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Abstract

Topological objects resulting from symmetry breakdown may be either stable or metastable depending on the pattern of

symmetry breaking. However, if they acquire zero-energy modes of fermions, and in the process acquire non-integer fermionic

charge, the metastable configurations also get stabilized. In the case of Dirac fermions the spectrum of the number operator

shifts by 1/2. In the case of Majorana fermions it becomes useful to assign negative values of fermion number to a finite

number of states occupying the zero-energy level, constituting a Majorana pond. We determine the parities of these states and

prove a superselection rule. Thus decay of objects with half-integer fermion number is not possible in isolation or by scattering

with ordinary particles. The result has important bearing on cosmology as well as condensed matter physics.

 2004 Elsevier B.V. All rights reserved.

PACS: 11.27.+d; 11.30.Er; 11.30.Fs; 98.80.Cq

1. Introduction

Solitons present the possibility of extended ob-

jects as stable states within Quantum Field Theory.

Although these solutions are obtained from semi-

classical arguments in weak coupling limit, their valid-

ity as quantal states is justified based on the associated

topological conservation laws. A more curious occur-

rence is that of fermionic zero-energy modes trapped

on such solutions. Their presence requires, according

to well-known arguments [1,2], an assignment of half-

integer fermion number to the solitonic states. In the
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usual treatment, the back reaction of the fermion zero-

modes on the soliton itself is ignored. However, the

fractional values of the fermionic charge have inter-

esting consequence for the fate of the soliton if the

latter is not strictly stable. The reason for this is that

if the configuration were to relax to trivial vacuum in

isolation, there is no particle-like state available for

carrying the fractional value of the fermionic charge.

Dynamical stability of such objects was pointed out

in [3], in cosmological context in [4,5] and more re-

cently in [6–8]. Fractional fermion number phenom-

enon also occurs in condensed matter systems and its

wide ranging implications call for a systematic under-

standing of the phenomenon.

The impossibility of connecting half-integer valued

states to integer valued states suggests that a superse-
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lection rule [9,10] is operative. In a theory with a con-

served charge (global or local), a superselection rule

operates among sectors of distinct charge values be-

cause the conservation of charge is associated with the

inobservability of rescaling operation Ψ → eiQΨ . For

the case of the Dirac fermions, the gauge symmetry

is broken, however the overall phase corresponding to

the fermion number continues to be a symmetry of the

effective theory. This permits independent rescaling of

the sectors with different values of the fermionic num-

ber; thus superselecting bosonic from fermionic sec-

tors. In the case at hand, half-integer values occur, pre-

venting such states from decaying in isolation to the

trivial ground state [3,4].

For the case of Majorana fermions where the

number operator is not conserved by interactions

the validity of such results is far from obvious.

However, the occurrence of half-integral values can

be shown to be intimately connected to the charge

conjugation invariance [11] of the theory. Here we

show that in such a case it is possible to assign

parities to the lowest energy solitonic sector which

are compatible with parity assignment in the vacuum

sector. A superselection rule can then be proved for

Majorana fermions.

In the following we begin with constructing explicit

examples of cosmic strings which are metastable

and have odd number of zero-modes, for both the

cases of Dirac and Majorana masses. The masses in

each case are derived from spontaneous symmetry

breaking. We then discuss assignment of fermion

number to topological objects, including the need

for a finite spectrum of negative values for states of

trapped Majorana fermions. Subsequently we derive

the required superselection rule. The Letter ends with

summary and conclusion.

2. Examples

Here we construct two examples in which the topo-

logical objects of a low energy theory are metastable

due to the embedding of the low energy symmetry

group in a larger symmetry group at higher energy.

Examples of this kind were considered in [12]. Bor-

rowing the strategies for bosonic sector from there,

we include appropriate fermionic content to ensure the

zero-modes.

2.1. Dirac fermions

Consider first a model with two stages of symmetry

breaking similar to [12], but with local SU(2) gauge

invariance. The two scalars �Σ and σ are, respectively,

real triplet and complex doublet. The Lagrangian is

taken to be

L= −1

4
FµνaF a

µν + 1

2
Dµ �Σ · Dµ �Σ + Dµσ †Dµσ

− λ1

( �Σ · �Σ − η2
1

)2 − λ2

(

σ †σ − η2
2

)2

(1)+ λ12η1 �Σ · σ † �τσ,

where isovector notation is used and τ are the Pauli

matrices. It is assumed that η1 ≫ η2 and that the

coupling λ12 > 0 satisfies λ12η
2
1 ≪ λ2η

2
2 .

The vacuum expectation value (VEV) �Σ =
(0 0 η1)

T breaks the SU(2) to the U(1) generated

by exp(iτ 3α/2). The effective theory of the σ can be

rewritten as the theory of two complex scalar σu and

σd for the up and the down components, respectively.

The potential of the effective theory favors the mini-

mum

(2)σu = η2, σd = 0.

In the effective theory σu enjoys a U(1) invariance

σu → eiασu which is broken by the above VEV to

Z ≡ {e2nπi}, n = 1,2, . . . . This makes possible vortex

solutions with an ansatz in the lowest winding number

sector

(3)σu(r,φ) = η2f (r)e−iφ,

with r , φ planar coordinates with vortex aligned

along the z-axis. The vortex configuration is a local

minimum, however, it can decay by spontaneous

formation of a monopole–antimonopole pair [12].

These monopoles are permitted by the first breaking

SO(3) → SO(2) in the Σ sector. Paraphrasing the

discussion of [12], we have SU(2) → U(1) → Z. The

vortices are stable in the low energy theory because

π1(U(1)/Z) is nontrivial. But in the SU(2), the Z lifts

to {e4nπiτ 3/2} = I making it possible to unwind the

vortex by crossing an energy barrier.

Consider now the introduction of a doublet of

fermion species ψL ≡ (NL,EL) assumed to be left-

handed and a singlet right-handed species NR . The

Yukawa coupling of these to the σu is given by
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hNRσ †ψL, which in the vortex sector reads

(4)Lσ−ψ ∼ hη2f (r)
(

e−iφNRNL + h.c.
)

.

The lowest energy bound states resulting from this

coupling are characterized by a topological index [13]

I ≡ nL − nR , where nL and nR are the zero-modes

of the left-handed and the right-handed fermions,

respectively. This index can be computed using the

formula [13,14]

(5)I = 1

2πi
(ln detM)

∣

∣

2π

φ=0
,

where M is the position dependent effective mass

matrix for the fermions. In the present case this gives

rise to a single zero-energy mode for the fermions of

species N . According to well-known reasoning [1] to

be recapitulated below, this requires the assignment of

either of the values ±1/2 to the fermion number of

this configuration.

2.2. Majorana fermions

The example above can be extended to the case

where the N is a Majorana fermion. Being a singlet

N admits a mass term MMNC
R NR , MM signifying

Majorana mass. This could also be a spontaneously

generated mass due to the presence of a neutral scalar

χ with coupling terms hMNC
R NRχ + h.c. If this χ

acquires a VEV at energies higher than the Σ , the

N particles possess a Majorana mass and fermion

number is not a conserved observable.

Finally we present the case where Majorana mass

is spontaneously generated at the same scale at which

the vortex forms. Consider a theory with local SU(3)

symmetry broken to U(1) by two scalars, Φ an octet

acquiring a VEV η1λ3 (λ3 here being the third Gell-

Mann matrix) and φ, a 3, acquiring the VEV 〈φk〉 =
η2δ

k2, with η2 ≪ η1. Thus

(6)SU(3)
8−→ U(1)3 ⊗ U(1)8

3−→ U(1)+.

Here U(1)3 and U(1)8 are generated by λ3 and λ8

respectively, and U(1)+ is generated by (
√

3λ8 +
λ3)/2 and likewise U(1)− to be used below. It can be

checked that this pattern of VEVs can be generically

obtained from the quartic scalar potential of the above

Higgses. The effective theory at the second breaking

U(1)− → Z gives rise to cosmic strings. However the

Z lifts to identity in the SU(3) so that the string can

break with the formation of monopole–antimonopole

pair.

Now add a multiplet of left-handed fermions be-

longing to 15. Its mass terms arise from the following

coupling to the 3

(7)LMajorana = hMψC {ij}
k ψ{lm}

n φr
(

ǫilrδ
n
j δk

m

)

.

The indices symmetric under exchange have been in-

dicated by curly brackets. No mass terms result from

the 8 because it cannot provide a singlet from ten-

sor product with 15 ⊗ 15 [15]. After substituting the

φ VEV a systematic enumeration shows that all but

the two components ψ
{22}
1 and ψ

{22}
3 acquire Majorana

masses at the second stage of the breaking. Specifi-

cally we find the Majorana mass matrix to be indeed

rank 13. Thus, using either of the results [16] or [14],

i.e., Eq. (5) we can see that there will be 13 zero-

modes present in the lowest winding sector of the cos-

mic string. Thus the induced fermion number differs

from that of the vacuum by half-integer as required.

2.3. Final state zero-modes

The stability argument being advanced is in jeop-

ardy if the final state after rupture of the topological

object also possesses half-integral fermionic charge.

To see that this is not the case it is necessary to study

the zero-modes on the two semi-infinite strings shown

in Fig. 1. Generically we expect each of the halves to

support the same number of zero-modes, making the

total fermion number of the putative final state integer

valued, as required for the validity of our argument.

Consider the ansatz for the lower piece (l) with

origin at the corresponding monopole and coordinates

(rl, θl, φ). For the domain z < 0 let the ansatz for the

field σ be

(8)

U∞
l (θl, φ)

(

0

η2

)

fl(rl) ≡ exp

{

i

2
θl �τ · φ̂

}(

0

η2

)

fl(rl),

so that 〈σ 〉 has the behaviour

〈σ 〉 =



















(

0

η2

)

fl(rl) for θl ≈ 0,

(

η2e
−iφ

0

)

fl(rl) for θl ≈ π,



4 N. Sahu, U.A. Yajnik / Physics Letters B 596 (2004) 1–7

Fig. 1. Schematic configuration of isospin vectors after the rupture

of a string. Internal orientations are mapped to external space. They

are shown just outside the core of the two resulting pieces and on

the mid-plane symmetrically separating the two.

which agrees with the ansatz (3) for the cosmic string

at the South pole. Likewise for the domain z > 0, i.e.,

the upper piece (u), we choose

(9)U∞
u (θu, φ) = exp

{

i

2
(π − θu)�τ · φ̂

}

resulting in the behaviour

〈σ 〉 =



















(

η2e
−iφ

0

)

fu(ru) for θu ≈ 0,

(

0

η2

)

fu(ru) for θu ≈ π,

thus matching correctly with the cosmic string at the

North pole. The ansatz for the heavier scalar Σ needs

to be appropriately set up, U∞ �Σ · �τU∞† in both l and

u domains. This scalar, however, does not contribute

to fermion mass matrix.

The two maps match at the mid-plane, where θl =
π − θu and σu ∼ e−iφ at θl = θu = π/2, so that we

have ensured that the combined map is within the same

homotopy class as the string we began with. Finally,

as the two pieces move far away, each can be seen

to have the same number of zero-modes. To see this

we can choose [17,18] fermion ansatz for the zero-

modes compatible with the scalar field ansatz, in each

of the patches l and u. In (isospin) ⊗ (two-component

spinor) notation for ψL and for the two-component

fermion NR ,

ψL = U∞(θ,φ)

(

0

1

)

⊗
(

ϕ1(r)

χ1(r)

)

,

(10)NR =
(

ϕ2(r)

χ2(r)

)

,

where the labels l, u have been dropped. To analyse

the asymptotic radial dependence choose γ r = σ 2

the Pauli matrix. In each patch one finds the pair

ϕ1(r),χ2(r) ∼ e−hη2r to constitute the zero-mode

while for the other pair, ϕ2(r),χ1(r) ∼ e+hη2r which

are therefore not normalizable. In any case, since each

of the pieces acquires the same number of zero-modes,

the total fermion number of the putative final state has

been proved to be integer as required.

3. Assignment of fermion number

We now recapitulate the reasoning behind the

assignment of fractional fermion number. We focus on

the Majorana fermion case, which is more nettlesome,

while the treatment of the Dirac case is standard [1,2].

In the prime example in 3 + 1 dimensions of a single

left-handed fermion species ΨL coupled to an abelian

Higgs model according to

(11)Lψ = iΨLγ µDµΨL − 1

2

(

hφΨ C
L ΨL + h.c.

)

the following result has been obtained [16]. For a

vortex oriented along the z-axis, and in the winding

number sector n, the fermion zero-modes are of the

form

ψ0(x) =
(

1

0

)

[

U(r)eilφ + V ∗(r)ei(n−1−l)φ
]

(12)× gl(z + t).

In the presence of the vortex, τ 3 (here representing

Lorentz transformations on spinors) acts as the matrix

which exchanges solutions of positive frequency with

those of negative frequency. It is therefore identified

as the “particle conjugation” operator. In the above

ansatz, the ψ in the zero-frequency sector are charge

self-conjugates, τ 3ψ = ψ , and have an associated left

moving zero-mode along the vortex. The functions sat-

isfying τ 3ψ = −ψ are not normalizable. The situation

is reversed when the winding sense of the scalar field
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is reversed, i.e., for σu ∼ e−inφ . In the winding number

sector n, regular normalizable solutions [16] exist for

0 � l � n − 1. The lowest energy sector of the vortex

is now 2n-fold degenerate, and each zero-energy mode

needs to be interpreted as contributing a value ±1/2 to

the total fermion number of the individual states [1].

This conclusion is difficult to circumvent if the particle

spectrum is to reflect the charge conjugation symme-

try of the theory [11]. The lowest possible value of the

induced number in this sector is −n/2. Any general

state of the system is built from one of these states by

additional integer number of fermions. All the states

in the system therefore possess half-integral values for

the fermion number if n is odd.

One puzzle immediately arises, what is the mean-

ing of negative values for the fermion number operator

for Majorana fermions? In the trivial vacuum, we can

identify the Majorana basis as

(13)ψ = 1

2

(

ΨL + Ψ C
L

)

.

This leads to the Majorana condition which results in

identification of particles with anti-particles according

to

(14)CψC
† = ψ,

making negative values for the number meaningless.

Here C is the charge conjugation operator. We shall

first verify that in the zero-mode sector we must indeed

assign negative values to the number operator. It is

sufficient to treat the case of a single zero-mode, which

generalizes easily to any larger number of zero-modes.

The number operator possesses the properties

(15)[N,ψ] = −ψ and
[

N,ψ†
]

= ψ†,

(16)CNC
† = N.

Had it been the Dirac case, there should be a minus

sign on the right-hand side of Eq. (16). This is

absent due to the Majorana condition. The fermion

field operator for the lowest winding sector is now

expanded as

(17)

ψ = cψ0 +
{

∑

κ,s

aκ,sχκ,s(x)

+
∑

k,s

bk,suk,s(x) + h.c.

}

,

where the first summation is over all the possible

bound states of non-zero frequency with real space-

dependence of the form ∼ e−κ ·x⊥ in the transverse

space directions x⊥, and the second summation is over

all unbound states, which are asymptotically plane

waves. These summations are suggestive and their

exact connection to the Weyl basis mode functions

[19] are not essential for the present purpose. Note

however that no “h.c.” is needed for the zero-energy

mode which is self-conjugate. Then the Majorana

condition (14) requires that we demand

(18)CcC† = c and Cc†
C

† = c†.

Unlike the Dirac case, the c and c† are not exchanged

under charge conjugation. The only non-trivial irre-

ducible realization of this algebra is to require the ex-

istence of a doubly degenerate ground state with states

|−〉 and |+〉 satisfying

(19)c|−〉 = |+〉 and c†|+〉 = |−〉
with the simplest choice of phases. Now we find

(20)CcC†
C|−〉 = C|+〉

(21)�⇒ c
(

C|−〉
)

=
(

C|+〉
)

.

This relation has the simplest non-trivial solution

(22)C|−〉 = η−
C |−〉 and C|+〉 = η+

C |+〉
where, for the consistency of (19) and (21) η−

C and η+
C

must satisfy

(23)
(

η−
C

)−1
η+

C = 1.

Finally, we verify that we indeed get values ±1/2

for N . The standard fermion number operator which

in the Weyl basis is

(24)NF = 1

2

[

Ψ
†
LΨL − ΨLΨ

†
L

]

acting on these two states gives

(25)
1

2

(

cc† − c†c
)

|±〉 = ±1

2
|±〉.

The number operator indeed lifts the degeneracy of the

two states. For s number of zero-modes, the ground

state becomes 2s -fold degenerate, and the fermion

number takes values in integer steps ranging from

−s/2 to +s/2. For s odd the values are therefore half-

integral. Although uncanny, these conclusions accord



6 N. Sahu, U.A. Yajnik / Physics Letters B 596 (2004) 1–7

with some known facts. They can be understood as

spontaneous symmetry breaking for fermions [20].

The negative values of the number thus implied occur

only in the zero-energy sector and do not continue

indefinitely to −∞. Instead of an unfathomable Dirac

sea we have a small Majorana pond at the threshold.

4. Quantum-mechanical stability

The theory of Eq. (1) possesses a gauge symmetry

which is reflected in the effective theory (4) as NL →
eiαNL, NR → eiαNR giving rise to the usual con-

served number for Dirac fermions. The lowest wind-

ing vortex sector results in half-integer values for this

number. Quantum-mechanical stability of this sector

follows from well known arguments [9,10] which can

now be understood as either following from distinct-

ness of sectors of different values of (−1)NF , or as a

consequence of a residual subgroup of the gauge sym-

metry. For the Majorana case we shall now carry out

this kind of argument explicitly.

It is known that Majorana fermions can be assigned

a unique parity [10], either of the values ±i . Accord-

ingly let us choose i to be the parity of the free single

fermion states in the trivial vacuum. As a step towards

deriving our superselection rule, we determine the par-

ities of the zero-energy states. The fermion spectrum

should look the same as trivial vacuum far away from

the vortex.1 In turn, the parities of the latter states

should be taken to be the same as those of the triv-

ial ground state. Next, any of these asymptotic free

fermions is capable of being absorbed by the vortex

(see, for instance, [21]). In the zero-energy sector this

absorption would cause a transition from |−1/2〉 to

|1/2〉 and cause a change in parity by i . Thus the level

carrying fermion number +1/2 should be assigned a

parity eiπ/2 relative to the −1/2 state. Symmetry be-

tween the two states suggests that we assign parity

eiπ/4 to the NF = 1/2 and e−iπ/4 to the NF = −1/2

states.

Similar reasoning applies to a residual discrete

symmetry belonging to the original U(1) gauge group

of Lagrangian (11). According to Eq. (13), under

1 This should be understood to be the clustering property of local

field theory being obeyed by the vortex ground state.

gauge transformation,

(26)ψ → ψ[α] ≡ 1

2

(

eiαΨL + e−iαΨ C
L

)

.

Thus α = π preserves the choice of the Majorana

basis upto a sign. After symmetry breakdown and

Higgs mechanism, the Yukawa coupling takes the

form ∼ (m + φ̃)ψψ , which is invariant under the

residual Z2 symmetry ψ → −ψ . We can use this

as a discrete symmetry distinguishing states of even

and odd Majorana fermions. Since single Majorana

fermions can be absorbed by the vortex [21], the

ground states |±〉 are distinguished from each other

by a relative negative sign. To be symmetric we can

assign the value ±i to these states under this discrete

symmetry with sign same as in the value of the number

operator. It is possible to prove the superselection rule

using this conserved quantity. However, we also see

that this discrete symmetry can be used to change our

convention of the parity for free Majorana particles

from +i to −i . Thus the two are intimately related and

in what follows we shall use the parity with convention

as in the preceding paragraph.

We now show the inappropriateness of superposing

states of half-integer valued fermion number and

integer valued fermion number [9]. The operation

P4, parity transformation performed four times must

return the system to the original state, upto a phase.

Consider forming the state

ΨS = 1√
2

(

|1/2〉 + |1〉
)

from states of half-integer and integer value for the

fermion number. But

(27)P
4ΨS = 1√

2

(

−|1/2〉 + |1〉
)

.

Thus this operation identifies a state with another or-

thogonal to it. Similarly, application of P2 which

should also leave the physical content of a state un-

changed results in yet another linearly independent

state, 1√
2
(i|1/2〉 − |1〉). Thus the space of superposed

states collapses to a trivial vector space. The conclu-

sion therefore is that it is not possible to superpose

such sectors. In turn there can be no meaningful op-

erator possessing non-trivial matrix elements between

the two spaces. This completes our proof of the theo-

rem.
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5. Conclusion

Metastable classical lumps, also referred to as em-

bedded defects can be found in several theories. The

conditions on the geometry of the vacuum manifold

that give rise to such defects were spelt out in [12].

We have studied the related question of fermion zero-

energy modes on such objects. It is possible to con-

struct examples of cosmic strings in which the pres-

ence of zero-modes signals a fractional fermion num-

ber both for Dirac and Majorana masses. It then

follows that such a cosmic string cannot decay in

isolation because it belongs to a distinct superse-

lected quantum-mechanical sector. Thus a potentially

metastable object can enjoy induced stability due to its

bound state with fermions.

Although decay is not permitted in isolation, it cer-

tainly becomes possible when more than one such ob-

jects come together in appropriate numbers. In the

early Universe such objects could have formed de-

pending on the unifying group and its breaking pat-

tern. Their disappearance would be slow because it can

only proceed through encounters between objects with

complementary fermion numbers adding up to an in-

teger. Another mode of decay is permitted by change

in the ground state in the course of a phase transi-

tion. When additional Higgs fields acquire a vacuum

expectation value, in turn altering the boundary condi-

tions for the Dirac or Majorana equation, the number

of induced zero-modes may change from being odd

to even,2 thus imparting the strings an integer fermion

number. The decay can then proceed at the rates cal-

culated in [12].

In condensed matter systems the best known exam-

ple is of charge carriers with half the electronic charge

in polyacetylene [23] where the underlying solitons

have been identified as stable kinks. It would be in-

teresting to find intrinsically metastable objects stabi-

lized by this mechanism.

Finally, it is interesting to conjecture about the fate

of loops of cosmic strings. The zero-modes on closed

2 Such a possibility, though for topologically stable string can be

found for realistic unification models in [5,6,21,22].

string loops have not been studied in detail, though

dynamical stability due to superconductivity has been

identified. If loops carry fractional fermion number

and get stabilized by this mechanism that also would

present very interesting possibilities for cosmology.
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