of K1/2Bi1/2TiO3 are performed within the

framework of density functional theory. In particular, cation

ordering at the A-site in K1/2Bi1/2TiO3 and its effect on lat-

tice dynamics and Raman spectrum are explored. The

Raman spectrum is found to be significantly influenced by

A-site cation ordering in K1/2Bi1/2TiO3. The comparison of

the theoretical Raman spectrum with the experimental spec-

trum as well as energetics of various ordering configurations

of K1/2Bi1/2TiO3 suggests that nanoscale regions with differ-

ent A-site orderings are formed in K1/2Bi1/2TiO3. However,

the arrangement of these ordered nanoregions may be fully

or partially random. The layered ordering or [001] configura-

tion of K1/2Bi1/2TiO3 is found to be the lowest energetically

and thereby most stable. However, the energies of various

other ordering configurations are computed to be only mar-

ginally higher (< 40meV/f.u) than that of the layered order-

ing configuration. The random arrangement is favored by

entropy contributions to free energy and may be accounted

for the lack of observation of long-range A-site cation order-

ing in K1/2Bi1/2TiO3. It is also suggested that kinetic factors

during sample preparation may also give rise to partial order-

ing of cation ordered nanoregions in K1/2Bi1/2TiO3. Further,

it is suggested that the Raman spectrum of K1/2Bi1/2TiO3

consists of features which are derived from cation ordered

nanoregions with different ordering configurations. The Born

effective charges of Bi and Ti ions are found to be signifi-

cantly larger than their nominal charges. The effective

charges of oxygen are found to be quite anisotropic. The dis-

parate Born effective charges of K and Bi ions suggest

hetero-polar activity at the A-sites in K1/2Bi1/2TiO3. It is

expected that besides PNRs, the formation of A-site hetero-

polar cation ordered nanoregions may drive and influence

relaxor properties in K1/2Bi1/2TiO3. The oscillator strengths

and effective charges of phonon modes are computed. The

computed Raman mode frequencies and spontaneous polari-

zation in K1/2Bi1/2TiO3 are found to be in good agreement

with the reported experimental values. The Bi-O and Bi-Ti

bond distances are found to be in very good agreement with

the reported experimental values obtained from XAFS data.
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