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Introduction

Cytosolic calcium (Ca2+) imaging is known to be crucial 
for estimating drug toxicity during drug evaluation and 
screening, since Ca2+ signaling plays important roles in 
regulation of cell physiology, apoptosis, and necrosis.1,2 
Recently, many scientists focused on investigating different 
imaging modalities and data analysis techniques to improve 
the estimation of cytosolic Ca2+ levels. For example, two-
photon microscopy has been implemented to image den-
dritic Ca2+,3 whereas light-field microscopy has been used 
to estimate intracellular Ca2+ through high-speed volumet-
ric imaging of single neurons in Caenorhabditis elegans.4 
Moreover, various imaging methods such as FLIM (fluores-
cence lifetime image-scanning microscopy) have been 
explored for accurate estimation of Ca2+ in the range of 
20–200 nM and for the establishment of calibration curves.5 
Monitoring of Ca2+ sequestration at the subcellular level 
remains challenging, however, since it requires the collec-
tion of fluorescent signals from various planes during 

volumetric imaging using advanced microscopy.6 Currently, 
most existing systems, including plate readers and fluores-
cent microscopes, are not capable of providing the informa-
tion present inside the cell, which requires elimination of 
out-of-focus light through the pinhole placed before the 
detector.7

1019394 JLAXXX10.1177/24726303211019394SLAS TechnologyManohar et al.
research-article2021

1Department of BioTechnology, Indian Institute of Technology 

Hyderabad, Sangareddy, India
2Department of Chemical Engineering, Indian Institute of Technology 

Hyderabad, Sangareddy, India

*These authors contributed equally to this work.

Received Jan 15, 2021, and in revised form Apr 14, 2021. Accepted for 

publication May 3, 2021.

Supplemental material is available online with this article.

Corresponding Author:

Lopamudra Giri, Department of Chemical Engineering, Indian Institute of 

Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India. 

Email: giril@che.iith.ac.in

Quantitative Confocal Microscopy for 
Grouping of Dose–Response Data: 
Deciphering Calcium Sequestration and 
Subsequent Cell Death in the Presence of 
Excess Norepinephrine

Kuruba Manohar1* , Suman Gare2*, Soumita Chel2, Vaibhav Dhyani2,  

and Lopamudra Giri2

Abstract

Fluorescent calcium (Ca2+) imaging is one of the preferred methods to record cellular activity during in vitro preclinical 

studies, high-content drug screening, and toxicity analysis. Visualization and analysis for dose–response data obtained using 

high-resolution imaging remain challenging, due to the inherent heterogeneity present in the Ca2+ spiking. To address 

this challenge, we propose measurement of cytosolic Ca2+ ions using spinning-disk confocal microscopy and machine 

learning–based analytics that is scalable. First, we implemented uniform manifold approximation and projection (UMAP) for 

visualizing the multivariate time-series dataset in the two-dimensional (2D) plane using Python. The dataset was obtained 

through live imaging experiments with norepinephrine-induced Ca2+ oscillation in HeLa cells for a large range of doses. 

Second, we demonstrate that the proposed framework can be used to depict the grouping of the spiking pattern for lower 

and higher drug doses. To the best of our knowledge, this is the first attempt at UMAP visualization of the time-series 

dose response and identification of the Ca2+ signature during lytic death. Such quantitative microscopy can be used as a 

component of a high-throughput data analysis workflow for toxicity analysis.
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Traditional imaging methods for high-content screening,8,9 
based on fluorescent microscopes, have an inherent disad-
vantage due to the large amount of out-of-focus light coming 
from other focal planes.7 Also, traditional fluorescent 
microscopy suffers from other disadvantages, including 
photobleaching. In contrast, confocal imaging provides 
imaging of a single focal plane and control over choosing 
field depth.10–12 Recently, there has been significant improve-
ment in the direction of high-content imaging in real-time 
monitoring of signaling dynamics in single cells.13,14 
Although laser scanning confocal microscopy is one of the 
approaches that can be used for measuring subcellular Ca2+ 
dynamics, the imaging speed is compromised.15 Hence, we 
choose to use spinning-disk microscopy to perform cyto-
solic-Ca2+ imaging in a single plane. The rationale behind 
using Fluo-4 as the indicator is that it is having higher dis-
sociation rate and lower value of Kd (345 nM). Additionally, 
Fluo-4 has high dynamic range, brightness, and high signal-
to-noise ration among various Ca2+ dyes.16

It is known that 34% of drugs on the market are based on 
G protein-coupled receptor (GPCR)-targeting drugs17,18 that 
are used to treat chronic heart disease, neurodisease, and 
cancer. It has also been shown that Ca2+ imaging can be 
used for drug screening and to identify the operating range 
of GPCR-targeting drug doses.19 GPCR-targeting drugs, 
including norepinephrine, tizanidine, clonidine, and dexme-
detomidine (examples of neuroprotective drugs), are gener-
ally used for the treatment of various neurodegenerative 
diseases as well as heart dysfunctions.18,20,21 The evaluation 
of drug efficiency and ranking of drugs have been per-
formed through k-means clustering of the features extracted 
from the Ca2+ response.19

An increased level of norepinephrine is known to stimu-
late cardiac autophagy and hypertrophy.22 In fact, excess 
norepinephrine is known to cause oxidative stress and cell 
death. Existing studies mostly concentrate on the mecha-
nisms corresponding to lower levels of norepinephrine.23 
Despite knowing the adverse effects of norepinephrine, the 
responses in the presence of higher levels of norepinephrine 
are not explored. Specifically, large-scale studies and iden-
tification of Ca2+ signatures for a longer duration have not 
been performed. In this context, we propose imaging using 
confocal imaging and visualization of a dataset of a large 
number of videos on Ca2+ dynamics using uniform mani-
fold approximation and projection (UMAP). To the best of 
our knowledge, this is the first instance of studying cell 
death dynamics through confocal imaging of cytosolic Ca2+ 
and identification of various Ca2+ signatures using fuzzy 
clustering. In addition, we present a detailed comparison of 
Ca2+ dynamics at low and high levels of norepinephrine.

In this article, we choose norepinephrine that targets α2 
adrenergic receptors (α2ARs), since the underlying mecha-
nism for inducing toxicity is crucial in determining the drug 
dose range for modulating cardiac function.24–26 Clinical 

trials have shown that norepinephrine can be used for the 
treatment of hypotension and maintaining mean arterial 
pressure in the intensive care unit (ICU) setting as well as 
during caesarian delivery. It has been found that norepi-
nephrine has been tested in such clinical trials with perfu-
sion of approximately 0.05–2 µg/Kg.min of norepinephrine 
using an intravenous pump.22 In several other cases, how-
ever, it has been reported that higher drug doses may be 
lethal by activating apoptosis by creating Ca2+ overload in 
the mitochondrial matrix.23 Hence, a toxicity study assumes 
importance for determining the safe ranges of drug doses 
and Ca2+ levels under higher levels of norepinephrine.

Previous studies mostly concentrate on toxicity studies 
based on protein expression and quantification of viability 
and the percentage of apoptotic cells using annexin V.21 
Recent work shows that flow cytometry has been imple-
mented to measure cytosolic and mitochondrial Ca2+ to 
monitor apoptosis.21 These techniques, however, are able to 
capture only the Ca2+ level at a lower resolution. Moreover, 
fluorescent and confocal microscopy also have been used 
for studying the apoptotic process through the measurement 
of intracellular Ca2+.27 However, obtaining the correlation 
between cellular responses and death dynamics remains 
challenging due to the unavailability of tools that can be 
used for quantitative imaging. In this article, we demon-
strate a methodology for high-resolution imaging that pro-
vides the Ca2+ dynamics in subcellular parts in the presence 
of high levels of norepinephrine.

One of the major challenges for analyzing a large num-
ber of time-lapse Ca2+ imaging videos is to visualize and 
quantify the spatiotemporal dynamics of Ca2+ level obtained 
through time-lapse imaging. In this context, the develop-
ment of tools in combination with high-content imaging 
and automated analysis is expected to increase the quality 
of molecules progressing to preclinical stages during the 
drug development pipeline.28 Previously, various clustering 
techniques including k-means and hierarchical clustering, 
based on Euclidian and correlation distances, have been 
used to group the cells with respect to a Ca2+-spiking pat-
terns shown by them in a population.29–31 There is, however, 
less investigation in clustering analysis that divides the 
Ca2+ time-series data points into groups, such that distribu-
tions of patterns corresponding to lower and higher drug 
doses are deciphered.

Recently, a nonlinear dimensionality reduction tech-
nique, UMAP, has been developed for the analysis of high-
dimensional data.32 In the current work, we propose a 
computational framework based on UMAP and fuzzy 
c-means (FCM) clustering, which generates a complete 
visualization of a dataset for Ca2+ dynamics and finds the 
relative distribution of various responses in a dose range. 
The rationale behind choosing FCM is to perform a proba-
bilistic allocation for the points that can be a part of various 
clusters.
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In this article, we propose an integrated framework for 
the measurement and analysis of Ca2+ in single cells 
through live cell imaging using spinning-disk confocal 
microscopy. First, we provide a detailed protocol for imag-
ing using confocal microscopy. Second, this work high-
lights the use of UMAP for visualization and interpretation 
of spiking responses at various doses. The toolbox based on 
UMAP and FCM is efficient and fast, such that standard 
desktop computers can process the data in a few seconds. 
The specific novelty of the proposed study is to demonstrate 
the feasibility of using UMAP and FCM to identify dis-
tinctly different responses. Furthermore, reclustering of 
high dose responses shows that there are three distinct 
responses, among which one corresponds to the accumula-
tion of Ca2+ in subcellular parts followed by cell blebbing 
and lytic death. The quantitative imaging reveals the spe-
cific signature of Ca2+ dynamics that lead to cell death.

Materials and Methods

Cell Culture

HeLa cells were cultured in Dulbecco’s modified Eagle 
medium (DMEM; Cellgro, Manassas, VA) supplemented 
with 10% dialyzed fetal bovine serum (Atlanta Biologicals, 
Flowery Branch, GA). The cells were grown in 29 mm 
glass-bottom dishes (In Vitro Scientific, Sunnyvale, CA) 
and were maintained in culture until 70–80% confluency.

Imaging Setup Using Spinning-Disk  

Confocal Microscopy

Cells seeded on 29 mm glass-bottom dishes were imaged 
(48 h after seeding the cells) using a Leica spinning-disc 
confocal-imaging system (Leica Microsystems, Wetzlar, 
Germany) that has an Andor FRAPPA device and electron-
multiplying charge-coupled device (EM-CCD) camera 
(Andor, Belfast, UK). During the entire duration of Ca2+ 
imaging, HeLa cells were maintained in Hank’s Balanced 
Salt Solution (HBSS; Invitrogen, Life Technologies, Grand 
Island, NY) at 37 °C, 5% CO2, in an incubator that is 
attached to the microscope. To avoid the decrease in fluo-
rescent intensity through drifts in the imaging plane, an 
adaptive focus control (AFC) was used. Specifically, a 63× 
oil objective was used to find the Ca2+ spiking in subcellu-
lar parts. Fluorescent images were acquired with argon 
laser, excited at 488 nm for tracking Fluo-4 (Molecular 
Probes, Life Technologies, Grand Island, NY) intensity.

Fluorescent Dye Labeling and Ca2+  

Imaging for Monitoring Cell Death

Ca2+ imaging was performed in HBSS. Cell cultures were 
loaded with 2 µM Fluo-4 for 30 min in HBSS at 25 °C. 

Then, the cells were washed with HBSS three times with a 
10 min incubation time for each of the washes. Time-lapse 
imaging was performed before and after adding the drug. 
The Fluo-4 images (excitation: 488 nm; emission: 510 nm) 
were acquired at approximately 3–4 s intervals at 37 °C. 
Norepinephrine (Sigma-Aldrich, St. Louis, MO) in HBSS 
was used to activate the α2AR at various doses. To cover a 
wide range of agonist concentrations, the cells were treated 
with nine different concentrations (0.1 µM, 0.5 µM, 1 µM, 
10 µM, 40 µM, 50 µM, 100 µM, 200 µM, and 400 µM) of 
norepinephrine. Time-lapse imaging was used to construct 
the videos to monitor the cell fate dynamics and Ca2+ level 
for 615 s.

Differential Interference Contrast Imaging and a 

Propidium Iodide Hoechst Assay for Cell Lysis

HeLa cells were washed three times with HBSS (Gibco, 
Grand Island, NY) before differential interference contrast 
(DIC) imaging using a laser scanning confocal microscope 
(SP8 Lightning, Leica Microsystems). To detect the cell 
lysis, cells were stained with 2.5 µg/ml propidium iodide 
(PI; Sigma-Aldrich) and were visualized using an excitation 
at 561 nm and emission at 600–660 nm using a Hybrid 
Detector 4 (Hyd4; Leica Microsystems) and 63× oil objec-
tive in confocal microscopy.33 Nuclear morphology was 
analyzed using Hoechst 33342 nuclear staining, and imag-
ing was performed with a 63× oil objective (Sigma-
Aldrich) at 405 nm excitation.34,35 DNA condensation was 
visualized using a photomultiplier tube (PMT) 3 detector 
(emission: 420–480 nm).

Image Analysis Measurements  

and Quantification

Time-lapse movies were acquired every 3–4 s for 103 s (30 
frames) before agonist addition and 615 s after agonist addi-
tion. Andor IQ software was used to obtain the time course of 
fluorescence intensity of Fluo-4 in each cell treated with drug. 
For single-cell analysis, the regions of interest (ROIs) were 
selected around the cell periphery, and the mean fluorescent 
signal was collected within the ROIs (Suppl. Fig. S1A and 

Fig. S1B). To reduce the background noise, the intensity of 
each cell was calculated by subtracting the mean background 
intensity from the original mean intensity of each cell. 
Furthermore, we performed normalization as shown in 
Supplementary Figure S1C and Fig. S1D. For each cell in 
the population (each time-lapse video contains approximately 
15–22 cells), the number of Ca2+ spikes (N) and the duration 
of Ca2+ spiking (T) were quantified using the findpeaks func-
tion in MATLAB (MathWorks, Natick, MA).

Since the dataset was obtained through acquisition of 
multiple videos for a large range of doses, it was found that 
some of the videos contain photobleaching (Suppl. Fig. S2 A). 
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To correct the baseline for the photobleaching effect, we 
used moving-average method36 using MATLAB, as shown 
in Supplementary Figure S2B and Fig. S2C.

Dataset Description

The distribution of various doses in the dataset used is rep-
resented in Supplementary Figure S3A. First, we per-
formed the analysis using the total dataset (Fluo-4 intensity 
for 395 time points for 298 cells). Then, we performed 
reclustering of the dataset corresponding to a higher dose, 
comprising a total of 395 time points corresponding to 200 
µM (39 cells) and 400 µM (26 cells) of norepinephrine.

Data Preprocessing

To perform correction to address the photobleaching events, 
first de-trending of the fluorescent traces was performed 
using an algorithm presented in Venkateswarlu et al.36 Next, 
the time course of Ca2+ was denoised using the method of 
exponential moving average. The tsmovavg function in 
MATLAB was used to smoothen data. Since the Fluo-4 
intensity measures are at different time points for different 
videos, finally Fluo-4 intensities for all videos at a fixed set 
of time points (395) were calculated through interpolation 
using the interp1 function in MATLAB.

Normalization

After preprocessing, we performed normalization of the 
dataset using L2

norm
, which is defined on Euclidean dis-

tance: L
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data point corresponding to the Ca2+ level for the jth cell at 
ith time; n is the number of time points; and m is the number 
of cells. We have used the Python 3.7 Numpy Library 
(Version 1.16.2) for finding the L2

norm
.

Running the Dimensionality Reduction Algorithm

We used the umap-learn library (Version 0.3.9) of Python 
3.7, which computes the reduced matrix using UMAP pro-
jection.32,37,38 This algorithm was run on a total dataset (395 
time points × 298 cells) and a higher-doses dataset (395 
time points × 65 cells). The UMAP runtime was found to 
be 1.07 s. We also had performed t-distributed stochastic 
neighbor embedding (t-SNE) for visualizing the two-
dimensional (2D) projection with a runtime of 2.79 s.

Visualization of Cell Populations  

and Fuzzy Clustering

To visualize the ability of the dimensionality reduction 
method to preserve the cohesiveness of data, we first 

incorporated the categorical labels of various drug doses. 
To choose a putative cluster number, first we performed 
clustermap visualization based on hierarchical clustering 
using the Python Seaborn Library (Version 0.9). Since the 
clustermap analysis indicated that the dataset may be 
divided into approximately 10 distinct groups (Suppl. Fig. 

S3B), fuzzy c-means was performed on the UMAP-reduced 
data with k = 10. Clustering analysis was performed with the 
fuzzy-c-means library (Version 0.0.6). Moreover, for com-
parison with existing methods, we performed principal 
component analysis (PCA) and feature extraction (ampli-
tude and number of peaks) followed by k-means and hierar-
chical clustering using MATLAB.19,31 The comparison of 
various clustering methods was performed using seven dif-
ferent validation techniques as presented in Liang et al.39

Comparison of Ca2+ Spiking within a Group

We further present the similarity between the spiking pro-
files of all cells within and among clusters using the empiri-
cal cumulative distribution function (eCDF in MATLAB). 
The eCDF is a step function that jumps up by 1/n at each of 
the n data points, thus converging to probability 1. Here, the 
distance between two cells was measured by calculation of 
pairwise root mean square error (RMSE) between the 
eCDFs of those two cells. The lower RMSE between the 
eCDFs of two Ca2+-spiking profiles indicates higher statis-
tical similarity between them. In addition, we calculated 
Pearson’s correlation coefficient between each pair within 
10 clusters.

A schematic diagram for the overall workflow proposed 
for visualization and analysis is presented in Figure 1. Also, 
the parameters and distances used in the algorithms are 
listed in Supplementary Table S1.

Statistical Analysis. One-way analysis of variance (ANOVA) 
was used for multiple comparisons between doses to see the 
difference with respect to the amplitude and number of 
spikes in Ca2+ oscillation using MATLAB.

Results

Time-Lapse Imaging and Single-Cell Responses

We have used a time-lapse imaging approach to obtain Ca2+ 
responses after treatment with an agonist for various doses 
and obtained quantitative information about collective Ca2+ 
dynamics in a group of cells cultured on a petri dish. Figure 

2 shows the heat map representation of time-lapse images 
obtained for two representative cell populations treated 
with 10 µM and 400 µM norepinephrine. The results show 
that for lower doses, the Ca2+ level comes back to the basal 
level after 3 s, whereas for higher doses, an increased level 
of Ca2+ is maintained for a longer period. To obtain a map-
ping of dose response from 0.1 µM to 400 µM, we plotted 
the time course of Fluo-4 intensity in multiple cells for each 
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dose (Fig. 3). Figure 3A and 3B, 3C and 3D, 3E and 3F, 

3G and 3H, and 3I and 3J present the Ca2+ oscillations in 
individual cells with drug doses of 1 µM, 10 µM, 100 µM, 
200 µM, and 400 µM, respectively. When the drug dose was 
maintained at 0.1 or 1 µM, the cells showed a lower number 
of Ca2+ spikes and rapid damping (Fig. S4A and S4B, Fig. 

3A and B). In contrast, when the drug dose was maintained 
at 10 µM, a higher number of Ca2+ spikes and higher ampli-
tude were observed (Fig. 3C and Fig. 3D). At 100 µM, the 
Ca2+ release takes place in a periodic manner leading to 
sustained oscillatory responses (Fig. 3F). Figure 3G shows 
that the treatment of a higher dose of norepinephrine leads 
to elevated release of Ca2+ into cytosol after 9 s of drug 
addition, followed by rapid depletion of Ca2+ in 30 s. 
Supplementary Figure S4 shows representative responses 
for 0.1 µM, 0.5 µM, 40 µM, and 50 µM. The results show 
that the frequency of Ca2+ oscillation increases in some of 
the cells with an increase in drug dose in the range from 1 to 
100 µM (Fig. 3). Supplementary Videos S1 and S2 show 

the recording of Fluo-4 intensity corresponding to treatment 
with 10 and 100 µM norepinephrine.

Time Course of Cytosolic Ca2+ for a  

Wide Range of Drug Doses

First, we show the complete time-series dataset on responses 
obtained for 0.1 to 400 µM for 298 cells through the heat 
map representation, where the y-axis is Fluo-4 intensity for 
all the cells treated with various doses (Fig. 4A), and the 
x-axis represents time. To show a comparison between vari-
ous features, including the amplitude and number of peaks 
of the Ca2+ response between nine doses, we also show the 
box plot analysis of amplitude and number of Ca2+ peaks 
(Fig. 4B and 4C). The results show that the range of fea-
tures among doses does not yield any specific trend.

Next, we performed one-way ANOVA for pairwise com-
parisons between doses to investigate the dose-to-dose dif-
ferences in numbers of peaks and amplitude of the Ca2+ 

Figure 1. Schematic diagram for data acquisition to obtain a dose–response profile using high-resolution Ca2+ imaging, data 
visualization, and clustering of Ca2+ dynamics. The process is divided into four steps: (1) Live cell imaging and video acquisition for 
nine different doses. (2) Construction of a dose–response dataset and preprocessing. (3) Heat map representation and uniform 
manifold and projection (UMAP) of the entire dose–response dataset. (4) Clustering of the UMAP-projected dataset for the entire 
dose response using fuzzy c-means (FCM) and reclustering of high dose responses using FCM.
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Figure 2. Spatial intensity mapping of Fluo-4 showing the distribution of Ca2+ response in a HeLa cell population (n = x) in the 
presence of norepinephrine (an α2-adrenergic receptor agonist). Representative time-lapse images were collected from the videos 
captured using a 63× oil objective in spinning-disk confocal microscopy for 615 s. (A) Concentration of norepinephrine dose: 10 µM; 
(B) concentration of norepinephrine dose: 400 µM. Please see figure online for color.

Figure 3. Time course of Fluo-4 intensity obtained from single cells treated with a norepinephrine dose ranging from 1 µM to 400 
µM shows cell-to-cell variability in Ca2+ response. For each dose of norepinephrine, five representative fluorescent traces from 
individual cells are shown: (A,B) 1 µM, (C,D) 10 µM, (E,F) 100 µM, (G,H) 200 µM, and (I,J) 400 µM. Y axis represents mean Fluo-4 
intensity in each cell. Please see figure online for color.
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resposes. Supplementary Figure S5 provides the pairwise 
heatmap of p

ij
-values obtained from ANOVA analysis, in 

which p
ij
 denotes the p-value (with α = 0.05) corresponding 

to the comparison of the ith dose with the jth dose, [i = 1, 
2, . . . 9; j = 1, 2, . . . 9], with respect to number of peaks and 
amplitude. The results clearly show that for most of the 
cases, the maximum amplitude is significantly different 
when compared between two doses. For a few cases, how-
ever, there is no significant difference in the amplitude of 
Ca2+ response between low and high doses (Suppl. Fig. 

S5A). In contrast, for a larger number of cases, there is no 
significant difference between the number of peaks for 
higher doses compared to lower doses (Suppl. Fig. S5B). 
Overall, the analysis indicates that due to the huge variabil-
ity present under the same dose, there might not be any sta-
tistical significance between some doses. This may arise, 
however, due to the fact that time information is lost when 
the feature depends on only the number of Ca2+ spikes. 
Although one-way ANOVA indicates that there is signifi-
cant difference between the multiple doses, such a conven-
tional approach does not provide the overall pattern present 
in the data. To address this, we present a schematic diagram 
of the workflow that describes various steps of the dose–
response analysis (Fig. 1).

UMAP Visualization and Fuzzy  

C-Means Clustering

Since single-cell Ca2+ dynamics for various doses give rise 
to high-dimensional data, we have implemented UMAP to 
convert the information to a lower dimension. UMAP is 

known to be very efficient at embedding large high- 
dimensional datasets. Supplementary Figure S6 shows the 
comparison of 2D embedded data obtained from PCA and 
UMAP. The result clearly shows that UMAP performs bet-
ter at separating the data points compared to PCA. We ran 
UMAP on the dataset covering nine doses on HeLa cells 
(Fig. 5A and Suppl. Fig. S6). The UMAP visualization 
clearly shows that each of the cell responses is assigned to a 
specific point in a 2D plot. Moreover, each dose can be 
visualized as a combination of cells in 2D plots (Fig. 5A). 
Next, by color coding the actual doses in UMAP representa-
tion, we observed that the cells treated with similar doses 
remain in the close neighborhood in 2D plots (Fig. 5A).

After UMAP reduction, we found that many data points 
could go to more than one cluster. Hence, we performed 
fuzzy c-means clustering for grouping the time-series 
events into 10 broad types (Fig. 5B and Suppl. Fig. S7). 
Moreover, UMAP and FCM were found to be reasonable in 
pulling together clusters corresponding to similar responses 
with distinct amplitude ranges (Suppl. Fig. S7). The result 
clearly shows that FCM is able to identify clusters 1, 2, 5, 6, 
7, 8, and 9, in which each cluster represents a similar spik-
ing pattern (Fig. S7).

Supplementary Figure S9A shows the box plot repre-
sentation of the correlation coefficient between two cells 
present in the same cluster. In addition, we show a heatmap 
representation of the pairwise RMSE between the cumula-
tive density functions (CDFs) obtained from a single-cell 
Ca2+-spiking profile (Suppl. Fig. S9B). The results clearly 
show that RMSE values between the CDFs of the cells 
within the clusters (along the leading diagonal) are less 

Figure 4. Visualization of a dose–response profile obtained from Ca2+-imaging experiments. (A) Heat map representation of time-
series events color-coded by the intensity of Fluo-4. (B) Box plot analysis of maximum amplitude of Ca2+ responses corresponding 
to various norepinephrine doses ranging from 0.1 to 400 µM. (C) Box plot analysis of number of spikes corresponding to various 
norepinephrine doses ranging from 0.1 to 400 µM. Please see figure online for color.
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compared to RMSE values between the CDFs of cells 
across clusters. This indicates that UMAP and FCM were 
able to divide the Ca2+ spiking into groups in which 
responses are statistically similar.

While UMAP is able to segregate the data into distinct 
island regions corresponding to one cluster, back mapping 
of time-series data shows that clusters 0 and 4 show a spik-
ing pattern of distinct features and cluster 3 shows the noisy 
responses corresponding to low drug doses (Suppl. Fig. 

S7). Also, cluster 4 is one of the 10 clusters in which the 
responses are mixed and do not elicit a distinct spiking pat-
tern (Suppl. Fig. S8A). Instead of spiking frequency, in this 
case, UMAP and FCM ordered the events according to their 
amplitude. We observed that FCM was able to identify two 
clusters (cluster 4 and cluster 5) that contain Ca2+ responses 
with higher amplitude and lower frequencies (Suppl. Fig. 

S8). Specifically, cluster 5 represents a group of time-series 
events in which the Ca2+ level is consistently maintained at 

a higher level instead of having a typical oscillatory nature 
(Supp. Fig. 8B). Supplementary Figure S10A shows the 
distribution of doses in various clusters, whereas 
Supplementary Figure S10B shows the distribution of 
responses from different clusters among various doses. 
Back mapping of the distribution of responses shows that 
each dose contains various types of responses obtained 
from the clustering process.

To show that the proposed quantitative confocal micros-
copy with UMAP visualization and FCM clustering is bet-
ter than the other existing methods, we performed an 
analysis of the above dataset with six methods: (1) feature 
extraction and k-means clustering, (2) feature extraction 
and FCM clustering, (3) PCA and k-means clustering, (4) 
feature extraction and hierarchical clustering, (5) UMAP 
and hierarchical clustering, and (6) UMAP and fuzzy clus-
tering. Supplementary Figure S11 shows the visualization 
of the data and clusters using these six methods. Next, we 
present a comparison of the six methods using a heatmap 
for pairwise Pearson correlation coefficients within clusters 
(Suppl. Fig. S12). In addition, a comparison of the distribu-
tion of clusters among doses is shown in Supplementary 

Figure S13. Finally, the methods were compared using 
seven clustering validation indices, which are presented in 
Table 1. Overall, the results show that UMAP visualization 
and FCM clustering provide a better way to analyze the 
dataset for grouping the responses.

Single-Cell Ca2+ Dynamics for  

Higher Drug Doses

Based on these results, we reclustered the Ca2+ dynamics 
in cells treated with 200 and 400 µM of norepinephrine 
(Fig. 3H and 3I). Supplementary Figure S14A and 

S14B shows the heat map of the Fluo-4 intensity corre-
sponding to 200 µM and 400 µM. Although these two 
doses contain cells with a higher Ca2+ level, they retain 
significant heterogeneity. Hence, we reclustered the high-
dose dataset and identified three clusters (clusters A, B, 
and C) using FCM (Suppl. Fig. S14C). This time, UMAP 
and FCM were able to distinguish the time-series events 
according to their damping time within these three clus-
ters. Figure 6A–6C shows the Ca2+ dynamics for three 
major clusters, in which cluster C indicates the group con-
taining Ca2+ responses having two major peaks. Figure 

6D shows the mapping back of the response distribution 
corresponding to three clusters. The results show that the 
time-series data corresponding to higher drug doses can be 
grouped and visualized using a reduction of dimension 
using UMAP.

Spatial Mapping of Cytosolic Ca2+ in Single Cells

To identify the specific pattern of Ca2+ accumulation in cells of 
cluster A obtained from reclustering the dataset corresponding 

Figure 5. Uniform manifold and projection (UMAP) embed the 
overall structure of dose–response data based on measurement 
of Ca2+. (a) UMAP of fluorescent traces color-coded according 
to the norepinephrine dose. (b) UMAP and fuzzy c-means 
clustering of Ca2+ responses (k = 10). Please see figure online 
for color.



462 SLAS Technology  26(5)

to the high dose, we further focused on spatial mapping of 
Ca2+ levels in single cells. Specifically, to have a correla-
tion between Ca2+ traces and cell fate, we show the specific 
Ca2+ signature corresponding to the higher dose of norepi-
nephrine. Figure 7A shows the impact of higher drug doses 
on cytosolic Ca2+ along with the cell morphology corre-
sponding to cluster C. Figure 7B shows the corresponding 
spatial intensity mapping describing the sequestration of 
Ca2+ into small subcellular domains. Specifically, confocal 

imaging of Fluo-4 intensity reveals that the released Ca2+ is 
sequestered in specific intracellular regions in the cell 
(180–615 s after the addition of drug). Also, we found that 
the sequestration of Ca2+ leads to the formation of extracel-
lular projections and cell blebbing between 240 and 615 s 
(Suppl. Video S3). The time course of Ca2+ concentration 
shows a sigmoidal increase of Ca2+ levels in specific intra-
cellular regions after the initial fall in Ca2+ levels. These 
results suggest that the initiation of drug-mediated lysis can 

Table 1. Comparison of Various Methods for Analysis of Ca2+ Response Using Seven Internal and External Clustering Validation 
Indices.

Method WB Silhouette Calinski–Harabasz Davies–Bouldin Dunn S_Dbw AI

A 1.115 0.512 287.061 0.806 0.013 0.141 0.091

B 0.609 0.689 525.317 0.642 0.023 0.139 230.531

C 1.038 0.521 308.153 0.816 0.005 0.145 0.104

D 0.187 0.648 1710.359 0.673 0.030 0.012 260.450

E 171.307 –0.698 1.868 13.378 0.001 0.154 0.363

F 17.695 –0.017 18.085 1.096 0.000 0.172 0.016

(A) k-means clustering of feature-based data. (B) PCA followed by k-means. (C) FCM clustering of feature-based data. (D) UMAP followed by FCM. 
(E) UMAP followed by hierarchical clustering. (F) Hierarchical clustering of feature-based data (green: rank 1; and yellow: rank 2). The two features 
used were the maximum amplitude of Ca2+ response and the number of peaks in a given duration. AI, Artificial intelligence; FCM, fuzzy c-means; PCA, 
principal component analysis; UMAP, uniform manifold and projection; WB, WB-index for cluster validation. Please see table online for color.

Figure 6. Single-cell 
landscaping of Ca2+ 
dynamics at higher 
doses. (A–C) Single-
cell fluorescent traces 
corresponding to three 
clusters (A, B, and C, 
respectively) obtained 
from the high-dose 
dataset by fuzzy c-means 
(FCM). (D) Mapping 
back of the distribution 
of various response 
types corresponding 
to 200 and 400 µM of 
norepinephrine. Please 
see figure online for 
color.
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be correlated to a specific signature in a single cell (cluster 
C). The ability to monitor the Ca2+ oscillations and spatial 
mapping on Fluo-4 intensity allowed us to quantify Ca2+ 
dynamics during cell blebbing and cell death (Fig 7A and B, 

and Suppl. Videos S3 and S4).
In contrast, distinctly different traces are obtained for cells 

from cluster B (Fig. 7C): The spatial mapping reveals that, 
unlike cluster C, the Ca2+ level remains high for a longer 
period of time. Also, the Ca2+ level in cells treated with 200 
µM (cluster B) is not sequestered in microdomains, like it is 
in cells from cluster C (Suppl. Video S5). Next, we show a 
similar spatial mapping corresponding to a cell treated with 
200 µM of norepinephrine (Fig. 7D). Figure 7E shows the 
time-lapse images of cytosolic Ca2+ corresponding to the low 
dose (norepinephrine = 10 µM), and Figure 7F shows the 
spatial mapping of Ca2+ concentration in a single cell. Also, 
Figure 7E shows that the Ca2+ level goes down to the basal 
level of cytosolic Ca2+ after 107 s, and the cell retains its nor-
mal morphology (Suppl. Video S6).

Supplemental Figure S15A depicts the specific Ca2+ 
dynamics that lead to cell blebbing and lytic death. It also 
shows one-to-one mapping between the cell state and time 
course of Ca2+. The schematic diagram for a possible mech-
anism of Ca2+ accumulation in the cellular microdomain 
corresponding to low and high doses of Ca2+ is shown in 
Supplemental Figure S15B. The results show that the 

proposed framework is able to identify the specific features 
of the Ca2+ signature in cells in the presence of excessive 
norepinephrine.

To confirm cell lysis, we performed time-lapse imaging 
of cells treated with 400 µM norepinephrine using a PI assay. 
Supplemental Figure S16 shows a comparison of PI stain-
ing for cells with no treatment versus cells treated with 100 
µM and 400 µM. The result clearly shows that the morphol-
ogy of the cells remains unaffected without treatment with 
norepinephrine (Suppl. Video S7). In addition, no lysis was 
noticed for the control case. Also, the treatment with 100 µM 
does not induce cell lysis within 25 min (Suppl. Video S8). 
In contrast, during treatment with 400 µM norepinephrine, 
PI staining appeared at around 300 s (Suppl. Video S9). 
Since the cells were losing membrane integrity, this allowed 
PI to be internalized, indicating cell lysis. Supplementary 

Figure S17 shows the DIC time-lapse images and spatial 
mapping of PI staining in single cells for the three cases 
described above. The results indicate that the cell morphol-
ogy undergoes significant change with 400 µM norepineph-
rine compared to 100 µM or no treatment. In addition, cell 
blebbing was visible in the case of excess norepinephrine 
(Suppl. Fig. S17A and Suppl. Video S9).

To validate the proposed method, we further compared 
the method with a lysis assay using PI and a DNA-staining 
assay with Hoechst 33342. The results show the change in 

Figure 7. Characteristic fluorescent images and spatial heat mapping of three distinct Ca2+ responses. (A,B) Representative time-
lapse images and heat maps of the distribution of cytosolic Ca2+ in single cells that have Ca2+ sequestration in microdomains and 
are undergoing formation of apoptotic bodies (cluster 3; dose = 400 µM). (C,D) Cells with high levels of Ca2+ for a longer period of 
time (cluster 2; dose = 200 µM). (E,F) Cells in which the Ca2+ level returns to the basal level after a few oscillations (cluster 1) in the 
presence of a low drug dose (control; dose = 10 µM). Please see figure online for color.
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cell shape and the increase in Hoechst 33342 during 0–200 s. 
Generally, the toxicity of cells is tested using cell shape and 
a PI assay.33 Figure 8 shows the comparison of time-lapse 
imaging based on confocal microscopy of cytosolic Ca2+ 
with an established method like DIC imaging, PI, and 
Hoechst staining.33–35 We performed DNA staining using 
Hoechst 33342 and time-lapse imaging, as shown in Figure 

8 (panel 3). The results show that there is an increase in the 
Hoechst signal with time (Suppl. Video S10). In addition, 
PI staining clearly shows that there is an onset of lysis from 
3 to 7 min for cells treated with 400 µM of norepinephrine 
(Fig. 8, panel 2). The change in signal for the Hoechst and 
PI assay is rather lower compared to the Fluo-4 signal (Fig. 

8, panels 2–4). We also performed a comparison cytosolic 
Ca2+ imaging using a fluorescent microscope system and a 
confocal microscope (Suppl. Fig. S18). The result clearly 
shows that the signal-to-noise ratio is much better for con-
focal imaging compared to traditional fluorescent micros-
copy. Specifically, the toxicity analysis can be better 
performed through imaging of a confocal plane. Moreover, 
the increase in Ca2+ can be detected at 120–200 s, whereas 
the PI staining for lysis appears after 300 s and becomes 
prominent at 600–700 s (Suppl. Fig. S17).

Discussion

In this work, we propose live imaging-based testing of 
ligands and identify specific Ca2+ signatures using 
machine learning tools. Specifically, we performed 
dimension reduction of the dose–response dataset 

followed by clustering of Ca2+ responses. Particularly, we 
performed reclustering of responses obtained with higher 
drug doses. To observe the time course of events at various 
drug doses, we performed Fluo-4 imaging using a 63× 
objective in spinning-disk confocal imaging. Also, we 
showed that the proposed computational framework is 
capable of identifying the cell death dynamics that are cor-
related with accumulation of Ca2+ in subcellular parts. 
This work shows a proof of concept that such an assay can 
be used for monitoring cell dynamics and Ca2+ signature 
during cell death.

Although higher resolution in spatiotemporal distribution 
of Ca2+ can be obtained by 3D imaging,36 here we performed 
2D imaging because 3D imaging leads to a reduction in time 
resolution and increase in imaging time. Another drawback 
for large-scale 3D imaging is that there is no suitable software 
that can be used for quantification of total fluorescent inten-
sity within the specific volume obtained through 3D recon-
struction. Moreover, more resources are needed in terms of 
memory and computation time for the reconstruction of 
z-stacks, visualization of Ca2+ oscillations, volumetric seg-
mentation, and data analysis.36 The current method is based 
on 2D imaging of cytosolic Ca2+ in a confocal plane, and 
some confocal images may appear oversaturated. Due to this, 
the quantitation may give a reduced value of fluorescence 
measurement compared to the actual value of fluorescence. 
Although measurement of higher concentrations of Ca2+ is 
one of the limitations of the proposed technique, the error aris-
ing from unwanted pixels was minimized using background 
correction, as mentioned in Supplementary Figure S1.

Figure 8. Comparison of various imaging techniques for measuring cell lysis and cell death using confocal microscopy. Comparison 
of signals obtained from time-lapse imaging: (Panel 1) Cell morphology using differential contrast imaging (DIC); (Panel 2) cell lysis 
using three-dimensional (3D) imaging of propidium iodide (PI) intensity; (Panel 3) nuclear morphology using two-dimensional (2D) 
imaging of Hoechst 33342; and (Panel 4) cytosolic Ca2+ imaging using 2D imaging of Fluo-4 in one focal plane. In each of the cases, 
the HeLa cell population was treated with 400 µM norepinephrine, and images were captured using a 63× oil objective for 10 min 
15 s. Scale bar = 10 µm. Please see figure online for color.
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Although the expression of single reporter biomolecules 
can be used for live monitoring and for generating dynamic 
data on apoptotic processes using high-resolution micros-
copy,40 the major disadvantage is lower transfection effi-
ciency. This method has the ability to monitor transfected 
cells, which are around 30–40% of the whole cell popula-
tion.41 Hence, in large-scale data acquisition on multiple 
doses, and mapping of toxicity remains challenging using 
transfection-based methods.

Although differentiation between lytic and apoptotic 
death is outside the scope of this work, the proposed assay 
can be updated for simultaneous monitoring of other 
dyes, including caspase-8 reporter and mitochondrial 
(Mitotracker) dye, along with Ca2+. Fluorometric charac-
teristics have to be chosen such that there are no overlap-
ping signals.33,40 It was observed that imaging with multiple 
dyes, including PI–Fluo-4 and Hoechst–Fluo-4, leads to 
overlapping signals, different rates of internalization of the 
dye, and modification in toxicity levels. Hence, to quantify 
the toxicity or lytic process in the presence of norepineph-
rine, it was not possible to perform imaging using combina-
tions of Fluo-4 and PI or Fluo-4 and Hoechst.

Recently, cell viability and cytotoxicity assays have 
assumed significant importance in drug screening and pre-
clinical studies. Especially, dynamical feature extraction 
from quantitative phase imaging has been proved to be suit-
able for cell death detection.33 Time-lapse imaging of cell 
morphology and cell mass topography during cell death has 
been used to classify cell death into two types: apoptosis 
and cell lysis. Since it has been reported that lytic death is 
associated with the formation of large cytoplasmic mem-
brane blebs or multiple small blebs, it is possible that nor-
epinephrine is inducing lytic cell death at higher doses. One 
of the achievements of this work is to decipher the correla-
tion between Ca2+ sequestration in the subcellular domain 
and rupturing the membrane.33 It has also been shown that 
norepinephrine with a lower dose may induce apoptosis 
when treated for a longer period of time.22 The proposed 
study shows that a higher dose of norepinephrine can be 
specifically delivered to cancer cells to induce lytic cell 
death.42

Although HeLa cells are known to be a good model for 
testing the cytotoxicity of norepinephrine, the same study 
can also be performed in a heart cell model.43 Based on 
these results, we plan to perform an in vitro preclinical 
study of H9c2 cells for toxicity analysis and estimation of 
the Ca2+ level in the presence of various levels of norepi-
nephrine. Such a model may also provide a cell-based 
model for hypertrophy.23 The other limitation of the pro-
posed framework for dose–response analysis is that it gives 
only the complex waveform for Ca2+ oscillation but does 
not provide the actual Ca2+ concentration. To estimate the 
concentration of Ca2+ at the subcellular level, we need to 

build a calibration curve by measuring Fluo-4 intensity 
under various concentrations of Ca2+ in a solution.5

For dimension reduction, in general, PCA, t-SNE, 
UMAP, and other mapping-based techniques can be imple-
mented.33 To address the inherent nonlinear nature, how-
ever, we implemented UMAP and t-SNE, and specifically 
chose UMAP since it takes less time. UMAP can save com-
putation time significantly for high-content screening 
experiments.32 In contrast, fuzzy clustering is a soft clus-
tering in which the data point closer to the center of the 
cluster has a higher degree of membership compared to the 
one that is farthest. The major disadvantage of using FCM, 
however, is a priori specification of the number of clusters. 
Hence, further improvements can be proposed based on 
HDBSCAN (hierarchical density-based spatial clustering 
of applications with noise) clustering in the future, which 
can be used for automation in the selection of cluster num-
bers.44 Furthermore, to achieve fully automated analysis, 
an image-processing module coupled with the proposed 
dimension reduction and clustering can be used as a high-
throughput data analysis workflow toward toxicity map-
ping. Also, the proposed computational tool can be used 
for analysis of cytosolic Ca2+ measured through genetic 
sensors.12

The results show that higher concentration of norepi-
nephrine induces sequestering of Ca2+ in subcellular parts 
during the dynamic cell death process. It is known that such 
an increase in cytosolic Ca2+ leads to an increase in mito-
chondrial membrane potential and thereby causes damage 
to epithelial cells.27 Norepinephrine is known to induce 
IP3R1 [IP3 (inositol 1,4,5-trisphosphate) receptor subtype 
1] activation, which leads to Ca2+ release from the endo-
plasmic reticulum (ER) to the cytosol.45–47 Also, previous 
studies indicate that IP3R3 may have a significant role in 
controlling cell death in HeLa cells and other cells.48 The 
proposed tool can be used to investigate the role of IP3R3 
channels involved in the sequestration of Ca2+ in the mito-
chondria. In addition, mathematical modeling can be per-
formed to find the roles of various subtypes of IP3 receptor 
in the regulation of Ca2+ sequestration. Further channel-
blocking experiments can be performed to identify the role 
of IP3R3. Also, a quantitative analysis of mitochondrial 
Ca2+ (Rhod dye) and correlation with Ca2+ sequestration 
can be useful for understanding the progression of cell 
death dynamics.
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